The crystal structure of rathite-I* By F. MARUMO and W. NOWACKI Abteilung für Kristallographie und Strukturlehre, Mineralogisches Institut, Universität Bern, Schweiz (Received May 10, 1965) ### Auszug Die Kristallstruktur von Rathit-I wurde mittels dreidimensionaler Intensitätsdaten bestimmt. Vier Formeleinheiten (Pb,Tl)₃As₄(As,Ag)S₁₀ sind in der Einheitszelle der Symmetrie $P2_1/a$ mit a=25,16 Å, b=7,94 Å, c=8,47 Å, $\beta=100^{\circ}28'$ enthalten. Die wahre Symmetrie von Rathit-I ist möglicherweise triklin. Die Lösung lieferten die Ähnlichkeit der Struktur mit derjenigen von Rathit-III und spezielle Verhältnisse der Röntgendiagramme. Von drei unabhängigen Pb(Tl)-Atomen sind zwei von neun S-Atomen umgeben, das andere von sieben. Die As-Atome weisen trigonal-pyramidale Koordination durch die S-Atome auf. Von einem As-Atom wird angenommen, daß es statistisch von zwei verschiedenen trigonal-pyramidalen S-Koordinationen umgeben wird. Ein anderes As-Atom ist teilweise durch Ag ersetzt. Die Struktur besteht aus zweierlei Schichten parallel zu (100). Die erste Art hat die Zusammensetzung (Pb,Tl)S $_3$ und besteht aus den Koordinationspolyedern um die Pb(Tl)-Atome mit Neuner-Koordination. Die zweite Art ist aus Pb(Tl)-, As(Ag)- und S-Atomen zusammengesetzt, welche ein deformiertes PbS-Gitter bilden. Trigonale As-S $_3$ -Pyramiden sind zu Ketten endlicher Länge vereinigt. #### Abstract The crystal structure of rathite-I has been determined with the use of three-dimensional intensity data. Four chemical units of (Pb,Tl)₈As₄(As,Ag)S₁₀ are contained in the unit-cell of the symmetry $P2_1/a$ with a=25.16 Å, b=7.94 Å, c=8.47 Å, $\beta=100^{\circ}28'$. The true symmetry of rathite-I may be triclinic. The solution was obtained from the similarity of the crystal structure to that of rathite-III and from a peculiar feature of the x-ray diagrams. Among three independent Pb(Tl) atoms two are surrounded by nine S atoms and the other is surrounded by seven S atoms. As atoms have trigonal-pyramidal coordinations by S atoms. One As atom, however, is believed to occupy statistically two different trigonal-pyramidal S coordinations. Another As atom is partially replaced by Ag. ^{*} Contribution No. 155. — Part 19 on sulfides and sulfosalts. The structure is composed of two kinds of layers parallel to (100). Layers of the first kind have the composition (Pb,Tl)S₃, and consist of coordination polyhedra around the Pb(Tl) atoms which are coordinated by nine S atoms. The layers of the second kind are composed of Pb(Tl), As(Ag) and S atoms, having a deformed PbS-type structure. Trigonal As-S₃ pyramids are linked into strings of finite length. #### 1. Introduction Rathite-I, (Pb,Tl)₃As₄(As,Ag)S₁₀, is a mineral of a sulfosalt group, to which rathite-II, rathite-III, rathite-IV, dufrenoysite, baumhauerite and scleroclase belong. A characteristic feature of these minerals is that they have periods of 8.4 Å and 7.9 Å along two mutually perpendicular directions. Though most of the structures have already been investigated, no precise structure has yet been revealed owing to the large absorption effects and the large unit-cell dimensions. Some of the structures reported contain unreasonable features such as, for example, infinite chains of As-S₃ pyramids along the 8.4 Å axes which, as was pointed out by Y. IITAKA and W. NOWACKI (1961), cannot exist. The structure determination of rathite-I was carried out in order to obtain precise information concerning the structural principles of this group of minerals. It was also desired to clarify the relationship of rathite-III and rathite-I, which are dimorphous if the small amount of Tl and Ag in the latter plays no significant role in the formation of the mineral and can be replaced by Pb and by As respectively. Rathite-III (LE BIHAN, 1962) has hitherto not been found by us in the Lengenbach quarry. It is important to mention that the rathite-I of LE BIHAN (1962) is almost identical with dufrenoysite and was called rathite-Ia by us (Nowacki et al., 1964). Rathite-II was first described by BERRY (1953). The lattice constants, space group and chemical composition are: | Mineral | Formula | a | b | c | β | Space group | |-------------|---|-------|------|------|---------|----------------------------| | Rathite-I | (Pb,Ti) ₃ As ₄ (As,Ag)S ₁₀ | 25.16 | 7.94 | 8.47 | 100°28′ | $P2_1/a \ (P\overline{1})$ | | Rathite-III | Pb ₃ As ₅ S ₁₀ | 24.52 | 7.91 | 8.43 | 90° | $P2_1$ | | Rathite-II | Pb ₉ As ₁₃ S ₂₈ | 8.43 | 70.9 | 7.91 | 90° | $P2_1$ | Thus, rathite-I and -III form two modifications of a single species and should perhaps have a name different from rathite-II; it is not, however, possible for us to introduce one. In the Lengenbach quarry rathite-II is frequently found, whereas rathite-I occurs rarely, and then usually polysynthetically twinned. The microprobe analysis (Nowacki und Bahezre, 1963) yielded the composition Pb = 41.2 \pm 1, As = 27.0 \pm 0.5, S = 28 \pm (1 - 2), Tl = 3.6 \pm 1, Σ = 99.7%. ## 2. Experimental We looked through a large number of specimens from Lengenbach for a suitable rathite-I crystal as described by Peacock and Berry (1940), but could not find one untwinned. Finally, through the kindness of Dr. L. G. Berry (Queens University, Kingston, Canada) we obtained a good crystal (also from Lengenbach) for intensity measurements. The unit-cell dimensions obtained from Weissenberg photographs are, $$a = 25.16 \pm 0.02 \text{ Å}, \quad b = 7.94 \pm 0.01 \text{ Å}, \quad c = 8.47 \pm 0.01 \text{ Å},$$ $\alpha = 90^{\circ} \pm 10', \qquad \beta = 100^{\circ}28' \pm 10', \quad \gamma = 90^{\circ} \pm 10'.$ Although the space group of rathite-I was reported as $P2_1/a$, the Weissenberg photographs showed small discrepancies between the intensities of $\hbar kl$ and $\bar{\hbar}kl$ reflections, indicating triclinic symmetry for this crystal. Moreover, several weak reflections with h= odd were observed among the $\hbar 0l$ reflections. The true space group must, therefore, be P1 or $P\bar{1}$. However, it is difficult to say whether these small deviations from monoclinic symmetry are common to all rathite-I crystals or whether they are only a special characteristic of the crystal examined, caused by a small content of Tl and Ag. For the structure determination the space group $P2_1/a$ was assumed, and the average intensities of the $\hbar kl$ and $\bar{\hbar}kl$ reflections were used, the difference being very small. A sphere with a radius of 0.06 mm was prepared for the intensity measurement from a piece of the crystal. The integrated Weissenberg photographs were taken with $\operatorname{Cu}K\alpha$ radiation up to the 7-th layer around the b axis and up to the second layer around the c axis. The intensities were measured with a Joyce-Loebl microdensitometer, and corrected for the Lorentz-polarization and absorption effects with the programme of Y. Istaka for the Bull Γ AET electronic computer. The linear absorption coefficient of the crystal is 855 cm⁻¹ for $\operatorname{Cu}K\alpha$ and the absorption-correction factors for the sphere range between 180 at $\theta=0$ ° and 14 at $\theta=90$ °. The chemical analysis of the crystal was carried out by W. Nowacki and C. Bahezre (1963) with a Castaing x-ray microanalyser. The unit-cell content calculated from the result, assuming 5.37 g/cm³ (Dana's system of mineralogy, Vol. I, 1944) for the density, is $Pb_{10.7}Tl_{0.9}As_{19.3}S_{40.1}$, or approximately $Pb_{11}Tl_1As_{20}S_{40}$. In the actual structure-factor calculations, the Tl atoms were taken as Pb atoms, since the differences between the atomic scattering factors of these two elements are quite small, and since the number of Tl atoms in the unit cell is less than the value required by the space group $P2_1/a$. ## 3. Structure analysis Since the hk0 x-ray diffraction diagram of rathite-I is almost identical with that of rathite-III (M.-Th. Le Bihan, 1962), the c axis projection of the structure should have the same atomic arrangement as that of rathite-III. Actually the values $a \sin \beta$, b and c for rathite-I (24.75 Å, 7.94 Å, 8.47 Å) are nearly equal to the values found for rathite-III (24.52 Å, 7.91 Å, 8.43 Å) and the chemical contents of their unit cells are identical if the Tl atoms in rathite-I are replaced by Pb atoms (Pb₁₂As₂₀S₄₀). Calculation of the hk0 structure factors were, therefore, carried out with a programme by Y. IITAKA for Bull Γ AET utilizing the atomic coordinates of rathite-III; fairly good agreement between the observed and the calculated structure factors was obtained, the R-factor being 0.38. This projection was refined by difference Fourier syntheses until the R-value was reduced to 0.16. The z coordinates were obtained from a special feature of the h0l x-ray diagram. Since the h0l intensity distribution along the c axis direction in reciprocal space is periodic to a fairly good approximation with the period 4, all atoms should lie nearly on a set of equally spaced planes perpendicular to the c axis, the interplaner spacing being c/4. There are two possible sets of planes which satisfy both this condition and the symmetry requirement for $P2_1/a$: $$z = \frac{1}{8} + \frac{x}{2} = \frac{1}{8} - x \cos \beta, \ z = \frac{3}{8} + \frac{x}{2}, \ z = \frac{5}{8} + \frac{x}{2}, \ z = \frac{7}{8} + \frac{x}{2},$$ and $$z = \frac{x}{2}, \ z = \frac{1}{4} + \frac{x}{2}, \ z = \frac{2}{4} + \frac{x}{2}, \ z = \frac{3}{4} + \frac{x}{2}.$$ The structural similarity to rathite-III as well as crystallochemical considerations suggested that the correct set should be the former, and furnished two probable models of the structure. The true structure was found after several cycles of refinements of these models tested with the h0l difference Fourier projection. The R value of the correct model was reduced from the initial value 0.49 to 0.19 for the h0l reflections during the
refinement. ### 4. Refinement During the preliminary study with two-dimensional data, it was found from the Fourier projections that the As(5) atom has a lower electron density than the other As atoms and that there is a peak at a position about 0.6 Å apart from the position postulated for As(5). The agreement between the observed and the calculated structure factors becomes worse if As(5) is put at this peak. Therefore it was suspected that the As(5) atom statistically occupies both positions. Fig. 1. A section of the three dimensional difference FOURIER map through the As(5) atom. Contours are at intervals of $4 e \cdot A^{-3}$. The zero contour is shown as a dotted line and negative contours as broken lines To clarify this point, a three-dimensional difference Fourier including 3477 diffraction data was calculated with the O.S. MILLS' programme for the Mercury computer at the calculating center of Oxford University. A part of the section through the As(5) atom is shown in Fig.1, in which a negative region at the postulated As(5) position and the peak near it is clearly observed, suggesting a statistical distribution of the As(5) atom between the two positions. Three-dimensional least-squares refinements using equal weights for all reflections and assuming the statistical distribution of the As(5) atom were then carried out with the programme written by C. T. Prewitt for the I.B.M. 7090 computer. Anisotropic temperature Table 1. The final positional coordinates and the populations of the As (5) atoms | Atom | \boldsymbol{x} | $\sigma(x)$ | y | $\sigma(y)$ | N | \(\sigma(z)\) | population | $\sigma(w)$ | |---------|------------------|-------------|---------|-------------|---------|---------------|------------|-------------| | Pb(1) | 0.79493 | 0.00005 | 0.24587 | 0.00016 | 0.52425 | 0.00013 | | | | Pb(2) | 0.29663 | 0.00006 | 0.25004 | 0.00020 | 0.02117 | 0.00015 | | | | Pb(3) | 0.07201 | 0.00005 | 0.08812 | 0.00017 | 0.90401 | 0.00014 | | | | As(1) | 0.65908 | 0.00010 | 0.14956 | 0.00036 | 0.70133 | 0.00030 | | | | As(2) | 0.64775 | 0.00011 | 0.16774 | 0.00037 | 0.24983 | 0.00034 | | | | As(3) | 0.45735 | 0.00013 | 0.15358 | 0.00044 | 0.31332 | 0.00043 | | | | As(4) | 0.44043 | 0.00010 | 0.16767 | 0.00037 | 0.86116 | 0.00030 | | | | As(5) a | 0.07434 | 0.00024 | 0.0154 | 0.00080 | 0.4164 | 0.00065 | 0.807 | 0.015 | | A8(5) b | 0.05005 | 0.00031 | 0.0316 | 0.00112 | 0.4270 | 0.00093 | 0.402 | 0.013 | | 3(1) | 0.26381 | 0.00025 | 0.0017 | 0.00082 | 0.2580 | 0.00073 | | | | 3(2) | 0.72350 | 0.00023 | 0.0211 | 0.00081 | 0.2494 | 0.00071 | | | | 3(3) | 0.17470 | 0.00024 | 0.1793 | 0.00077 | 0.4949 | 0.00068 | | | | 3(4) | 0.18042 | 0.00025 | 0.1696 | 0.00081 | 0.9055 | 0.00074 | | | | 3(5) | 0.88749 | 0.00024 | 0.1612 | 0.00078 | 0.3051 | 0.00069 | | | | (9) | 0.87973 | 0.00025 | 0.1200 | 0.00080 | 0.8307 | 0.00072 | | | | 8(7) | 0.40154 | 0.00024 | 0.0184 | 0.00082 | 0.6328 | 0.00068 | | | | 3(8) | 0.40741 | 0.00030 | 0.0078 | 0.00087 | 0.0405 | 0.00078 | | | | 8(9) | 0.01249 | 0.00032 | 0.1999 | 0.00100 | 0.5872 | 0.00082 | | | | \$(10) | 0.00907 | 0.00025 | 0.1833 | 0.00089 | 0.1798 | 0.00074 | | | The values are the coefficients in the expression $\exp\left[-\left(\beta_{11}\,h^2+\beta_{22}\,k^2+\beta_{33}\,l^2+2\beta_{12}\,hk+2\beta_{23}\,kl+2\beta_{13}\,lh\right)\right]$ Table 2. Temperature factors | atom | atom $ \beta_{11} \cdot 10^{6} \sigma$ | $\sigma(\beta_{11}) \cdot 10^{6}$ | $\beta_{22} \cdot 10^{5}$ | $\sigma(eta_{22}) \cdot 10^6$ | $\beta_{88} \cdot 10^{5}$ | $\sigma(eta_{88}) \cdot 10^{6}$ | $\beta_{12} \cdot 10^{5}$ | $0^{6} \sigma(eta_{12}) \cdot 10^{6}$ | $\beta_{23} \cdot 10^5$ | $\sigma(\beta_{23}) \cdot 10^{5}$ | $\beta_{13} \cdot 10^5 \sigma($ | $\sigma(eta_{13}) \cdot 10^5$ | |-----------------|---|-----------------------------------|---------------------------|-------------------------------|---------------------------|---------------------------------|---------------------------|---------------------------------------|-------------------------|-----------------------------------|-----------------------------------|-------------------------------| | Pb(1) | | 81 | 1394 | 43 | 1032 | 17 | -11 | 50 | 72 | 15 | 74 | 4 | | Pb(2) | | က | 2104 | 47 | 1225 | 22 | -172 | 7 | 526 | 20 | 21 | 9 | | Pb(3) | | 61 | 1644 | 44 | 1229 | 18 | 23 | 5 | 284 | 16 | 127 | 10 | | As(1) | | 4 | 1126 | 61 | 781 | 36 | ıO | 111 | - 12 | 33 | 87 | 6 . | | As(2) | | 4 | 1026 | 64 | 1132 | 39 | 54 | 12 | 184 | 36 | 66 | 10 | | As(3) | | 9 | 1391 | 75 | 1729 | 49 | 80 | 15 | 252 | 46 | 259 | <u></u> | | As(4) | | 4 | 1178 | 61 | 775 | 36 | -14 | 11 | 6 — | 33 | 99 | 6 | | As(5)a | | 12 | 2030 | 117 | 1412 | 98 | 00 | 27 | 230 | 72 | 06 | 23 | | $A_{\rm B}(5)b$ | | 11 | 1299 | 160 | 930 | 116 | 23 | 30 | -111 | 96 | 80 | 26 | | S(1) | | 6 | 821 | 86 | 847 | 18 | 47 | 23 | 103 | 70 | 71 | 20 | | S(2) | | ∞ | 888 | 94 | 804 | 73 | 38 | 22 | က | 67 | 62 | 19 | | S(3) | | ∞ | 676 | 66 | 704 | 71 | - 18 | 21 | -111 | 65 | 70 | 19 | | S(4) | 108 | 10 | 803 | 127 | 908 | 06 | -42 | 88 | - 139 | 84 | 129 | 24 | | S(5) | | ∞ | 753 | 96 | 787 | 74 | - 33 | 22 | 65 | 89 | 56 | 20 | | 8(6) | 111 | 6 | 711 | 66 | 828 | 77 | 33 | 23 | 74 | 70 | 37 | 21 | | S(7) | | ∞ | 945 | 94 | 650 | 73 | _ 25 | 22 | 49 | 67 | 85 | 19 | | S(8) | | 11 | 837 | 134 | 862 | 96 | 11 | 30 | 110 | 06 | 164 | 26 | | 8(9) | | 12 | 1252 | 143 | 968 | 104 | 55 | 32 | 0 | 97 | 64 | 28 | | 8(10) | | 6 | 1133 | 66 | 856 | 77 | 22 | 23 | 169
 | 70 | 73 | 21 | Table 3. The calculated and the observed structure amplitudes | | | | Table 3. | | | ted and | the ob | | structure | ample | | | | | |--|--|---|--|--|--|--|---|--|--|--|---|--|---|--| | h k 1 | r. | P _c | h k l | Fo | P _c | b k i | Po | P _e | h k 1 | P | P _c | h k 1 | F. | P _c | | | 18 | 11.1 | -20 0 3 | 1 01 | 111 | -607 | 100 | 111 | 8 1 1 | 67 | 61.1 | -18 1 2 | 361 | 157 | | 6 | 154 | -166 | -22 | 96
72
38 | 80 | | 98
178 | - 96 | 9 | 155 | - 64
-174 | -19 | 89 | - 95 | | 8 |
18
154
695
198 | -650 | -22
-24
-26 | 38
228 | 35
211 | -10
-12 | 178 | -177 | 10 | 0
24 | 19 | -20 | 89
225
0 | -226 | | 10
12 | 175 | 34
-144
-650
191
-158 | -26
-28 | 228
75 | - 65 | -12
-14 | 29
45 | - 36 | 11 | 132 | 19
- 29
133 | -21
-22 | 62 | - 1 | | 14
16
18 | 174 | 415
28 | -30 | 75
33 | - 65
- 39 | -16 | 129 | - 96
-177
- 36
- 35
123 | 11
12
13 | ō | 1 | -19
-20
-21
-22
-23 | 62
67 | 357
- 95
-226
- 1
- 49
56
38
79
- 74
45
113 | | 16 | 31
0 | 28 | 0 0 4
2
4
6 | 202
80 | 228 | -18
-20
-22 | 129
273
136
71
45
36 | 269
123
- 73
- 45
37
-115
92
-102 | 14 | 57 | 53
110 | -24
-25
-26 | 38
77
67
47 | 38
70 | | 20 | 130 | 136 | į | 150 | 156 | -22 | 71 | - 73 | 15
16 | 19 | 9
60 | -26 | 67 | - 74 | | 22 | 250 | -231 | 6 | 576 | 577 | -24
-26 | 45 | - 45 | 17 | 56 | 60 | -27
-28 | 47 | 45 | | 20
22
24
26
28
30 | 50
50 | 35 | 8
10 | 102 | - 99 | -26
-28 | 30
95 | -115 | 18 | 63 | 26 | -28
-29 | 100 | - 26 | | 28 | 34 | 26 | 12 | 325 | -304 | 0 0 8 | 63 | 92 | 19
20 | 67 | - 59 | -3 0 | 31
18
38 | - 26 | | 30 | 130
240
58
50
34
29
78 | -231
58
35
24
29
133
173 | 14
16 | 120
325
48
94 | 228
- 92
156
577
- 99
113
-304
- 46
- 82 | -28
0 0 8
2
4
6 | 95
83
104
217
61 | -102 | 21
22 | 0
57
104
19
56
63
0
67
59
39
0
48
43
14 | 56
3
- 59
- 53
- 32 | -29
-30
-31
0 1 3 | 38 | - 38 | | 0 0 1 | 121 | 173 | 18 | 124 | -111 | è | 61 | -228
56
-137
133
56
32
46
-152
325
-118 | 23 | 9 | - 76 | 1 | 310
127 | - 98 | | 6 | 93
90 | - 9
-120
-134
-124
138 | 20
22
24
26
-2 0 4
-6
-8 | 270
67
26
36 | 242
- 62 | .8 | 142
140
54
24
31
138
315
114
0 | -137 | 23
24
25
26 | 48 | | 2 | 132
122
0
119 | 127 | | à | 90 | -134 | 24 | 26 | - 10 l | 10 | 140 | 56 | 26 | 14 | - 36 | 3 | 122 | 111 | | 10 | 103 | -124 | 26 | 36 | 46 | 10
12
14
16 | 24 | 32 | 27 | 29 | - 36
- 17
- 25
- 42 | 3
6 | 119 | 143 | | 12
14 | 151
216
81
20 | 201 | -2 0 h | 1112 | -1181 | 16
-2 0 8 | 138 | -152 | 28 | 40 | - 42 | 7 | , O | - 5 | | 14
16
18 | 81 | 201
85
- 13
-108
-122
-176
64
25 | -6 | 102
48
160 | 110
- 30
165 | -2 0 8
-4
-6
-8
-10 | 315 | 325 | 29
30
-1 1 1
-2 | 45
21
50
0 | 47
- 22
23
5
-127 | 8 | 50
66
51
0
155
149
0
125
46 | - 72 | | 18
20 | 20
109 | - 13 | -8
-10 | 160
360 | 165 | -6 | 114 | -118 | -111 | 50 | 23 | 9 | 51 | - 64 | | 22 | 132 | -122 | -12 | 213 | 346
-209 | -10 | 109 | -117 | -3 | 124 | -127 | 16
11 | 155 | -154 | | 24 | 193
57
27 | -176 | -14
-16
-18 | 200
345
0 | 184
-336
- 26 | | 178
42
44 | -168
99
- 46 | -3
-4
-5
-6 | 124
36
66
54
47
263 | 52
-102
- 46
7 | 12 | 149 | 131 | | 28 | 27 | 25 | -18 | 243 | - 26 | -14
-16 | 11 | - 46 | -3 | 54 | - 46 | 13 | 125 | 115 | | 30 | 39
27 | 49 | -20
-22 | 92 | 94 | -18 | 184 | 107 | -7 | 47 | 7 | 13
14
15
16
17 | 46 | 40 | | -2 0 1
-4 | 27
150 | -166 | -22
-24 | 198 | 201 | -20
-22 | 19
51 | - 10 | | 263
138 | -289
120 | 16 | 106 | 37
98 | | 24
26
28
30
-2 0 1
-4
-6
-8 | 150
334
204 | 49
50
-166
-365
-226 | -24
-26
-28 | 198
68
64 | 201
46
- 62 | -18
-20
-22
-24
0 0 9
2
4
6 | 19
51
76
0 | - 10
- 52
- 71
- 1 | -7
-8
-9
-10 | 138
23
58 | 120
- 14
68
96
160 | 18
19
20 | 106
0
72
76
37
33
58
0 | - 26
- 28
- 38
- 38
127
- 164
111
- 5
- 5
- 14
- 154
- 154
- 154
- 154
- 29
- 61
- 60
- 75
- 16
- 16
- 72
- 64
- 154
- 72
- 64
- 72
- 64
- 72
- 64
- 75
- 72
- 64
- 72
- 64
- 75
- 75 | | -8
-10 | 204 | -226 | -28
-30 | 64
61 | - 62
- 63 | 009 | 104 | - 1
-115 | -11
-12 | 58
112 | 68 | 19 | 72 | 60 | | -12 | 129
48
78 | 134 | 0 0 5 | 235 | -276 | į. | 14 | -117 | -13 | 147 | 160 | 21 | 37 | 16 | | -12
-14
-16 | 78 | 85
254
- 84 | 2 | 235
38
194
38 | 10 | 6 | 59 | - 68
- 78
20
32 | -14
-15
-16 | 147
51
50
160
69
54
109
99 | 57
- 34
157
- 73 | 22
23
24
25
26
27
28
-1 1 3 | 33 | - 29 | | -18 | 251
72 | - 84 | 6 | 38 | 56 | 10 | 30 | - 78
20 | -15
-16 | 160 | 157 | 23 | 98 | - 61
- 22 | | -20
-22 | 85
65
66
0 | - 80 | 8 | 103 | 120 | 12 | 28 | 32 | -17
-16 | 69 | - 73 | 25 | 54 | - 54 | | -22
-24 | 46 | 56 | 10
12 | 87 | - 15 | -209 | 164 | 181 | -16
-10 | 54
100 | -108 | 26 | 25 | - 8 | | -24
-26 | ŏ | - 80
56
40
- 10 | 14
16 | 21
21
55
47 | - 33 | -2 0 9
-4
-6
-8 | 28 | - 3 | -19
-20
-21 | 99 | -108
- 99
- 86 | 28 | 65 | 76 | | -28
-30 | 29
17 | 19
- 23 | 16
18 | 55 | - 39 | 8
10 | 51 | - 55 | -21
-22 | 92 | - 86 | -113 | 240 | -248 | | -32 | 0 | | 20 | 82 | 75 | -12 | 90 | - 88 | -23 | 75 | - 68 | -3 | 0 | - 60 | | -32
0 0 2
2 | 334 | 342 | 22 | 102 | 95 | -14 | 35 | 36 | -24 | 45 | - 41 | | 54 | - 51 | | 4 | 334
89
246 | 342
- 98
252 | 20
22
24
-2 0 5
-4
-6
-8 | 102
21
0 | 10
221
56
120
90
- 15
- 33
- 39
42
- 75
95
2
- 37
- 41
74
343
242
- 136
- 52
42 | -14
-16
-18 | 14
568
328
1646
28
1646
28
169
935
64
169
935
64
175
935
1745
1745
1745
1745
1745
1745
1745
174 | 29
- 5
- 55
- 77
- 88
- 36
- 57
- 62
- 57
- 65
- 75
- 122 | -23
-24
-25
-26 | 146
75
45
82
53
129
37
22
89 | -152
- 68
- 41
- 92
- 54
- 133
- 33
- 16
- 95
- 22 | -3
-4
-5
-6 | 25
650
126
0
54
116
0
117
113
63
115
115
117
117
117
117
117
117
117
117 | 129
- 60
- 51
-116
-117
- 29
-114 | | 6 | 98
937
286
270
196 | 252
88
-876
274
-256
172
300 | -4 | 49 | - ái | _20 | 64 | 57 | -27 | 129 | 133 | -7
-8
-9
-10 | | - 29 | | 8 | 937 | -876 | -6 | 72 | 74 | -22
0 0 10
2 | 0 | - 6 | -28 | 37 | - 33 | -8 | 117 | -114 | | 10
12 | 270 | -256 | -10 | 332
226 | 242 | 2 | 60 | 75 | -29
-30
-31 | 89 | 95 | -10 | 63 | 128
- 57
91 | | 14 | 196 | 172 | -12 | 144 | -136 | • | 123 | -122 | -31 | 22 | 22 | -11 | 69 | 91 | | 16
18 | 321
141 | -127 | -14
-16
-18 | 53
57
196
50
63 | - 52 | -2 0 10 | 32 | - 43 | 012 | 12
119 | 49
113
346
514
164 | -12
-13 | 40 | - 36 | | 20 | 141
24
215
67 | - 1 | -16 | 196 | -179
44
55 | -2 0 10
-4
-6
-8 | 98 | 100 | 1 | 119
367
518
178 | 346 | -13
-14
-15
-16 | 122 | 129 | | 22 | 67 | -203
65 | -20
-22 | 63 | 55 | t- | 35 | - 38 | 3 | 518
178 | 164 | -15
-16 | 121 | 115 | | 18
20
22
24
26
28
30
-2 0 2
-4
-6 | 141
19
89 | -127
- 1
-203
-65
-144
- 15 | -24
-26 | 51
64 | - 50
- 78
- 9 | -10 | 54 | 87
- 43
100
- 38
- 64
- 51
- 47
- 37
159
126
155
-290 | -32
-32
0 1 2
1
2
3 | 726
370
68
73 | -774
344
60
64 | -17
-18
-19 | 77 | -114
- 36
129
69
115
- 76
- 64
- 89
90
- 34
- 5
- 7
- 85
- 6
- 33
18 | | 28
30 | 19 | - 15 | -26
-28 | 26 | - 78 | -10
-12
-14
-16
1 1 0
2
3
4
5
6
7 | 42 | - 51 | 1 2 | 370
68 | 344 | -18 | 71
#6 | - 64
- 89 | | -202 | 510 | -527 | -30 | 14
31 | 20 1 | -16 | 22 | - 37 | 7
8 | 73 | 64 | -20 | 44 | yó | | - i | 206 | -527
190
-273
-148
922 | 006 | 31 | 39
-153
-103
355 | 110 | 172 | 159 | 8
9 | 376 | | -20
-21
-22
-23
-24 | 52
0
42 | - 34 | | -8 | 275
154
972 | -148 | 2
4
6
8 | 140
98 | -103 | 3 | 159 | 155 | 10 | 288
81 | -284
- 80 | -23 | 42 | 37 | | -10 | 972
205 | 922 | 6 | 348
172 | 355
-183 | • | 292
164 | -290 | 11
12 | 408
39 | -404
38 | -24 | 89 | - 85 | | -14 | 220 | 209 | 10 | 246 | 240
-165 | 6 . | 591 | 567 | 13 | 0 | | -26 | 39 | 33 | | -12
-14
-16
-18 | 152 | -192
209
-144
-236
87
- 62
207
- 50
63
- 7 | 10
12
14
16 | 246
170
238 | -165
-218 | 7 | 591
187
492
99 | -154
567
-185
-498
- 93 | 13
14
15
16 | 174 | -151 | -25
-26
-27
-28 | 39
25
19
0 | 18 | | -20 | 95 | 67 | 16 | 102 | 100 | 9 | 99 | - 93 | 16 | 475 | 9
442 | -29 | 19 | 16 | | -22 | 53 | - 62 | 18 | 60 | - 54 | 10 | 330 | 323
177 | 17 | 106 | 102
-226
65
- 2 | -30 | 68 | - 69
- 56
-186 | | -24
-26 | 45 | - 50 | 20
22 | 117
29
177
249 | - 31 | 12 | 187 | 190 | 18
19
20 | 230
64
0 | 65 | 014 | 190 | -186 | | -28 | 58 | 63 | -206 | 177 | -177 | 13 | 43 | 190
47
-510 | 20 | 0 | - 2 | 1 | 95 | -101 | | -30
-32
0 0 3 | 220
152
235
95
53
212
45
58
23
74
29
55
69 | - 7 | -2 0 6
-4
-6 | 73 | - 54
117
- 31
-177
272
- 78
164
143
-330
71
-185
146
125
- 77
84 | 15 | 181
187
43
528
276
93
86 | 264 | 21
22
 28
81 | ~ 11
85 | -29
-30
-31
0 1 4
1
2
3 | 68
51
95
215
174
332
125
350
271
100
439
223
153
45
220 | 233
174
-352
120
357
40 | | 0 0 3 | 29 | - 10 | -8
-10 | 73
171
145
334
71 | 164 | 16 | 93 | 264
97
93
-280
-138
72
-181 | 23 | 76 | 85
- 76
-129
- 41 | ú | 332 | -352 | | 2 | 55
60 | - 72
- 34 | -10
-12 | 145 | -330 | 17 | 86
291 | -280 | 23
24
25
26 | 131 | -129 | 2 | 125 | 120
357 | | 6 | 42 | 32 | -14 | 71 | 71 | 19 | 291
135
75
190 | -138 | 26 | 99 | 102 | 7 8 | 45 | 40 | | | 30 | 27 | -16 | 188 | -185 | 20 | 75 | 72 | 27
28 | 23 | 20 | 8 | 271 | -259 | | 10
12 | 62 | - 90
- 10
72
- 34
32
27
- 99
- 61
- 51 | -16
-18
-20 | 188
161
147
75
71 | 125 | 22 | 190 | | 29 | 81
76
131
46
99
23
14 | 20
- 17
21 | 9
10 | 126 | -259
- 83
-116
- 1
421
-199
-142
- 44 | | 14
16 | 62 | - 51 | -22
-24 | 75 | - 77 | 23 | 0 | - 5
- 47 | -1 1 2 | 51
20 | 44 | 11 | | - 1 | | 18 | 58
73 | 65 | -26 | 71
131 | -128 | 24
25 | 44 | - 47 | -3 | 20
349 | -332 | 12
13 | 223 | -199 | | 18
20
22 | 60 | 57 | -28 | 131
19
88 | -128
29
85 | 26 | 111 | 41
120
65 | -4 | 349
525
208 | -332
509
-203 | iś | 153 | -142 | | 22
24 | 30
87
62
62
38
73
60
0 | 65
57
- 4
2 | 0 0 7 | 88
67 | 85
55 | 27
28 | 65
111 | -120 | -5
-6 | 20B
619 | -203
-620 | 14
15
16 | 45
220 | - 44
202 | | 26 | 41 | - 33 | i | 36 | - 32 | 29 | 40 | 43 | -7 | 349 | -318 | 17 | 101 | 96 | | 24
26
28
-2 0 3 | 25 | 25 | 0 0 7
2
4
6 | 36
50
52
41 | - 32
- 40
59
- 30 | 11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 15 | 8 | -1 1 2
-2
-3
-4
-5
-6
-7
-8
-9 | 349
67
17 | - 12 | 17
18
19
20 | 52 | 202
96
- 43
131
- 40 | | -203
-4 | 55 | -111 | 10 | 52
41 | - 30 | 011 | 41
59 | - 47
59 | -10 | 388 | -368 | 20 | 53 | - 40 | | -6
-8 | 55 | 50 | 12 | 51 | - 51
32 | 0 1 1 | 111 | 133 | -11 | 200 | | 21 | ó | 22 | | -8
-10 | 117 | 127 | 16 | 48 | 32 | 2 | 42
66 | - 34 | -12
-13 | 357 | 17 | 22 | 101
52
142
53
0
0 | _ ? | | -12 | 48 | 57 | 16
18
20 | 51 | - 28
- 59
17 | í. | 40
15
41
59
111
42
66
141
21 | 8
- 47
59
133
- 34
103
-147
- 21 | -14 | 23
357
57
47 | 67 | 24 | 92 | - 94 | | -10
-12
-14
-16
-18 | 25
137
54
55
117
71
48
275
439
177 | 25
-177
-111
50
127
96
57
-263
-437
-180 | 20
-2 0 7 | 51
48
29
51
24
37
53 | 17
20 | 3
5
6
7 | 21 | - 21 | -13
-14
-15
-16 | 47
218 | 17
339
67
- 42
-213
- 96 | 23
24
25
26
27 | 92
59
80 | 22
7
- 3
- 94
- 55
86
- 53 | | -18 | 177 | -160 | -2 0 7
-4 | 53 | 64 | 7 | 105
92 | -120
-111 | -17 | 9B | - 96 | 27 | 46 | - 53 | | | | | | | | | | | | | | | | | | | lal a | | 1-1- | Table 5. | (Commues, | | 1-1- | | 1-1- | |---|--|--|--|---|---------------------------------|--
---|--|---| | b k 1 | P P e 202 -208 | h k 1 | P _o P _c | h k l | P _e P _c | h k 1 | P. P. | h k l
 2622 | P _e P _e | | -1 1 4
-2 -3
-7 -4 -6
-7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 - | 202 - 208 31 - 25 101 - 89 103 - 100 311 - 367 311 - 367 311 - 367 311 - 367 311 - 367 311 - 367 317 - 167 317 - 167 317 - 168 192 187 137 - 128 194 183 70 - 70 246 - 242 155 - 146 61 159 - 128 170 - 178 64 - 62 25 - 58 67 - 77 20 - 15 64 - 62 35 - 46 67 - 77 20 - 15 64 - 62 35 - 46 67 - 77 351 - 18 101 - 18 101 - 17 54 - 54 55 - 34 61 - 58 | 15 1 6 16 17 18 19 20 21 22 16 -2 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -24 -27 -28 -29 0 1 7 2 2 3 4 5 6 7 8 9 9 10 11 12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -27 -28 -29 -21 -21 -22 -23 -24 -27 -28 -29 -21 -21 -22 -23 -24 -27 -28 -29 -21 -21 -22 -23 -24 -27 -28 -29 -21 -21 -21 -21 -21 -22 -23 -24 -27 -28 -29 -21 -21 -21 -21 -21 -21 -21 -21 -21 -21 | 74 - 64 122 - 116 156 - 153 157 - 24 277 - 246 158 - 122 277 - 266 159 - 161 171 - 173 172 - 173 173 - 793 174 - 141 175 - 175 176 - 176 177 - 171 | -1 1 8 -2 -3 -4 -5 -6 -7 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -2 -2 -2 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -11 -11 -12 -13 -14 -15 -16 -17 -18 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -9 -10 -11 -11 -12 -13 -14 -15 -16 -17 -18 -9 -10 -11 -11 -11 -11 -11 -11 -11 -11 -11 | P | 18 2 0 19 20 19 20 21 22 25 26 7 8 9 11 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28 29 30 21 21 22 23 24 25 26 27 28 28 29 30 21 21 22 23 24 25 26 27 28 28 29 20 20 20 20 20 20 20 | 100 101 100 | 26 2 2 27 28 29 29 29 2-1 2 2 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2- | 29 24 44 57 151 151 151 151 151 151 151 151 151 | | b k 1 | r. | P. | b k 1 | °. | P _c | h k l | | ieu) | h k l | P _o | F _e | hkl | r. | P. | |--|--|--|--|---|---|---|--|------------------------|---
---|---|--|---|--| | 7 2 4 | 147
306 | 140
286 | -28 2 5 | 36
41
37 | 33
- 43
- 40 | 1 2 8 | 135 -13
69 - 5
0 - | | 9 3 0
10 | 426 | -433
137
-238 | 20 3 2
21 | | -110 | | 9
10 | 165 | -151 | -29
-30
0 2 6 | 37 | - 40
-318 | 3 | | | 11
12 | 123
223 | | 22
23 | 119
33
74
32 | - 22
- 79
- 28 | | 11 | 321
155
64
53
55
164 | -151
64
- 52
- 45 | 0 2 6
1
2
3
4
5 | 321
38
36
38
38 | 26
- 14
26 | 5 | 42 4
176 -17 | 2 | 13 | 97
59
171
74
318 | 59
190
74
-345
- 91 | 24 | 96 | 101 | | 12
13
14 | 53 | - 52 | 3 | 38 | 26 | 7 8 | 176 -17
79 7
172 17 | 8 | 13
14
15
16 | 71 | 74 | 24
25
26
27 | 27
38 | - 40 | | 15
16 | 164 | 150 } | 5 | 43
118 | 17
37 | 9
10 | 176 -17
79 7
172 17
103 10
27 - 2 | 8 | 17
18 | 85
82 | - 91 | 28
-1 3 2
-2 | 60
24 | 75 | | 17 | 68 | - 20
61 | 7 | 0 | -119 | 11 | 0 | 5 | 19 | 86 | | -1) 2
-2 | 371 | 376 | | 18
19
20
21 | 42 | 199
- 31
-149
74 | 8
9
10 | 316
121
107 | -120 | 12
13
14
15 | 103 10
27 - 2
0
40 3
57 - 5
35 3 | 15 | 21 | 86
106
36
42
63 | -119
38
41
- 64 | -3
-4
-5
-6 | 195 | 101
4 - 40
36
75
- 23
376
208
-200
5
249 | | 21 | 79 | | 11 | 45
87 | 320
-120
-105
- 41 | 15
16 | | | 23 | 63 | - 64 | -6 | 270 | 249 | | 23 | 23 | 28 | 12
13
14 | | 10 | -1 2 8 | 57 - 6 | 3 | 25 | 38 | 37 | -6 | 509 | -519 | | 22
23
24
25
26
-1 2 4 | 65 | 28
- 49
- 65
- 24
- 20 | 15
16
17 | 35 | - 26
-127 | -3 | 38 3 | 12 | 19
20
21
22
23
24
25
26
27
28 | 0 | 142
37
- 33
6
66 | -7
-8
-9
-10
-11
-12 | 107 | 101 | | -1 2 4
-2 | 0
68
209
42
154
79
110
23
56
65
23
30
296
0
305
136
121
293
235
129 | | 17
18 | 24
35
133
78
61 | - 26
-127
76
54
96
- 56
- 17
40
- 20 | -1 2 8
-2
-3
-4
-5
-6
-7
-8
-10
-11 | 92 -11
57 - 6
151 15
38 3
100 -10
0 - | 1 6 | 29
30
0 3 1 | 129
38
26
0
52
32 | - 22 | -12
-13 | 199
195
32
270
0
509
182
107
90
27
73
55
23
343
23
168 | 8
-519
178
101
- 89
333
- 74
- 54
- 8
356
21
-175
-123
33
- 11 | | -2
-3
-4
-5
-6
-7
-8
-9 | 305 | - 13
-283
-139
122
-276
216
-106 | 19
20 | 91
51 | 96
- 56 | -7
-8 | 95 9
0 -
49 5 | 2 5 | 0 3 1 | 122
129 | - 39
132
-116
- 57
- 63
-270
36
-130 | -16 | 55
23 | - 54
- 8 | | -5
-6 | 136
121 | -139
122 | 21
22 | 91
51
21
39
0 | - 17
40 | -9
-10 | 40 5 | 5
5
6
8
57 | 1
2
3
4
5
6
7
8
9 | 122
129
48
65
239
35 | - 57
- 63 | -15
-16
-17
-18 | 343
23 | 356
21 | | -7
-8 | 293
235 | -276
216 | 21
22
-1 2 6
-2
-3
-4 | 239 | 240 | -12 | 49 5
23 - 1
35 - 3
58 6
72 - 7 | 7 | i.
5 | 239
35 | -270
36 | -18
-19 | 168
119 | -175
-123 | | -10 | 138 | | -3
-4 | 171
257 | -160
-255 | -13 | 72 - 7
129 -13 | 70
59 | 6
7 | 109
96 | -130
89 | -20
-21 | 32
0 | - 33
- 11 | | -11 | 195
275 | 193
271 | -5
-6
-7
-8 | 239
171
257
74
331
172 | - 72
328 | -14
-15
-16 | 99 - 9
133 13 | 9 | 8
9 | 23
65 | - 14
63 | -22
-23 | 219
32
0
109
23
48 | -111
15 | | ~13
~14 | 141
325 | 193
271
139
-308 | -7
-8 | 172 | -255
- 72
328
150 | -17
-18 | 129 -13
99 - 9
133 13
28 - 2
18 - 1 | 3 | 10
11 | 132
103 | -130
89
-14
63
142
104 | -24
-25 | 48 | -111
15
- 56
12 | | -12
-13
-14
-15
-16 | 96 | : 1 | -9
-10 | 76
90 | | -19
-20 | 24 3 | 55 | 12
13 | 137
34 | | -26
-27 | 106 | - 44 | | ~17
-18 | 0 | - 23
- 19
-130
- 58
- 40 | -11
-12 | 76
90
43
117
0 | - 86
30
110
16 | -20
-21
-22
-23 | 0 | 1 4 | 13
14
15
16 | 96
23
65
132
103
137
34
36
37 | 42
38
- 24 | -26
-29 | 106
47
15
51
62 | - 22
- 51 | | -19
-20
-21 | 137
54 | -130
- 58 | -13
-14 | 258 | -254
- 55 | -23
-24
0 2 9 | 79 - 9 | 24 | 17
18 | 56
107 | - 63
-120 | 0 3 3 | 125 | 134 | | _92 | 183 | 178 | -16 | 121 | 120 | | 78 - 8
69 7
87 -10 | 33 | 19 | 30 | 21 | 2 | 94 | 106 | | -23
-24
-25
-26 | 98
45 | -110 | -12
-13
-14
-15
-16
-17
-18
-19 | 258
57
121
69
57
41
59 | 120
- 67
- 58
- 34
- 62 | 1
2
3
4 | 78 - 8
69 7
87 -10 | 3 | 19
20
21
22
23
24
25
26
27
28 | 30
43
31
45
81 | 21
- 45
- 34
- 54
- 86 | -19
-20
-21
-22
-23
-24
-25
-25
-26
-27
-28
-30
0 3 3 1
1 2 | 35 | 34 | | -26
-27 | 65 | 59
68 | -20 | 59 | - 2 | 5 | 17 | 3
6
26 | 23
24 | 41 | - 86 | 6 | 109 | -116
1 | | -27
-28
-29 | 63
23 | - 73
23 | -21
-22
-23 | 85
45 | 93
42 | 7
8
9 | 83 6 | 26
36
13 | 25
26 | 0
78
13 | 7
78
16 | 7
8
9 | 166
48 | -170
40 | | -30
0 2 5 | 195
275
141
325
0
96
27
0
137
54
43
183
33
98
45
65
63
19
69
113
0 | 178
36
-110
48
59
68
- 73
23
- 16
49
120 | -23
-24
-25
-26 | 106
35 | -109
33 | 9
10 | 22 - 1 | 18 I | 27
28 | 13 | 16
2 | 9
10
11
12 | 125
46
94
162
35
0
109
27
166
48
45
55
32 | - 48
47 | | -28
-29
-30
0 2 5
1
2 | 113 | 4 | -27 | 85
106
30
33
40
44
70
85
90
49 | 93
42
-109
33
8
- 76
- 45
- 75
- 46
- 75
- 76
- 76
- 76
- 76
- 76
- 74
- 74
- 74
- 74
- 74
- 74
- 74
- 74 | 11
-1 2 9 | 0 - | 2 2 | 29
-1 3 1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12 | 28 | - 6 | 12
13 | 0 | 111
- 42
- 51
134
- 336
- 159
341
- 116
- 170
- 48
47
29
- 380
- 20
- 89
- 71
- 89
- 72 | | 3
5
6
7 | 130
115 | 135
-112 | -28 | 40 | - 45 | -1 2 9
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12 | 31 - 2
32 - 3
0 1 | 50 | -3 | 28
157
36
54
63 | 186
39
69 | 13
14
15
16
17
18 | 86
44 | - 33 | | 6 | 115
143
66
24
68 | -112
152
- 59
21
- 53
-147
- 5 | 2 | 44 | - 50
- 75 | -5
-6 | 44 4 | 7 20 | -5
-6 | 63 | - 61 | 17 | 44
78
27
43 | - 20
- 44 | | 8 | 68
150 | - 53
-147 | 1 | 0
85 | - 12
- 76 | -7
-8 | 116 12
41 - 4
25 1 | >/ I | -7
-8 | 0
28
64 | - 7
- 39
-103
- 8 | 19 | 95
73 | - 89
- 71 | | 9
10
11
12 | 150
0
105
0 | - 5
-100 | 6
7 | 29 | 30
- 12 | -9
-10 | 41 - 4
25 - 1
28 - 3
39 - 3
32 - 3
50 - 5
56 - 5
13 - 3 | 18 | -9
-10 | 64
0
142
79
30 | - 8
-177
- 86 | 19
20
21
22
23
24 | 93
73
18
35
40 | - 29 | | 12
13
14 | 0 | 6 | 8
9 | 49
37 | 21 | -11
-12 | 39 - 3
38 - 4 | 35 | -11
-12 | 79
30 | - 86
30 | 23
24 | 24 | - 29
43
- 23
23
20
93
81
35 | | 14
15 | 22
0 | - 16
1 | 10 | 37
24
67
52
36 | - 64
- 51 | 1 -13 | 32 - 5
50 5 | 23
55 | -14 | | 30
-121
104
14 | 25
26 | 24
19 | 23 | | 15
16
17
18
19 | 40
84 | - 35
71 | 12 | 52
36 | 51
~ 42
5 | -14
-15
-16
-17 | 56 - 5 | 21 | -15
-16
-17 | 98
0
105
153
103 | 14
114
164 | 26
-1 3 3
-2 | 106
71
63 | 93
81 | | 19 | 59 | 53 | 15 | 0 | - 8
10 | -17
-18
-19 | 40 4 | 58 | -18 | 103 | 106 | -4 | 150 | -135 | | 20
21
22 | 36
24 | - 41
20 | 17 | 0
23 | - 20 | 1 -20 | 29 - 3 | 34 | -20
-21 | 51
52 | 29
- 53
50
- 81 | -6
-7 | 266
292 | -264
273 | | 23
24
-1 2 5
-2
-3
-4 | 22
0
40
84
31
59
25
36
24
43 | 14 - 16 - 35 71 - 19 518 - 41 20 - 45 6 - 85 - 171 8 - 215 | 19
-1 2 7 | 0
23
19
149 | 22
-152 | -21
0 2 10
1
2 | 51
29 - 7
28
32 - 7
45 - 8 | 36 | -19
-20
-21
-22
-23
-24
-25
-26
-27
-28
-29
-30
0 3 2
1
2 | 55
51
52
77
0 | 5 | -3
-4
-5
-6
-7
-8
-9 | 411
266
292
75
223
0 | -135
354
-264
273
- 74
-195
- 9 | | -1 2 5
-2 | 47
75 | 46
- 85 | -2
-3 | 0 | - 15 | 3 | 15 - | | -24
-25 | 43 | - 48
-103
- 27
- 87 | -10
-11
-12
-13
-14
-15
-16 | 44 | - 9
- 41 | | -3
-4 | 168
0
212 | -171
- 8 | -4
-5 | 42
62
99
23
35 | 38
67
96
- 14
32 | -1 2 10
-2 | 0 | 69 | -26
-27 | 101
36
84 | - 27
- 87 | -12
-13 | 44
132
58
116 | 132
- 42
119 | |
-5
-6
-7
-8 | 101 | -215
92 | -6
-7 | 23
35 | - 14
32 | -2
-3 | 93 16
23 | 50 | -28
-29 | 28
31
23 | 30
31
29 | -14
-15 | 116
58
30 | - 61 | | -7
-8 | 43
36
59
61 | - 11
2 | -8
-9 | 45
65
51
0 | 54
70
- 51
- 6 | -3
-4
-5
-6
-7
-8
-9 | 95 10
23 3
108 -11
55 5
85 10
51 5
73 - 1 | 58 | 0 3 2 | 23
381 | 382 | -16
-17 | 30
32
0 | - 61
30
- 32
1
88 | | -9
-10
-11 | 61 | - 52 | -11 | 0
111 | | -7
-7 | 51 | 58
79 | 2 | 381
229
197
82 | -205
-205 | -19
-19 | 84 | 88 | | -12
-13 | 126
100 | - 90 | 1 -15 | 244 | -238
- 26 | -9
-10 | 20 - 1 | 18 I | i i | 271 | 260 | -21
-21 | 37 | - 31 | | -14 | 132 | -152
119 | -15
-16 | 0
103
21
0 | -238
- 26
-101
- 14 | -11
-12 | 20 - 1
15 -
0 -
18 | 2 19 | 5
6
7
8 | 65
546
229 | -541
-222 | -23
-24 | 34
32 | 40
- 28 | | -15
-16
-17 | 201
132
127
87
106 | 92
- 41
2
62
- 52
112
- 90
196
-152
119
- 76
-100 | -15
-16
-17
-18 | 29 | 8
25 | -10
-11
-12
-13
-14
-15
-16 | 19 - 1 | 13 | 8
9
10 | 98
241
0 | 91
249 | -17
-18
-19
-20
-21
-22
-23
-24
-25
-26 | 84
115
37
36
34
32
143
58 | 141
59 | | -18
-19 | 144
34 | 134
25 | | 28 | 25
- 24
- 47 | -15
-16 | 10 - 1 | | 10
11 | 0
91 | 23
94 | -27
-28 | 41
76
0 | -114
- 31
- 29
40
- 28
141
59
44 | | -20
-21
-22 | 154
35
97
138 | 98
137 | -20
-21
-22
-23
-24 | 55
88
38
119 | 80
31
125 | 1 3 0
2
3
4 | 106
410 -41 | 97 | 12
13 | 76
45 | - 68
- 24 | -29
-30 | 0 | - 9
- 5 | | -22
-23
-24 | | 134
25
98
137
5
- 41
68
- 23
- 48 | -23
-24 | 119
28 | 125
- 41 | 3 | 106
410 -41
55
233 25
74 - 6 | 53 | 11
12
13
14
15
16
17 | 91
76
45
380
55
126 | 382
-244
-205
260
- 73
-541
-222
91
249
23
- 68
- 24
387
- 62
- 137 | -29
-30
0 3 4
1
2
3 | 0
301
0
169 | - 9
- 5
309
- 11
-158
- 12
415
50 | | -24
-25 | 45
74
26 | - 23 | -25
-26
-27
0 2 8 | 28
47
21 | - 41
- 47
- 23
- 57
- 46 | 5
6
7
8 | 74 - 6
520 -5 | 37 | 17 | 126
178
78 | 181 | 3 | 169 | -158
- 12 | | -25
-26
-27 | 74 | 71 | 0 2 8 | 45
44 | - 57
- 46 | 8 | 520 -5
0
363 31 | 84 | 18
19 | 78
38 | - 20 | 5 | 412
55 | 415
50 | | | | | | Table 3. | (Continued |) | | | | |--|--|---|---|--|--|---|--|--|---| | b k 1 | P P | b k 1 | P Fc | h k 1 | Po Pc | h k 1 | F _o F _c | h k 1 | ". | | 6 7 8 9 10 112 114 116 7 118 9 20 1 22 2 24 5 7 -2 -2 24 5 6 7 8 9 10 12 12 13 4 5 6 7 8 9 10 12 12 13 4 5 6 7 8 9 10 12 12 13 4 5 6 7 8 9 10 12 12 13 4 5 6 7 8 9 10 12 12 13 4 5 6 7 8 9 10 12 12 14 5 16 7 18 9 10 12 12 14 5 16 7 18 9 10 12 12 14 5 16 7 18 9 10 12 12 14 5 16 7 18 9 10 12 12 14 5 16 7 18 9 10 12 12 14 5 16 7 18 9 10
12 12 14 5 16 7 18 9 10 12 12 14 5 16 7 18 9 10 12 12 12 12 12 12 12 12 12 12 12 12 12 | F | 0 3 6 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 -1 -1 -1 -1 -1 -1 -1 -1 -1 - | 134 134 134 135 134 135 134 135 134 135 134 135 134 135 134 135 134 135 134 135 135 135 135 135 135 135 135 135 135 | h k 1 9 3 8 10 112 112 113 115 11 9 12 13 15 16 17 18 19 10 112 113 115 115 116 117 118 119 120 121 123 13 10 14 15 16 17 18 19 10 11 17 18 19 10 11 11 11 11 11 11 11 11 11 11 11 11 | Continued F F | b k 1 28 t 0 29 t 1 21 t 5 6 7 8 9 10 11 12 2 13 15 15 6 17 8 19 20 21 12 22 23 5 26 7 -7 -8 -9 -10 1-12 -13 1-15 -16 -17 -18 -19 -20 -21 -21 -23 -3 -5 -6 -7 -8 -9 -10 1-12 -13 -15 -16 -17 -18 -19 -27 -28 -29 0 t 2 7 7 8 9 1 1 2 7 7 8 9 1 1 2 7 7 8 9 1 1 2 7 7 8 9 1 1 2 7 7 8 9 1 1 2 7 7 8 9 1 1 1 2 | 27 - 37
17 - 219
167 - 189
179 - 189
179 - 189
179 - 189
179 - 189
180 - 181
180 - 181
180 - 181
181 | -15 4 2 -16 -17 -18 -19 -22 -23 -24 -25 -6 -11 -12 -13 -14 -25 -26 -27 -28 -29 -10 -11 -12 -15 -16 -17 -18 -19 -20 -21 -25 -26 -27 -28 -29 -20 -21 -22 -23 -25 -27 -28 -29 -20 -21 -22 -23 -25 -27 -28 -29 -20 -21 -22 -23 -25 -27 -28 -29 -20 -21 -22 -23 -25 -27 -28 -29 -29 -20 -21 -22 -23 -25 -27 -28 -29 -29 -20 -21 -22 -23 -25 -27 -28 -29 -29 -20 -21 -21 -21 -20 -21 -21 -20 -21 -20 -21 -20 -21 -20 -21 -20 -21 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 | F | | -3
-4
-5
-6
-7
-8
-9
-10
-11
-12 | 0 1
10 -109
110 -109
130 -130
47 -27
166 -135
65 -135
65 -135
65 -135
65 -135
65 -135
65 -135
65 -135
143 131
0 11
76 - 49
117 -106
41 -3
117 -106
41 -3
117 -106
41 -3
117 -106
41 -3
117 -106
41 -3
117 -106
41 -3
117 -107
117 - | -9
-10
-11
-12
-13 | 237 -229
0 5
106 97
0 4
32 30
85 - 78
0 11
76 - 65
29 - 11
0 - 1
55 59 | 10 | 16 21
211 185
104 -110
417 -417
144 -151
280 290
52 58
56 - 42
134 -107
69 77
398 436
135 149
208 -240 | 13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 159 161
47 42
123 128
85 - 91
0 7
152 -165
23 - 22
198 210
0 - 3
82 - 92
0 - 10
82 92
32 - 34
24 31 | 2
3
4
5
6
7
8
9
10 | 0 14
78 59
108 -102
314 -320
113 -109
218 207
32 - 2
114 -103
104 93
53 51
0 18 | | | | | | Table 3. | (Continued) | | | | | |---|--|---|---|--|--|--|--|--|---| | h k 1 | Pal Pa | h k l | 7. 7. | b k 1 | F F | h k l | F F | h k 1 | Po Po | | -7 -8 -11 -11 -11 -11 -11 -11 -11 -11 -11 | F | -10 4 6 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -24 -25 -26 -27 -25 -26 -27 -28 -29 -21 -21 -23 -24 -25 -26 -7 -8 -9 -10 -11 -12 -13 -14 -16 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -7 -8 -9 -10 -11 -12 -13 -14 -15 -17 -15 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 | Fe | h k 1 -2 4 -3 -4 -4 -5 -4 -7 -4 -7 -10 -112 -13 -14 -17 -17 -18 -19 -10 -11 -12 -14 -17 -17 -18 -18 -17 -19 -10 -11 -12 -19 -10 -11 -12 -10 -11 -12 -10 -11 -12 -10 -11 -12 -10 -11 -12 -10 -11 -12 -10 -11 -12 | 7-8 - 88 864 - 62 664 | h k 5 6 7 8 8 9 9 101 123 14 15 6 17 8 19 9 10 11 123 14 15 6 17 8 19 9 10 11 123 14 15 6 17 8 19 9 10 11 123 14 15 6 17 8 19 9 10 11 123 14 15 6 17 8 19 10 11 123 14 15 6 17 8 19 10 11 123 14 15 6 17 8 19 10 11 123 12 12 12 12 12 12 12 12 12 12 12 12 12 | F | 1 2 3 4 5 6 7 7 8 9 9 0 111 2 13 14 15 6 6 7 7 8 9 9 0 112 13 14 15 6 6 7 7 8 9 9 0 112 13 14 15 6 6 7 7 8 9 9 0 112 13 14 15 6 6 7 8 9 9 0 112 13 14 15 6 7 8 9 9 0 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | F | | 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 4 6 -2 7 -4 -5 -6 7 -8 -9 | 180 -171
40 34
132 123
103 - 88
27 - 18
90 - 83
31 35
0 4 | -11
-12 | 47 49
0 - 5
73 - 77
39 - 47
70 74
0 10 | -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -17 -18 -19 -20 -22 -22 -22 -22 -22 -22 -22 -22 -22 | 95 - 51
0 1
85 - 85
35 24
48 50 |
-6
-7
-8
-9
-10
-11
-12 | 25 - 18
20 13
55 - 36
0 - 6
128 +124
161 146
228 -219
117 117
54 - 57
0 6 | -8 -9 -10 -111 -12 -13 -14 -15 -16 -17 -16 -17 -18 -19 -20 -21 -22 -23 -25 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 | 146 - 130 36 - 40 124 - 113 36 - 40 124 - 113 72 - 68 66 - 53 31 - 24 186 - 164 137 - 26 117 - 117 117 - 117 36 - 28 37 - 29 39 - 32 58 - 52 61 - 55 72 - 66 29 - 34 15 - 11 15 - 11 15 - 19 0 2 - 2 110 - 101 58 - 60 120 - 120 120 - 120 143 - 3147 | | | | | | Table 5. | (Commuea) | | | | | |---|---|--|--|--|---|--
--|--|--| | h k 1 | F F c | h k 1 | F _o F _c | b k 1 | Po Pc | hki | Po Pe | b k 1 | Po Pe | | 5 5 6
7 8
9 10
11
12
13
14
15
17
18 | 0 12
160 152
48 45
38 41
37 35
124 130
0 2
127 127
72 69
60 56
25 18
48 36
0 4 | -17 5 8
-18 -19
-19 5 9
1 2
3 -1 5 9
-2 -3
-9 -17 -6
-7 -8
-9 -10 | 36 - 97
55 - 71
54 - 64
15 - 15
9 - 23
39 - 45
10 - 25
10 - 25
10 - 25
10 - 25
10 - 25
10 - 70
55 - 70
55 - 70
56 - 70
57 - 28 | 6 6 2
7
8
9
10
11
12
15
15
16
17
17
18 | 155 - 169
79 - 68
92 95
44 - 39
22 - 20
0 - 1
233 232
38 - 37
88 - 93
0 - 1
20 - 13
0 1 | 11 6 4
12
13
14
15
10
17
18
19
20
-1 6 4
-2
-3 | 33 29
148 151
26 - 8
51 47
0 - 5
115 - 124
0 16
16 16
14 21
80 - 85
26 - 7
78 71
62 - 42 | -11 6 6
-12 -13 -14 -15 -16 -17 -18 -19 -20 -21 0 6 7 1 2 | | | -1 5 b -2 -3 -4 -5 -6 -7 -8 -10 -11 -12 -13 -14 -15 | 2" 4 | -8
-10
-11
-12
-13
0 0 0
1
2
3
5
6
7
8 | 0 | 125
115
116
117
118
119
129
121
122
123
124
125
127
127
127
127
128
129
129
129
129
129
129
129
129
129
129 | 231 232
38 - 33
0 - 1
20 - 13
0 1 10
10 9 10
10 9 10
10 10
10 9 10 | 20 -1 6 4 -2 -3 -4 -5 -6 -7 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 | 80 - 85
26 - 7
78 71
62 - 42
194 -173
90 - 68
63 - 53
96 85
44 - 29
197 - 182
197 198
197 198 | -20
-21
0 6 7
1
2
3
5 6
7 8
9
10
11
-1 6 7
-2
-3
-4 | 169 164 25 - 14 36 - 63 177 1 1 61 73 1 31 1 1 70 - 55 0 0 - 10 25 5 42 2 18 - 21 2 18 | | -17
-18
-19
-20
-21
-22
-23
-24
-0 5
7
2
3
4
5
6
7
8
9
10 | 28 - 38
0 - 4
48 45
58 - 49
86 81
0 7 | 11
12
13
14
15
16
17
18
19
20
21
22
23 | 0 - 25
0 - 25
0 9
24 - 30 | -14
-17
-16
-17
-18
-19
-20
-21
-22
-23 | 218 -222
73 - 66
115 121
0 - 10
49 49
0 - 11
16 - 25 | -190
-212
-212
-225
-225
-235
-25
-25
-25
-25
-25
-25
-25
-25
-25
-2 | 194 -173 90 - 68 63 - 59 944 - 29 95 - 81 197 - 182 197 - 182 197 - 182 197 - 182 197 - 197 17 - 68 70 - 43 114 - 116 70 - 3 65 - 73 71 - 98 8 - 10 17 - 19 18 - 19 18 - 19 19 - 19 19 - 19 19 - 19 19 - 19 19 - 19 19 - 19 19 - 19 19 - 19 19 - 19 19 - 19 19 - 19 19 - 19 19 - 19 19 - 19 19 - 19 19 - 19 19 - 19 19 - 25 19 - 25 19 - 25 19 - 25 19 - 26 19 - 26 | 111 67 -2 -3 -4 -7 -8 -9 -111 2 3 4 5 6 6 7 8 9 9 111 2 13 4 5 6 7 8 9 9 111 12 13 15 6 17 8 19 20 | 0 - 10 169 - 161 169 - 163 177 - 165 177 - 755 170 - 55 177 - 75 170 -
75 170 - 75 1 | | 78
910
11
12
13
14
-1 5
7
-2
-3
-4
-5
-7
-8
-10
-11 | 20 - 12
36 - 32
36 - 31
31 - 23
45 - 43
40 - 48
40 - 3
14 - 12
39 - 26
36 - 38
32 - 22
39 - 26
36 - 38
37 - 29
40 - 3
40 - 40
40 - 3
40 - 40
40 - 3
40 3 | 24
25
0 6 1
1
2
5
4
5
6
7
8
9
10
11
12
13
14
16
17
18
19
19 | 24 - 30 113 136 119 - 15 66 - 16 67 - 19 357 - 33 142 - 13 142 - 13 142 - 13 142 - 13 142 - 13 142 - 13 144 - 13 145 - 14 145 - 1 | -21
-25
1
1
2
3
5
6
7
8
9
9
10
11
12
12
13
15
16
17
18
19
20
21
-2
-2
-4
-5
-7
-8
-9
-10
-11
-12
-13
-14
-15
-16
-16
-16
-16
-16
-16
-16
-16
-16
-16 | 20 13 110 111 111 110 111 110 111 110 111 110 111 110 111 110 111 110 | 12
13
14
15
16
17
18
18
19
19
19
19
19
19
19
19
19
19
19
19
19 | 88 88 14 16 13 7 16 23 26 25 36 79 75 33 29 0 10 170 67 170 67 170 170 170 170 170 170 170 170 170 17 | 74 56 6 8 -2 -3 -56 -7 -9 -10 1-12 | 68 80
15 - 16
61 - 97
0 0 0
0 0 5
96 -127
0 - 2
59 84
21 29
0 - 10
35 - 51
19 22
43 78 | | -13
-14
-15
-16
-17
-18
-19 | 51 44
51 47
70 - 66
104 101
93 -104
93 -105
64 - 68
61 - 56
14 11
8 - 6
32 47
149 -164
16 - 9 | 21 | 0 - 6
130 - 126
135 - 27
31 - 23
37 - 37
37 - 37
37 - 30
21 - 15
15 - 8
20 - 13
31 - 20
92 - 89
144 - 150
0 - 16
75 - 72
27 | 18
19
20
21
22
6
7
-2
-4
-5
-6
-7
-8
-10 | 20 19 20 19 27 47 28 29 - 15 20 - 15 21 - 25 20 - 27 2 | 17 18 6 5 -2 18 6 5 -2 19 19 19 19 19 19 19 19 19 19 19 19 19 | 75 71 72 16 72 71 72 16 72 16 72 72 73 74 75 74 75 74 75 74 75 74 75 74 75 74 75 75 75 75 75 75 75 75 75 75 75 75 75 | -15
-14 7 0
2
3
4
5
6
7
8
9
10
11
12 | 17 | | -20
-21
-22
0 5 8
2 3
4 5 6
7 8 9
10 -1 5 8
-2 -3 -4 -5 -6 -7 8
-110 -112 -114 -115 -116 | 86 99
41 36
59 - 63
18 18
21 19
34 35
53 54
26 - 33
14 - 13
68 - 73
22 24
40 - 44 |
22
23
24
-1 6 1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-15
-16
-17
-18
-19
-10
-11
-17
-18
-19
-10
-11
-11
-11
-11
-12 | 25 15
0 ~ 7
30 ~ 29
55 56
185 -184
41 39
50 ~ 26
80 - 67
89 98
0 ~ 1
52 51 | -14
-15
-16
-17
-18
-19
-20
-21
-22
-23 | 51 18
133 -110
39 - 22
0 - 23
108 -110
0 - 6
74 69
61 - 36
28 - 62
49 - 22
48 - 36
49 - 22
108 - 104
49 - 22
108 - 104
40 - 30 | 1
2
3
5
6
7
8
9
10
11
12 | 108 -107 | 21 | 0 5
96 -127
0 - 27
10 - 10
59 84
21 29
10 - 10
10 - 12
117 78
12 - 94
12 - 94
13 - 159
100 - 102
0 - 12
117 - 125
0 0 - 12
117 - 125
117 - 125
118 - 44
119 - 159
110 - 102
117 - 125
110 - 112
117 - 125
110 - 112
110 - 112
111 - 125
110 - 112
111 - 125
111 - 125
112 - 125
113 - 142
114 - 159
115 - 150
116 - 150
117 - 102
117 - 102
118 - 102
119 | | -6
-7
-8
-9
-10
-11
-12
-13
-14
-15
-16 | 56 - 54
14 - 9
0 3
107 116
0 2
90 -102
51 50
17 21
24 27
31 - 30
36 - 31
15 4 | -20
-21
-22
-23
-25
-25
0 6 2
1
2
5 | 89 93
0 - 10
46 59
19 - 21
0 18
13 - 11
373 -371
0 - 8
34 36
26 24
141 -156
75 - 71 | 25 6 4
1 2 3 4 5 6 7 8 9 10 | 63 - 50
43 - 33
95 85
27 - 29
38 - 35
108 - 104
40 30
204 211
0 - 5
155 - 148 | 13
14
15
-1 6 6
-2
-3
-4
-5
-6
-7
-8
-9
-10 | 18 16 22 17 0 - 1 116 -113 0 - 5 17 15 23 - 17 12 -11 12 240 223 62 236 -216 39 - 40 0 - 1 20 - 1 5 5 1 - 5 5 0 9 9 | 22
0 7 1
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16 | 89 89 41 72 - 70 28 19 55 - 60 66 49 42 - 46 69 - 73 57 - 54 57 58 | | | | | | Tal | ole 3. | (Conti | nued) | | | | | | | | |-----------------------------|---|---|----|--|--|---|----------------|---|---|-----------------------|--|-------------|--|--| | h k 1 | | b k 1 | r. | • | h k l | r. | F _c | hkl | 7 . | P _c
B I | | k 1 | F. | P _c | | 17 1 18 19 20 21 7 -2 -1 -7 | 0 - 13 20 - 20 0 6 46 48 36 35 0 0 89 - 81 311 - 3 112 - 14 346 - 140 800 - 76 117 - 113 227 - 27 277 - 27 277 - 27 277 - 27 277 - 27 277 - 27 277 - 27 277 - 27 277 - 27 277 - 27 277 - 27 277 - 31 388 - 477 399 - 31 241 - 29 148 - 151 24 - 29 148 - 151 24 - 29 148 - 151 257 - 63 148 - 169 277 - 88 25 - 109 27 - 27 27 - 31 28 - 37 27 - 31 29 - 152 21 - 151 24 - 29 25 - 109 27 - 27 27 - 31 28 - 35 27 - 31 29 - 32 21 - 45 24 - 29 25 - 45 26 - 45 27 - 45 28 - 55 29 - 152 29 - 152 21 - 152 21 - 152 22 - 152 23 - 152 25 - 26 26 - 38 27 27 - 39 28 - 39 28 - 39 29 29 - 39 20 20 20 20 20 20 20 20 20 20 20 20 20 | 117 7 3 121 121 131 141 151 161 17 188 19 7 7 -2 9 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -20 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -11 -12 -13 -15 -16 -17 -18 -19 -20 -20 -7 5 1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 5 6 7 7 8 9 9 10 11 12 13 14 15 5 6 7 7 8 9 9 10 11 12 13 14 15 5 6 7 7 8 9 9 10 11 12 13 14 15 5 6 7 7 8 9 9 10 11 12 13 14 15 5 6 7 7 8 9 9 10 11 12 13 14 15 5 6 7 7 8 9 9 10 11 12 13 14 15 5 6 7 7 8 9 9 10 11 12 13 14 15 15 6 7 7 8 9 9 10 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | 0 | 50 227 227 227 228 227 228 228 229 229 229 229 229 229 229 229 | 234567890123456789001234567890012334567890123345670123456612345678901237 | 761 102 102 102 102 102 103 105 105 102 102 102 102 103 105 102 102 102 102 102 102 102 102 102 102 | - 31 | 13 8 0 14 15 16 17 18 19 0 8 1 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 19 10 11 12 13 14 15 16 17 18 19 19 10 11 12 13 14 15 16 17 18 19 19 10 10 11 12 13 14 15 16 17 18 19 19 10 10 11 12 13 14 15 16 17 18 19 19 10 10 11 12 13 14 15 16 17 18 19 19 10 10 11 12 13 14 15 16 17 18 18 19 19 10 10 10 11 12 13 14 15 16 17 18 18 19 19 10 10 10 11 12 13 14 15 16 17 18 18 19 19 10 10 10 11 12 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 702
4138
271
425
237
399
317
455
441
457
272
373
373
373
373
374
457
457
457
457
457
457
457
457
457
4 | 28 | 56 7 8 9 9 0 111 2 13 4 5 6 7 7 8 9 9 0 111 2 13 4 5 6 7 7 8 9 9 0 11 12 13 4 5 6 7 7 8 9 9 0 11 12 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 90 91 92 92 | 259 0 82 459 166 679 28 42 42 42 42 42 42 42 42 42 42 42 42 42 | - 11 - 92 - 3 - 6 - 6 - 25 - 27 - 27 - 23 - 27 - 27 - 27 - 27 - 27 | factors were introduced for the second cycle of the refinement. The atomic scattering factors given by B. Dawson, by A. J. Freeman and R. E. Watson and by L. H. Thomas, K. Umeda and K. King (International Table, Vol. III, 1962) were used for S, As and Pb, respectively. Using this programme, the atomic coordinates, temperature factors, layer-scale factors and the population of the As(5) atom at the two positions were refined. After three cycles of refinement, the R factor was reduced from the initial value of 0.23 to 0.102 for all 3477 reflections and 0.086 for the 3013 observed reflections. The experimentally determined relative layer-scale factors and the final values obtained by the least-squares refinement agree within $3^{\circ}/_{\circ}$, except for those reflections with k larger than 7 which were obtained from the photographs around the c axis. The experimental layer-scale factor for these reflections was underestimated owing to the insufficient integration for $K\alpha_1-K\alpha_2$ splitting in the higher Bragg-angle regions. The final positional coordinates and the temperature factors are given in Table 1 and Table 2, respectively, with the standard deviations calculated by the least-squares programme. Since the dispersion effect was not taken into account, the actual temperature factors of the Pb atoms should be smaller than the values given in Table 2. The calculated and the observed structure amplitudes are given in Table 3. For the calculation of the structure amplitudes, the population of the As(5) atoms at the two positions were assumed to be 0.668 and 0.332 respectively. The maximum and the average coordinate shifts in the last cycle of the refinement expressed as fractions of the standard deviations are 2.01 and 0.66. Since we obtained a good convergence with the full-matrix least-squares programme, it is not expected that further refinement will cause significant changes in the atomic coordinates unless a new weighting scheme is employed. ## 5. Description of the structure The atomic distances and the bond angles are given in Table 4. From the temperature factors the r.m.s. deviations of the atoms along the principal axes of the vibration ellipsoids were calculated and are given in Table 5 along with the direction cosines of two principal axes. Pb(1) and Pb(2) are surrounded by nine S atoms in the manner shown in Fig.2. The coordination polyhedra around Pb(1) and Pb(2) are joined
together by sharing the bases to form PbS₆ strings along the c axis direction. The strings are laterally combined by sharing triangular faces of the polyhedra and form PbS₃ layers parallel to (100). Pb(3) has seven nearest-neighbouring S atoms. The mean Pb(3)—S distance is somewhat shorter than the mean Pb(1), Pb(2)—S distances. As(1), As(2) and As(4) are each coordinated by three S atoms forming trigonal pyramids with them, and these are joined into strings by sharing S atoms (Fig.3). The mean As—S distances agree Pb(Tl)—S and As—S distances. The mean values of the shortest three distances are given for the As(1)—, As(2)—, As(4)— and As(5b)—S Table 4. Interatomic distances and bond angles in rathite-I | | Pb(1) | Pb(2) | Pb(3) | As(1) | As(2) | Ав(3) | As(4) | As(5a) | As(5b) | |--------------|------------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | S(1) | 3.012 Å
3.231 | 3.032 Å
3.254 | | 2.254 Å | | | | | | | S(2) | 2.998
3.212 | 3.118
3.423 | | | 2.234 Å | | | | | | S(3) | 3.472
3.048 | | | 2.304 | 2.394 | | | 2.811 Å | 3.299 Å | | S(4) | | 3.419
2.979 | 2.801 Å | 2.237 | 3.424 | | | | | | S(5) | 3.300 | 3.084 | 2.958 | | | 2.283 Å | | 2.762 | 2.944 | | 8(8) | 3.206 | 3.044 | 2.875 | | | | 2.258 Å | 2.784 | 3.277 | | S(7)
S(8) | 3.263 | 3.366 | 3.392 | 3.247
3.236 | 2.271
2.945 | 3.439
2.684 | 2.327
2.251 | | | | S(9) | | | 2.962 | | | 2.737 | 3.362 | 2.735
2.770 | 2.233
2.408 | | S(10) | | | 3.143
2.964 | | | 2.277 | 3.158 | 2.701 | 2.473 | | Mean | 3.194 | 3.191 | 3.014 | 2.265 | 2.300 | | 2.279 | 2.761 | 2.371 | |

 | | 0.008 | | | 0.0085 | 385 | | 0.010 | 0.012 | Table 4. (Continued.) S-S distances The asterisk means that the S-S bond is an edge of an As-S₂ pyramid $\sigma=0.011~{\rm \AA}$ | | | | | | $\sigma = 0.011 A$ | | | | | | |-------|------------------------------------|-------------------|----------|---------|---------------------|----------|----------------|-----------------|----------|---------| | | S(1) | S(2) | S(3) | S(4) | S(5) | S(6) | S(7) | S(8) | 8(9) | S(10) | | S(2) | 4.130 Å
4.371
3.920
4.271 | | | | | | | | | | | S(3) | 3.560
3.486* | 3.430 Å
3.524* | | | | | | | | | | S(4) | 3.580
3.398* | 3.318
3.814 | 3.455* Å | | | | | | | | | S(5) | 4.069 | 4.216 | 3.686 | 3.449 Å | | | | | | | | S(6) | 3.682 | 4.088 | 3.709 | 3.715 | 4.503 Å
4.001 | | | | | | | S(7) | 4.255 | 3.483* | 3.368* | | 3.734 | 3.419* Å | | | | | | 8(8) | 4.344 | 3.741 | | 3.560 | 3.548* | 3.454* | 3.430* Å | | | | | S(9) | | | 4.296 | 4.587 | 3.601*
3.815 | 4.280 | 3.652
4.001 | 4.204 Å | 3.510* Å | | | S(10) | | - | 4.522 | | 3.420* | 3.705 | 3.655 | 3.585*
3.995 | 3.439* | 4.178 Å | | Bond angles | | | | | |------------------|-------|-------------------------|-------|--| | S(1)-As(1)-S(3) | 99.8° | S(5) - As(3) - S(9) | 91.2 | | | S(1)-As(1)-S(4) | 98.3 | S(9) - As(3) - S(10) | 86.1 | | | S(3)-As(1)-S(4) | 99.1 | S(6) - As(4) - S(7) | 96.4 | | | S(2)-As(2)-S(3) | 99.1 | S(6) - As(4) - S(8) | 100.0 | | | S(2)-As(2)-S(7) | 101.3 | S(7) - As(4) - S(8) | 97.0 | | | S(3)-As(2)-S(7) | 92.4 | S(9) - As(5b) - S(9') | 98.2 | | | S(5)-As(3)-S(8) | 90.8 | S(9) - As(5b) - S(10) | 99.3 | | | S(5)-As(3)-S(10) | 97.2 | S(9')-As(5b)-S(10) | 93.8 | | | S(8)—As(3)—S(10) | 92.2 | $\sigma = 0.44^{\circ}$ | | | | As(1)-S(3)-As(2) | 107.4 | As(4)-S(8) -As(3) | 99.5 | | | As(2)-S(7)-As(4) | 98.5 | As(3)-S(10)-As(5b) | 92.6 | | | | | $\sigma = 0.40^{\circ}$ | | | well with the normal As—S covalent-bond distance. The S—As—S and As—S—As angles are in a good agreement with the values found in the structure of orpiment (N. Morimoto, 1954). As(3) is coordinated Fig. 2. The configuration of nine S atoms around a Pb atom by S(5) and S(10) at distances of about 2.28 Å and by S(8) and S(9) at distances of about 2.7 Å. Although the former are in good agreement with the normal As—S covalent-bond distance, the distances of 2.7 Å are too long for As—S covalent bonds. The magnitude and anisotropy of the temperature motion of As(3) are very large in comparison to those of As(1), As(2) and As(4), which have a maximum r.m.s. deviation of 0.27 Å and a minimum deviation of 0.18 Å (Table 5). The As(3), S(8) and S(9) atoms are nearly on a straight line, and As(3) has the largest r.m.s. deviation nearly parallel to this line. Therefore, As(3) seems to form covalent bonds statistically with Table 5. The r.m.s. deviations of the atomic positions along the principal axes of the vibration ellipsoids and the direction cosines of the axes refered to the orthogonal axes $X \mid / to \ a^*, \ Y \mid / to \ b \ and \ Z \mid / to \ c$ | | r.m.s.d. | <u> </u> | m | n | |--------|------------------|---------------|-------|--------| | Pb(1) | $0.223~{ m \AA}$ | 0.946 | 0.285 | 0.143 | | | 0.188 | -0.060 | 0.271 | 0.959 | | | 0.212 | | | | | Pb(2) | 0.309 | -0.590 | 0.678 | 0.438 | | | 0.183 | 0.050 | 0.510 | -0.858 | | | 0.227 | | | | | Pb(3) | 0.243 | 0.332 | 0.804 | 0.494 | | | 0.188 | 0.217 | 0.444 | -0.869 | | | 0.216 | | | | | As(1) | 0.190 | 0.081 | 0.996 | -0.023 | | | 0.156 | -0.442 | 0.058 | 0.896 | | | 0.182 | | | | | As(2) | 0.212 | 0.465 | 0.514 | 0.721 | | | 0.164 | -0.719 | 0.694 | -0.030 | | | 0.176 | | | | | As(3) | 0.271 | 0.603 | 0.342 | 0.721 | | | 0.175 | 0.791 | 0.153 | 0.588 | | | 0.202 | | | | | As(4) | 0.195 | 0.192 | 0.981 | 0.028 | | | 0.162 | 0.317 | 0.035 | -0.949 | | | 0.175 | | | | | s(5a) | 0.261 | 0.051 | 0.926 | 0.383 | | | 0.215 | 0.280 | 0.354 | -0.893 | | | 0.218 | | | | | As(5b) | 0.207 | 0.004 | 0.943 | -0.333 | | | 0.115 | -0.938 | 0.124 | 0.324 | | | 0.179 | | | | | S(1) | 0.191 | 0.823 | 0.464 | 0.325 | | | 0.153 | -0.372 | 0.875 | -0.310 | | | 0.170 | | | | | 8(2) | 0.178 | 0.641 | 0.752 | 0.150 | | | 0.152 | -0.749 | 0.570 | 0.340 | | | 0.168 | | | | | S(3) | 0.182 | 0.951 | 0.209 | 0.221 | | | 0.138 | 0.042 | 0.819 | 0.572 | | | 0.160 | | | | Table 5. (Continued) | | r.m.s.d. | ı | m | n | |-------|----------|--------|-------|--------| | S(4) | 0.203 | -0.746 | 0.347 | 0.569 | | | 0.151 | -0.268 | 0.626 | 0.733 | | | 0.155 | | | | | S(5) | 0.176 | -0.844 | 0.492 | 0.215 | | | 0.145 | 0.361 | 0.817 | 0.450 | | | 0.167 | | | | | S(6) | 0.190 | 0.930 | 0.185 | -0.317 | | | 0.145 | -0.279 | 0.918 | -0.283 | | | 0.173 | | | | | S(7) | 0.183 | -0.832 | 0.542 | -0.120 | | | 0.140 | 0.307 | 0.258 | -0.917 | | | 0.173 | | | | | S(8) | 0.235 | 0.963 | 0.070 | 0.259 | | | 0.150 | 0.168 | 0.597 | -0.785 | | | 0.170 | | | | | S(9) | 0.237 | 0.938 | 0.322 | -0.136 | | | 0.177 | 0.132 | 0.033 | 0.990 | | | 0.195 | | | | | S(10) | 0.200 | 0.082 | 0.869 | -0.489 | | | 0.155 | -0.448 | 0.471 | 0.761 | | | 0.178 | | | | S(8) and S(9). If As(3) forms a covalent bond with S(8) the $As(3)-S_3$ trigonal pyramid is joined with the $As(4)-S_3$ pyramid. As(5) was statistically distributed over two positions, (a) and (b), during the course of the refinement. The position (a) is surrounded octahedrally by six S atoms, while the position (b) has a trigonal pyramidal coordination of three S atoms, which is usual in crystal structures of arsenosulfides. It is suspected that the position (a) is not occupied by As but by a different kind of atom, since the distances from the position (a) to the surrounding S atoms are too long for As—S distances, and since the sum of the population factors for the positions (a) and (b), as obtained by the least-squares method, is much larger than one. Actually, a careful chemical analysis of the crystal used, carried out by G. Burri with a CAMECA x-ray microanalyser, showed that the crystal contains a few weight percent of Ag. If the positions (a) are occupied by Ag atoms, the population factor for (a) becomes about 0.57 and the sum is nearly equal to one. Therefore, Fig. 3. The projection of the structure (a) along the c axis and (b) along the b axis the position (a) is probably occupied by Ag instead of As. I is not to be expected from the crystallochemical point of view that the As(5) atoms occupy all the (b) positions, since two As(5)—S₃ trigonal pyramids around a center of symmetry should share two S atoms if it occurs. The projections of the structure along the b and c axis are shown in Fig. 3(a) and (b). The structure is composed of two kinds of layers parallel to (100). The first kind are the PbS₃ layers. The second kind have a structure closely related to the PbS structure. It is derived from the PbS structure by dividing it into layers which have the Fig. 4. A comparison of the unit cells and the symmetries of rathite-I and rathite-IIII. The local centres of symmetry in rathite-IIII are represented by asteriks. Both of the structures are composed of identical units bounded by the dashed and dotted lines thickness of a(PbS) and are parallel to (100) of PbS, and by mutually shifting the layers in the [011] direction of PbS by a distance amounting to $a(PbS)/2\sqrt{2}$. The layers in the rathite-I structure correspond to a zone bounded by two planes perpendicular to the [223] direction in the deformed PbS structure. Although each metallic atom in the deformed PbS structure is coordinated by seven S atoms, the As atoms in the rathite-I structure are coordinated by less than seven S atoms, owing to the fairly large deviation from the ideal atomic configuration caused by the difference in chemical character of As and Pb. The main difference in the structure of rathite-I as compared to that of rathite-III (M.-Th. Le Bihan, 1962) lies in the relative positions of Pb(3) and As(5). They are made up of the same structural unit, which has the volume of one unit cell (Fig.4). In rathite-III, Pb(3) and As(5) are exchanged in the next structural unit along the a-axis direction whereby the centre of symmetry which exists in the rathite-I structure is destroyed. The crystal structures of rathite-II (M.-Th. Le Bihan, 1962), dufrenoysite (W.
Nowacki, F. Marumo and Y. Takéuchi, 1964), baumhauerite (M.-Th. Le Bihan, 1962) and scleroclase (W. Nowacki, Y. Ittaka, H. Bürki and V. Kunz, 1961) are also composed of PbS₃ layers and layers which have the deformed PbS structure. The differences between these structures lie in the chemical composition and in the thickness of the second kind of layers. Although infinite chains of As-S₃ pyramids have been described in the structures of rathite-II, rathite-III and baumhauerite, it is impossible to adapt such chains to the PbS₃ layers, as has been pointed out by Y. IITAKA and W. NOWACKI (1961) and by Y. TAKÉUCHI, S. GHOSE and W. NOWACKI (1965). In the structure of rathite-I the As-S₃ pyramids form chains with finite lengths. The length of the chain is not fixed since there are several possibilities for the coordinations around the As(3) and As(5) atoms as explained above. In the most favourable case, the chain can contain six As-S₃ pyramids, in the order of As(1)—As(2)—As(4')—As(3')—As(5'')—As(3). Tl atoms are thought to be situated at the Pb position, replacing Pb atoms. It is not known whether the Tl atoms are in an ordered state or whether they are statistically distributed over several positions. Probable positions are the Pb(2) positions, since Pb(2) has a much larger anisotropic temperature factor than Pb(1) and Pb(3). ### Acknowledgements We thank Prof. L. G. BERRY (Kingston) for the untwinned rathite-I crystal, Prof. W. Nef and Dr. G. Hüsser for the possibility of using the Bull Γ AET-computer, Dr. J. S. Rollett of Oxford University Computing Laboratory for calculations on the Mercury computer, the International Business Machines, Extension Suisse, and Cern (Geneva) for the IBM 7090-computer time, Dr. H. Bürki and Mr. V. Kunz for their help in the x-ray experiments and in the calculations by the Bull Γ AET computer, Prof. B. J. Wuensch (Cambridge, Mass.) for having introduced the Prewitt least-square refine- ment programme, Dr. N. D. Jones (Bern) for his help in improving the English of this paper and Mr. G. Burri for an additional examination of the rathite-I crystal with the x-ray microanalyser. This investigation was sponsored by Schweizerischer Nationalfonds, Kommission zur Förderung der wissenschaftlichen Forschung and Stiftung Entwicklungsfonds Seltene Metalle. #### References - L. G. Berry (1953), New data on lead sulpharsenides from Binnental, Switzer-land. Amer. Min. 38, 330. - Y. Ittaka and W. Nowacki (1961), A refinement of the pseudo crystal structure of scleroclase PbAs₂S₄. Acta Crystallogr. 14, 1291—1292. - M.-TH. LE BIHAN (1962), Étude structurale de quelques sulfures de plomb et d'arsénic naturels du gisement de Binn. Bull. Soc. Franç. Min. Cristallogr. 85, 15-47. - N. Morimoto (1954), The crystal structure of orpiment (As_2S_3) refined. Mineral. Journal (Japan) 1, 160—169. - W. Nowacki und C. Bahezre (1963), Die Bestimmung der chemischen Zusammensetzung einiger Sulfosalze aus dem Lengenbach (Binnatal, Kt. Wallis) mit Hilfe der elektronischen Mikrosonde. Schweiz. Min. Petr. Mitt. 43, 407—411 (Parker-Festschrift). - W. Nowacki, Y. IITAKA, H. BÜRKI and V. Kunz (1961), Structural investigation on sulfosalts from the Lengenbach, Binn Valley (Ct. Wallis). Part 2. Schweiz. Min. Petr. Mitt. 41, 103—116. - W. Nowacki, F. Marumo und Y. Takéuchi (1964), Untersuchungen an Sulfiden aus dem Binnatal (Kt. Wallis, Schweiz). Schweiz. Min. Petr. Mitt. 44, 5-9. - M. A. Peacock and L. G. Berry (1940), Röntgenographic observations on ore minerals. Univ. Toronto Studies, Geol. Ser. No. 44, p. 63. - Y. TAKÉUCHI, S. GHOSE and W. NOWACKI (1965), The crystal structure of hutchinsonite, (Tl, Pb)₂As₅S₉. Z. Kristallogr. 121, 321-348.