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The effect of mechanical circulatory support on left ventricular ( LV ) function was evaluated during prolonged myocardial
ischaemia. Regional wall thickening of a normal and an ischaemic LV region were determined in eight calves (mean body
weight 76 kg ) using pairs of ultrasonic crystals. LV end-diastolic (mmHg ) and peak systolic (mmHg ) pressure as well as
maximum dP/dt (mmHg s~!) were calculated from LV high-fidelity pressure tracings. The left circumflex coronary artery
was ligated proximally for 6 h and reperfused for 18 h. Circulatory support by the assist device was performed from the
beginning of ischaemia to the end of the experiment. After a mean time of 4 h all animals showed ventricular fibrillation,
which was converted successfully in six animals after a mean time interval of 5 h. Five animals survived after 24 h. The
non-surviving animals had larger infarcts, greater creatine kinase release and a larger drop in cardiac output during
ischaemia. Haemodynamic measurements were carried out after turning off the assist device. Inotropic stimulation with
0-68 mg . min~! dopamine i.v. was performed at the end of the study. LV regional function showed systolic bulging during
myocardial ischaemia. After 18 h of reperfusion, the ischaemic wall recovered and showed normal systolic wall thickening
in the presence of an increased LV preload. LV relaxation was prolonged after reperfusion, suggesting diastolic
dysfunction.

It is concluded that mechanical circulatory support is effective in protecting myocardial function during prolonged
ischaemia in approximately two-thirds of the animals, despite severe ischaemic ventricular dysfunction and intermittent

ventricular fibrillation.

Introduction

Severe myocardial ischaemia is associated with acute
left ventricular (LV) failure and irreversible myocardial
damage. Unloading of the ventricle can be used to avoid
acute heart failure and to limit myocardial damage!'~.
Extracorporeal circulatory support has been used suc-
cessfully in patients with severe heart failure as temporary
treatment for cardiogenic shock and as a bridge to
transplantation(®).

The purpose of the present study was to evaluate
whether myocardial function can be preserved during
prolonged myocardial ischaemia by immediate and
complete unloading of the heart using an paracorporeal
ventricular assist device.

Material and methods

Eight calves with a mean body weight of 76kg
underwent left thoracotomy under general anaesthesia
with 0-25 mg . kg~! polamivet (morphine derivative) and
0-04 mg.kg™' combelen (phenothiazine derivative) in
combination with 10 mg. kg™' pentothal (barbiturate).
Animal care was in accordance with the principles of
‘laboratory animal care’ at our hospital.

The left atrium and the descending aorta as well as the
right atrium and the pulmonary artery were cannulated
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and connected to a ventricular assist device (see below). An
8 F Millar pigtail micromanometer catheter was inserted
through the left atrial appendage into the left ventricle
to measure LV pressure. An 8 F pigtail catheter was pos-
itioned in the ascending aorta to measure aortic pressure.
Pairs of ultrasonic crystals were implanted in the region
perfused by the left anterior descending coronary artery
(=control region) and in the region perfused by the
left circumflex coronary artery (=ischaemic region) to
measure LV wall thickness!''"'?. Myocardial ischaemia
was induced by proximal ligation of the left circumflex
artery (Fig. 1). The experiments were carried out with
the chest open and were haemodynamically monitored
for the whole period. Blood gasses, pH, potassium
and haematocrit were controlled routinely during the
experiment and corrected if necessary.

VENTRICULAR ASSIST DEVICE

A ventricular assist device (model BVS 5000 Abiomed
Inc., Danvers, MA, U.S.A) was used to support the left
and right ventricles®'%"?, This device includes a driving
unit and a disposable paracorporeal blood system (Fig. 2)
which are connected to the right atrium and the pulmon-
ary artery or the left atrium and the aorta, respectively.
The assist device contains two chambers and two trileaflet
valves for flow direction. The inflow in the atrium is
continuous and passively controlled by gravity. Ventricle
outflow is pulsatile and pneumatically activated. The
bladder and valves are polyurethane. Adequate filling of

© 1992 The European Society of Cardiology



1550 L. Tjon-A-Meeuw et al.

F8 Millar pigtail
catheter

Ligature Ischaemic

.,
wall thickness

Control
wall thickness A

Figure | Schematic drawing of the instrumentation used in the
present animal preparation. A F 8 Millar micromanometer catheter
was introduced through the left atrial appendage into the left
ventricle. Pairs of ultrasonic crystals were implanted to measure left
ventricular wall thickness in a control (=left anterior descending
coronary artery) and an ischaemic (=left circumflex coronary
artery) region. The left circumflex coronary artery was ligated proxi-
mally to induce myocardial ischaemia. Ao: aorta; PA; pulmonary
artery.
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Figure 2 The Abiomed biventricular assist device (BVS 5000)
with the driving unit, two artificial ventricles and the paracorporal
blood pump system. The artificial atrium is filled passively by
gravity, whereas the artificial ventricle is activated pneumatically.
The blood flow is pulsatile.

the artificial atrium is assured by placing it approximately
20 cm betow the left or right atrium (Fig. 2). The perform-
ance characteristics of the ventricular assist device have
been published previously® %13,

EXPERIMENTAL PROTOCOL (FIG. 3)

After completion of the instrumentation, there was
an interval of 10 to 15 min so that the haemodynamic
variables could stabilize. The control run was then per-
formed, after which the circumflex artery was ligated for a
total duration of 6 h. Haemodynamic measurements were
repeated after 2 min as well as after 6 h of ischaemia.
During the short period in which the measurements were
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Figure 3 Experimental protocol: haemodynamic measurements
were performed at rest (C), after 2 min (I) and 6 h (6 h) of ischaemia
as well as after 18 h of reperfusion (24 h). Ventricular unloading was
started immediately after the induction of 1schaemia and ended 24 h
after the beginning of the expenment. VAD: ventricular assist device.

performed, the assist device was stopped. Six hours after
ligation of the circumflex coronary artery, the vessel was
released and the heart reperfused for 18 h. Unloading of
both ventricles was performed from the beginning of
ischaemia to the end of the experiment, except when
haemodynamic measurements were carried out (Fig. 3).
At the end of the experiment, the assist device was turned
off and the haemodynamic measurements were repeated
under inotropic stimulation with dopamine. The average
dose given was 0-68 mg dopamine per min.

Data analysis

LV pressure tracings were digitized manually for
an entire cardiac cycle using an electronic digitizer
(Numonics Corp.) interfaced to a computer PDP 11/34.
Data were printed out on a Versatec printer-plotter (130
data points per beat). The time constant of isovolumic
relaxation and the extrapolated baseline pressure (pressure
at dP/dt=0) were calculated as the negative reciprocal of
the slope of the linear regression between pressure and
negative dP/dt during isovolumic relaxation!". The iso-
volumic relaxation period was defined as the time interval
beginning immediately after maximal negative dP/dt and
ending when pressure had decreased to S mmHg above
LV end-diastolic pressure!™. LV end-diastolic pressure
was defined as the pressure at 40 ms before the peak R
wave in the ECG. LV end-systolic pressure was defined as
the pressure at the aortic incisura!". LV wall thickness
tracings (Fig. 4) were digitized manually. End-diastolic
wall thickness was defined as the wall thickness at the time
of end-diastolic pressure and end-systolic wall thickness
at the time of end-systolic pressure. Systolic wall thicken-
ing was calculated as end-systolic minus end-diastolic wall
thickness divided by end-systolic thickness multiplied
by 100.

Regional LV function was assessed from LV cycle
efficiency which was calculated from LV pressure-wall
thickness loops (Fig. 5). The loop area of the pressure-
wall thickness relationship was determined by planimetry
and was divided by the area of the rectangle that encloses
the loop!'®.. Multiple pressure wall thickness loops were
recorded on a memory recorder Hioki 8801 (Fig. 5).
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Figure 4 An original tracing showing the haemodynamic variables measured at rest (left), after
2 min of ischaemia (middle) and after 18 h of reperfusion (right). Control and ischaemic wall
thickness, as well as left ventricular (LVP) and aortic pressure (AoP) were measured in all animals.
Systolic bulging of the ischaemic wall can be seen during acute ischaemia (arrow), but 18 h after
reperfusion, ischaemic wall thickening has reverted to control levels. However, left ventricular
function 1s not completely normal after prolonged ischaemia: there 1s an increase in the left
ventricular end-diastolic pressure (Frank-Starling mechanism) probably due to the ischaemic

injury.

Statistics

Statistical comparisons of data obtained during the
control run, after 2 min and 6 h of ischaemia, as well as
after 18 h of reperfusion, were performed by an analysis of
variance for repeated measurements. Data at rest and at
the end of the experiment were compared by a paired t-test
in the five surviving animals. Data are reported as mean
values + | standard deviation.

Results

The original tracing illustrating the variables measured
are shown in Fig. 4. There is systolic bulging of the ischae-
mic wall 2 min after coronary ligation, reversible 18 h
after reperfusion. At the end of the experiment, LV end-
diastolic pressure is increased and end-diastolic wall
thickness decreased due to pronounced ventricular
dilation.

All animals developed ventricular fibrillation after a
mean interval of 4 h. Six animals could be defibrillated
successfully after a mean time interval of 5h. Despite
several attempts, sinus rhythm could not be restored in
two animals and one animal could not be weaned from the
assist device at the end of the experiment.

STANDARD HAEMODYNAMICS (TABLE | AND 2)

Heart rate as well as LV end-diastolic pressure
remained constant during the experiment, but both
increased significantly at the end of the study under

inotropic stimulation with dopamine. Peak systolic press-
ure decreased significantly during ischaemia and was
returned to control levels after 24 h. Maximum dP/dt
remained unchanged, but increased significantly under
the administration of dopamine. The time constant of LV
relaxation (T) also increased slightly but significantly
after 24 h experimentation. The pressure asymptote P,
decreased parallel to the increase in T.

End-diastolic wall thickness of the control and ischae-
mic walls remained unchanged during the entire exper-
iment. There was, however, compensatory hyperkinesia
of the control wall region during acute ischaemia, where-
as the ischaemic wall showed systolic bulging. Eighteen
hours after reperfusion and after administration of
intravenous dopamine, ischaemic walil thickening was
not only normalized, but was even increased when com-
pared to resting wall thickening (ns). Cycle efficiency
became negative during ischaemia due to systolic bulging
of the ischaemic wall region, but cycle efficiency of
both the control (P <0-05 vs rest) and the ischaemic wall
(ns vs rest) increased after reperfusion and dopamine
administration.

LABORATORY MEASUREMENTS (TABLE 3)

pH decreased slightly duringischaemia but wasreturned
to control levels after reperfusion. Aortic and pulmonary
oxygen saturation decreased during ischaemia and were
close to control at the end of the experiment. Serum potas-
sium remained unchanged throughout the experiment,
whereas haematocrit continuously decreased.
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Figure 5 Representative pressure (P)-wall thickness (Wth) loops of the con-
trol (left hand panels) and ischaemic wall region (right hand panels). Cycle
efficiency (CE) is defined as the ratio of the loop area and the area of the
rectangle which encloses the loop. Under control conditions, the pressure-wall
thickness loop turns clockwise in both regions, but turns counterclockwise in
the presence of systolic bulging after induction of myocardial ischaemia. At the
end of the experiment (6 h of ischaemia and 18 h of reperfusion) both regions
show normal clockwise rotations of the pressure-wall thickness loops. For each
experimental state, several cardiac cycles are averaged to reduce sampling error.

Table ] Haemodynamics. Measurements were carried out ai rest, after 2 min and after 6 h of ischaemia as well as at the end of the experiment
(6 h of ischaemia+ 18 h of reperfusion=reperfusion)

s HR LVEDP LVSP max. dP—dt T P,

(beats . min~") (mmHg) (mmHg) {(mmHg.s"") (ms) (mmHg)
Rest 8 110 5 13 =] 134 1444 = 37 9 -6 =

+22 16 110 -l —I 1402 +7 %5
Ischaemia **
(2 min) 8 10 15 nmoo, J 1244 43 -6

+21 -I +7 116 +291 —‘ +9 17
Ischaemia » + * it +
(6h) 3 105 - 18 106 1330 1 , 76 -9

+4 -| 16 17 +285 ] 121 +13
Reperfusion * .
(18h) 5 141 _l J 24 128 2850 J J 55 _24

122 = 116 = +31 1981 = 118 = 111 =

HR = heart rate; LVEDP = LV end-diastolic pressure; LVSP =LYV systolic pressure; max. dP/dt = peak positive dP,dt; T =time constant of
LV pressure decay; P, = pressure asymptote at dP/dt =0; *P <0-05; **P<0-01 (Anova); + P <0-05 (paired t-test with n =35).
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Table 2 LV wall thickness and cycle efficiency

n Wc Wi % Wc % Wi CEc CEi
(mm)  (mm) (%) () (%) (%)
Rest 6 13 12 15 14 66 9 56
+3 +3 +10 18 _I t12 +12 _I
. L ®%
Ischaemia J J
(2 min) 7 13 1 24 -7 59 —41
13 3 t12 16 +6 122
Ischaemia —| —l
(6h) - - - - - . - + - "k
Reperfusion
(18 h) 4 17 13 11 21 J 73 72 J
+4 +5 +I11 %15 t7 - 18

W =control wall thickness; Wi=ischaemic wall thickness; % WC and % Wi=sytolic wall thicken-
ing of the control and the ischaemic wall; CEc =cycle efficiency of the control wall region and CEi=
cycle efficiency of the ischaemic wall region (%); ** P <0-01 (ANOVA); + P <0-05 (paired t-test with
n=4). Other abbreviations are as in Table 1.

Table3 Laboratory measurements were carried out at rest, after 1 and 6 h of ischaemia as well as at the

end of the experiment

Ao O APO K~ Htk

n pH 2 2

(%) (%) (mmol . 1Y) (%)

Rest 8 7-48 96 61 B 4-6 35 n
061 l £5 x| ] i1 8| 1
ok *

Ischaemia 8 736 89 » . 49 o | .
(1h) +025 +24  £15 b 106 %10 N
Ischaemia 8 7-36 J 93 47 j 42 27 J
(6 h) +0-13 +8 +16 108 +8
Reperfusion 5 7-46 94 44 4.7 28
(18 h) +015 +11 +15 - +09 +7 -

Ao O,=aortic oxygen saturation; AP O,=pulmonary artery oxygen saturation; K*=serum
potassium concentration; Htk = blood haematocrit; * P <0-05 (vs rest, paired t-test); **P <0-01 (vs
rest, paired t-test).

Table4 Laboratory findings in five surviving and three non-surviving animals at rest, after 2 minand6 h
of ischaemia, respectively

CK H Cco
U.1m P (.min ")
Surviving animals Rest 546 1 7-48 51
(n=95) Ischaemia . 45
(2 min) _I
Ischaemia 3452 7-42
]
Non-surviving animals Rest 310 1+ 748 4 51 —_|
(n=3) Ischaemia . 35 1
(2 min) J J J
Ischaemia 5727 7-26
(6h)

CK =creatinine kinase; CO =cardiac output measured by thermodilution techniques; *P <0-05
(paired t-test), + P <0-05 (unpaired t-test).
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COMPARISON OF SURVIVING AND NON-SURVIVING ANIMALS
(TABLE 4)

In the non-surviving animals, the increase in creatinine
kinase was larger and the drop in pH greater than in the
surviving animals. Cardiac output decreased significantly
during ischaemia in both non-surviving and surviving
animals, but cardiac output was significantly lower during
the 2 min of ischaemia in the non-surviving than surviving
animals.

Discussion

Low cardiac output can be a major complication dur-
ing acute myocardial ischaemia. Low perfusion pressure
with high coronary vascular resistance (increase in filling
pressure) can be deleterious for the maintenance of pump
function and might aggravate myocardial ischaemia.
Immediate unloading of the ventricle prevents cardio-
genic shock, reduces myocardial necrosis and maintains
adequate perfusion pressure. Several reports!'™ have
shown the benefit of acute unloading in the canine model.
The purpose of the present study was to evaluate a new
ventricular assist device (BVS 5000 Abiomed) and to
examine the effect of immediate mechanical circulatory
support on post-ischaemic LV function.

ISCHAEMIA AND UNLOADING

Proximal ligation of the circumflex coronary artery
in the bovine left ventricle is associated with severe myo-
cardial ischaemia, systolic pump failure and electrical
instability with ventricular fibrillation. Immediate un-
loading of both ventricles allows cardiac output to be
maintained in the presence of severe ventricular dys-
function (ventricular fibrillation). Severe arrhythmias
occurred in all animals after a mean ischaemia time of 4 h.
Despite repeated defibrillation, ventricular fibrillation
persisted in all but three animals at the end of the 6 h of
ischaemia. In two animals, sinus rhythm could be restored
in the reperfusion period, but in the remaining animals
ventricular fibrillation persisted (n=2) and one animal
could not be weaned from the assist device despite suc-
cessful defibrillation. The extent of ischaemia was prob-
ably larger in the animals who could not be resuscitated
because the increase in creatine kinase was larger and the
drop in pH and cardiac output more pronounced in the
non-surviving than surviving calves (Table 4).

Thus, mechanical circulatory support helps to maintain
cardiac output in the acute phase of myocardial ischaemia
with severe arrhythmias. Despite adequate circulatory
support with normal blood gases and serum electrolytes,
electrical instability could not be avoided. The five
animals in which systolic function could be restored
had an almost normal LV function at the end of the
experiment. However, low cardiac output occurred in
these animals and positive inotropic stimulation with
intravenous infusion of dopamine had to be given to
achieve normal systolic pressure. Since the myocardium
could be stimulated with positive inotropic agents, it can
be assumed that prolonged myocardial ischaemia was
not associated with irreversible myocardial damage!'’.

The significant increase in maximum dP/dt, systolic wall
thickening and cycle efficiency after 24 h compared to the
controlsituation at the beginning of the experiment can be
explained by the administration of dopamine. However,
normal systolic function could be achieved only with an
increase in LV end-diastolic pressure (=Frank-Starling
mechanism) (Fig. 4 and Table 1). Apparently, the
ischaemic injury was small due to the immediate unload-
ing of the heart which was performed not only during the
ischaemic period but also during reperfusion. Therefore,
the ventricular assist device not only provides adequate
treatment in the acute phase of ischaemia with severe
arrhythmias, but also limits the extent of ischaemia and
may prevent myocardial necrosis when circulatory support
is started early and is extended well into the reperfusion
period. Whether a reperfusion period of 6 or 12 h would
have been sufficient to minimize myocardial damage
cannot be derived from these data, and no biopsies were
taken to prove or exclude myocardial necrosis. However,
histological changes are usually minimal 18 h after an
ischaemic event!"¥),

The occurrence of arrhythmias apparently cannot be
prevented by mechanical unloading of the left ventricle.
However, arrhythmias are directly related to the extent
of myocardial ischaemia and in those animals with large
infarcts, resuscitation was not successful. Thus, unload-
ing does not prevent the occurrence of arrhythmias, but
allows the heart to recover mechanically after prolonged
ischaemia when the ischaemic injury was not too severe.
It has to be assumed that the beneficial effect of mech-
anical unloading is probably permanent in the animals
which could be successfully weaned from the ventricular
assist device.

REGIONAL AND GLOBAL LV FUNCTION

Regional LV function was assessed by ultrasonic
crystals in a normal and ischaemic region of the left ven-
tricle " Fig. 3). LV wall thickening of the ischaemic
region showed systolic bulging during coronary occlusion
and, as a consequence, cycle efficiency became negative
(" Fig. 5). Passive elongation of the ischaemic region
and systolic contraction of the control region caused
LV asynergy!'! with a reduction in global mechanical
efficiency. The loss of contractile work performed by the
ischaemic zone was partially compensated by regional
hyperkinesia of the control wall region (Table 2). Despite
these regional abnormalities in wall thickening, global
function parameters such as maximum dP/dt and the time
constant of isovolumic relaxation (T) remained almost
unchanged during acute myocardial ischaemia. However,
under inotropic stimulation both maximum dP/dt and the
time constant T were significantly increased, suggesting
enhanced contractility (maximum dP/dt) but at the same
time delayed relaxation (T). An increase in inotropic
state augments the speed of relaxation in the normal
heart and thus decreases the time constant TP, In the
present analysis, however, T increased despite adminis-
tration of dopamine. This can be interpreted as a sign
of diastolic dysfunction in the presence of maintained
systolic function.
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LIMITATIONS OF THE STUDY

Collateral blood flow was not estimated in the present
study due to technical reasons. It is, however, possible
that collateral circulation played an important role in
limiting myocardial damage after coronary ligation. It
has to be realized that systolic bulging would not have
occurred if significant collateral circulation had been
present (Fig. 3). Thus, it has to be assumed that collateral
circulation was not an important factor in preserving
ventricular function in the present study. Furthermore,
without mechanical circulatory support there would
have been no survivors after several hours of ventricular
fibrillation. Since ventricular fibrillation occurred in all
animals, other unloading interventions, such as counter-
pulsation or vasodilation, could not have been successful
because biventricular assistance is necessary to maintain
cardiac output over prolonged ventricular fibrillation.
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