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This paper establishes the main features of the spectral theory for the singular
two-point boundary-value problem

fA(s)u 0 (s)g0 + · u(s) = 0 for all s 2 (0; 1]; (1)

u(1) = lim
s ! 0

A(s)u 0 (s) = 0; (2)

and Z 1

0
A(s)u 0 (s)2 ds < 1 ; (3)

which models the buckling of a rod whose cross-sectional area decays to zero at one
end. The degree of tapering is related to the rate at which the coe± cient A tends to
zero as s approaches 0. We say that there is tapering of order p > 0 when
A 2 C ([0; 1]) with A(s) > 0 for s 2 (0; 1] and there is a constant L 2 (0; 1 ) such that
lims ! 0 A(s)=sp = L. A rigorous spectral theory involves relating (1){(3) to the
spectrum of a linear operator in a function space and then investigating the spectrum
of that operator. We do this in two di® erent (but, as we show, equivalent) settings,
each of which is natural from a certain point of view. The main conclusion is that the
spectral properties of the problem for tapering of order p = 2 are very di® erent from
what occurs for p < 2. For p = 2, there is a non-trivial essential spectrum and
possibly no eigenvalues, whereas for p < 2, the whole spectrum consists of a sequence
of simple eigenvalues. Establishing the details of this spectral theory is an important
step in the study of the corresponding nonlinear model. The ¯rst function space that
we choose is the one best suited to the mechanical interpretation of the problem and
the one that is used for treating the nonlinear problem. However, we relate this
formulation in a precise way to the usual L2 setting that is most common when
dealing with boundary-value problems.

1. Introduction

In this paper we develop a rigorous spectral theory for the boundary-value problem

fA(s)u0(s)g0 + · u(s) = 0 for all s 2 (0; 1]; (1.1)

u(1) = lim
s ! 0

A(s)u0(s) = 0 (1.2)

and Z 1

0

A(s)u0(s)2 ds < 1; (1.3)

where · 2 R and the coe¯ cient A 2 C([0; 1]) with A(s) > 0 for s 2 (0; 1]. Thus the
problem may be singular at s = 0 and we monitor this by introducing the following
de­ nition.
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730 C. A. Stuart

Definition 1.1. A pro­ le with tapering of order p > 0 is a function A 2 C([0; 1])
with A(s) > 0 for s 2 (0; 1] for which there is a constant L 2 (0; 1) such that
lims ! 0 A(s)=sp = L.

This terminology comes from the signi­ cance of A in models for the buckling
of rods with variable cross-sections and will be discussed presently. The boundary
conditions (1.2), (1.3) also arise naturally in that context. For p < 2, we ­ nd that the
problem resembles a regular Sturm{Liouville problem, but at p = 2 the spectrum
is no longer a sequence of isolated eigenvalues. In fact, for p = 2, there may be
no eigenvalues and the essential spectrum is always non-empty. Before describing
the results in more detail, let us recall some of the motivation for studying this
eigenvalue problem.

1.1. Tapered rods

In the simplest interpretation, the variable s measures arc-length along an inex-
tensible rod whose centreline is a plane curve fr(s) : 0 < s < 1g given by
r(1) = (0; 0) and r0(s) = ¡ (sin u(s); cos u(s)). A force f (0; ¡ 1), with f > 0, is
applied at the end r(0). The dependent variable u(s) measures the angle between
the tangent at r(s) and the direction (0; ¡ 1). We assume that the rod obeys the
Bernoulli{Euler bending law

M (s) = EA(s)u0(s); (1.4)

with sti¬ness E > 0 [1], where M (s) is the bending moment and we use A(s)
to denote the moment of inertia of the cross-section at r(s) about its centroid,
perpendicular to the plane of bending. Then the mechanical equilibrium of the rod
is expressed by the di¬erential equation

fA(s)u0(s)g0 + · sin u(s) = 0 for all s 2 (0; 1]; (1.5)

where · = f=E. Equation (1.1) is the linearization of (1.5) about the trivial solution
u ² 0. The boundary conditions (1.2) mean that the lower end r(1) is clamped
vertically upwards, whereas the upper end r(0) is free. Since the energy of any
con­ guration is EJ · (u), where

J · (u) =

Z 1

0

1
2A(s)u0(s)2 ¡ · f1 ¡ cos u(s)g ds;

condition (1.3) is just the requirement that an equilibrium con­ guration must have
­ nite energy.

We now show in more detail how the interesting problem of a heavy rod with
variable cross-section buckling under its own weight can also be reduced to the
above form by a change of variable. In this case, no force is applied at r(0), but we
suppose that the rod is made of a homogeneous material of constant density » > 0.
We begin by describing a three-dimensional region that will be used to establish a
reference con­ guration for a rod. Let B be an open bounded subset of R3 whose
sections

D(z) = f(x; y) : (x; y; z) 2 Bg

have the following properties.
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On the spectral theory of a tapered rod 731

Notation and conventions.

(i) D(z) 6= ; () 0 < z < 1.

(ii) D(z) is simply connected and (x; y) 2 D(z) () (x; ¡ y) 2 D(z).

(iii) (0; 0) is the centroid of D(z), that is,
RR

D(z)
x dxdy = 0.

(iv) There are functions S and I 2 C([0; 1]) such that, for 0 < z < 1, S(z) is
the area of D(z) and I(z) is its moment of inertial about the y-axis. Thus
S(z) =

RR
D(z)

dxdy > 0 and I(z) =
RR

D(z)
x2 dxdy > 0 for all z 2 (0; 1) and

we suppose, in addition, that S(0) > 0 and I(0) > 0.

We think of B as being occupied by a rod-like body in its reference con­ guration.
A planar con­ guration of the rod is identi­ ed with a curve in the (x; z)-plane, which
will be taken to be formed by the centroids of these sections. Suppose that the
inextensible rod has unit length and consider a smooth planar con­ guration. We
use arc-length, s, measured from the free end, r(0), for a parametric representation,
r : [0; 1] ! R2, of this con­ guration. Then there is a unique angle, ³ (s) 2 [0; 2 º ),
such that

r0(s) = ¡ (sin ³ (s); cos ³ (s)):

Choosing axes such that gravity acts in the direction of (0; ¡ 1), ³ (s) measures
the angle between the tangent to the rod at position r(s) and the gravitational
force. Choosing the origin of the coordinates so that r(1) = (0; 0), the reference
con­ guration is given by ³ (s) ² 0 or r(s) = (0; 1 ¡ s).

Using M (s) to denote the bending moment at r(s), the equilibrium conditions
are expressed by the di¬erential equation

M 0(s) + » g

·Z s

0

S(1 ¡ ½ ) d ½

¸
sin ³ (s) = 0 for 0 < s < 1;

where g > 0 is the gravitational constant and S(z) is the area of the horizontal
section D(z) at height z in the reference con­ guration. Since the end r(0) is free,
whereas the other end r(1) is clamped vertically upwards, we must impose the
boundary conditions

lim
s ! 0

M(s) = 0 and ³ (1) = 0: (1.6)

Finally, the Bernoulli{Euler constitutive relation (1.4) for the elastica is expressed as
M (s) = EI(1 ¡ s) ³ 0(s), where E > 0 is a material constant and I(z) is the moment
of inertia of the horizontal section at height z in the reference con­ guration about
the axis through (0; 0; z) and perpendicular to the (x; z)-plane (see eqn (16.12)
of [1]). The equilibrium equation now becomes

fI(1 ¡ s) ³ 0(s)g0 + ¹

·Z s

0

S(1 ¡ ½ ) d ½

¸
sin ³ (s) = 0 for 0 < s < 1; (1.7)

where ¹ = » g=E > 0 and I; S 2 C([0; 1]) are given functions. We seek solutions ³
satisfying the boundary conditions (1.6), which become

lim
s ! 0

I(1 ¡ s) ³ 0(s) = 0 and ³ (1) = 0: (1.8)
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732 C. A. Stuart

Motivated by the work on the shape of the tallest column [4,11], we are particularly
interested in cases where S(1 ¡ s) and I(1 ¡ s) ! 0 as s ! 0, so the ­ rst boundary
condition in (1.8) cannot be replaced by lims ! 0 ³ 0(s) = 0. For the same reason,
con­ gurations that satisfy the boundary conditions (1.8) do not necessarily have
­ nite elastic energy, so this has to be ensured separately. The total energy of a
con­ guration is given by

Z 1

0

1
2EI(1 ¡ s) ³ 0(s)2 ¡ » g

·Z s

0

S(1 ¡ ½ ) d ½

¸
f1 ¡ cos ³ (s)g ds:

Since S 2 C([0; 1]), this energy is ­ nite if and only if

Z 1

0

I(1 ¡ s) ³ 0(s)2 ds < 1: (1.9)

We can now give a precise statement of the mathematical problem to be discussed.
Given a constant ¹ > 0 and functions I and S 2 C([0; 1]) with I(z) and S(z) > 0 for
z < 1, we seek solutions of (1.7) that satisfy (1.8) and (1.9). The following change
of variables brings this problem into a more convenient form, which coincides with
the problem of a loaded rod discussed earlier. Given a function S 2 C([0; 1]) with
S(z) > 0 for z < 1, let

Z =

Z 1

0

Z ¼

0

S(1 ¡ ½ ) d ½ d ¼ and t = t(s) =
1

Z

Z s

0

Z ¼

0

S(1 ¡ ½ ) d ½ d ¼ : (1.10)

Then set

u(t) = ³ (s) and A(t) = I(1 ¡ s)

Z s

0

S(1 ¡ ½ ) d ½ where t = t(s): (1.11)

Clearly, t increases from 0 to 1 as s increases from 0 to 1. Furthermore,
Z 1

0

I(1 ¡ s) ³ 0(s)2 ds =
1

Z

Z 1

0

A(t)u0(t)2 dt; (1.12)

A(t)u0(t) = ZI(1 ¡ s) ³ 0(s) where t = t(s); (1.13)

equation (1.7) becomes

fA(t)u0(t)g0 + · sin u(t) = 0 for 0 < t < 1; (1.14)

where · = Z2 ¹ , and the energy becomes

E

Z

Z 1

0

1
2 A(t)u0(t)2 ¡ · f1 ¡ cos u(t)g dt: (1.15)

Equation (1.1) is the linearization of (1.14) and conditions (1.8) and (1.9) reduce
to (1.2) and (1.3), but the independent variable is no longer the arc-length along
the curve of centroids of the rod.

To interpret our results, we should relate tapering of order p for the coe¯ cient
A to the physical variables I and S. Note that if

lim
s ! 0

S(1 ¡ s)

sq
= K > 0 and lim

s ! 0

I(1 ¡ s)

sr
= J > 0; (1.16)
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On the spectral theory of a tapered rod 733

then

lim
t ! 0

A(t)

tp
= L where p =

r + q + 1

q + 2
and L =

JK

q + 1

½
Z(q + 1)(q + 2)

K

¾p

:

In particular, in the case of a uniform column where S and I are constant, q = r = 0
and hence p = 1

2 .
In the discussion of tapered columns buckling under their own weight [4,8,11], it

is often assumed that the sections are all similar, since, in this case, I is proportional
to S2. More precisely, in addition to the assumptions (i){(iv), we suppose that the
sections D(z) have the following property.

(v) There is a function ¬ 2 C([0; 1]) with ¬ (z) > 0 for z < 1 and a set D » R2

such that D(z) = ¬ (z)D for all z 2 (0; 1).

Then

S(z) = ¬ (z)2jDj; where jDj is the area of D

and

I(z) = CS(z)2; where C =
1

jDj2

ZZ

D

x2 dxdy:

Under these conditions, r = 2q in (1.16),

A(t) = CS(1 ¡ s)2

Z s

0

S(1 ¡ ½ ) d ½

and, if

lim
s ! 0

S(1 ¡ s)

sq
= K > 0;

then

lim
t ! 0

A(t)

tp
= L; where p =

3q + 1

q + 2
and L = CZpK3¡p(q + 1)p¡1(q + 2)p:

Our results show that the case p = 2 plays a critical role and this corresponds to
lims ! 0 S(s)=s3 = K 2 (0; 1), where L = 100CZ2K, in the case of a column with
geometrically similar cross-sections. In the case where S(z) is constant (equivalently,
A(t) = t1=2), equation (1.7) was derived by Bernoulli [2] in the same paper as
his original proposition of the Bernoulli{Euler law for the bending moment (see
equation (90) in Truesdell’s authoritative commentaries [18]).

Special cases of the linear equation (1.1) have been discussed in some situations
where the solutions can be expressed in terms of Bessel functions. For a cylindrical
column, Euler himself dealt with the case S(z) ² 1 (equivalently, A(t) = t1=2) [6,7],
and this work is discussed at length by Truesdell (see his equation (424) with P = 0
in [18, pp. 358{367]). This case is also treated by Love [12, p. 425]. Greenhill [8]
treats the cases S(z) ² 1 ¡ z (the set B is a paraboloid of revolution, equivalently
A(t) = t4=3) and S(z) = (1 ¡ z)2 (the set B is a right circular cone, equivalently
A(t) = t7=4), but pays little attention to the boundary conditions at s = 0. However,
he does make some quaint interpretations of his results to structures like pine
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734 C. A. Stuart

trees and jellies. Further work on special cases of this kind is reported in [17]. The
fact that · = 1

4 L is the in­ mum of the essential spectrum of (1.1){(1.3) when
limt! 0 A(t)=t2 = L (equivalently, ¹ = 25K when lims! 0 S(s)=s3 = K) seems to
have been observed ­ rst by Cox and McCarthy [4]. This leads them to criticize
previous work on the existence and shape of a column of greatest height [11], which
predicts that such a column will have a pro­ le with tapering of order 2. Note that
all these works deal with the cases where the column has geometrically similar
cross-sections.

1.2. Mathematical problem and results

In this section we discuss the spectral theory of the problem (1.1), (1.2) and (1.3)
and summarize our main results. Let A be a pro­ le with tapering of order p. For
such a pro­ le, there exist constants K1 > K2 > 0 such that

K2sp 6 A(s) 6 K1sp for all s 2 [0; 1]: (1.17)

Definition 1.2. Since A need not be di¬erentiable, we stipulate that a solution
of (1.1){(1.3) is a function u 2 C1((0; 1]) with Au0 2 C1((0; 1]),

fA(s)u0(s)g0 + · u(s) = 0 for all s 2 (0; 1];

u(1) = lim
s ! 0

A(s)u0(s) = 0

and Z 1

0

A(s)u0(s)2 ds < 1:

If u 6² 0, it will be called an eigenfunction associated with the eigenvalue · .

A rigorous discussion of the spectral theory of (1.1){(1.3) must be formulated in
the context of appropriate function spaces and there are two natural (and as we
show later, equivalent) ways of doing this.

The ­ rst approach is based on using (1.3) to de­ ne a natural Hilbert space
structure (HA; h¢; ¢iA) associated with A and then on studying a bounded self-
adjoint operator acting in HA. The second method is to introduce a self-adjoint
operator in L2(0; 1) associated with (1.1) and (1.2). The ­ rst alternative is more
appropriate for discussing the full nonlinear problems in which (1.1) is replaced
by (1.5) or (1.14). Indeed, the space HA consists of all admissible con­ gurations with
­ nite energy and so one can seek the solution with least energy by minimizing the
energy in this space. Therefore, (HA; h¢; ¢iA), which will be called the energy space, is
the best setting for dealing with the nonlinear problem and its rigorous linearization
plays a crucial role in its analysis (see [15,16]). One of the main purposes of the
present paper is to establish the essential properties of the linearized problem that
are required in the discussion of the nonlinear problem. On the other hand, if
we put aside the underlying physical problem, it is standard practice to associate
an unbounded linear operator acting in L2(0; 1) with a boundary-value problem
like (1.1) with (1.2). Here, condition (1.3) plays a subsidiary role, but nonetheless
the resulting spectral theory is equivalent to that developed in HA.
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On the spectral theory of a tapered rod 735

For a pro­ le A with tapering of order p, the energy space is de­ ned by

HA =

½
u 2 L1

loc((0; 1]) :

Z 1

0

A(s)u0(s)2 ds < 1 and u(1) = 0

¾
;

with

hu; viA =

Z 1

0

A(s)u0(s)v0(s) ds and kukA =

½Z 1

0

A(s)u0(s)2 ds

¾1=2

:

Then, for p 2 [0; 2], a bounded positive self-adjoint operator T : HA ! HA is
de­ ned by

hT (u); viA = hu; vi for all u; v 2 HA;

where h¢; ¢i is the usual scalar product on L2(0; 1). It turns out that the eigenfunc-
tions of T are precisely the eigenfunctions of (1.1){(1.3) de­ ned above. Moreover, it
is this operator T that occurs in the analysis of the nonlinear problems concerning
the buckling of rods. Therefore, most of our attention is devoted to the spectrum
¼ (T ) and essential spectrum ¼ e(T ) of T . The alternative point of view is to consider
the unbounded self-adjoint operator N : D(N ) » L2(0; 1) ! L2(0; 1) de­ ned by

D(N ) =

½
u 2 L2(0; 1) : (Au0)0 2 L2(0; 1); with lim

s ! 0
A(s)u0(s) = u(1) = 0

¾

and

N (u) = ¡ (Au0)0 for all u 2 D(N ):

We show in x 6 that 0 =2 ¼ (N ),

¼ (N ) = f1=¶ : ¶ 2 ¼ (T ) n f0gg and ¼ e(N ) = f1=¶ : ¶ 2 ¼ e(T ) n f0gg:

Let us now summarize our conclusions about the spectrum of T . For 0 6 p < 2,
T : HA ! HA is a compact operator and 0 is not an eigenvalue of T . Furthermore,
all eigenvalues of T are simple, so the spectrum can be expressed as

¼ (T ) = f ¶ i : i 2 Ng [ f0g;

where N = f1; 2 : : : g, 0 < ¶ i + 1 < ¶ i and limi ! 1 ¶ i = 0. An eigenfunction ’i

associated with ¶ i has exactly i zeros in [0; 1]. Also, ’i 2 C([0; 1]) and ’i(0) 6= 0.
Thus, for 0 6 p < 2, the spectrum of T resembles that of Green’s function for
a regular Sturm{Liouville problem. For p = 2, T : HA ! HA is not a compact
operator and max ¼ e(T ) = 4=L, where L = lims ! 0 A(s)=s2. In this case, T may
or may not have some eigenvalues in the interval (4=L; 1) depending upon the
behaviour of A on (0; 1]. We provide some criteria for settling this question. The
existence of at least one eigenvalue (equal to kT k) is a consequence of conditions
we give on A, which ensure that kT k > 4=L. In the other direction, we also give
properties of A that imply that T has no eigenvalues at all.

The paper is organized as follows. In x 2 we present the fundamental properties
of the energy space HA and then in x 3 we introduce the operator T . Sections 4
and 5 are devoted to the spectral theory of T in the cases 0 6 p < 2 and p = 2,
respectively. Finally, in x 6 we discuss the di¬erential operator N .
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736 C. A. Stuart

2. The energy space HA

Consider p 2 [0; 1). If an element u 2 L1
loc((0; 1]) admits a generalized derivative

u0 on (0; 1) such that
R 1

0
spu0(s)2 ds < 1, it follows that u 2 W 1;1(("; 1)) for all

" 2 (0; 1), and hence, from theorem VIII.2 of [3], that (after modi­ cation on a set
of measure zero) u 2 C((0; 1]).

For p > 0, let

Hp =

½
u 2 L1

loc((0; 1]) :

Z 1

0

spu0(s)2 ds < 1 and u(1) = 0

¾
;

with

kukp =

½Z 1

0

spu0(s)2 ds

¾1=2

:

Clearly, k ¢ kp is a norm on the linear space Hp and

u(x) = ¡
Z 1

x

u0(s) ds

for all u 2 Hp and all x 2 (0; 1]. Hence, for u 2 Hp and x 2 (0; 1],

ju(x)j 6 kukp

½Z 1

x

s¡p ds

¾1=2

;

and so

ju(x)j 6 kukp

½
1 ¡ x1¡p

1 ¡ p

¾1=2

if p 6= 1; (2.1)

whereas

ju(x)j 6 kukp

½
ln

1

x

¾1=2

if p = 1: (2.2)

Similarly, for u 2 Hp and x; y 2 (0; 1],

ju(x) ¡ u(y)j 6 kukp

½¯̄
¯̄
Z y

x

s¡p ds

¯̄
¯̄
¾1=2

: (2.3)

Proposition 2.1.

(i) For p 2 [0; 1), Hp with the scalar product

hu; vip =

Z 1

0

spu0(s)v0(s) ds

is a Hilbert space.

(ii) For any bounded sequence fung in Hp, there exist a function u 2 C((0; 1])
and a subsequence funk g such that unk ! u uniformly on ["; 1] for every
" 2 (0; 1).

(iii) Hp \ L 1 (0; 1) is dense in Hp.

(iv) If u 2 Hp, then so does juj and juj0(s)2 = u0(s)2 almost everywhere on (0; 1).
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On the spectral theory of a tapered rod 737

Remark 2.2. If A is a pro­ le with tapering of order p, then

hu; viA =

Z 1

0

A(s)u0(s)v0(s) ds

is a scalar product on HA = Hp whose norm is equivalent to k ¢ kp. Indeed,

p
K2kukp 6 kukA 6

p
K1kukp; (2.4)

with the constants given in (1.17). The Hilbert space (HA; h¢; ¢iA) will be referred
to as the energy space for the pro¯le A. If the sequence fung converges weakly to
u in HA, then un ! u uniformly on ["; 1] for every " 2 (0; 1).

Remark 2.3. Denoting by ACloc((0; 1]) the set of all functions that are absolutely
continuous on ["; 1] for every " 2 (0; 1), the space HA can be characterized as

½
u 2 ACloc((0; 1]) : u(1) = 0 and

Z 1

0

A(s)u0(s)2 ds < 1
¾

:

Remark 2.4. Setting

u ¬ (s) = s ¬ (1 ¡ s) for 0 < s 6 1; (2.5)

we see that u ¬ 2 Hp () ¬ > 1
2(1 ¡ p). Noting that the function lnfln e=sg belongs

to H1 and recalling (2.1), (2.2), we see that Hp » L 1 (0; 1) () p < 1.

Proof. (i) Consider a Cauchy sequence fung in Hp. Clearly, fu0
ng is a Cauchy

sequence in L2( ¯ ; 1) for every ¯ 2 (0; 1), and so there is an element v 2 L2
loc((0; 1])

such that Z 1

¯

fu0
n ¡ vg2 dx ! 0 as n ! 1 for all ¯ 2 (0; 1):

Also, for any ¯ 2 (0; 1), it follows from (2.3) that fung is a Cauchy sequence in
C([ ¯ ; 1]). It follows easily that there is a function u 2 C((0; 1]) such that un ! u
uniformly on [ ¯ ; 1] for every ¯ 2 (0; 1). For any function w 2 C 1

0 ((0; 1)),

Z 1

0

uw0 dx = lim
n ! 1

Z 1

0

unw0 dx = ¡ lim
n ! 1

Z 1

0

u0
nw dx = ¡

Z 1

0

vw dx;

showing that v is the generalized derivative of u on (0; 1). Furthermore, for ¯ 2 (0; 1),

Z 1

¯

spv(s)2 ds = lim
n! 1

Z 1

¯

spu0
n(s)2 ds 6 sup

n
kunk2

p < 1;

and so u 2 Hp.
Choosing " > 0, there exists k such that kun ¡ umkp < " for all n; m > k. Also,

there exists ¯ 2 (0; 1) such that

Z ¯

0

spv(s)2 ds +

Z ¯

0

spu0
k(s)2 ds < ";
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738 C. A. Stuart

and hence

Z 1

0

spfu0
n(s) ¡ v(s)g2 ds

6 2

Z ¯

0

spv(s)2 ds + 2

Z ¯

0

spu0
n(s)2 ds +

Z 1

¯

spfu0
n(s) ¡ v(s)g2 ds

6 2

Z ¯

0

spv(s)2 ds + 4

Z ¯

0

spu0
k(s)2 ds

+ 4kun ¡ ukk2
p +

Z 1

¯

spfu0
n(s) ¡ v(s)g2 ds

6 4" + 4" +

Z 1

¯

fu0
n(s) ¡ v(s)g2 ds for all n > k:

It follows that

kun ¡ uk2
p =

Z 1

0

spfu0
n(s) ¡ v(s)g2 ds ! 0;

showing that Hp is complete.
(ii) Let fung be a bounded sequence in Hp and ­ x ¯ 2 (0; 1). By (2.1){(2.3), fung

is uniformly bounded and equicontinuous on [ ¯ ; 1]. The conclusion follows from the
theorem of Ascoli and Arzela and a standard diagonalization procedure.

(iii) For u 2 Hp and n 2 N, set

un(s) =

(
u(s) for 1=n 6 s 6 1;

u(1=n) for 0 6 s < 1=n:

Then un 2 Hp \ L 1 (0; 1) and

kun ¡ uk2
p =

Z 1=n

0

spu0(s)2 ds ! 0 as n ! 1:

(iv) See corollaries 20.12 and 20.13 of [10], for example.

By (2.1), Hp » L2(0; 1) for p < 2. The following result is in the spirit of Hardy’s
inequality (see p. 327 of [9]), and shows that Hp » L2(0; 1) for p 6 2. For p > 2
and ¬ 2 ( 1

2 (1 ¡ p); ¡ 1
2 ] the function u ¬ de­ ned by (2.5) belongs to Hp, but not to

L2(0; 1).
The usual scalar product and norm on L2(0; 1) are denoted by h¢; ¢i and j ¢ j2,

respectively.

Lemma 2.5. Let 0 6 p 6 2. Then Hp » L2(0; 1) and

juj2 6 2kukp (2.6)

for all u 2 Hp.
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On the spectral theory of a tapered rod 739

Proof. Choose u 2 Hp and " 2 (0; 1). Then

Z 1

"

u(s)2 ds = ¡ "u(")2 ¡ 2

Z 1

"

su(s)u0(s) ds

6 2

½Z 1

"

spu0(s)2 ds

¾1=2½Z 1

"

s2¡pu(s)2 ds

¾1=2

6 2kukp

½Z 1

"

u(s)2 ds

¾1=2

;

since 0 6 p 6 2. This proves (2.6).

3. The operator T : HA ! HA

In this section we establish the basic properties of the operator T in HA associated
with a pro­ le A.

Proposition 3.1. Let A be a pro¯le with tapering of order p 2 [0; 2]. There is a
unique bounded linear operator T : HA ! HA such that

hT (u); viA = hu; vi for all u; v 2 HA;

where h¢; ¢i denotes the usual scalar product on L2(0; 1). Furthermore, T is a positive
self-adjoint operator in HA and 0 is not an eigenvalue of T .

Proof. By lemma 2.5 and (2.4), h¢; ¢i : HA £ HA ! R is a bounded symmetric bilin-
ear form on HA. The existence, uniqueness and self-adjointness of T follow immedi-
ately from this via the Riesz representation theorem. Since hT (u); uiA = hu; ui > 0
for all u 2 HA n f0g, we see that T is positive and that 0 cannot be an eigenvalue
of T .

The spectrum of T is the set

¼ (T ) = f ¶ 2 R : T ¡ ¶ I : HA ! HA is not an isomorphismg:

Recall (see theorem 1.6 of [5], for example) also that the discrete spectrum of T is
the set

¼ d (T ) = f ¶ 2 ¼ (T ) : T ¡ ¶ I : HA ! HA is a Fredholm operatorg

and the essential spectrum is its complement,

¼ e(T ) = ¼ (T ) n ¼ d (T ):

It can be shown (see [5], for example) that ¼ d (T ) is formed by the isolated eigen-
values of T that have ­ nite multiplicity.

Since T is positive and self-adjoint, we know that ¼ (T ) » [0; 1) and

kT k = max ¼ (T )

= supfhT (u); uiA : u 2 HA; with kukA = 1g

= sup

½
hu; ui

hu; uiA
: u 2 HA n f0g

¾
:
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740 C. A. Stuart

This can be expressed directly using the Rayleigh quotient for (1.1),

QA(u) =

R 1

0
A(s)u0(s)2 ds
R 1

0
u(s)2 ds

;

and its in­ mum

¤ (A) = inffQA(u) : u 2 HA n f0gg:

Note that since p 2 [0; 2], it follows from lemma 2.5 that

¤ (A) > 1
4 K2 > 0: (3.1)

Hence

kT k = max ¼ (T ) =
1

¤ (A)
: (3.2)

Let us now give an upper bound for ¤ (A) and sharpen the lower bound (3.1) in
a way that will be useful later. These results are based on the following quantity,
which is de­ ned for any pro­ le A with tapering of order p, where p 6 2. For
0 < s 6 1, we set

fA(s) =
4s2

A(s)
(3.3)

and observe that fA 2 C((0; 1]), with

lim
s! 0

fA(s) =

8
><

>:

0 if p < 2;

4

L
if p = 2:

Now set

M(A) = sup
0<s61

fA(s): (3.4)

Theorem 3.2. Let A be a pro¯le with tapering of order p 6 2. Then ¤ (A) >
1=M(A). Furthermore, for any interval I = [̄ ; ® ] » (0; 1], we have

¤ (A) 6 º 2 maxs 2 I A(s)

4jI jf2 ¯ + jI jg ; where jI j = ® ¡ ¯ :

Thus

4jI jf2 ¯ + jI jg
º 2 maxs 2 I A(s)

6 kT k 6 M (A):
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On the spectral theory of a tapered rod 741

Proof. For any u 2 HA and any " > 0, we have that

Z 1

"

u(s)2 ds = ¡ "u(")2 ¡ 2

Z 1

"

su(s)u0(s) ds

6 2

Z 1

"

sju(s)u0(s)j ds

6 2

½Z 1

"

u(s)2 ds

¾1=2½Z 1

"

s2u0(s)2 ds

¾1=2

=

½Z 1

"

u(s)2 ds

¾1=2½Z 1

"

fA(s)A(s)u0(s)2 ds

¾1=2

6
½Z 1

"

u(s)2 ds

¾1=2½
M (A)

Z 1

"

A(s)u0(s)2 ds

¾1=2

;

showing that Z 1

"

u(s)2 ds 6 M (A)kuk2
A:

It follows that

QA(u) > 1

M (A)
for all u 2 HA n f0g;

and hence ¤ (A) > 1=M(A).
To obtain the upper bound, we ­ x 0 < ¯ < ® 6 1 and we construct an element

of HA as follows:

u(s) =

8
>><

>>:

1 for 0 6 s 6 ¯ ;

sin
( ® ¡ s) º

2(® ¡ ¯ )
for ¯ < s < ® ;

0 for ® 6 s 6 1:

Clearly, u 2 HA, with

kuk2
A =

Z ®

¯

A(s)

·
º

2( ® ¡ ¯ )

¸2

cos2 ( ® ¡ s) º

2( ® ¡ ¯ )
ds

6 max
s 2 I

A(s)

½
º

2(® ¡ ¯ )

¾2 Z ®

¯

cos2 ( ® ¡ s) º

2( ® ¡ ¯ )
ds

=
º 2

8jI j max
s 2 I

A(s)

and Z 1

0

u(s)2 ds = ¯ +

Z ®

¯

u(s)2 ds = ¯ + 1
2
jI j:

Hence

¤ (A) 6 QA(u) 6 º 2 maxs2 I A(s)

4jIjf2 ¯ + jIjg ;

as required.
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742 C. A. Stuart

Finally, we show that the eigenfunctions of problem (1.1){(1.3) are precisely the
eigenfunctions of the operator T : HA ! HA introduced in proposition 3.1.

Lemma 3.3. Let A be a pro¯le with tapering of order p 2 [0; 2]. Then u is an eigen-
function of problem (1.1){(1.3) if and only if u 2 HA and u = · T u. Furthermore,
all eigenvalues of T are simple.

Proof. Suppose that u is a solution of (1.1){(1.3). Then u 2 Hp and, for all v 2 Hp,

Z 1

0

A(s)u0(s)v0(s) ds = lim
" ! 0+

Z 1

"

A(s)u0(s)v0(s) ds

= ¡ lim
" ! 0+

½
A(")u0(")v(") +

Z 1

"

fA(s)u0(s)g0v(s) ds

¾

=

Z 1

0

· u(s)v(s) ds ¡ lim
" ! 0+

A(")u0(")v(")

= · hT u; viA ¡ lim
"! 0+

A(")u0(")v(");

since uv is integrable on (0; 1) by lemma 2.5. Thus

lim
" ! 0+

A(")u0(")v(") = · hT u; viA ¡ hu; viA = l 2 R:

Since u is a solution of (1.1){(1.3),

A(")u0(") = ¡ ·

Z "

0

u(s) ds;

and so by (2.1) and (2.2), there is a constant C such that

jA(")u0(")j 6 C"1=2 for all " 2 (0; 1]: (3.5)

Using (2.1) and (2.2) to estimate v, it follows that l = 0 for p < 2. In the case
p = 2, we obtain the same conclusion, since, if l 6= 0, it follows that

s¡1A(s)u0(s)v(s) =2 L1(0; 1);

whereas

Z 1

0

js¡1A(s)u0(s)v(s)j ds 6
½Z 1

0

A(s)u0(s)2 ds

¾1=2½Z 1

0

s¡2A(s)v(s)2 ds

¾1=2

6
p

K1kukA

½Z 1

0

v(s)2 ds

¾1=2

6 2
p

K1kukAkvk2 < 1;

by lemma 2.5. Hence l = 0 in all cases and

· hT u; viA = hu; viA for all v 2 Hp:

Thus u = · T u.

Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210500001864
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:50:29, subject to the Cambridge

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210500001864
https:/www.cambridge.org/core


On the spectral theory of a tapered rod 743

Conversely, if u 2 HA and u = · T u, it follows that u 2 C((0; 1]), with u(1) = 0
and

Z 1

0

A(s)u0(s)v0(s) ds =

Z 1

0

· u(s)v(s) ds

for all v 2 Hp. This implies that A(s)u0(s) has a generalized derivative on (0; 1)
that satis­ es fA(s)u0(s)g0 = ¡ · u(s) for almost all s 2 (0; 1). Thus Au0 2 C1((0; 1]).

Now let v 2 C1([0; 1]) be such that v(1) = 0 and v(s) = 1 for all s 6 1
2
. Clearly,

v 2 Hp and, for any " 2 (0; 1
2),

A(")u0(") = ¡
Z 1

"

A(s)u0(s)v0(s) ds ¡
Z 1

"

fA(s)u0(s)g0v(s) ds

= ¡
Z 1

0

A(s)u0(s)v0(s) ds + ·

Z 1

"

u(s)v(s) ds

= ¡ ·

Z "

0

u(s)v(s) ds

= ¡ ·

Z "

0

u(s) ds:

Hence

jA(")u0(")j 6 ·

Z "

0

ju(s)j ds for " 2 (0; 1
2);

and so, by (2.1) and (2.2) with 0 6 p 6 2, there is a constant C such that

jA(")u0(")j 6 C"1=2 for " 2 (0; 1
2):

In particular, lims! 0 A(s)u0(s) = 0 and we have shown that u is a solution of prob-
lem (1.1){(1.3).

If ¶ is a eigenvalue of T , ¶ 6= 0 and its eigenfunctions are solutions of (1.1){(1.3)
for · = 1=¶ . But the second-order di¬erential equation (1.1) is regular on (0; 1]
and so the set of solutions satisfying the boundary condition u(1) = 0 is a one-
dimensional vector space that contains all the eigenfunctions of T for the value ¶ .
Hence all the eigenvalues of T are simple.

4. The spectrum of T when p < 2

In this case, problem (1.1){(1.3) behaves like a regular Sturm{Liouville problem.

Theorem 4.1. Let A be a pro¯le with tapering of order p, where 0 6 p < 2. Then
T : HA ! HA is a compact linear operator.

Proof. Let fung be a sequence in HA such that kunkA 6 1 for all n 2 N. We must
show that fT (un)g has a convergent subsequence. By passing to a subsequence, we
may suppose that un * u weakly in HA for some element u 2 HA with kukA 6 1.
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744 C. A. Stuart

Consider any v 2 HA and any " 2 (0; 1). Then

jhT (un) ¡ T (u); viAj
= jhun ¡ u; vij

=

¯̄
¯̄
Z 1

0

(un ¡ u)v ds

¯̄
¯̄

6
Z "

0

jun ¡ ujjvj ds +

Z 1

"

jun ¡ ujjvj ds

6
½Z "

0

jun ¡ uj2 ds

¾1=2½Z "

0

jvj2 ds

¾1=2

+ max
"6s61

j(un ¡ u)(s)j
Z 1

"

jvj ds

6 jun ¡ uj2
½Z "

0

jvj2 ds

¾1=2

+ max
"6s61

j(un ¡ u)(s)jjvj2

6 2kun ¡ ukpS(")kvkp + 2 max
"6s61

j(un ¡ u)(s)jkvkp;

by lemma 2.5 and (2.1), (2.2), where

S(") =

8
>>><

>>>:

·Z "

0

1 ¡ s1¡p

1 ¡ p
ds

¸1=2

if p 6= 1;

·Z "

0

ln

µ
1

s

¶
ds

¸1=2

if p = 1:

Hence

kT (un ¡ u)kA 6 2p
K2

½
1p
K2

kun ¡ ukAS(") + max
"6s61

j(un ¡ u)(s)j
¾

6 2p
K2

½
2p
K2

S(") + max
"6s61

j(un ¡ u)(s)j
¾

;

and so

lim sup
n ! 1

kT (un ¡ u)kA 6 4S(")

K2

for any " 2 (0; 1), since max"6s61 j(un ¡ u)(s)j ! 0 as n ! 1 by remark 2.2. But
S(") ! 0 as " ! 0, since p < 2, showing that limn ! 1 kT (un) ¡ T (u)kA = 0. Thus
T is compact.

Theorem 4.2. Let A be a pro¯le with tapering of order p, where 0 6 p < 2. Then

¼ d (T ) = f ¶ i : i 2 Ng and ¼ e(T ) = f0g;

where ¶ i+ 1 < ¶ i, ¶ 1 = ¤ (A)¡1, limi ! 1 ¶ i = 0 and each ¶ i is a simple eigenvalue
of T . If ’i is an eigenfunction of T associated with ¶ i, then we have the following.

(a) ’i 2 C1((0; 1]) \ L 1 (0; 1).

(b) lims! 0 ’i(s) exists. It is ¯nite and non-zero.

(c) ’i has exactly i zeros in (0; 1] and all the zeros of ’i are simple.
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On the spectral theory of a tapered rod 745

Proof. By proposition 3.1 and theorem 4.1, T : HA ! HA is a compact positive
self-adjoint operator and so ¼ d (T ) = ¼ (T ) n f0g » (0; 1). Furthermore, 0 is not an
eigenvalue of T and, by lemma 3.3, all the eigenvalues of T are simple.

It follows that ¼ d (T ) is a decreasing sequence f ¶ i : i 2 Ng, with ¶ 1 = kT k =
¤ (A)¡1 and limi ! 1 ¶ i = 0.

We now turn to a more detailed discussion of the eigenfunctions. Let ’ be an
eigenfunction of T associated with an eigenvalue ¶ . By lemma 3.3, ’ is a solution
of (1.1){(1.3), and so, for s > 0,

’(s) =
1

¶

Z 1

s

A( ¼ )¡1

Z ¼

0

’(t) dtd ¼ ; (4.1)

since ’ 2 L1(0; 1) by (2.1) and (2.2). Hence, for 0 < s 6 1,

j’(s)j 6 1

¶ K2

Z 1

s

¼ ¡p

Z ¼

0

j’(t)j dtd ¼ : (4.2)

(a) Setting E = [0; 1) \ f¬ : s¬ ’(s) 2 L 1 (0; 1)g, we intend to prove that 0 2 E.
Since ’ 2 Hp, we have that 0 2 E if p < 1, (0; 1) » E if p = 1, and ( 1

2(p ¡ 1); 1) » E
if p > 1, by (2.1) and (2.2). Thus E 6= ; and we set ® = inf E. If ¬ 2 E, it follows
from (4.2) that there is a constant C such that

j’(s)j 6 C

Z 1

s

¼ ¡p

Z ¼

0

t¡ ¬ dtd ¼ =
C

1 ¡ ¬

Z 1

s

¼ 1¡p¡¬ d ¼ : (4.3)

If ® > 2 ¡ p, this implies that ¬ + p ¡ 2 2 E for all ¬ 2 E, with ¬ > ® . Hence
¬ + p ¡ 2 > ® for all ¬ 2 E, with ¬ > ® , contradicting the fact that p < 2. Thus
® < 2 ¡ p and we can choose ¬ 2 E such that ¬ < 2 ¡ p. Now (4.3) implies that
0 2 E and we have shown that ’ 2 L 1 (0; 1). Since ’ is a solution of (1.1){(1.3),
we also have that ’ 2 C1((0; 1]).

(b) Setting

Q(s) =
s

A(s)
; (4.4)

we see that 0 6 Q(s) 6 s1¡p=K2, and so Q 2 L1(0; 1). Since
¯̄
¯̄A( ¼ )¡1

Z ¼

0

’(t) dt

¯̄
¯̄ 6 sup

0<t61
j’(t)jQ( ¼ )

and ’ 2 L 1 (0; 1), it follows from (4.1) that

lim
s ! 0

’(s) = ² ; where ² ² 1

¶

Z 1

0

A( ¼ )¡1

Z ¼

0

’(t) dtd ¼ 2 R:

But then (4.1) can be written as

’(s) = ² ¡ 1

¶

Z s

0

A( ¼ )¡1

Z ¼

0

’(t) dtd ¼ (4.5)

for s > 0. If ² = 0, this implies that, for all s 2 (0; 1],

j’(s)j 6 1

¶
max

0<t6s
j’(t)j

Z s

0

Q( ¼ ) d ¼ ;
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746 C. A. Stuart

from which it follows that

max
0<s6 ½

j’(s)j 6 1

¶
max

0<s6 ½
j’(s)j

Z ½

0

Q( ¼ ) d ¼

for 0 < ½ 6 1. But Q 2 L1(0; 1), and so there must exist ½ > 0 such that
max0<s6 ½ j’(s)j = 0. Then ’( ½ ) = ’0( ½ ) = 0, and since ’ satis­ es the di¬eren-
tial equation (1.1), we conclude that ’ ² 0 on (0; 1], contradicting the fact that ’
is an eigenfunction of T . Hence ² 6= 0.

(c) Using the fact that Q 2 L1(0; 1), this can be established in the same way
as for regular Sturm{Liouville problems via the Pr�ufer transformation. In fact, our
problem is a special case of exercise XX(c) in [19], where the details are outlined.

5. The spectrum of T when p = 2

The preceding theorem shows that, for 0 6 p < 2, problem (1.1){(1.3) behaves
like a regular Sturm{Liouville problem, in particular, ¼ e(T ) = f0g. For p = 2, the
situation is di¬erent. Then it is always the case that max ¼ e(T ) > 0 and it may
happen that ¼ d (T ) = ;. We now give a series of results that justify these statements
in a sharper form.

5.1. The essential spectrum of T

We deal ­ rst with the special case A(s) = Ls2 for some L > 0 and then use this
as a basis for treating a general pro­ le with tapering of order 2.

Lemma 5.1. Let B(s) = Ls2 for some L > 0. Then ¤ (B) = 1
4
L. Furthermore, for

any " > 0 and any ¯ > 0, there exists an element u 2 HB such that

1
4
L 6 QB(u) < 1

4
L + " and u(s) = 0 for all s > ¯ :

Proof. By lemma 2.5, we have that ¤ (B) > 1
4L. Now consider the functions u ¬

de­ ned in (2.5). For all ¬ > ¡ 1
2 , u ¬ 2 H2, and, for the pro­ le B, the Rayleigh

quotient QB(u ¬ ) can be calculated by elementary integrations. One ­ nds that
QB(u ¬ ) ! 1

4
L as ¬ tends to ¡ 1

2
from above. Thus ¤ (B) 6 1

4
L, as required.

Furthermore, for this pro­ le, the Rayleigh quotient QB scales perfectly in the
following sense. Given any u 2 H2 and any ­ > 1, we set

u­ (s) =

(
u(­ s) for 0 6 s 6 1=­ ;

0 for 1=­ < s 6 1:
(5.1)

It follows that u­ 2 H2 and that QB(u­ ) = QB(u) for all ­ > 1. For any " > 0, there
exists an element u 2 H2 such that QB(u) < 1

4 L + ". Choosing ­ > maxf1; 1=¯ g,
we see that QB(u­ ) < 1

4L + " and u­ (s) = 0 for all s > ¯ .

Corollary 5.2. Let B(s) = Ls2 for some L > 0 and let S : HB ! HB be the
bounded self-adjoint operator de¯ned by

hSu; viB =

Z 1

0

u(s)v(s) ds for all u; v 2 HB;

as in proposition 3.1. Then we have the following conclusions.
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On the spectral theory of a tapered rod 747

(i) kSk = 4=L.

(ii) There is a sequence fun : n 2 Ng » HB such that

kunkB = 1; un(s) = 0 for all s 2
·

1

n
; 1

¸
;

4

L
¡ 1

n
< hSun; uniB 6 4

L
;

°°°°

µ
S ¡ 4

L
I

¶
un

°°°°
B

! 0 as n ! 1:

(iii) S has no eigenvalues, so ¼ d (S) = ; and max ¼ e(S) = 4=L.

(iv) For · > 1
4 L, every solution of the di® erential equation (1.1) has an in¯nite

number of zeros in (0; 1).

Proof. (i) Recalling that

QB(u) =
kuk2

B

hSu; uiB
for all u 2 H2 n f0g;

it follows immediately from the preceding lemma that there is a sequence such that
kunkB = 1, un(s) = 0 for all s 2 [1=n; 1] and

4

L
¡ 1

n
< hSun; uniB 6 4

L
:

Furthermore, kSk = 1=¤ (B) by (3.2), showing that kSk = 4=L. Also,
°°°°

µ
S ¡ 4

L
I

¶
un

°°°°
2

B

= kSunk2
B +

µ
4

L

¶2

kunk2
B ¡ 8

L
hSun; uniB

6 2

µ
4

L

¶2

¡ 8

L

µ
4

L
¡ 1

n

¶
=

8

nL
:

This proves parts (i) and (ii).
(iii) and (iv) For the pro­ le Ls2, equation (1.1) can be written as

s2u00(s) + 2su0(s) +
·

L
u(s) = 0;

which is of Euler type and can be transformed to

v00(t) ¡ v0(t) +
·

L
v(t) = 0 on (0; 1); (5.2)

by setting t = ¡ ln s and v(t) = u(s). The general solution of this equation is

v(t) =

8
><

>:

et=2f ¬ et
p

1=4¡ · =L + ­ e¡t
p

1=4¡ · =Lg if · < 1
4L;

et=2f ¬ + ­ tg if · = 1
4L;

et=2f ¬ cos(t
p

· =L ¡ 1=4) + ­ sin(t
p

· =L ¡ 1=4)g if · > 1
4L;

where ¬ and ­ are real constants. For · > 1
4 L and any ¬ ; ­ 2 R, v has a sequence

of zeros tn converging to in­ nity and so u has a sequence of zeros converging to 0.
This proves part (iv) of the lemma.
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748 C. A. Stuart

Since B(s)u0(s) = ¡ Le¡tv0(t), all solutions satisfy the boundary condition
lims ! 0 B(s)u0(s) = 0. Furthermore,

Z 1

0

B(s)u0(s)2 ds = L

Z 1

0

e¡tv0(t)2 dt;

from which it follows that, for · > 1
4 L, only the solution u ² 0 has

Z 1

0

B(s)u0(s)2 ds < 1;

whereas, for · < 1
4 L, the only solutions having this property are of the form u(s) =

­ s® , where

® =

r
1

4
¡ ·

L
¡ 1

2

and ­ is an arbitrary constant. In the latter case, the boundary condition u(1) = 0
means that ­ must be 0. Thus, for all · > 0, u ² 0 is the only solution of (1.1){(1.3),
proving part (iii).

Remark 5.3. The proof of parts (iii) and (iv) brings out the essential di¬erence
between the conditions lims! 0 A(s)u0(s) = 0 and

R 1

0
A(s)u0(s)2 ds < 1 when p = 2.

In fact, for p = 2, lims ! 0 B(s)u0(s) = 0 for all solutions of (1.1), whereas for · > 1
4 L,R 1

0
B(s)u0(s)2 ds = 1 for all non-trivial solutions. For p < 2, the situation is com-

pletely di¬erent, since
R 1

0
A(s)u0(s)2 ds is ­ nite for all solutions of the di¬eren-

tial equation (1.1) that satisfy lims ! 0 A(s)u0(s) = 0. Indeed, using only (1.1) and
lims ! 0 A(s)u0(s) = 0 we obtain (3.5), from which it follows that

A(s)u0(s)2 = A(s)¡1[A(s)u0(s)]2 6 K¡1
2 s¡p[Cs1=2]2 = [C2=K2]s1¡p

for all s 2 (0; 1]. For p < 2, this implies that
R 1

0 A(s)u0(s)2 ds < 1.

Having established these results for the pro­ le B(s) = Ls2, we now return to the
discussion of general pro­ les with tapering of order 2.

Lemma 5.4. Let A be a pro¯le with tapering of order 2. Then ¤ (A) 6 1
4
L, where

L = lims! 0 A(s)=s2 and, for · > 1
4L, all solutions of equation (1.1) have in¯nitely

many zeros.

Proof. For s 2 (0; 1], let r(s) = A(s)=s2. For any u 2 H2 and any ­ > 1, let u­ be
de­ ned by (5.1). Then

QA(u­ ) =

R 1=­

0 r(s)s2u0
­ (s)2 ds

R 1=­

0 u­ (s)2 ds
=

R 1

0
r(s=­ )s2u0(s)2 ds

R 1

0 u(s)2 ds

and so, setting B(s) = Ls2 for s 2 [0; 1], we ­ nd that

lim
­ ! 1

QA(u­ ) =

R 1

0 Ls2u0(s)2 ds
R 1

0
u(s)2 ds

= QB(u)

by dominated convergence, since lims! 0 r(s) = L. It follows that ¤ (A) 6 ¤ (B).
But ¤ (B) = 1

4L by lemma 5.1.
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On the spectral theory of a tapered rod 749

Now ­ x · > 1
4
L and choose " > 0 such that · =(L + ") > 1

4
. There exists ¯ > 0

such that

(L ¡ ")s2 6 A(s) 6 (L + ")s2 for all s 2 [0; ¯ ]:

Consider the equation

f(L + ")s2v0(s)g0 + · v(s) = 0 on (0; ¯ )

and let v 6² 0 be a solution. By the Sturm comparison theorem (see lemma 3.2 in
ch. II of [13]), every solution of (1.1) has at least as many zeros as v in (0; ¯ ). But
v satis­ es

fs2v0(s)g0 +
·

(L + ")
v(s) = 0 on (0; ¯ );

where · =(L + ") > 1
4
, so it follows from corollary 5.2(iv) that v has an in­ nite

number of zeros in (0; ¯ ). This completes the proof.

Lemma 5.5. Let A be a pro¯le with tapering of order 2. Then 4=L 2 ¼ e(T ), where
L = lims! 0 A(s)=s2. Furthermore,

max ¼ e(T ) 6 4

K2
; where K2 = inf

0<s61

A(s)

s2
:

Remark 5.6. Let A be a pro­ le with tapering of order 2. Since max ¼ e(T ) > 0, it
follows that the self-adjoint operator T : HA ! HA is not compact.

Proof. Let ¶ = 4=L and let B(s) = Ls2 for 0 6 s 6 1. There is a sequence
f"n : n 2 Ng such that "n ! 0 and

(1 ¡ "n)B(s) 6 A(s) 6 (1 + "n)B(s) for 0 6 s 6 1

n
: (5.3)

Now consider the sequence fung given by corollary 5.2(ii). Clearly,

kunk2
A =

Z 1=n

0

A(s)u0
n(s)2 ds 2 [1 ¡ "n; 1 + "n]

and

hT un; uniA = hSun; uniB 2
·
¶ ¡ 1

n
; ¶

¸
:

Furthermore, in the notation of corollary 5.2, for any v 2 H2,

hT un; viA = hSun; viB =

Z 1=n

0

un(s)v(s) ds

and

kvkB 6
r

L

K2
kvkA:

Also,

hun; viA ¡ hun; viB =

Z 1=n

0

[A(s) ¡ B(s)]u0
n(s)v0(s) ds;
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750 C. A. Stuart

so

jhun; viA ¡ hun; viBj

6
½Z 1=n

0

jA(s) ¡ B(s)ju0
n(s)2 ds

¾1=2½Z 1=n

0

jA(s) ¡ B(s)jv0(s)2 ds

¾1=2

6 "nkunkBkvkB = "nkvkB:

It follows that

jh(T ¡ ¶ )un; viAj = jh(S ¡ ¶ )un; viB + ¶ hun; viB ¡ ¶ hun; viAj
6 jh(S ¡ ¶ )un; viB j + ¶ jhun; viA ¡ hun; viB j
6 k(S ¡ ¶ I)unkBkvkB + ¶ "nkvkB;

showing that

k(T ¡ ¶ )unkA 6
r

L

K2
fk(S ¡ ¶ I)unkB + ¶ "ng:

Hence k(T ¡ ¶ )unkA ! 0 as n ! 1, since "n ! 0 and k(S ¡ ¶ I)unkB ! 0. Setting
vn = un=kunkA, we see that kvnkA = 1 for all n 2 N and

k(T ¡ ¶ )vnkA =
k(T ¡ ¶ )unkA

kunkA
! 0;

since kunkA ! 1. Furthermore, for any v 2 HA,

jhT vn; viAj =
j
R 1=n

0
unv dsj

kunkA

6 junj2
kunkA

½Z 1=n

0

v2 ds

¾1=2

6 2p
K2

½Z 1=n

0

v2 ds

¾1=2

:

Hence hT vn; viA ! 0 as n ! 1, since HA » L2(0; 1) by lemma 2.5. From this and
the fact that k(T ¡ ¶ )vnkA ! 0, it follows easily that hvn; viA ! 0 as n ! 1 for
any v 2 HA. This means that fvng is what is called in [5] a singular sequence for T
corresponding to ¶ . Hence, by theorems 1.3 and 1.6 in ch. IX of [5], ¶ = 4=L 2 ¼ e(T ).

Conversely, suppose that ¹ 2 ¼ e(T ). Then there is a singular sequence fwng »
HA for T corresponding to ¹ . Thus kwnkA = 1, wn * 0 weakly in HA and
k(T ¡ ¹ I)wnkA ! 0. It follows from proposition 2.1 that wn(s) ! 0 uniformly
on [1=k; 1] for every k 2 N.

First we observe that h(T ¡ ¹ I)wn; wniA ! 0, and so

Z 1

0

wn(s)2 ds = hT wn; wniA ! ¹ : (5.4)

However, using corollary 5.2,
Z 1

0

wn(s)2 ds = hSwn; wniB 6 4

L
kwnk2

B 6 4

K2
kwnk2

A =
4

K2
: (5.5)
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On the spectral theory of a tapered rod 751

Recalling (5.4), this proves that ¹ 6 4=K2.

We can now establish the main result of this section in full generality.

Theorem 5.7. Let A be a pro¯le with tapering of order 2. Then max ¼ e(T ) = 4=L,
where L = lims! 0 A(s)=s2.

Proof. We begin by showing that ¼ e(T ) depends only on the behaviour of A near
s = 0. This will be done by decomposing the space HA into three mutually orthog-
onal subspaces. First, we ­ x ¯ 2 (0; 1) and then we de­ ne an element w of HA by
setting

w(s) =

8
>>><

>>>:

¡
Z 1

¯

A(t)¡1 dt for 0 6 s 6 ¯ ;

¡
Z 1

s

A(t)¡1 dt for ¯ < s 6 1:

Let P : HA ! HA be the orthogonal projection of HA onto w? and set Q = I ¡ P .
Noting that, for any u 2 HA,

hu; wiA =

Z 1

0

A(s)u0(s)w0(s) ds =

Z 1

¯

A(s)u0(s)A(s)¡1 ds = ¡ u( ¯ );

we ­ nd that

w? = fu 2 HA : u( ¯ ) = 0g:

Next, for any v 2 w?, we write v = v1 + v2, where

v1(s) = 0 for ¯ 6 s 6 1 and v2(s) = 0 for 0 6 s 6 ¯ :

Then v1 and v2 2 HA, with hv1; v2iA = 0. Thus we have an orthogonal decomposi-
tion of HA as

HA = spanfwg © E1 © E2; with u =
u( ¯ )

w( ¯ )
w + (Pu)1 + (Pu)2;

and, by an obvious abuse of notation, we can write

E1 =

½
u 2 L1

loc((0; ¯ ]) :

Z ¯

0

spu0(s)2 ds < 1 and u( ¯ ) = 0

¾

and

E2 =

½
u 2 L1( ¯ ; 1) :

Z 1

¯

spu0(s)2 ds < 1 and u( ¯ ) = u(1) = 0

¾
= H1

0 ( ¯ ; 1)

in the usual notation for Sobolev spaces [3, x VIII.3].
We now use this decomposition to characterize the essential spectrum of T . The

subspace w? is not invariant under T , but the subspaces Ei are invariant under
P T P , since, for vi 2 Ei,

hPT P v1; v2iA = hT v1; v2iA =

Z 1

0

v1v2 ds = 0:
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752 C. A. Stuart

Clearly,

T = P T P + QT + P T Q;

where QT + P T Q : HA ! HA is a compact linear operator, since Q has a one-
dimensional range. By theorem 4.1 in ch. I of [5], this means that T and PT P have
the same essential spectrum. But, in the notation of ch. IX.5 of [5], PT P = R © S,
where Rw = 0 and S : w? ! w? satis­ es

hSu; viA = hT u; viA =

Z 1

0

u(s)v(s) ds =

2X

i = 1

Z 1

0

ui(s)vi(s) ds

for all u = u1+u2, v = v1+v2 2 w? = E1©E2 and S = S1©S2, where Si : Ei ! Ei

is the unique bounded self-adjoint operator satisfying

hSiu; viA = hT u; viA for all u; v 2 Ei:

From the relations (5.2) in ch. IX.5 of [5], we conclude that

¼ e(PT P ) = ¼ e(R) [ ¼ e(S1) [ ¼ e(S2);

where ¼ e(R) = ;. We claim that ¼ e(S2) = f0g. In fact, if fung is a bounded sequence
in E2, by passing to a subsequence, we may suppose that un ! u uniformly on [̄ ; 1]
for some element u 2 E2. Thus, for any v 2 E2,

jhS2(un ¡ u); viAj 6
Z 1

¯

jun(s) ¡ u(s)jjv(s)j ds

6 max
¯ 6s61

jun(s) ¡ u(s)j max
¯ 6s61

jv(s)j

6 C( ¯ ) max
¯ 6s61

jun(s) ¡ u(s)jkvkA

for some constant C( ¯ ) that is given by (2.1). This proves that kS2(un ¡ u)kA ! 0
and hence that S2 : E2 ! E2 is a compact operator, justifying our claim that
¼ e(S2) = f0g.

We now know that

¼ e(T ) = ¼ e(P T P ) = f0g [ ¼ e(S1); (5.6)

so it remains to investigate the spectrum of S1 : E1 ! E1. As we shall now show,
this is simply a rescaling of (1.1), (1.2), (1.3) to the interval [0; ¯ ], and so we can
use lemma 5.5 to estimate max ¼ e(S1). To do this, we de­ ne a new pro­ le D on
[0; 1] by setting

D(s) = ¯ ¡1A( ¯ s) for 0 6 s 6 1;

with

l = lim
s ! 0

D(s)

s2
and k2 = inf

0<s61

D(s)

s2
: (5.7)

Clearly,

l = ¯ L and k2 = ¯ inf
0<t6 ¯

A(t)

t2
: (5.8)
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On the spectral theory of a tapered rod 753

Furthermore, the operator J : E1 ! HD de­ ned by

Ju(t) = u( ¯ t) for 0 6 t 6 1

is an isometric isomorphism of the Hilbert space (E1; h¢; ¢iA) onto (HD; h¢; ¢iD),
since, for any u; v 2 E1,

hu; viA =

Z ¯

0

A(s)u0(s)v0(s) ds

= ¯

Z 1

0

A( ¯ t)u0( ¯ t)v0( ¯ t) dt

= ¯ ¡1

Z 1

0

A( ¯ t)(Ju)0(t)(Jv)0(t) dt

=

Z 1

0

D(t)(Ju)0(t)(Jv)0(t) dt

= hJu; JviD:

Let V : HD ! HD be the self-adjoint operator associated with (1.1){(1.3) for the
pro­ le D via proposition 3.1. Then, for all u; v 2 E1,

hV Ju; JviD =

Z 1

0

Ju(t)Jv(t) dt

= ¯ ¡1

Z ¯

0

u(s)v(s) ds

= ¯ ¡1hS1u; viA

= ¯ ¡1hJS1u; JviD;

thus J¡1V J = ¯ ¡1S1. It follows that max ¼ e(S1) = ¯ max ¼ e(V ) and, by lemma 5.5
applied to the pro­ le D, max ¼ e(V ) 2 [4=l; 4=k2], where l and k2 are de­ ned in (5.7).
Hence, using (5.8),

4

L
6 max ¼ e(S1) 6 4

inf0<t6 ¯ A(t)=t2

and inf0<t6 ¯ A(t)=t2 ! L as ¯ ! 0. This proves that max ¼ e(S1) = 4=L and, con-
sequently, that max ¼ e(T ) = 4=L by (5.6).

5.2. Existence and non-existence of eigenfunctions

Recalling from (3.2) that ¤ (A) = inf ¼ (T ¡1), we introduce the notation

¤ e(A) = inf ¼ e(T ¡1):

Combining theorems 3.2 and 5.7, we obtain the following information about the
spectrum of (1.1){(1.3).

Theorem 5.8. Let A be a pro¯le with tapering of order p = 2. Then

1

M(A)
6 ¤ (A) 6 1

4L = ¤ e(A);
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754 C. A. Stuart

where L = lims! 0 A(s)=s2 and M (A) is de¯ned by equation (3.4). In particular,
¤ (A) = ¤ e(A) = 1

4 L, provided that

A(s) > Ls2 for all s 2 (0; 1]:

Remark 5.9. To show that ¤ (A) < ¤ e(A), it is enough to ­ nd one function u 2 H2

for which QA(u) < 1
4L. On the other hand, theorem 3.2 can be used to exhibit a

class of pro­ les for which this is possible, since it is enough to ensure that

º 2 maxs 2 I A(s)

jI jf2 ¯ + jIjg < L

for some interval I = [̄ ; ® ] » (0; 1]. Recalling Greenhill’s interpretation of the
problem in connection with pine trees [8], we observe that every pro­ le A can be
modi­ ed on a small interval I near the clamped end so as to make

º 2 maxs 2 I A(s)

jIjf2 ¯ + jIjg

arbitrarily small. This principle has been used, at least since the time of Noah, to
fell trees.

Finally, we show that in some cases there may be no eigenfunctions at all.

Theorem 5.10. Let A be a pro¯le with tapering of order 2. Suppose that A 2
C1([0; 1]), with lims ! 0 A0(s)=s = 2L, and that, for all s 2 (0; 1],

dh

ds
(s) 6 0 where h(s) = A(s)

½Z 1

s

A( ½ )¡1 d ½

¾2

: (5.9)

Then the operator T : HA ! HA has no eigenvalues and u ² 0 is the only solution
of (1.1){(1.3).

Remark 5.11. We note that h 2 C1((0; 1]), with h0 6 0 on (0; 1], h(1) = 0 and
lims ! 0 h(s) = 1=L. Hence there is an interval (a; b) with a < b such that h0 < 0
on (a; b).

Remark 5.12. For the pro­ le Ls2, we ­ nd that h(s) = (1 ¡ s)2=L, and so (5.9) is
satis­ ed, con­ rming the conclusion of corollary 5.2(iii). The property (5.9) can also
be checked for pro­ les like Ls2 + Csq, where C > 0 and q > 2.

Remark 5.13. Let us reformulate condition (5.9) in terms of the physical vari-
ables (1.10) and (1.11) for the problem of a column buckling under its own weight.
Suppose that (1.16) holds with r = q + 3, so that p = 2. Then A 2 C1([0; 1]), with
limt! 0 A0(t)=t = 2L, provided that I 2 C1([0; 1]) and that lims ! 0 I 0(1 ¡ s)=sr¡1

exists. We ­ nd that dh=dt 6 0 for all t 2 (0; 1) if and only if

d

dz

½
I(z)

·Z z

0

I( ½ )¡1 d ½

¸2 Z 1

z

S( ½ ) d ½

¾
> 0 for all z 2 (0; 1):

Proof. Let u be a solution of (1.1){(1.3). We introduce new variables by setting

t =

Z 1

s

A( ½ )¡1 d ½ and v(t) = u(s):
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On the spectral theory of a tapered rod 755

Then t increases from 0 to 1 as s decreases from 1 to 0. Furthermore, v 2 C2((0; 1]),
with v0(t) = ¡ A(s)u0(s),

v00(t) + · » (t)v(t) = 0 for 0 < t < 1;

v(0) = lim
t ! 1

v0(t) = 0;

Z 1

0

A(s)u0(s)2 ds =

Z 1

0

v0(t)2 dt < 1;

9
>>>>=

>>>>;

(5.10)

where » (t) = A(s).
By lemma 3.3, we know that u = · T u and hence hu; uiA = · hT u; uiA, which

becomes Z 1

0

v0(t)2 dt = ·

Z 1

0

u(s)2 ds = ·

Z 1

0

» (t)v(t)2 dt: (5.11)

Multiplying (5.10) by tv0(t) and integrating from 0 to T < 1, we have that

T v0(T )2 + · T » (T )v(T )2 =

Z T

0

v0(t)2 + · [t» (t)]0v(t)2 dt; (5.12)

where
d

dt
[t» (t)] = A(s) ¡ t(s)A(s)

d

ds
A(s);

and so, if T = t(S),

Z T

0

j[t» (t)]0jv(t)2 dt 6
Z 1

S

fA(s) + t(s)A(s)jA0(s)jgu(s)2A(s)¡1 ds

=

Z 1

S

f1 + t(s)jA0(s)jgu(s)2 ds: (5.13)

But lims ! 0 t(s)jA0(s)j = 2, since

lim
s ! 0

s

Z 1

s

A( ½ )¡1 d ½ =
1

L
:

Hence there is a constant C such that t(s)jA0(s)j 6 C for all s 2 (0; 1]. Using this
estimate and lemma 2.5, we see from (5.13) that

Z 1

0

j[t» (t)]0jv(t)2 dt < 1;

and consequently v0(t)2 + · [t» (t)]0v(t)2 is integrable on (0; 1). Let

M ²
Z 1

0

v0(t)2 + · [t» (t)]0v(t)2 dt:

It follows from (5.12) that

lim
T ! 1

fT v0(T )2 + · T » (T )v(T )2g = M < 1:

But

0 6
Z T

0

» (t)v(t)2 dt =

Z 1

S

u(s)2 ds 6 4kuk2
2
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756 C. A. Stuart

by lemma 2.5. This implies that [v0]2 + · » v2 is integrable on (0; 1), and hence that
M = 0. Recalling (5.11), we now have that

·

Z 1

0

» (t)v(t)2 dt =

Z 1

0

v0(t)2 dt = ¡
Z 1

0

· [t» (t)]0v(t)2 dt;

which yields Z 1

0

t¡1[t2 » (t)]0v(t)2 dt = 0:

But
d

dt
[t2 » (t)] = ¡ A(s)

d

ds
h(s) > 0

by (5.9), and so [t2 » (t)]0v(t)2 = 0 on (0; 1). Hence v(t) = 0 on the interval
(t(b); t(a)), where (a; b) is the interval discussed in remark 5.11. Since v satis­ es
the di¬erential equation (5.10), this implies that v ² 0 on (0; 1) and the proof is
complete.

6. The di®erential operator

In x 3 we de­ ned the operator T : HA ! HA associated with the boundary-value
problem (1.1){(1.3). As we show in [16], the space HA is the natural setting for
the study of the nonlinear eigenvalue problems posed by (1.5) or (1.14) with (1.2)
and (1.3). The operator T plays a important role in the discussion of these problems,
since I ¡ · T : HA ! HA constitutes the linear approximation. However, confronted
directly with the linear eigenvalue problem (1.1) and (1.2), there is another standard
way of formulating a rigorous spectral theory for such a boundary-value problem.
It involves using (1.1) and (1.2) to de­ ne an unbounded self-adjoint operator N
in the usual Hilbert space L2(0; 1). In this section we explore this possibility and
show that it leads to exactly the same spectrum and essential spectrum as the
approach based on T . Indeed, we establish a precise relation of similarity between
the operators T and N and we show that HA is characterized as the graph space
of the positive square root N 1=2 of N .

For the rest of this section let A be a pro­ le with tapering of order p, where
0 6 p 6 2. We begin by considering the set

D = fu 2 L2(0; 1) : (Au0)0 2 L2(0; 1)g (6.1)

formed by the elements u 2 L2(0; 1) that have a generalized derivative u0, which
has the property that Au0 has a generalized derivative belonging to L2(0; 1). We
claim that, after modi­ cation on a set of measure zero,

u 2 C1((0; 1]) and Au0 2 C([0; 1]): (6.2)

In fact, setting

f = (Au0)0 and g = Au0 for some u 2 D;

we have that g 2 L1
loc(0; 1), with g0 = f 2 L2(0; 1) » L1(0; 1). It follows from this

that, after modi­ cation on a set of measure zero,

Au0 = g 2 C([0; 1]) and g(s) = g(t) +

Z s

t

f ( ½ ) d ½
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On the spectral theory of a tapered rod 757

for all s; t 2 [0; 1]. In particular,

A(s)u0(s) = ¬ +

Z s

0

f ( ½ ) d ½ for all s 2 [0; 1];

where ¬ = g(0) = [Au0](0). Thus, for 0 < s 6 1,

u0(s) =
1

A(s)

½
¬ +

Z s

0

f ( ½ ) d ½

¾
; (6.3)

showing that u 2 C1((0; 1]).
By (6.2) we can de­ ne a subset of D by setting

D0 = fu 2 D : [Au0](0) = 0 and u(1) = 0g: (6.4)

Lemma 6.1.

(i) D0 » HA and

kukA 6 2p
K2

j(Au0)0j2 for all u 2 D0;

where K2 ² inffA(s)=sp : 0 6 s 6 1g > 0.

(ii) D0 is dense in the Hilbert space (HA; h¢; ¢iA).

(iii) For all u 2 D0 and v 2 HA,

lim
s! 0

A(s)u0(s)v(s) = 0 and

Z 1

0

(Au0)0v ds = ¡
Z 1

0

Au0v0 ds:

Proof. For any u 2 D0, it follows from (6.3) that

A(s)u0(s)2 =
1

A(s)

½Z s

0

f ( ½ ) d ½

¾2

6 1

K2sp

½Z s

0

f ( ½ ) d ½

¾2

6 1

K2s2

½Z s

0

f ( ½ ) d ½

¾2

(6.5)

for all s 2 (0; 1], since p 6 2. But, arguing as for Hardy’s inequality,

Z 1

"

s¡2

½Z s

0

f ( ½ ) d ½

¾2

ds

6 "¡1

½Z "

0

f ( ½ ) d ½

¾2

+

Z 1

"

s¡12

½Z s

0

f( ½ ) d ½

¾
f(s) ds

6
Z "

0

f ( ½ )2 d ½ + 2

·Z 1

"

s¡2

½Z s

0

f ( ½ ) d ½

¾2

ds

¸1=2·Z 1

"

f ( ½ )2 d ½

¸1=2

for all " 2 (0; 1). Since f 2 L2(0; 1),
Z "

0

f ( ½ )2 d ½ ! 0 as " ! 0;
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758 C. A. Stuart

and it follows easily that

Z 1

0

s¡2

½Z s

0

f ( ½ ) d ½

¾2

ds 6 4

Z 1

0

f( ½ )2 d ½ : (6.6)

Returning to (6.5), we see that part (i) follows immediately.
(ii) Let u 2 HA and choose any ¯ > 0. De­ ne v by setting

v(s) =

(
u( ¯ ) for 0 6 s 6 ¯ ;

u(s) for ¯ < s 6 1:

It follows that v 2 HA, with

ku ¡ vk2
A =

Z ¯

0

A(s)u0(s)2 ds: (6.7)

Since A1=2v0 2 L2(0; 1) and A 2 C([0; 1]), we have that Av0 2 L2( ¯ ; 1). Hence there
exists a sequence fwkg » C 1

0 (( ¯ ; 1)) such that
Z 1

¯

(wk ¡ Av0)2 ds ! 0 as k ! 1: (6.8)

Setting wk(s) = 0 for s 2 [0; ¯ ], we have that wk 2 C 1
0 ((0; 1)) and wk=A 2 C([0; 1]).

Thus we can de­ ne a function vk on [0; 1] by

vk(s) = ¡
Z 1

s

wk(t)

A(t)
dt:

Clearly, vk 2 C1([0; 1]), with Av0
k = wk 2 C 1

0 ((0; 1)). Furthermore, A(0)v0
k(0) = 0

and vk(1) = 0. Thus vk 2 D0 and

kvk ¡ vk2
A =

Z 1

0

A[v0
k ¡ v0]2 ds

=

Z 1

¯

A[v0
k ¡ v0]2 ds

=

Z 1

¯

1

A
[Av0

k ¡ Av0]2 ds

=

Z 1

¯

1

A
[wk ¡ Av0]2 ds

6 1

K2 ¯ p

Z 1

¯

[wk ¡ Av0]2 ds:

Thus, combining this with (6.7), we have that

kvk ¡ ukA 6
½Z ¯

0

A(s)u0(s)2 ds

¾1=2

+

½
1

K2 ¯ p

Z 1

¯

[wk ¡ Av0]2 ds

¾1=2

:

Now, given u 2 HA and " > 0, we can choose ¯ > 0 such that

½Z ¯

0

A(s)u0(s)2 ds

¾1=2

< "
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On the spectral theory of a tapered rod 759

and, for this choice of ¯ , it follows from (6.8) that there exists k 2 N such that

½
1

K2 ¯ p

Z 1

¯

[wk ¡ Av0]2 ds

¾1=2

< ":

Thus kvk ¡ ukA < 2", where vk 2 D0, showing that D0 is dense in HA.
(iii) Let u; v 2 D0 and set f = (Au0)0 and g = (Av0)0. Then f; g 2 L2(0; 1) and

we have that
Z 1

0

f (s)v(s) ds = lim
" ! 0

Z 1

"

f (s)v(s) ds

= lim
" ! 0

½
¡ A(")u0(")v(") ¡

Z 1

"

A(s)u0(s)v0(s) ds

¾
;

so, since u; v 2 HA, we see that lim"! 0 A(")u0(")v(") = l, where

l = ¡ fhu; viA + hf; vig 2 R:

Now

A(s)u0(s) =

Z s

0

f (t) dt;

and so

jA(s)u0(s)j 6 s1=2

½Z s

0

f(t)2 dt

¾1=2

6 s1=2

½Z 1

0

f (t)2 dt

¾1=2

:

Using the estimate (2.1) or (2.2), it follows that l = 0 if p < 2. For the case p = 2,
we observe that if l 6= 0, then s¡1A(s)u0(s)v(s) =2 L1(0; 1). But

Z 1

0

js¡1A(s)u0(s)v(s)j ds 6
½Z 1

0

A(s)u0(s)2 ds

¾1=2½Z 1

0

s¡2A(s)v(s)2 ds

¾1=2

6 kukA

p
K1jvj2 < 1;

so l = 0. Thus l = 0 for all p 2 [0; 2] and hence
Z 1

0

A(s)u0(s)v0(s) ds = ¡
Z 1

0

f(s)v(s) ds:

We now introduce the di¬erential operator in N : D(N ) » L2(0; 1) ! L2(0; 1)
associated with problem (1.1) and (1.2) by setting

D(N ) = D0 and N (u) = ¡ (Au0)0 for u 2 D(N ): (6.9)

Let h¢; ¢i denote the usual scalar product on L2(0; 1).

Theorem 6.2. D0 is a dense subspace of (L2(0; 1); h¢; ¢i) and

N : D(N ) » L2(0; 1) ! L2(0; 1)

is a positive self-adjoint operator. Furthermore,

hN (u); vi =

Z 1

0

A(s)u0(s)v0(s) ds = hu; viA for all u 2 D(N ) and v 2 HA;
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760 C. A. Stuart

and ¤ (A) = inf ¼ (N ), where ¼ (N ) denotes the spectrum of N .

Proof. Let w 2 C 1
0 ((0; 1)). Then de­ ne a function V (w) by setting

V (w)(s) = ¡
Z 1

s

w(t)

A(t)
dt for 0 6 s 6 1: (6.10)

It follows that V (w) 2 C1([0; 1]), with V (w)0(s) = w(s)=A(s). Thus V (w)(1) = 0,
A(0)V (w)0(0) = w(0) = 0 and [AV (w)0]0 = w0 2 C 1

0 ((0; 1)), showing that
V (w) 2 D0 for all w 2 C 1

0 ((0; 1)).
Suppose now that v 2 L2(0; 1) and that hv; ui = 0 for all u 2 D0. Then

hv; V (w)i = 0 for all w 2 C 1
0 ((0; 1)). Thus, for all w 2 C 1

0 ((0; 1)),

0 =

Z 1

0

v(s)

Z 1

s

w(t)

A(t)
dtds

=

Z s

0

v( ½ ) d ½

Z 1

s

w(t)

A(t)
dt

¯̄
¯̄
s = 1

s = 0

+

Z 1

0

Z s

0

v( ½ ) d ½
w(s)

A(s)
ds

=

Z 1

0

Z s

0

v( ½ ) d ½
w(s)

A(s)
ds;

which implies that
Z s

0

v( ½ ) d ½ = 0 on (0; 1), and consequently v(s) = 0 on (0; 1):

This proves that D0 is dense in L2(0; 1).
The adjoint operator N ¤ : D(N ¤ ) » L2(0; 1) ! L2(0; 1) is now de­ ned by

D(N ¤ ) = fv 2 L2(0; 1) : 9z 2 L2(0; 1) such that

hN(u); vi = hu; zi for all u 2 D(N )g

and

N ¤ (v) = z for all v 2 D(N ¤ ):

Let us show that D(N ¤ ) = D0. In fact, by lemma 6.1(iii), we know that for all
u; v 2 D0,

hN (u); vi = hu; viA = hu; N (v)i;

proving that D0 » D(N ¤ ) and that N ¤ (v) = N (v) for all v 2 D(N ). Thus we
need only show that D(N ¤ ) » D0. To this end, suppose that v 2 D(N ¤ ) and that
z 2 L2(0; 1) is such that hN(u); vi = hu; zi for all u 2 D(N ). Then

¡
Z 1

0

(Au0)0v ds =

Z 1

0

uz ds for all u 2 D(N ):

In particular, for any w 2 C 1
0 ((0; 1)),

¡
Z 1

0

(A[V (w)]0)0v ds =

Z 1

0

V (w)z ds;
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On the spectral theory of a tapered rod 761

where V (w) is de­ ned by (6.10) and so

¡
Z 1

0

w0v ds = ¡
Z 1

0

½Z 1

s

w(t)

A(t)
dt

¾
z(s) ds = ¡

Z 1

0

w(s)

A(s)

Z s

0

z(t) dtds:

Thus v has a generalized derivative on (0; 1) and

v0(s) = ¡ 1

A(s)

Z s

0

z(t) dt:

It follows that Av0 2 C([0; 1]) and A(0)v0(0) = 0. Since (Av0)0 = ¡ z 2 L2(0; 1),
we need only show that v(1) = 0 in order to establish that v 2 D0. For this, let
v̂ = v ¡ v(1). Clearly, v̂ 2 D0. For all u 2 D0, we have that

Z 1

0

uz ds = ¡
Z 1

0

(Au0)0v ds

= ¡
Z 1

0

(Au0)0[v̂ + v(1)] ds

= ¡
Z 1

0

(Au0)0v̂ ds ¡ v(1)

Z 1

0

(Au0)0 ds

= hN (u); v̂i ¡ v(1)A(1)u0(1);

But, by lemma 6.1(iii),

hN (u); v̂i = hu; N (v̂)i = ¡
Z 1

0

u(Av0)0 ds = hu; zi;

since u; v̂ 2 D0 and (Av̂0)0 = (Av0)0 = ¡ z. Therefore, v(1)A(1)u0(1) = 0 for all
u 2 D0 and it follows that v(1) = 0. This proves that v 2 D0 and hence that
D(N ¤ ) » D0. Thus D(N ¤ ) = D0 and the self-adjointness of N is established.

By lemma 6.1(iii), hN (u); vi = hu; viA for all u 2 D(N ) and v 2 HA. In particu-
lar, for all u 2 D(N),

hN (u); ui = hu; uiA > ¤ (A)hu; ui;

where ¤ (A) > 0, since p 6 2 by (3.1). This proves that N > ¤ (A)I, so N is positive
and, by theorem 4.4 in ch. III of [5],

inf ¼ (N ) = inffhN(u); ui : u 2 D(N) and juj2 = 1g:

Since D(N ) » HA and hN (u); ui = hu; uiA for all u 2 D(N ),

inffhN (u); ui : u 2 D(N ) and juj2 = 1g
> inffhu; uiA : u 2 HA and juj2 = 1g = ¤ (A):

But, for any u 2 HA with juj2 = 1, there is a sequence fung » D(N ) such that
ku ¡ unkA ! 0, since D(N ) is dense in HA by lemma 6.1(ii). Then

hN (un); uni = kunk2
A ! kuk2

A and junj2 ! juj2
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by lemma 2.5, since p 6 2. Hence vn = un=junj2 2 D(N ), with jvnj2 = 1 and

hN (vn); vni =
hN (un); uni

junj22
! kuk2

A

juj22
= kuk2

A;

showing that

inffhN (u); ui : u 2 D(N ) and juj2 = 1g = inffhu; uiA : u 2 HA and juj2 = 1g:

Thus
inf ¼ (N) = inffhu; uiA : u 2 HA and juj2 = 1g = ¤ (A):

This completes the proof of the theorem.

Since N is a positive self-adjoint operator, it has a unique positive self-adjoint
square root, which we denote by N 1=2 : D(N 1=2) » L2(0; 1) ! L2(0; 1). Then
(D(N 1=2); h¢; ¢iN1=2 ) is a Hilbert space, called the graph space of N 1=2 or the form
space of N , where

hu; viN 1=2 = hu; vi + hN1=2(u); N 1=2(v)i for all u; v 2 D(N 1=2): (6.11)

The set D(N ) is a dense subspace of (D(N 1=2); h¢; ¢iN 1=2 ).
We now recall one of the main results in [14] concerning arbitrary self-adjoint

operators, in the simpler context of the positive bounded self-adjoint operator N .

Proposition 6.3.

(i) There is a unique bounded linear operator B from (D(N 1=2); h¢; ¢iN1=2 ) into
itself such that

hN (u); vi = hB(u); viN1=2 for all u 2 D(N ) and v 2 D(N 1=2):

(ii) There is a unique bounded linear operator L from (D(N 1=2); h¢; ¢iN 1=2 ) into
itself such that

hu; vi = hL(u); viN1=2 for all u; v 2 D(N 1=2):

(iii) ¼ (N ) = f ¶ 2 R : B ¡ ¶ L : D(N 1=2) ! D(N1=2) is not an isomorphismg.

(iv) ¼ e(N ) = f ¶ 2 R : B ¡ ¶ L : D(N 1=2) ! D(N 1=2) is not a Fredholm operatorg.

Proof. See theorem 3.3 of [14].

We can now relate the spectrum of N to that of the bounded self-adjoint operator
T in (HA; h¢; ¢iA) de­ ned in proposition 3.1. First of all, we show that the Hilbert
spaces (HA; h¢; ¢iA) and (D(N 1=2); h¢; ¢iN 1=2 ) are the same, up to equivalence of
norms. In fact, for u 2 D(N ),

kuk2
N1=2 = hu; uiN1=2

= hu; ui + hN1=2(u); N 1=2(u)i
= juj22 + hN (u); ui
= juj22 + kuk2

A;
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so that

kuk2
A 6 kuk2

N1=2 6
½

1 +
1

¤ (A)

¾
kuk2

A: (6.12)

This means that k ¢ kA and k ¢ kN1=2 are equivalent norms on D(N ). But D(N ) is
a dense subspace of both (HA; h¢; ¢iA) and (D(N 1=2); h¢; ¢iN1=2 ), so it follows easily
that

HA = D(N 1=2); with hu; viN1=2 = hu; vi + hu; viA (6.13)

for all u; v 2 HA. In particular, k ¢ kA and k ¢ kN1=2 are equivalent norms on HA.
Notice that (6.13) can be written as

hu; viN 1=2 = hT (u); viA + hu; viA = h(T + I)u; viA (6.14)

for all u; v 2 HA, by the de­ nition of T .

Theorem 6.4. For all ¶ 2 R n f0g, we have the following.

(i) N ¡ ¶ I : D(N ) ! L2(0; 1) is an isomorphism () T ¡ 1=¶ I : HA ! HA is
an isomorphism.

(ii) N ¡ ¶ I : D(N) ! L2(0; 1) is a Fredholm operator () T ¡ 1=¶ I : HA ! HA

is a Fredholm operator.

Furthermore, for 0 =2 ¼ (N ),

¼ (T ) =

½
· 2 R n f0g :

1

·
2 ¼ (N )

¾
[ f0g

and

¼ e(T ) =

½
· 2 R n f0g :

1

·
2 ¼ e(N )

¾
[ f0g:

Proof. We begin by relating T to the operators B and L de­ ned in proposi-
tion 6.3. Since D(N ) is a dense subspace of (D(N 1=2); h¢; ¢iN 1=2 ) and hB(u); viN1=2 =
hN (u); vi = hu; viA for all u 2 D(N ) and v 2 D(N 1=2), it follows that

hB(u); viN1=2 = hu; viA for all u; v 2 HA:

Using (6.14), we now have that

hu; viA = hB(u); viN 1=2 = h(T + I)B(u); viA

and

hT (u); viA = hu; vi = hL(u); viN1=2 = h(T + I)L(u); viA

for all u; v 2 HA. Hence

I = (T + I)B and T = (T + I)L:

This means that for any ¶ 2 R, I ¡ ¶ T = (T + I)(B ¡ ¶ L). But we know from
proposition 3.1 that T is a bounded positive self-adjoint operator on the Hilbert
space (HA; h¢; ¢iA), so T +I : HA ! HA is an isomorphism. Thus I ¡ ¶ T : HA ! HA
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is an isomorphism if and only if (B ¡ ¶ L) : HA ! HA is an isomorphism, and
I ¡ ¶ T : HA ! HA is a Fredholm operator if and only if (B ¡ ¶ L) : HA ! HA is
a Fredholm operator. The conclusions (i) and (ii) now follow from proposition 6.3.
By theorem 6.2, 0 =2 ¼ (N ) and the proof is complete.

Remark 6.5. Since 0 =2 ¼ (N ), rge(N ) = L2(0; 1) and N ¡1 : L2(0; 1) ! D(N ) is
well de­ ned. By theorem 6.2,

hN ¡1(z); viA = hNN ¡1(z); vi for all z 2 L2(0; 1) and v 2 HA:

Thus
hN ¡1(z); viA = hz; vi = hT z; viA

for all z; v 2 HA. Hence T = N ¡1jHA
.
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