
Biometrika (2014), 101, 1, pp. 1–15 doi: 10.1093/biomet/ast042
Printed in Great Britain Advance Access publication 13 November 2013

Efficient inference for spatial extreme value processes
associated to log-Gaussian random functions

BY JENNIFER L. WADSWORTH

Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne,
Switzerland

jenny.wadsworth@epfl.ch

AND JONATHAN A. TAWN

Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, U.K.

j.tawn@lancaster.ac.uk

SUMMARY

Max-stable processes arise as the only possible nontrivial limits for maxima of affinely nor-
malized identically distributed stochastic processes, and thus form an important class of models
for the extreme values of spatial processes. Until recently, inference for max-stable processes
has been restricted to the use of pairwise composite likelihoods, due to intractability of higher-
dimensional distributions. In this work we consider random fields that are in the domain of attrac-
tion of a widely used class of max-stable processes, namely those constructed via manipulation
of log-Gaussian random functions. For this class, we exploit limiting d-dimensional multivariate
Poisson process intensities of the underlying process for inference on all d-vectors exceeding a
high marginal threshold in at least one component, employing a censoring scheme to incorporate
information below the marginal threshold. We also consider the d-dimensional distributions
for the equivalent max-stable process, and perform full likelihood inference by exploiting the
methods of Stephenson & Tawn (2005), where information on the occurrence times of extreme
events is shown to dramatically simplify the likelihood. The Stephenson–Tawn likelihood is in
fact simply a special case of the censored Poisson process likelihood. We assess the improvements
in inference from both methods over pairwise likelihood methodology by simulation.

Some key words: Extreme value theory; Likelihood inference; Max-stable process; Poisson process; Spatial extreme.

1. INTRODUCTION

Max-stable processes form an important class of models for extreme values of spatial
processes (e.g., Padoan et al., 2010; Davison et al., 2012; Davison & Gholamrezaee, 2012).
Max-stable processes arise as the only possible nondegenerate laws of normalized identically
distributed stochastic processes in the following manner. Let S ⊂ R

2 be a compact index space,
and let {Yi (s) : s ∈ S} be independent and identically distributed copies of a stochastic process
on S. If there exist functions an(s) > 0 and bn(s) ∈ R such that for a pointwise max operation,
the distributional convergence

MGEV(s) = lim
n→∞ max

1�i�n
{Yi (s) − bn(s)}/an(s) (1)
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yields a process MGEV(s) with nondegenerate margins for all s, then MGEV(s) is a max-stable
process. The univariate margins of MGEV(s) are necessarily generalized extreme value distributed,
that is, for a+ = max(a, 0), they take the form

pr{MGEV(s) � x} = exp
(
−[1 + ξ(s){x − μ(s)}/σ(s)]−1/ξ(s)

+
)

, (2)

where μ(s) ∈ R, σ (s) > 0 and ξ(s) ∈ R are location, scale and shape parameters, respectively,
with a limit interpretation for ξ = 0. We denote distribution (2) by GEV{μ(s), σ (s), ξ(s)}.

Spatial data are often available as point-referenced d-dimensional multivariate data, with repli-
cations over time, and this is the situation we assume. To appeal to the limit theory (1), one takes
pointwise maxima over a sequence of blocks of a large number of replications of the field Y (s), to
yield a set of approximate realizations of a max-stable field MGEV(s), in the form of a d-variate
vector MGEV = {MGEV(s1), . . . , MGEV(sd)}. Both marginal and dependence parameters must be
estimated, and to simplify matters it is common to proceed in two stages. The marginal param-
eters are estimated initially, and then used with the probability integral transform to convert the
field MGEV(s) to a common marginal scale, frequently the unit Fréchet scale, GEV(1, 1, 1). We
will denote a max-stable field with unit Fréchet margins by MF(s).

Models for spatial dependence usually follow from a constructive approach to max-stable
fields (de Haan, 1984; Schlather, 2002), expressed in terms of spectral functions. Let {ri }, i � 1,
be points of a Poisson process on (0, ∞), with intensity dr , and let {Wi (s)} be independent and
identically distributed copies of a nonnegative-valued continuous random function on S satisfy-
ing E{W (s)} = 1 for all s ∈ S, termed the spectral function. Then Xi (s) = Wi (s)/ri are points
of a Poisson process on the space of continuous nonnegative functions on S, and

MF(s) = max
i

Xi (s) (3)

is a max-stable random field with unit Fréchet margins and d-dimensional distribution
function

pr{MF(s1) � x1, . . . , MF(sd) � xd} = exp

(
−E

[
max

{
W (s1)

x1
, . . . ,

W (sd)

xd

}])
(4)

for xi > 0, i = 1, . . . , d. Further theoretical aspects of extreme value theory for functions are
treated in, e.g., de Haan & Ferreira (2006, Ch. 9). The dependence structure is thus prescribed
through W via the exponent function, V : R

d+ → R+, defined by

V (x) = E

[
max

{
W (s1)

x1
, . . . ,

W (sd)

xd

}]
. (5)

The function V (x) is also the integrated intensity measure of the Poisson process of points
Xi = {Xi (s1), . . . , Xi (sd)} on the region R

d+ \ {[0, x1] × · · · × [0, xd ]} = [0, x]c. Typically (5)
is difficult to calculate, and this is the limiting factor in finding tractable models for which
inference is feasible. There exists a slowly growing set of models for which the bivariate
distributions are available; see, e.g., Schlather (2002), Kabluchko et al. (2009), Davison et al.
(2012) and Wadsworth & Tawn (2012). For such models, pairwise composite likelihood meth-
ods (Padoan et al., 2010) have become the standard for inference.

The focus of this paper is inference for a class of processes, commonly known as
Brown–Resnick processes (Brown & Resnick, 1977; Kabluchko et al., 2009), whose spectral
functions are log-Gaussian random fields. The d-dimensional distribution functions for all such
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processes are known (Genton et al., 2011; Huser & Davison, 2013; Engelke et al., 2014), but
owing to the exponential form of distribution function (4), even when the expectation is cal-
culable, differentiation to yield high-dimensional densities produces an explosion of terms in the
density: the d-variate density consists of Bd summands, where Bd is the dth Bell number. Fur-
thermore, the known representations of the exponent function admit apparently awkward deriva-
tives, which are themselves sums of several terms. Thus in practice tripletwise composite likeli-
hood inference is possible, though Huser & Davison (2013) suggest that, except for the Gaussian
extreme value process model, a special boundary case of the Brown–Resnick class, the relative
gain in parameter estimation efficiency is not overwhelming.

When taking pointwise maxima, the resulting dependence structure is rather complex, since
the max-stable random field may be formed from a composition of several different under-
lying fields. In this work we explore how this dependence can be substantially simplified by
modelling the dependence of individual extreme events. In a multivariate setting, Coles & Tawn
(1991) introduced methodology for modelling original events via a Poisson process representa-
tion, where previous work had focused only on componentwise maxima (Tawn, 1990). However,
assuming the Poisson process model to be accurate in regions where not all variables are extreme
can induce bias in parameter estimation (e.g., Ledford & Tawn, 1996). Smith et al. (1997) intro-
duced a related approach, but using a censored likelihood to reduce this bias. Rootzén & Tajvidi
(2006) also introduced a model for multivariate threshold exceedances in the form of the multi-
variate generalized Pareto distribution.

In this work, we adapt these principles to the spatial setting, reducing the number of summands
in the likelihood from Bd to one. Our premise is the Poisson process convergence of the extreme
events to the elements Xi (s) in representation (3). For Wi (s) log-Gaussian, simple forms arise
for the intensity of the limiting Poisson process. At a limiting level, any random field which is
extreme in at least one coordinate would follow the Poisson process intensity. At a practical level,
to use the full limit model would be likely to induce bias due to lack of applicability of limiting
arguments to non extreme components. In order to eliminate any bias that may thus arise, we con-
sider a censored Poisson process likelihood, which also admits relatively simple forms. A main
contribution of the work is therefore to adapt the inferential ideas of Coles & Tawn (1991) and
Smith et al. (1997) to the spatial setting, and demonstrate that this alternative to max-stable pro-
cess modelling permits more efficient inference. Threshold-based inference for extremal events
has also been considered by Huser & Davison (2014), who adapt the pairwise composite likeli-
hood approach for maxima to a threshold setting.

Engelke et al. (2014) offer a different perspective, deriving the multivariate conditional dis-
tribution of extremal increments of distributions in the domain of attraction of the process with
respect to a single extreme component; in this regard there are similarities to the conditional
approach of Heffernan & Tawn (2004) and Heffernan & Resnick (2007). For such distributions,
this limiting conditional distribution is multivariate Gaussian, therefore offering the possibility
to perform high-dimensional inference on the process, subject to applicability of the limiting
arguments. Engelke et al. (2014) also provide the associated multivariate spectral density. For
a d-vector X∗ in the domain of attraction of MF = (MF,1, . . . , MF,d), the spectral density is the
limiting density of X∗/‖X∗‖, conditional upon ‖X∗‖ > t as t → ∞, with ‖·‖ a norm. Aside from
an alternative formulation and construction, the key difference between our approach and that
of Engelke et al. (2014) is the censoring at high marginal thresholds to eliminate bias that may
arise due to non-applicability of limiting arguments.

The focus of our work is on tools for improved inference in existing classes of models, rather
than the development of new types of models. For this reason we keep practical implementation
to simulation results that demonstrate efficiency gains, rather than applications to data; it is not
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that we can now model data that could not be modelled previously, but that we can now estimate
the parameters of certain models for spatial extremes much more efficiently.

2. POISSON PROCESS MODELLING

2·1. Introduction

Consider X∗(s) in the domain of attraction of MF(s), and the associated d-dimensional vector
X∗. Then it is a standard result (e.g., Resnick, 2007, Ch. 6) that {X∗

i /n : i = 1, . . . , n} converges
as n → ∞ to a Poisson process on R

d+ \ {0}, with mean measure μ satisfying μ([0, x]c) = V (x),
where V is the exponent function defined in (5). Consequently, modelling the extremes of X∗(s)
can be achieved through modelling the Poisson process of points {Xi } with measure defined by
V , restricted to appropriate subspaces.

In this section we consider the likelihood for points of the process Xi (s) = Wi (s)/ri , as
defined for construction (3), when the W (s) are log-Gaussian random fields. We shall focus upon
the finite-dimensional distributions of points Xi = {Xi (s1), . . . , Xi (sd)} on the region [0, u1d ]c,
with 1d = (1, . . . , 1)T a d-vector, i.e., distributions conditional upon the exceedance of some
threshold u > 0 in one or more coordinates. Here and throughout Wi = {Wi (s1), . . . , Wi (sd)}, or
W , represents a d-vector, whilst ri , or r , is a scalar quantity.

Aspects of the distribution of the Xi are most simply considered through Xi = Wi/ri . We
begin with the form of the exponent function or integrated intensity, V , and then calculate par-
tial derivatives of all orders. The approach yields simple forms for these in terms of standard
functions. These forms, combined with the Poisson process being considerably simpler than the
corresponding max-stable process, lead to inference procedures that are practical in d dimen-
sions. The main restriction on d comes from speed of calculation of (5), and is discussed below.

2·2. Integrated intensity

We assume the max-stable process construction (3), and begin by considering the
d-dimensional exponent function of the process MF(s), with

W (s) = exp{Z(s) − σ 2(s)/2}, (6)

where Z(s) in general is a nonstationary Gaussian process with mean zero and variance
var{Z(s)} = σ 2(s). Then the exponent function takes the form

V (x) =
∫

Rd
max

1�i�d

{
exp(zi − σ 2

i /2)

xi

}
φd(z; �) dz, (7)

where φd(·; �) denotes the d-dimensional multivariate normal probability density function with
covariance matrix �, composed of diagonal elements σ 2

i = σ 2(si ) and off-diagonal elements
σi j = cov{Z(si ), Z(s j )}. Huser & Davison (2013) use (7) to derive

V (x) =
d∑

i=1

1

xi
�d−1

[
{log(x j/xi ) + σ 2

j /2 + σ 2
i /2 − σi j } j |= i ; �|i

]
, (8)

where � j (·; �|i ) represents the j-dimensional multivariate normal distribution function with
mean zero and covariance matrix �|i = Ti�T T

i , for Ti a (d − 1) × d transformation matrix with
the i th column having −1 for each entry and the other columns being the d − 1 standard basis
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vectors of R
d−1, i.e.,

Ti =

⎛
⎜⎜⎝

1 0 · · · 0 −1 0 · · · 0
0 1 · · · 0 −1 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 −1 0 · · · 1

⎞
⎟⎟⎠ .

Derivatives of V are required for likelihood inference. Direct differentiation of (8) is awkward,
but considering Xi = Wi/ri directly produces a simple form for the intensity function. Condi-
tioning on lower-dimensional intensities and integrating with respect to the other coordinates
yield elegant forms for the partial derivatives of V , making likelihood inference feasible.

For the remainder of this section, we will restrict ourselves to W constructed from stationary
Gaussian random fields Z , i.e., σ 2

i ≡ σ 2, σi j = σ 2ρ(si − s j ), for ρ a correlation function. We
often consider the original events to be stationary, and consequently for modelling original events
this seems a sensible approach. However, the theory extends readily to nonstationary fields Z that
produce a stationary limiting max-stable process; we return to these in § 3·3.

2·3. Point process intensity

The point process integrated intensity on [0, x]c can be written (Dombry et al., 2013) as

V (x) =
∫ ∞

0
pr(W/r ∈ [0, x]c) dr =

∫ ∞

0
pr(W/r 
� x) dr. (9)

Recalling (5), an alternative way to obtain (9) is to observe that since max{W (s1)/

x1, . . . , W (sd)/xd} is a nonnegative random variable,

E

[
max

{
W (s1)

x1
, . . . ,

W (sd)

xd

}]
=

∫ ∞

0
pr

[
max

{
W (s1)

x1
, . . . ,

W (sd)

xd

}
> r

]
dr

=
∫ ∞

0
pr{W/r 
� x} dr.

Use of the inclusion-exclusion formula followed by differentiation with respect to each of
x1, . . . , xd yields

− V1:d(x) =
∫ ∞

0
rd fW (xr) dr, x ∈ R

d
+ \ {0}, (10)

where fW denotes the d-dimensional log-Gaussian density associated to W . We use subscripts
of V to denote partial differentiation with respect to all elements in the subscript; in particu-
lar, i : j (i < j) is shorthand notation for {i, . . . , j}, so that 1 : d = {1, . . . , d}. Straightforward
calculations in the Appendix show integral (10) to be

|�|−1/2(1T
dq)−1/2

(2π)(d−1)/2
∏d

i=1 xi
exp

[
−1

2

{
log xT A log x + log xT

(
2q

1T
dq

)
+ σ 2 − 1

1T
dq

}]
, (11)

where log xT = (log x1, . . . , log xd), q = �−11d , and A = (
�−1 − qqT/1T

dq
)

is a d × d matrix
of rank d − 1. In order to consider (11) as a density, we simply need to restrict the intensity to
some region on which the Poisson process is defined, and normalize by the integrated intensity
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1 2 3 4

Fig. 1. Illustration of the censoring scheme. The dashed line denotes the threshold; circles denote
values censored at the threshold; crosses denote uncensored values.

on this region. Taking the region [0, u1d ]c, u > 0, provides the density

− V1:d(x)

V (u1d)
, x ∈ [0, u1d ]c.

For Nu vectors Xi observed on this region, the Poisson process likelihood is

exp{−V (u1d)}
Nu∏

i=1

{−V1:d(xi )}, (12)

where x1, . . . , xNu is an enumeration of the vectors in [0, u1d ]c.
In practice we modify the set-up in two ways to provide an inferential procedure for observed

extreme fields. We assume that we have realizations from the process X∗
i (s), in the domain of

attraction of MF(s), with normalization constants an(s) ≡ n, bn(s) ≡ 0. Specifically we assume
that the X∗

i (s) have standard Pareto tails above some point t � 1, pr{X∗(s j ) > x} = t/x for x > t ;
this can be achieved through marginal transformations of the data. If we have observed n such
X∗

i (s), then it would be reasonable to take Xi (s) ≈ X∗
i (s)/n, and thus a Poisson process likeli-

hood for X∗
i is attained through that for nXi on [0, nu1d ]c. We relabel the threshold u∗ = nu,

such that it represents a high quantile of the marginal distribution of the X∗
i . Convergence of

the dependence structure in d dimensions is a strong assumption when not all coordinates are
extreme. Thus we modify likelihood (12) to censor components that do not exceed the threshold
u∗. Our likelihood on the X∗

i scale for Nu∗ fields each having at least one exceedance of u∗ is

exp{−nV (u∗1d)}
Nu∗∏
i=1

{−Vai (yi )}, (13)

where in repetition i , coordinates in set ai ⊆ {1, . . . , d} are exceedances of u∗, and
yi = (yi1, . . . , yid) with

yi j =
{

x∗
i j , x∗

i j > u∗

u∗, x∗
i j � u∗ ( j = 1, . . . , d).

The form of likelihood (13) follows from consideration of the Poisson process likelihood as the
product of the Poisson component and the probability density component. We assume that the
number of fields with at least one exceedance of u∗ is still Poisson-distributed, but conditional
upon this number, we censor the locations of the points in any coordinates lying below u∗.
Figure 1 offers a conceptual illustration in one dimension: if our coordinates were at {1, 2, 3, 4},
we would have ai = {3, 4} in the left-hand panel, and ai = {2, 3} in the right-hand panel.
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2·4. Partial derivatives of V

Likelihood (13) requires calculation of partial derivatives of all orders of V . For convenience
of notation we now assume that the exceedances of u∗ occur in coordinates 1 : k, for 1 � k � d.
We define vectors subscripted with a set of indices to be the subvector corresponding only to
those indices, e.g., x1:k = (x1, . . . , xk). The appropriate partial derivatives can be calculated by
considering the conditional intensity of Xk+1:d given X1:k = x1:k , followed by integration with
respect to xk+1:d . The key idea is that since this conditional intensity is a probability density
function, its integral is a cumulative distribution function. The conditional intensity of Xk+1:d
given X1:k = x1:k is

−V1:d(x)

−V1:k(x1:k, ∞1d−k)
, (14)

with the denominator denoting the k-dimensional marginal intensity. The partial deriva-
tive is therefore obtained by integrating (14) with respect to xk+1:d and multiplying by
−V1:k(x1:k, ∞1d−k). The conditional intensity, presented in the Appendix, is a log-Gaussian
probability density function (Dombry et al., 2013), which leads to partial derivatives of the form
−V1:k(x1:k, u∗1d−k), equal to

�d−k (log u∗1d−k − μ; 	)

(2π)(k−1)/2|�1:k |1/2(1T
kqk)1/2

∏k
i=1 xi

× exp

[
−1

2

{
(log x1:k)

T A1:k log x1:k + (log x1:k)
T

(
2qk

1T
kqk

)
+ σ 2 − 1

1T
kqk

}]
, (15)

where we define �0 to be unity, �1:k to be the k × k matrix derived from � corresponding to the
indices {1, . . . , k} and, analogously to § 2·3, qk = �−1

1:k 1k and A1:k = (
�−1

1:k − qkqT
k /1T

kqk
)
. The

quantities μ and 	 are defined in the Appendix.
From expressions (8) and (15), we observe that the principal restrictions on d stem from

the requirement to calculate the multivariate normal distribution function up to dimension
d − 1. Efficient calculation of such quantities is discussed for example in Genz (1992) and
Genz & Bretz (2002), who suggest reasonably quick computational times for dimensions up to
d = 20.

3. EXTENSION TO INFERENCE FOR THE MAX-STABLE PROCESS

3·1. Introduction

The simplified likelihood (13) for extreme events arises because the dependence in original
events is less complicated than the dependence amongst componentwise maxima. In particular,
one source of the complexity of the latter is the fact that the resulting max-stable field is formed
from an unknown composition of original events. Stephenson & Tawn (2005) demonstrated how
the density of the multivariate extreme value distribution is greatly simplified by incorporating
knowledge of which maxima occurred simultaneously. Davison & Gholamrezaee (2012) have
exploited these ideas for efficiency gains in the pairwise modelling of spatial extremes, but the
benefit is even clearer in higher dimensions. The Bd summands in the usual d-variate max-stable
process density cover the Bd possible partitions of the set {1, . . . , d}, representing the possible
partitions of the occurrence of the maxima. By incorporating knowledge of this configuration,
the number of summands is reduced to one.
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3·2. Stephenson–Tawn max-stable process likelihood

Let D = {1, . . . , d}, and let 
d be the set of all possible partitions of D. Let � ∈ 
d denote
a partition that indicates which elements of the componentwise maxima occurred simultane-
ously, i.e., in the same event. For example, if d = 4, and if the maxima at sites 1 and 2 occur
together but separately from those at 3 and 4, which are also separate from each other, then
� = {{1, 2}, {3}, {4}}. Denote the |�| elements of � by π j ( j = 1, . . . , |�|) and denote partial
differentiation of V with respect to the indices in π j by Vπ j . Then Stephenson & Tawn (2005)
showed that the joint probability contribution from the values of the maximized process, and their
occurrence times, is

exp{−V (x)}
|�|∏
j=1

{−Vπ j (x)}. (16)

Comparing with likelihood (13), observe that this is also the likelihood of the censored Poisson
process, but with the censoring threshold set at the observed componentwise maxima, x .
Likelihood (16) offers substantially simplified and more efficient inference for max-stable pro-
cesses than previously available. However, if the original events are available to us, inference via
likelihood (13) should be preferable due to its capacity to incorporate more extreme data into
the model. All data that exceed a high threshold may be modelled, with the probability of being
nonextreme also accounted for. By contrast, with the max-stable process, only the most extreme
observations in a block can be used for inference.

3·3. Nonstationary Gaussian random fields

Up to now we have focused on the case where the random field Z(s) is assumed stationary.
From the perspective of considering the domain of attraction process, this makes sense if we
believe the underlying fields X∗(s) to be stationary. Stationary max-stable Brown–Resnick pro-
cesses can be constructed from suitable nonstationary constituent Gaussian processes. As models
for maxima, such a construction has the advantage over the stationary Gaussian process construc-
tion of being able to capture independence between sites as the distance between sites tends to
infinity. Intrinsically stationary Gaussian processes Z(s) are characterized by the semivariogram,

γ (h) = 1

2
E[{Z(s) − Z(s + h)}2].

We take Z(s) to be fractional Brownian motion, with Z(0) = 0 almost surely and semivariogram
γ (h) = ‖h/λ‖α

2 for λ > 0 and α ∈ (0, 2], with ‖·‖2 being the L2, or Euclidean, norm. The distribu-
tion of an arbitrary Xi (s) = Wi (s)/ri depends heavily on the underlying coordinates and does not
in general offer a suitable model for original processes in the domain of attraction of a max-stable
process. However, the limiting model for maxima, being stationary (Kabluchko et al., 2009), can
provide a convenient and flexible model for componentwise maxima data. The principles that
were applied in § § 2·3 and 2·4 to obtain full likelihoods for the stationary Gaussian process case
also apply here, though the resulting expressions are slightly more complicated, as some can-
cellations occurring in the stationary case do not occur under nonstationarity. Following deriva-
tions similar to those in the Appendix, we find the partial derivatives of the exponent measure
to be

−V1:k(x) = �d−k
(
log xk+1:d − μ̄; 	̄

)
(2π)(k−1)/2|�1:k |1/2(1T

kqk)1/2
∏k

i=1 xi
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× exp

{
−1

2

(
1

4
σ T

k �−1
1:k σk − 1

4

σ T
k qkqT

k σk

1T
kqk

+ σ T
k qk

1T
kqk

− 1

1T
kqk

)}

× exp

[
−1

2

{
log xT

1:k A1:k log x1:k + log xT
1:k

(
2qk

1T
kqk

+ �−1
1:k σk − qkqT

k σk

1T
kqk

)}]
,

where σk = {σ 2(s1), . . . , σ
2(sk)}, σd = {σ 2(s1), . . . , σ

2(sd)}, and

μ̄ = −	̄

{
K T

01 AK10 log x1:k + K T
01

(
q

1T
dq

− 1

2

qqTσd

1T
dq

+ 1

2
�−1σd

)}
.

The matrices K01, K10 are defined in the Appendix; the matrix 	̄ has the same expression as 	,
also defined in the Appendix, but with � representing a nonstationary covariance matrix. Such
expressions are then used in likelihood (16) for inference.

4. COMPARISON OF INFERENCE

4·1. Stationary Z

We compare the inference from the censored Poisson process of § 2, for threshold exceedances
of stationary processes, with inference for the corresponding max-stable process. For the latter,
we use pairwise composite likelihood methods and the full likelihood given in § 3. In this sub-
section we focus on stationary Z in construction (6); the nonstationary case is treated in § 4·2.

We consider inference for 16 sites, on a regular grid {1, 2, 3, 4}2. Rather than simulating
exactly from the limiting max-stable or Poisson process, we simulate events from the process

X∗(s) = exp{Z(s) − σ 2/2}/R, (17)

with R ∼ Un(0, 1) and Z(s) a zero-mean stationary Gaussian random field with variance σ 2,
independent of R. The process X∗ is in the domain of attraction of a max-stable Brown–Resnick
process with standard Fréchet margins. We use the isotropic Whittle–Matérn correlation function,
ρ(h; φ) (e.g., Diggle & Ribeiro, 2007, p. 51), with fixed shape parameter κ = 1 and variable scale
parameter φ; thus cov{Z(s1), Z(s2)} = σ 2ρ(‖s1 − s2‖; φ).

For data simulated from model (17), we consider thresholded Poisson process inference with u
the 95% quantile of all 16 × m variates, where m is the number of replicates of process (17) that
were simulated. We find that this is a sufficiently high threshold not to induce bias, but that still
incorporates more extreme data points than is possible with the pointwise maximum process.

Since MF(s) = limn→∞ max1�i�n X∗
i (s)/n, we can approximate MF(s) by taking rescaled

pointwise maxima over the original fields for some sufficiently large n. It is necessary to deter-
mine the number of fields over which to take maxima, such that the model is not biased but
data are not wasted by maximizing over too many fields. For blocks of size n = 10, 20, . . . , 100
we assess the marginal and dependence structure convergence through simulation. Figure 2
presents convergence diagnostics, displaying estimated quantities for different n, with true lim-
iting quantities overlaid. Figures 2 (c) and (d) display estimates of the dependence parameters
(σ, φ) via pairwise composite likelihood. These suggest that the dependence parameters can be
estimated without much bias with fairly low n. Figure 2(a) displays estimation of the marginal
scale parameter, γ , assuming a Fréchet model, pr(max1�i�n X∗

i /n � x) = exp(−γ /x). Marginal
convergence is suggested by estimated values of γ close to one. Convergence of the margins is
much slower than that of the dependence structure, principally due to the behaviour in the lower
tail: the marginal distribution of X∗ does not admit as many small values as the standard Fréchet
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Fig. 2. Convergence diagnostics for the max-stable random fields: (a) maximum likelihood
estimates of the marginal Fréchet scale parameter; (b) maximum likelihood estimates of
the 16-dimensional extremal coefficient; (c), (d) maximum composite likelihood estimates
of the parameters (σ, φ). Solid line, median; dotted lines, 50% confidence regions, each
on the basis of 500 repetitions; horizontal lines, the true limiting quantities in each case.

distribution, which thus inflates the maximum likelihood estimate from a sample (x1, . . . , xm)

assumed to be Fréchet(γ ), γ̂ = m/
∑m

i=1 x−1
i . Figure 2(b), which offers a joint marginal and

dependence convergence diagnostic, displays estimates of the 16-dimensional extremal coeffi-
cient function, defined for a max-stable field with standard Fréchet margins as the scale param-
eter V (1d) of the distribution of max{MF(s1), . . . , MF(sd)} via

pr[max{MF(s1), . . . , MF(sd)} � x] = exp{−V (1d)/x}, x > 0.

The true values of V (1d) are calculated using equation (8). Clearly the accuracy of estimation
of V (1d) depends on both the margins and the dependence structure; Figs. 2 (a), (c) and (d)
suggest that discrepancies for smaller n are due to lack of marginal convergence. Based upon
Fig. 2, we take n = 50; for larger values of σ , larger n will be required; see also the comments in
§ 4·2. We simulate a total of m = 1000 replicates of process (17) per repetition, so that there are
20 approximately max-stable fields used for inference in the max-stable process likelihoods. In
each likelihood, the margins are assumed to be those from the limiting distribution.

Table 1 details bias of parameter estimates, normalized by their true values, from 200 repeti-
tions of each of three different parameter configurations; results for the pairwise likelihood were
obtained using the R package SpatialExtremes (Ribatet, 2013). All methods exhibit low bias.
Table 2 displays the corresponding variances of the normalized parameters, as a proportion of
the variance attained from the pairwise likelihood for maxima. In all cases the censored Poisson
process likelihood is more efficient than the Stephenson–Tawn likelihood, which in turn is more
efficient than the pairwise likelihood. This is entirely in line with expectations: the Stephenson–
Tawn likelihood offers a d-dimensional inference procedure for maxima, which should be more
efficient than the corresponding pairwise composite procedure; the censored Poisson process
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Table 1. Sample bias, multiplied by 10 and displayed to two significant
figures, of normalized parameter estimates over 200 repetitions for each

configuration

σ = 0·5, φ = 1 σ = 1, φ = 0·5 σ = 1, φ = 1
PW ST PP PW ST PP PW ST PP

σ̂ /σ 0·12 0·046 0·054 0·076 0·090 0·0062 0·14 0·034 −0·067
φ̂/φ 0·24 0·18 0·075 −0·029 0·21 0·0047 0·36 0·055 −0·042

PW, pairwise likelihood; ST, Stephenson–Tawn likelihood; PP, censored Poisson process
likelihood.

Table 2. Relative variance of normalized parameter esti-
mates over 200 repetitions for each configuration, as a pro-
portion of the variance of the pairwise likelihood. Notation
as per Table 1. From left to right, parameter values as per

Table 1
ST PP ST PP ST PP

σ̂ /σ 0·50 0·15 0·32 0·10 0·18 0·076
φ̂/φ 0·42 0·11 0·34 0·14 0·15 0·067

Table 3. Sample bias and variance, multiplied by 10,
for 150 repetitions on the regular 4 by 4 grid, with

true values λ = 3, α = 1. Notation as in Table 1
Bias Variance

Parameter PW ST PW ST

λ/λ̂ −0·078 −0·0034 0·080 0·030
α/α̂ 0·12 −0·016 0·059 0·015

likelihood offers a d-dimensional procedure and the ability to incorporate more extreme events,
as well as more information per event, by recording the configuration of exceedances and non-
exceedances, as well as the size distributions of all exceedances.

4·2. Nonstationary Z

For this class of models, we compare pairwise composite likelihood inference for component-
wise maxima to that from the Stephenson–Tawn likelihood incorporating occurrence times. For
the results of § 4·1, the max-stable process was simulated using a sufficient number of normal-
ized maxima of the process (17). This idea does not extend easily to nonstationary underlying
random fields. We simulate these max-stable processes using representation (3) and Method 2
of Oesting et al. (2012), which involves random shifting of the centres of the Brownian motion.
We then record which maxima occur simultaneously.

Table 3 provides variances and biases for the normalized parameters (λ̂/λ, α̂/α) from 150
repetitions on the same regular 4 by 4 grid as in § 4·1, with true values λ = 3, α = 1. Both meth-
ods again produce approximately unbiased inference. The variances from the Stephenson–Tawn
inference are well under half the size of those from the corresponding pairwise composite like-
lihood, which is broadly similar to the results in Table 2.

We comment on some difficulties with the simulation of such Brown–Resnick processes that
can seemingly affect the inference. These difficulties pertain to the variability of the Brownian
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Table 4. Means and maxima of the maximum indices that contribute to the
Brown–Resnick max-stable process approximation, divided by K = 20 000,
for different values of the scale parameter λ, with fixed α = 1. Results are

recorded to two significant figures

λ 0·2 0·4 0·6 0·8 1 1·2 1·4 1·6 1·8 2·0
Mean 0·77 0·49 0·37 0·18 0·16 0·058 0·040 0·024 0·011 0·0060
Max 1·00 0·95 0·90 0·84 0·93 0·51 0·32 0·27 0·068 0·03

motion, Z , for certain parameter values, and the number of points involved in the finite approxi-
mation of (3). Simulation based on (3) is carried out by using a finite approximation of K points
and ordering the points of the Poisson process {ri } so that r1 < · · · < rK . We then set

MF(s) = max
1�i�K

Wi (s)/ri .

The idea is that for i sufficiently large, ri should be sufficiently large that the associated
Wi/ri has a negligible probability of contributing to the maximum. Here, since var{W (s)} =
exp(2‖s/λ‖α) − 1, small values of the scale parameter λ lead to highly variable W (s). Conse-
quently, processes W with extremely large values are more likely to occur. Thus even for a large
value of the index i , the probability of occurrence of a Wi large enough for Wi/ri to contribute to
the maximum is still nonnegligible. Therefore if sufficient numbers of fields are not simulated,
then the distribution of the configuration of maxima will be wrong, and this can lead to upward
bias in the estimation of λ. For relatively large values of λ, such as in the example provided, this
does not seem to be an issue. To reinforce these ideas, we summarize the indices at which maxima
occur for fixed α = 1 and varying λ ∈ {0·2, 0·4, . . . , 2}, on the same regular 4 by 4 grid, using
a finite approximation of K = 20 000 points. For each λ, we simulated 50 fields and recorded
the maximum index that contributed to the field. Table 4 provides the means of these maximum
indices, as well as the maxima over all 50 repetitions.

For small λ values, even using 20 000 replicates does not appear to suffice for simulating
accurately the configuration of events in the max-stable process. By contrast, for larger λ values,
K could be taken much smaller and accurate representations attained. The best way to simulate
Brown–Resnick processes is open; Oesting et al. (2012) examine different methods, which per-
form best on different regions of the parameter space. Their Method 4 appears to perform better
on larger spatial domains, analogous to smaller scale parameters in our case.

5. DISCUSSION

We have developed an event-based threshold approach for efficient inference in spatial
extremes. By exploiting the spectral decomposition Xi = Wi/ri for calculation of censored inten-
sities, along with a censored Poisson process likelihood, we demonstrated that d-dimensional
inference is feasible for classes of models where W is log-Gaussian. For max-stable processes,
we showed that the likelihood of Stephenson & Tawn (2005) is a special case of the censored
Poisson process, and thus extended the likelihood to inference for the max-stable process.

There are two further notable advantages to the availability of full likelihoods. The first is
the ability to exploit Bayesian inferential mechanisms. The adjustment of composite likelihoods
to full posterior distributions has been explored by Ribatet et al. (2012), though the results are
approximations. Original data are often available, but if only aggregated maxima are available,
then the full max-stable process likelihood is still required for inference. The explosion of terms
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from differentiating exp{−V (x)} would typically still make this prohibitive in more than a few
dimensions. However, recent work by Dombry et al. (2013) has employed a Gibbs sampler for
sampling over partitions; such ideas could potentially be adapted and incorporated into Bayesian
inference when the partition of maxima is unknown. The second advantage to having full like-
lihoods would be the capacity to simultaneously model marginal and dependence parameters,
and obtain uncertainty measures without the need for additional procedures. Since we have a full
likelihood, standard asymptotic normality arguments could be applied to parameter estimators,
under mild conditions.

The models discussed in this work are useful only if the data exhibit asymptotic dependence
between all sites. Such data have a nonzero limiting probability of being simultaneously extreme
everywhere, given that one component is extreme. What may often be more realistic in practice,
particularly for environmental applications, is that the level of dependence decays with the level
of the process, and the most extreme events ultimately occur in isolation. This is consistent with
the notion of asymptotic independence. Wadsworth & Tawn (2012) considered modelling asymp-
totic independence in spatial data. They demonstrated that a widely applicable class of models
for such data is the so-called inverted max-stable process, which translates the lower tail of a
max-stable copula to its upper tail. Max-stable processes thus have modelling potential beyond
asymptotically dependent data, but the inferential improvements in this paper cannot easily be
adapted to asymptotically independent data.

It is natural to wonder whether simplified inference is possible for other classes of max-stable
process models. There is realistically only one other such class in use, which consists of models
constructed with zero-truncated Gaussian random fields (Schlather, 2002; Wadsworth & Tawn,
2012). The truncation makes calculation more awkward, though numerical approximations could
in theory allow this. Since the Gaussian process forms the usual basis for spatial statistics, there
are not, as yet, other types of model available for consideration.
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APPENDIX

Poisson process intensity

The required intensity is integral (10), with fW the d-dimensional log-Gaussian density function.
Changing variables to v = − log r , this integral is

∫ ∞

−∞

|�|−1/2

(2π)d/2
∏d

i=1 xi

exp

[
−1

2

{(
log x + σ 2

2
1d − v1d

)T

�−1

(
log x + σ 2

2
1d − v1d

)
+ 2v

}]
dv.

Consider (log x + σ 2

2 1d − v1d)
T�−1(log x + σ 2

2 1d − v1d) + 2v, and complete the square in v. With some
rearrangement, the integrand is equal to

(1T
d�

−11d)
1/2

(2π)1/2
exp

(
−1T

d�
−11d

2

[
v − {log xT�−11d + (σ 2/2)1T

d�
−11d − 1}/1T

d�
−11d

]2
)
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× |�|−1/2(1T
d�

−11d)
−1/2

(2π)(d−1)/2
∏d

i=1 xi

exp

[
−1

2

{
log xT

(
�−1 − �−11d1T

d�
−1

1T
d�

−11d

)
log x + log xT

(
2�−11d

1T
d�

−11d

)}]

× exp

{
−1

2

(
σ 2 − 1

1T
d�

−11d

)}
.

The expression on the first line integrates to unity, leaving the second and third lines. Defining q and A as
in § 2·3 leaves the expression in (11).

Partial derivatives of V

The calculations follow Dombry et al. (2013). The ratio of intensities of equation (14) in § 2·4,
V1:d(x)/V1:k(x1:k,∞1d−k), is

(2π)(k−1)/2|�1:k |1/2(1T
k�

−1
1:k 1k)

1/2
∏k

i=1 xi

(2π)(d−1)/2|�|1/2(1T
d�

−11d)1/2
∏d

i=1 xi

exp

{
−1

2

(
1

1T
k�

−1
1:k 1k

− 1

1T
d�

−11d

)}

× exp

[
−1

2

{
log xT A log x + log xT

(
2q

1T
dq

)
− log xT

1:k A1:k log x1:k − log xT
1:k

(
2qk

1T
kqk

)}]
,

with notation as defined in § § 2·3 and 2·4. Define the d × k matrix K10 and the d × (d − k) matrix K01:

K10 =
(

Ik

0d−k,k

)
, K01 =

(
0k,d−k

Id−k

)
,

where Ik is the k × k identity matrix and 0 j,k is a j × k matrix of zeroes. By writing log x = K10 log x1:k +
K01 log xk+1:d and completing the square in log xk+1:d , one can verify that the conditional intensity is

1

(2π)(d−k)/2|	|1/2
∏d

i=k+1 xi

exp

{
−1

2
(log xk+1:d − μ)T	−1(log xk+1:d − μ)

}
,

with 	−1 = K T
01 AK01 and μ = −	(K T

01 AK10 log x1:k + K T
01�

−11d/1T
d�

−11d), i.e., a log-Gaussian density.
In order to calculate the required likelihood contribution, integration with respect to xk+1:d yields

�d−k(log u∗1d−k − μ;	).

This cumulative normal probability can be efficiently computed in a likelihood using standard rou-
tines for multivariate normal probability calculation. Postmultiplication by the marginal intensity
−V1:k(x1:k,∞1d−k) gives the expression −V1:k(x1:k, u∗1d−k) in equation (15).
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