
CABIOS Vol.10 no 1. 1994
Pages 31 - 3 4

Hierarchical Access System for Sequence
Libraries in Europe (HASSLE): a tool to access
sequence databases remotely

R.Doelz

Abstract

Sequence databases in biology are growing exponentially. Not
only are large sites needed to keep the data, but the number
of customers is continuously increasing. Network access plays
a key role in utilizing remote resources. However, both
synchronous and asynchronous access require tools that are
currently non-standard in molecular biology computing.
Additionally, information discovery of today frequently focuses
on centers rather a hierarchically interconnected facilities.
HASSLE (Hierarchical Access System for Sequence Libraries
in Europe) is an implementation of an application-independent,
user-transparent access tool in molecular biology. It features
tools for both clients and information providers to permit
accounting and/or prioritization on various levels. HASSLE
focuses on the network aspect of the molecular biology
computing and assumes that it is possible to have database
applications available as remote 'services' (programs, program
packages or utilities) which can be started by a simple command
script after a suitable feed of datafiles. The current system
provides these services for searching with programs like FASTA
or BLAST which are compiled as obtained from vendors or
servers.

Introduction

File servers in molecular biology are gaining increasing
importance as the growth of sequence databases makes it
necessary to update the database more frequently than the
releases shipped on media like CD-ROM every 2 - 3 months.
However, the servers as such need to get updates as frequently
as possible in order to keep their knowledge as up-to-date as
possible. In Europe, the EMBnet project (Doelz, 1992) has
generated several national nodes which carry on-line
duplications of the EMBL sequence database (Higgins et al.,
1992). However, serving the data to a computer network
excludes end-users who are neither willing nor prepared to
download an entire database, or updates thereof, before using
the data with a retrieval system to find homologies, accession
numbers or similar. End users employ electronic mail as a tool
to query servers, like the one at EMBL (Higgins et al., 1992)
which will supply data, program code or results of sequence
searches as desired. However, additional services are supplied

Biocompuling, Biozerurum der Universitaet, CH 4056 Basel, Switzerland

at other servers, and many servers offer identical or similar
services. In order to search for specific data, the user must know
the addresses of different mail accounts, the particular syntax
used, and the usage of electronic mail, including file inclusion
and extraction.

The Hierarchical Access System for Sequence Libraries in
Europe (HASSLE) is targeted on an improved integration of
remote facilities. To use HASSLE, a workstation or larger
computer connected to the internet is required. Remote tools
and services appear to the researcher as if the service were local.
Immediate response can be expected for quick jobs such as
sequence retrieval or contents listing of the database. Exhaustive
sequence searches will be run in the background after suitable
interactive input. In contrast to MATL-based services, the results
appear directly in the researcher's directory or file space without
interaction. HASSLE knows about known services, and learns
from other HASSLE systems to query for alternative services
if required.

System and Methods

HASSLE consists of three different components: local tools,
the HASSLE kernel and the interpreter on the HASSLE server,
which is a local script at the remote site.

The system was developed on Silicon Graphics hardware
(Indigo). The C compiler employed (v. 3.10 on Silicon
Graphics) is plain ANSI C. HASSLE can be compiled on IRIX
4.0.1 or higher, SunOS 4.3, ULTRDC 4.1 on either Vax or
RISC processor, OSF/1, and Convex OS 9.1. The HASSLE
program has also been successfully compiled on Vax and AXP
VMS running either of the UCX 1.3 or 2.0, 3.0, TCPware,
or the MULTINET implementations of the TCP/IP protocol.

The scripts used by the remote HASSLE server can be ported
to any Unix variant as long as the (Unix) csh script language
is available. The VMS version of the HASSLE server and
associated scripts are also available.

The local tools required to address HASSLE services were
written in either (Unix) csh or VMS (DCL) script languages.
FORTRAN code (standard F77) was used to start remote
sequence searches within a reformatting step (BLAST, see
example below). In order to utilize the GCG software file format
(Devereux et al., 1984) the GCG procedure library v. 7.x was
used, which requires a GCG software license at the computer
used with HASSLE.

The HASSLE software uses Internet port 375 as assigned

© Oxford University Press 31



R.Dodz

USER PROVIDER
SYSTEM SYSTEM

t fatob APPLICATION

; Result:
: data :

R e s u l t | f Application )
data • v J

Fig. 1. Basic flow scheme of HASSLE. The grey arrows symbolize the program
flow, whereas the dashed arrow represents the virtual flow of data seen by the
user. The hashed area symbolizes the local user system and the remote provider
system, separated by a network

by US agencies. This service must be added to the network
configuration of the corresponding HASSLE server system.
Additional ports are used on demand but assigned temporarily.

Operation principle (algorithm)

HASSLE uses several components to achieve transparent
functionality which can be described as a remote procedure
batch facility. In the following text, a 'client' denotes a program
that seeks to connect to a 'server' program waiting for requests.

A HASSLE client starts a query directed to a well-known
remote HASSLE server. After having obtained data from
several configuration databases, the remote HASSLE server
starts a dialog or redistributes the job to another remote
HASSLE server. During the dialog, all datafiles needed, and
a command file are transmitted to the remote HASSLE server.
The final message is an execution command sent by the local
HASSLE client. Then, the HASSLE client mutates to a local
HASSLE server, i.e. it breaks the connection and waits for
input. It accepts the connection of the remote HASSLE system,
which, after the completion of the job, mutated into a HASSLE
client, in order to receive the results of the job. A functional
flow scheme is shown in Figure 1.

It should be emphasized that all data transmission throughout
the HASSLE protocol are encrypted and compressed. The
current implementation achieves a text file throughput that is
— 80% of the performance if the files would have been
compressed independently, and transferred via established
programs like ftp.

Important intrinsic features of HASSLE are authorization and
independency of location. Whereas a network access to a
computer usually requires an account and a password at the
remote system, HASSLE uses an independent authorization
which makes it possible to probe the facility with a specific
'anonymous' user/authorization key. The normal HASSLE user

m a coplaa oca I I W I M I I or data f i l e* traa tba oca
Into yoor directory or dlaplaya tbaa an roar tanrinai H I M I .
. . . Trying •aeuork ...Kipport data f i la l»i • Support. Daf .
ChaoHng m o u o u . . .

.found dat*b«M gwiw «t HOSUVI.OIO.ao

',STITCH I U H J frontand K.Doala Varaion M-0-0
Thl, ia u m i r a n Ion M-0-0 U3/0I/12)
(C) Biocoaputing U H l , 1»»J. HJ1

• o n i HAflflu uaad on boat Bxoauvi.uio.ao
•UtOKt farrar oaxmot prooaaa corractly BJIXUI raojoaat
UDDUCT raoaiTad dsa to n t n v i c i .

S*rr*r cannot proo«aa correctly KFWKB r*Qo*«t
••DTIBTT rtKMlTwS da« to HTHT (or*rlo*tted) .

U5SLI a««d on host T»TI . nnnaT. CMXDAS . o
•ubmiuion of Job dooa.
Liitttning for r*ply from Twn. BOUDT . ranu. ai for

An«w«r froB bo«t j i r i ••irnr
R«SQlt for »«rTloc MlITCH
K*c«iT*d f i l e fatoh.log
E*o«iT*d f i l « aAlm_hammn.ww
JOB 2353* oo i^ l« t«d

.cb [131.153.6.3], port

HASSLE

Fig. 2. HASSLE screen dump of a session with the FETCH program and the
HFETCH tool. The entire procedure completes in a couple of seconds. The
desired file (calm human, sw) is directly placed in the default directory of die

and authorization data are independent of the operating system
and therefore can cover 'generic' accounts a well as groups,
institutes or individuals. Secondly, the location of the service
must not necessarily be known to the user because the built-in
database facilities allow for 'learning' of other HASSLE servers
and automatic redirection.

Figure 2 shows a screen dump as the end user will see it
if the FETCH program with the HFETCH tool is employed.
This session was run on a Norwegian computer in order to
obtain an entry in the SWISSPROT database. If the entry is
not present locally, the HFETCH tool screens a configuration
file for possible resources and will approach the service at the
nearest location. As this fails, HASSLE learned from the host
approached that another service is available in Switzerland. As
the computer in Switzerland is busy, the Norwegian customer
is again redirected to a host which finally does provide the
requested data. Note that the customer site in Norway knew
of only one service, and that the final destination was evaluated
within the HASSLE dialog.

Implementation

HASSLE components

HASSLE in its current implementation permits only
asynchronous job execution. It consists of several programs and
scripts which run either locally (local or 'user' system) or on
the service provider's machine (remote or 'provider' system).
All HASSLE server and client executables are currently
generated from one single source code.

Detailed information on the general features of the protocol



HASSLE: remote access of sequence databases

are being published elsewhere (Doelz, 1993). The main
components—Local Tool, HASSLE and Provider Local Script,
as shown in Figure 1—need to be configured with
straightforward site-specific data and will communicate via
sockets and files.

The authorization database

The HASSLE dialog starts with an authorization which is used
to identify, and account for, the user who requests services.
In addition, a 'credit' is diminished each time a particular service
is used. This implies that an 'anonymous' user will be entered
in this database at the first time of access, and registered there
with a default (configurable) credit. Once a special account is
used, and agreements are made with the service provider, the
credit in the authorization database will be significantly higher
than for the non-committed anonymous access.

The service database

The database used by HASSLE to determine the system where
the job finally executes contains data on the name of the
requested service, the location, and a 'cost' as well as a 'priority'
parameter. The cost parameter is a number of credit units
subtracted from the user's account if the service is used. If two
services have the same name and the same priority, the first
name in the list will be used.

Discussion

Network aspects

Existing services offered on networks frequently suffer from
being unknown, overloaded or unreachable. This is due to the
fact that there is no automatic 'broadcasting' of services, or
redirection in case of heavy load or other problems. HASSLE
broadens the scope for remote system utilization by end users.
This is achieved by three main features:
• Ease of use—The end user does no longer need to process

his/her mailbox or similar communication devices in order
to view results. The evaluation of remote data is no longer
different from local data inspection.

• Ambiguity—Given the assumption that several types of
services can be provided by more than one HASSLE server,
resources are no longer vulnerable with respect to
maintenance or local network problems at the remote sites.

• Accounting—Cost sharing can be implemented if funding
structures change or request accounting documentation.

Another important feature of the HASSLE broadcasting of
service data is the prioritization of services. In combination with
the ambiguity discussed above, it is now possible to have a true
hierarchy in accessing services. That is, a particular sequence
database will be considered first at the site which is selected
by a priority parameter rather than by the user. As long as the
quality of service is identical, the priority parameter should be

Interactive dialog

BLAST wri*. I Wertaenamw
Tod ^ - ^ - I dan net A

Interactive dialog

B

Interactive dialog

Interactive input

ttarti
HASSLE

(dummy file name) D
Fig. 3. Design examples of HASSLE local tools. (A) Standalone tool, (B)
modifed command file for batch submission makes exisiting application a
HASSLE frontend, (C) subroutine as part of an established program and (D)
a symbol definition calls HASSLE from the command line. As there are no
local data needed, a dummy file name is assumed in this case.

set in a way that the local (or nearest) source is queried before
choosing long-distance service links.

Service provider aspects

Network service providers frequently get swamped by many
requests originating from few sources, which delay response
time for services provided to those who access the service
rarely. HASSLE allows for implementation of a mechanism
to filter high-frequency requests, and process these accordingly
in sequential fashion.

33



R.Doelz

Table I. HASSLE tools available in the standard distribution of HASSLE

Tool

Customer, Unix
Customer, VMS
Provider, Unix
Provider, VMS

Functionality

Search
BLAST

X
X

X

Search
FASTA

X
X

X

Retrieve
FETCH

X
 X

 X
 X

The accounting feature of HASSLE offers powerful tools to
the service provider to regulate the access to the HASSLE
server. Whereas current MAIL server implementations can
account for the origin of the query only if each address or class
of address is entered manually, HASSLE permits threefold
accounting procedures by manipulating the accounting database.
Possible configurations include, but are not limited to,
anonymous access for anybody, some sites, some user groups
or any mixture of these.

If only a department or particular user group benefits from
extended access, the local HASSLE client call will need to query
the local group parameter from the operating system and call
the remote HASSLE server with a authorization other than the
'anonymous' access.

HASSLE has also been successfully used for database
synchronization following the 'polling' mechanism. Instead of
transmitting a full database, a dedicated tool generates only a
subset of the database containing the entries missing at the client
side. An extensive set of tools has been created at our
biocomputing laboratory and will be made available soon.

Implementation of new HASSLE services

Local tools for the implementation of new services can be
designed and implemented easily. The important step in a new
service definition is to define a data exchange formalism (e.g.
definition of the sequence format). The local tool at the remote
node can usually be derived from an existing script since the
error-handling and parsing of command files is very similar.
The local tool at the client side can be any combination of the
possibilities as outlined in Figure 3. A summary of currently
released tools is listed in Table I; further tools are available
on request.

For example, for the BLAST tool a 'front end' to the BLAST
software as provided by the NCBI (Altschul et al., 1990) was
composed. As the local installation in Basel uses the GCG
software, the front end was written using the GCG procedure
library (Devereux et al., 1984).

The second option for creating new HASSLE services is to
modify existing scripts which submit predefined data and
procedures in the batch job. The GCG software provides such
a mechanism which writes data into so-called 'initialization'
files, which, in combination with suitable command files, can
be processed in batch mode. The command to submit the job

is defined as symbol on Vax/VMS and as alias on the Unix
operating system. To make the system compatible with
HASSLE, the symbol GCGSUBMITCOMMAND is replaced
with a HASSLE tool, e.g. @HASSLESTUF:decide.com on
Vax/VMS. This command procedure parses the data written
by the GCG program and checks for the possibility of remote
execution via HASSLE by reading a configuration table. If no
local dependencies are found (e.g. no file of sequence names),
the job is injected into HASSLE. Note that this example of
running FASTA (Pearson and Lipmann, 1988) (example B in
Figure 3) does not require any change to the program code but
just adds a command file to the existing software.

Example C in Figure 3 indicates the possibility of extending
a given code with one additional subroutine call, which will
call HASSLE. While the user interface is retained, the FETCH
program as provided by GCG is extended to call a subroutine
'tryhassle' in order to write all files needed, and call HASSLE
subsequently.

The last example of HASSLE tools is applicable to
applications that do not have local data files. For example, to
get a description of the site which runs the HASSLE Provider
suite, the command

% hassle -host ... -service generic (on Unix), or
$ HASSLE /HOST =.../SERVICE=GENERIC (on VMS)

is sufficient (example C in Figure 3). This implies that HASSLE
can also be called interactively from the command line.

Availability

HASSLE and the HASSLETOOLS are available in source code
from the author or from the bioftp.unibas.ch or nic.switch.ch
FTP server.

Acknowledgements

The compression during HASSLE data transfer was contributed by
L Rosenthaler, Biocomputing Basel. This work was supported by Basel
University and a grant from the Swiss National Science Foundation (NF) to R.D.

References

Altschul,S.F., Gish,W. , Miller.W., Meysers,E.W. and Lipman.D.J. (1990)
Basic local alignment search tool. J. Mol. Biol., 215, 403-410.

DevereuxJ. Haeberli,P. and Smithies.O. (1984) A comprehensive set of
sequence analysis programs for the VAX. Nucleic Acids Res., 12, 387-395.

Doelz,R. (1992) The EMBnet project. Compul. Networks ISDN Sysi., 25,
464-468.

Doelz.R. (1993) HASSLE. A software to manage distributed processing on
heterogenous systems. Published on the Internet on http://beta.embnet.
unibas.ch/, further manuscript in preparation.

Higgins.D.G., Fuchs.R. Stoehr,P.J. and Cameron,G.N. (1992) The EMBL
data library. Nucleic Acids Res., 20, 2071 -2074.

Pearson,W.R. and Lipman.D.J. (1988) Improved tools for biological sequence
analysis. Proc. Natl. Acad. Sri. USA, 85, 2444-2448

Received on April 30, 1993; accepted on September 8, 1993

34


