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Inappropriate use of antibiotic drugs in humans and animals has led to widespread resistance among microbial pathogens.

Resistance is the phenotypic expression corresponding to genetic changes caused by either mutation or acquisition of new genetic

information. In some cases, multidrug resistance occurs. Streptococcus pneumoniae is one of the most important respiratory

pathogens, playing a major role in both upper and lower respiratory tract infections. Pneumococcal resistance to antimicrobials

may be acquired by means of horizontal transfer followed by homologous recombination of genetic material from the normal

flora of the human oral cavity or by means of mutation. Resistance to penicillins and macrolides has been increasing for some

time, but, recently, fluoroquinolone resistance has become an issue as well. We are concerned that, if fluoroquinolones are

approved for use in children, their widespread use will result in rapid emergence of pneumococcal resistance, because children

are more often colonized in the nasopharynx with high-density populations of pneumococci than are adults.
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DISCOVERY OF ANTIBIOTICS
AND EMERGENCE
OF MICROBIAL RESISTANCE

The development of antimicrobials is con-

sidered among the most important med-

ical advances of the twentieth century [1].

However, penicillin G had barely been re-

leased when reports of penicillinase-pro-

ducing isolates of Staphylococcus aureus

appeared, raising a note of caution [2]. We

believe it is important to review the history

and biology of antibiotic resistance, to

comment on contemporary issues relating

to emerging resistance, and, most impor-

tantly, to argue against the unnecessary use

of fluoroquinolones to treat children, a

development that may exacerbate this

phenomenon.

Antimicrobial agents are used exten-

sively around the world, and many drugs,

including fluoroquinolones, are used for

growth promotion and prophylaxis in an-

imal husbandry. Unfortunately, there is a

correlation between the total amount of

drug use and the appearance and dissem-

ination of resistant microbial strains [3].

Societal expectations, coupled with phy-

sicians’ intrinsic desire to help patients,

have contributed to widespread abuse of

antibiotics. A recent survey highlighted

this, showing that, although only 22%

of patients seeking medical care had

an infection diagnosed, 67% were given

antibiotics as a result of their physician

visit [4].

Bacteria have developed ingenious

strategies to protect themselves against an-

timicrobials, which they themselves often

produce. For example, aminoglycoside-in-

activating enzymes are produced by strains

of Streptomyces that also produce an ami-

noglycoside [5], and the van gene cluster

that codes for high-level vancomycin re-

sistance recently has been found in the

glycopeptide-producing microorganisms

[6] as well as in a bacterium that is present

in a widely distributed biopesticide [7]. It

is postulated that resistance genes escaped

from soil microorganisms and, after pas-
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sage and remodeling in other bacteria, en-

tered human pathogens [8]. Bacterial iso-

lates displaying resistance to tetracycline

and streptomycin have been isolated from

stool samples obtained from Solomon Is-

landers who have never been exposed to

antibiotics [9]. These are but a few ex-

amples in which microbes that have not

been exposed to antibiotics have been

found to have the genetic machinery to

resist antimicrobial agents.

The phenotypic expression of resistance

corresponds to genetic alterations that re-

sult either from horizontal acquisition of

genetic information from other organisms

or from adaptive mutations in the micro-

bial genome. Compounding the problem

of emerging resistance is the appearance,

relatively recently, of organisms with mul-

tidrug resistance. This occurs when the or-

ganisms acquire resistance genes carried

by plasmids or transposons. In certain

bacteria, such as Streptococcus pneumon-

iae, resistance may even be acquired by

direct incorporation and remodeling of

DNA from closely related oral commensal

bacteria, by the process of natural trans-

formation [10]. It is only recently that we

have begun to appreciate the complexity

of the mechanisms in which the “normal”

human flora develops resistance; when

humans are treated unnecessarily or

treated with inappropriate regimens, in-

vading pathogens can acquire resistance-

coding DNA from colonizing microflora

[11]. Although both clinical practice and

environmental conditions may help to en-

hance the growth of select bacteria with

newly acquired resistance genes, it is clear

that the selection pressure generated by the

use of antibiotics is one of the critical fac-

tors in the emergence and dissemination

of bacteria resistant to antimicrobial

agents [3, 12, 13].

DRUG DEVELOPMENT
AND EMERGENCE OF
ANTIMICROBIAL RESISTANCE

Bacteria can manifest resistance by a va-

riety of mechanisms. For the penicillin-

resistant pneumococcus, however, the

only significant mechanism demonstrated

to date is alteration in the penicillin-bind-

ing proteins (PBPs), the target site for b-

lactams. This alteration is accomplished by

remodeling of DNA through the unique

mechanism of natural transformation

[14]. The PBPs themselves are transpep-

tidase and carboxypeptidase enzymes in-

volved in bacterial cell wall synthesis and

are the primary target sites for all b-lac-

tams. It is not surprising, therefore, that

penicillin-resistant pneumococci also ex-

hibit varying degrees of resistance to other

penicillins and, occasionally, to cephalo-

sporins. The situation is further compli-

cated by the fact that certain strains

are resistant to third-generation cepha-

losporins but susceptible to penicillin G

[15, 16].

Analysis of the sequence of the struc-

tural genes for PBPs indicated that, al-

though the genes of susceptible S. pneu-

moniae are conserved, those of resistant

strains have a mosaic structure composed

of blocks, some of which are similar to

and some of which are different from their

counterparts in susceptible strains [17].

The “diverged regions” are acquired from

other bacterial species that are part of the

normal flora of the human oral cavity,

such as Streptococcus mitis or Streptococcus

oralis (viridans group streptococci), by

means of horizontal transfer (transfor-

mation) followed by homologous recom-

bination of genetic material [14, 18].

“Multidrug resistance” refers to resis-

tance to �3 antimicrobials that have dif-

ferent mechanisms of action. This resis-

tance is due to the stable coexistence in

the bacterial genome of mutations in var-

ious housekeeping genes or of assortments

of acquired foreign genes, each of which

confers resistance to a class of antibiotics

[19]. Multidrug-resistant S. pneumoniae,

first reported in South Africa in 1977, have

now been recovered in a number of coun-

tries [20–22]. One type of resistance of

particular concern to clinicians is that me-

diated by the ermB gene. This confers re-

sistance not only to the macrolide class

but to lincosamides and streptogramin B

compounds as well [23, 24]. For unknown

reasons, some multidrug-resistant S. pneu-

moniae clones have disseminated world-

wide and account for the observed coresis-

tance to various drug classes [25].

Recently there has been a marked in-

crease in the percentages of pneumococcal

isolates that are penicillin resistant. Most

worrisome is the propensity for pneu-

mococcal resistance to penicillin G to be

associated with reduced susceptibility to

other drugs, such as macrolides, lincos-

amides, and streptogramins; tetracyclines;

chloramphenicol; and trimethoprim-sul-

famethoxazole. In the United States,

58.9% of pneumococcal isolates recovered

from blood that are penicillin resistant are

also macrolide resistant (D. Sahm, per-

sonal communication). Fluoroquinolone

resistance in pneumococci has also been

reported recently [26], and an association

between penicillin and fluoroquinolone

resistance in the pneumococcus has been

suggested [27, 28].

Fluoroquinolone resistance is not lim-

ited to S. pneumoniae and has been doc-

umented in other pathogens as well, in-

cluding those responsible for urinary,

respiratory, and gastrointestinal tract in-

fections, skin and soft-tissue and bone and

joint infections, sexually transmitted dis-

eases, and ulcers. The microorganisms

include gram-positive and gram-negative

cocci, such as methicillin-susceptible and

methicillin-resistant S. aureus and Neis-

seria gonorrhoeae, respectively; gram-neg-

ative rods, such as Pseudomonas aerugino-

sa and Serratia marcescens; Mycobacterium

tuberculosis and atypical mycobacteria;

and Campylobacter jejuni and Helicobacter

pylori [29–36].

The critical question, however, is

whether in vitro resistance necessarily

means that treatment will result in clinical

failure. This question is important, be-

cause S. pneumoniae causes infection in a

number of sites that are not only anatom-

ically distinct but functionally and biolog-

ically distinct as well. Otitis media is, es-

sentially, a closed-space infection, and
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meningitis treatment is complicated by the

presence of the blood-brain barrier.

For penicillin therapy of pneumococ-

cal pneumonia, no bacteriologically con-

firmed treatment failures have been re-

ported for infections caused by organisms

with penicillin MICs of !4 mg/L [37–39].

For strains with MICs of �4 mg/L, data

are conflicting regarding the occurrence of

treatment failure [40–45].

There are also data regarding the rele-

vance of macrolide-resistant S. pneumon-

iae. A recent paper described 4 patients

with infection caused by S. pneumoniae

with low-level macrolide resistance who

failed to respond to outpatient oral ther-

apy with either azithromycin or clarith-

romycin [46]. Pharmacodynamic prin-

ciples suggest that macrolide-resistant

strains with MICs of �8 mg/L should not

respond to macrolide therapy, and 120

cases have now been documented of

pneumococcal bacteremia due to such

macrolide-resistant strains that occurred

after macrolide therapy [46–50].

In vitro evidence suggests that fluoro-

quinolones, such as moxifloxacin and tro-

vafloxacin, are superior to older agents,

such as ciprofloxacin and levofloxacin, in

that they do not permit subpopulations of

bacteria with single mutations to survive

after exposure to drug concentrations that

exceed their MICs and are, thus, less likely

to select for resistant mutants [51]. Clin-

ical data also support this observation: for

example, gatifloxacin was compared with

levofloxacin in a prospective, blinded trial,

and the only culture-proven treatment

failures for cases of pneumonia caused

by S. pneumoniae (3 cases) or S. aureus

(2 cases) occurred in the levofloxacin

arm [52].

It would appear, therefore, that the

problem of fluoroquinolone resistance is

solved and that 2 new fluoroquinolones,

moxifloxacin and gatifloxacin, that have

potent antipneumococcal activity are now

available for use. Unfortunately, the prob-

lem is far from solved. A disturbing article

reported that 2 of 29 pneumococcal iso-

lates were resistant not only to ciproflox-

acin but to moxifloxacin and trovafloxacin

as well—2 of the very potent “newer

quinolones” that were under development

and had not seen widespread clinical use

at the time of publication [53]. Further-

more, a case-control study from Hong

Kong demonstrated that a key risk factor

for acquisition of fluoroquinolone-resis-

tant S. pneumoniae was prior treatment

with ofloxacin, levofloxacin, or ciproflox-

acin (OR, 10.7) [54]. These findings

clearly raise concerns that use of earlier

fluoroquinolones poses the risk of infec-

tion with organisms with resistance to

newer, more potent agents. The study

showed that pneumococcal resistance to

fluoroquinolones is essentially a class ef-

fect [54], and, by extrapolation from past

experience, it seems clear that overuse of

one member of this class may weaken the

effectiveness of structurally related drugs.

ADVERSE DRUG REACTIONS

A detailed discussion of adverse drug re-

actions is beyond the scope of this article.

However, discussion of fluoroquinolones

would be incomplete without some men-

tion of drug-related toxicity. As a result of

initial concerns about potential toxicity in

children, there are few data on the exper-

imental use of these agents in pediatric

practice, and most of our information de-

rives from animal experiments, experi-

mental and clinical use to treat adults, and

use to treat children as part of compas-

sionate-use programs.

The description of cartilage lesions in

weight-bearing diarthrodial joints of ju-

venile animals that occurred following ex-

posure to fluoroquinolones led to the

moratorium on the use of fluoroquino-

lones to treat children. Arthropathy is a

class effect, and virtually all fluoroquino-

lones tested have induced changes in im-

mature cartilage in all animals studied

[55–57]. The lesions typically are fissures,

blisters, and erosions resulting from ne-

crosis of the chondrocytes and disruption

of the extracellular matrix [55]. The pre-

cise mechanism is unknown, and no def-

inite relationship has been established be-

tween fluoroquinolone structure and this

adverse event. It is thought, however, that

the fluoroquinolones chelate magnesium

ions, resulting in disruption of the signal

transduction from the chondrocyte sur-

face integrin receptors that are thought to

play a role in maintaining the integrity of

the cartilage matrix [58]. To date, there is

no evidence categorically linking fluo-

roquinolone use to arthropathy in hu-

mans, and the long-standing restrictions

on fluoroquinolone use appear to be lift-

ing [59].

Other adverse reactions that occur in

adults also will be of potential concern in

children, if these drugs are released for

general use. They are seizures; cardiotox-

icity, in the form of QT interval prolon-

gation and malignant arrhythmias; and

phototoxicity. CNS effects, which rarely

include seizures, occur either as the result

of direct action of a drug on CNS recep-

tors or as the result of an interaction be-

tween the fluoroquinolone and another

pharmacologic agent. Direct actions are

further divided into the blocking of the

g-aminobutyric acid receptor and primary

excitatory effects mediated by the N-

methyl-d-aspartate adenosine receptor

[60, 61].

The main area of interest related to car-

diotoxicity is prolongation of the QT in-

terval [62]. This phenomenon has been

well described with other agents, including

the macrolides, and it may be a class effect

for the fluoroquinolones. The precise

mechanism is not known, but it is likely

multifactorial. It is generally thought that

fluoroquinolones should not be given to

patients known to have QT interval pro-

longation nor to patients receiving con-

comitant therapy with agents that might

increase the QT interval and induce

bradycardia or torsades de pointes.

Phototoxicity may occur if the dose of

a photolabile drug and exposure to UV

light are sufficiently high. Certain fluoro-

quinolones can cause the formation of

toxic monovalent oxygen radicals after

such exposure, and these, in turn, may
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attack cellular lipid membranes, resulting,

ultimately, in the clinical manifestations of

phototoxicity [63]. Halogenation at the C-

8 position is one of the main determinants

of such an adverse event [64].

CURRENT DILEMMA
AND FUTURE PROBLEMS

Evidence is accumulating that multidrug

resistance in pneumococci is related to

prescription of antimicrobial agents to a

critically important reservoir for these or-

ganisms: children. This likely occurs be-

cause children, more often than adults, are

colonized with high-density populations

of pneumococci in the nasopharynx,

which increases the potential for resistance

development and, thus, raises the specter

of rapidly accelerating development of re-

sistance to antimicrobial drugs, including

fluoroquinolones, should this class of an-

timicrobials be overused among children,

as they have been among adults. Sup-

porting this concern are studies of day care

and pediatric chronic care centers that

have found a very high prevalence of na-

sopharyngeal carriage of drug-resistant

strains of S. pneumoniae [65, 66]. Over-

crowding facilitates the transmission of re-

sistant strains from colonized to suscep-

tible infants and children who, in turn,

serve as a source for further transmission

to family members and, ultimately, to the

general population [67]. Investigators also

found high rates of pneumococcal carriage

(50%) among children [68] and found

that prior receipt of antibiotics signifi-

cantly increased the risk of harboring a

drug-resistant strain [68, 69]. However,

rather than suggesting that new antimi-

crobials were needed for the treatment of

children, the authors of the study rec-

ommended reducing unnecessary use of

antimicrobials in the community as the

most appropriate course of action, partic-

ularly because most of the infections

treated with antimicrobials are viral [69].

Finally, the prevalence of macrolide resis-

tance among pneumococci doubled in the

United States between 1995 and 1999,

during which time use of macrolides re-

mained stable in the population �5 years

of age but increased by 320% in the pop-

ulation !5 years of age [70].

A new concern about widespread use

of fluoroquinolones to treat children, as

well as adults, is the recent recognition

of horizontal transfer of fluoroquinolone

resistance from viridans group strepto-

cocci (such as S. oralis and S. mitis) to

S. pneumoniae [10, 11]. Once resistance

mutations develop in these naturally com-

mensal organisms as a result of fluoro-

quinolone exposure (even in the absence

of pathogenic pneumococci), any subse-

quent pneumococcal infection carries the

risk that the infecting strain of S. pneu-

moniae will readily acquire fluoroquino-

lone resistance–determining DNA regions

when antimicrobial therapy is instituted.

These fluoroquinolone-resistant S. pneu-

moniae can then be easily spread from

child to parent, followed by widespread

dissemination to the adult population.

The dangerous triad of antibiotic mis-

use, a reservoir of resistance genes, and a

closed-space pneumococcal infection (oti-

tis media) would come together if fluoro-

quinolones were approved for general use

in the pediatric population. The odds of

the appearance and dissemination of re-

sistant strains through the emergence of

de novo resistance and clonal spread

would likely increase dramatically. Fluoro-

quinolone resistance has already been ob-

served in globally distributed clones of

multidrug-resistant pneumococci [71].

These clones are encapsulated and belong

to the serotypes most commonly found

among children. Resistant isolates already

exist and, under the influence of enhanced

selection pressure, will rapidly disseminate

themselves or their resistance genes. Our

previous experience with the spread of

penicillin resistance allows us to predict

that such spread will occur with other

drug classes. It is likely that, shortly after

their approval for use in pediatric practice,

fluoroquinolones will be as widely used as

they are in the adult population, and any

advantages of using them will dissipate

quickly. As already mentioned, pneumo-

cocci have cross-resistance, albeit at vari-

ous levels, to fluoroquinolones. For strains

that are more resistant to the less active

drugs [19], the most active agents will

likely select for clones that are resistant to

both the older and newer drugs. Thus,

inappropriate and unnecessary use of the

new fluoroquinolones will exert the selec-

tion pressure required for clonal dissem-

ination of the most-resistant isolates.

This brings us to the heart of the matter.

Do we really need fluoroquinolones for

general use in pediatric practice? The

broad spectrum of many of the fluoro-

quinolones, coupled with their ease of use

(once-daily dosing for many patients),

makes them appealing to physicians and

patients alike. There is no question that

fluoroquinolones are valuable for treat-

ment of selected pediatric patients. How-

ever, we propose that their use to treat

children be limited to those specific in-

fections complicated by special conditions

for which the benefit of these drugs is clear

and for which no alternative safe and ef-

fective antibiotic therapy is available [72,

73]. To date, potential pediatric indica-

tions for fluoroquinolones include pseu-

domonal bronchopulmonary exacerba-

tion in cystic fibrosis [74–76], complicated

urinary tract infection [77, 78], invasive

gastrointestinal infection [79, 80], and

chronic ear infection [81]. For these 4 spe-

cific infections, results of controlled clin-

ical trials have shown similar efficacy for

the fluoroquinolones and conventional

regimens [74–81]. Preliminary experience

with pediatric patients also indicates that

the fluoroquinolones are effective and safe

for the eradication of nasopharyngeal car-

riage of meningococci [82] and for treat-

ment of selected patients with febrile neu-

tropenia [80, 83, 84] or invasive infection

caused by multidrug-resistant pathogens

[85, 86]. Such limited use certainly does

not require that the regulatory authorities

approve fluoroquinolones for general use

in the pediatric population.

The selection of antibiotic-resistant

pneumococci, however, is likely to occur
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more rapidly among children than among

adults, because nasopharyngeal coloniza-

tion with high-density populations of

pneumococci is more common among

children [87]. Fluoroquinolones have not

been widely prescribed for children be-

cause of potential toxicity problems; there-

fore, there are no data on the effect of such

drugs on the selection of resistant pneu-

mococcal mutants in the nasopharynx of

children, whereas there are such data for

adults [88]. Thus, although this class of

drugs is able to eradicate meningococcal

carriage in children, it would be prudent

to conduct studies of selection for resistant

mutants, as a matter of urgency, before

use of the new fluoroquinolones to treat

children is considered.

There is no compelling need to extend

regulatory approval for use of these im-

portant agents in persons aged !16 years.

Pichichero et al. [89] recently documented

that 175% of pediatric patients who vis-

ited a physician for acute respiratory tract

infection did not require antimicrobial

therapy at the first office visit. The ideal

was to prescribe antimicrobials only for

those patients who clearly needed them.

It is of interest that there were more return

visits related to the initial infection among

children who were given antibiotics than

among children who were not [89]. The

authors of this commentary are unani-

mous in their desire for more prudent use

of fluoroquinolones to treat adult patients

and in their objection to the approval of

fluoroquinolones for use in pediatric pa-

tients and the subsequent widespread use

of these drugs [89]. Hooper [90] raised a

similar note of caution in his recent review

of the fluoroquinolones. He suggests that

avoidance of their routine administration

may play a significant role in limiting

the spread of pneumococcal resistance to

these drugs.

Multiple alternatives are usually avail-

able for treatment of most infections in

the pediatric population. Reserving the

fluoroquinolones for treatment of adults,

in whom their efficacy and safety are clear

and well documented, is one step we can

all take to extend the period of utility of

the fluoroquinolone class.
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