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LET n be a finite group and G equal U(n), 0(n) or Sp (n). Using the
methods of [A] one can determine the image of the homotopy set
[Bn, BG] in KF(Bn) for F = C, R or H. In all three cases one finds that
a homotopy class is stably represented by a virtual representation, and
our aim in the present paper is to given some evidence for believing that
a similar result holds without allowing n to tend to infinity. Our starting
points are the paper of W. Dwyer [D], which solves the problem for
groups of prime power order and the determination by one of us of the
homotopy set [BSU(2), BSU(2)] by restriction to finite subgroups of
5(7(2), see [M]. In part the latter argument succeeds because all finite
subgroups of 5(7(2) have period equal to 4 or 2 in cohomology, and in
this paper we shall apply similar methods to determine [Bn, BG] for
more general Lie groups G at the price of restricting n to be a group with
arbitrarily large period in cohomology. Our results are most complete
when G = 5(7(2), and can be summarized in the diagram, in which K
stands for complex K-theory and R for the complex representation ring:

fl Homr(jrp, G)

\][Bnp,BG]

I -

K{Bn) - ^ ft K(Bnp)

The horizontal maps are all induced by inclusion of subgroups, and our
main result (Theorem 3.2 below) states that (1) is a monomorphism onto
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the subset of stable classes. The top vertical arrow on the right is an
isomorphism by Dwyer's work, which implies that (2) is a well-defined
monomorphism. (3) is completion with respect to the augmentation ideal
topology and is well known to be monic for p-groups, although not when
G has composite order (6). From [A] we know that the image of (4) is
contained in the image of (6). That (5) is a monomorphism is a general
property of cohomology theories. It follows that (4) is also (1 — 1),
justifying our claim that at least for certain groups Adams' results can be
destablised: The homotopy classes BJZ—*BG can be described by means
of (equivalence classes) of virtual representations.

The interest of the second author in these ideas arises from his work on
free actions by finite groups on S3. It is still an open question whether
there exist free non-linear actions by certain groups Q(8n;k,l), which
are extensions of Cu by the binary dihedral group DJ, of order 8n
(/i, k, I) odd and mutually coprime). Since Q is of Type II, see [WF] for
the definition, Theorem 2.6 below holds and we can determine
[BQ, B Spin (4)]. Unfortunately it turns out that this homotopy set
contains elements / such that the Euler class e(J) generates H\Q, Z),
thus providing candidates for the /fc-invariant of a free action. Hence the
argument sketched in [Tl] has a gap, which however can be closed by a
geometric argument, at least when certain covering space assumptions
are satisfied, see [T2].

This is intended to be the first in a series of papers. In the second we
propose to explore the implications of the examples in Section 4 below
for the structure of the Swan subgroup T(Za) of the projective class
group K0(Zn). The idea is to use elements in [Bn, BU(n)\ represented
by the difference of two homorphisms to construct free actions on
Brieskorn varieties (and their generalizations). At least if n is metacyclic
of odd order it is possible to replace the orbit space by a spherical space
form, the it-invariant of which is closely related to the top dimensional
Chern class of the original (/(n)-bundle over Bn. In further papers we
propose as far as possible to extend the result in [M] to the homotopy set
[BSU(m), BSU(m)], ms=3, starting from [I], calculations of J. Hubbuck
and the cohomology of p-groups of low rank.

1. The p-normalizer condition

Let Jt be a finite group and np a p-Sylow subgroup of n. Recall that K
is called p-normal if the centre c(np) of np has the property that it equals
the centre of any other p-Sylow subgroup which contains it, [Z].

LEMMA 1.1. If the finite group n has periodic cohomology then n is
p-normal for all primes p.
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Proof. If p is odd, np is cyclic and so n is p-normal. For p = 2, either
n2 is cyclic and the same argument applies, or JT2 is a binary dihedral
(generalised quaternion) group. In this case C(JI2) is generated by the
unique element of order 2, which must be central in any 2-Sylow
subgroup which contains it.

Let Nn(np) denote the normalizer of np in n, and Nn(c{np)) the
normalizer of its centre. When there is no risk of confusion we shall
suppress the suffix jr. Clearly np c N(JIP) c N(C(JIP)).

DEFINITION 1.2. The finite group n satisfies the p-normalizer condition
if n is p-normal, and the inclusion N(np)c.N(c(jip)) induces an
isomorphism

); Fp) ̂  H,(N(c(np)); ¥p).

Using results of R. G. Swan, see [S], one proves

LEMMA 1.3. Suppose that the finite group n satisfies the p-normalizer
condition. Then

is an isomorphism.

Proof. The superscript N(jtp) refers to elements invariant under
conjugation. By [S, Corollary to the Appendix] one has

R e s ^ ( V : H\n; Fp) =± H*(N(JIP); Fp).

Since np is normal in N(np) with index not divisible by p, the spectral
sequence of a group extension shows that

R e s ^ , ^ , : H*{N(np); fp) S H*(np; f p ) N ^ \

Since restriction is natural the lemma follows.
The following are simple examples of groups satisfying the p-

normalizer condition.

LEMMA 1.4. The finite group n satisfies the p-normalizer condition if
any of the following assumptions holds.

(i) JIP is abelian
(ii) Jtp is normal in n
(iii) There is a split epimorphism f.Jt—*Q such that the order of the

kernel of f is not divisible by p, and Q satisfies the p-normalizer condition.

Proof, (i) and (ii) are obvious, since n is p-normal, and the two
normalizers coincide. For (iii) let np be a p-Sylow subgroup and suppose
that c(np) cxjipx~i for some element x belonging to n. Since f(np) is a
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p-Sylow subgroup of Q with centre f(c(np)), the /^-normality of Q
implies that f(c(np)) =f(x)f(c(jip))f(x)~\ But f\xnpx~1 is a mono-
morphism, so that c(np) = xc(np)x~1, showing that n is/?-normal. Since/
has a section, f(N(np)) (respectively fN(cjip)) is the normalizer of f(jip)
(respectively of c(fnp)=g(cnp)). By the assumption on Q the inclusion
f(N(np)) <^f(N{cjip)) is an //»( ; Fp) isomorphism, and since the kernel
off has order prime to p, the same holds for N(np) c N(cnp). Therefore
n satisfies the p-normalizer condition.

On the other hand, the following criterion will also be useful.

LEMMA 1.5. Let G be a finite group with G2 a binary dihedral group of
order larger than 8. / / H\G; F2)=£F2©F2 then G does not satisfy the
2-normalizer condition.

Proof. The normalizer N(G2) acts on H\G2; F2) = F2 © F2 by means of
a map N(G2)-> Out (G2)-» GL(2, F2). Since N(G2)/G2 has odd order and
the outer automorphism group of G2 is a 2-group (cf. [Z]), the action of
7V(G2) on H1 is trivial. Therefore, by Lemma 1.3, G satisfies the
2-normalizer condition only if H1(G; F2) = F2 © F2.

Refer now to the list of groups with periodic cohomology, given for
example in [WF] or [TW]. There are six types to consider; four solvable
and two non-solvable. Groups of Type I are metacyclic, and group of
Types II, III, IV are split extensions

where (|JV|, |J2|) = 1, and TV is of Type I. The quotient group Q is
isomorphic to a binary dihedral, generalized binary tetrahedral or
generalized binary octahedral group, according to Type. We shall use the
notation D\\, T* and O* for these groups (of order 2', 8 • 3V, 16 • 3"), and
appeal with little further comment to [WF] for facts about their structure.
A group of Type V is a direct product N x SL(2, F,) with / a prime >3,
where TV is metacyclic and (\N\, l(l2— 1)) = 1, and a group of Type VI is
an extension of one of Type V by a cyclic group of order 2.

THEOREM 1.6. Let n be a finite group with periodic cohomology. Then
(i) n satisfies the p-normalizer condition for all odd primes p.

(ii) n satisfies the 2-normalizer condition if and only if:
(a) n is of Type I, II or III, or
(b) n is of Type V and I ̂ ±3 (mod 8).

Proof, (i) follows from Lemma 1.4(i). For the same reason groups of
Type I satisfy the 2-normalizer condition. In case (iia) consider the split
extension 7V>->jr>-» Q. If Q is binary dihedral, i.e. Q is embedded by a
section as a 2-Sylow subgroup of n, the claim follows trivially from
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1.4(iii). If Q is of tetrahedral type, then Q order 8 • 3" (v 3= 1) and N has
order coprime with 6. By 1.4(iii) it is enough to verify the 2-normalizer
condition for Tj. But this follows from 1.4(ii) since T* is itself a split
extension of £>| by a cyclic group C3«, i.e. the 2-Sylow subgroup is
normal.

In case (iib) it is enough to check the 2-normalizer condition for
SL(2, F;). Note that the binary tetrahedral group

T*x = (X, P, Q: X3 = 1, (P, Q) = Dt, XPX-1 = Q, XQX'1 = PQ)

admits a faithful representation p: rf-»SL(2, F;) with image given by

matrices I I having entries equal to 0 or ±1. The point of the
\c dl

restriction to / ^ ±3 (mod 8) is that in this case a 2-Sylow subgroup of
pT\ is also a 2-Sylow subgroup of SL(2, F,). Indeed

(pTf), c pT\ s N(pTt.2)) s SL(2, F,).

Since a 2-Sylow subgroup of SL(2, ¥,) is of binary dihedral type, the
2-period equals 4, see [S, thm. 1], and the Tate cohomology groups (with
F2 coefficients) are

) fr = Coker

since for / > 3 , SL(2, Fj) is perfect. The group T* is isomorphic to
SL(2, F3), hence the restriction map in #*(•, F2) from SL(2, F7) to pT* is
an isomorphism. Replacing Tate cohomology by ordinary homology the
same follows for the two normalisers, and since by (1.1) SL(2, F,) is
2-normal, the proof of the lemma is complete.

For the groups of Type IV we have H1^; F2) = F2 since the com-
mutator quotient of O* is cyclic of order two. Moreover, for the groups
of Type V and VI, H\n; F2) = F2 or 0, because 5L(2, F,) is perfect for / a
prime larger than 3. Since all the groups n not covered by (iia) or (iib)
respectively, have n2 equal to a binary dihedral group of order larger
than 8, we infer from (1.5) that they do not satisfy the 2-normalizer
condition.

2. Review of the localisation technique

Let K and L denote arbitrary groups, and write Horn,. (K, L) for the
set of conjugacy classes of homomorphisms K-* L. Thus

Horn, (K, L) s [K(K, 1), K(L, 1)]. (2.1)
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If AT is normal in N, there is an obvious action of N on Homc(AT, L)
and [K(K, 1), K(L, 1)], and we write

, L)N a [K(K, 1), K(L, l ) f

for the stable elements with respect to these actions.
For any space X we write Xztp for the Bousfield //*(•, Z/p)-

localization of X, see [B].
If n is a finite group and G a compact connected Lie group, there is a

bijection [Bn gG] ^ n {{Bn)p< BG] ( 2 2 )

This is obvious from the facts that BG is 1-connected, and the natural
maps ,_,

Bn-+ IT (5^)z/P*- V (Bn)z/p

are Ht( , Z)-isomorphisms.
If as before n is a finite group and Nn(np) normalizes a />-Sylow

subgroup, then by [WK1]

[BNn(np), Xz/p] s [ S ^ ( Jrz/p]"-^) (2.3)

for any 1-connected space X of finite type. Taking X = flG, G a compact
connected Lie group then work of W. Dwyer, see [D], implies that

[Bnp, BG] s Homc {xp, G). (2.4)

Furthermore by naturality this isomorphism is compatible with the action
by the normalizer. The next theorem, closely related to [WK2], is then an
easy consequence.

THEOREM 2.5. / / the finite group n satisfies the p-normalizer condition,
then for any compact connected Lie group G

[{Bn)zlp, BG] ^ Horn. (xp, G)" (*'\

Proof. Since n satisfies the /?-normalizer condition, the inclusion of
N{np) in n induces an //»( ;Z/p) isomorphism, compare Lemma 1.3
above. Hence

[(Bx)zlp, BG] = {{Bn)zlp, (BG)z/p] s [BN{xp), (BG)z/p),

and the result follows from (2.3) and (2.4).

If we combine (2.5) and Theorem 1.6 we obtain

THEOREM 2.6. Let n be a finite group with periodic cohomology,
satisfying the restrictions in (1.6a or b), and let G be a compact, connected
Lie group. Then

[Bn, BG] a f l Horn, {xp, G)N(lt>\
\
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In particular this result applies to the special linear groups 5L(2, F;),
/ = ±3 (mod 8). When / = 5 we recover and improve the result of J. F.
Adams in [A] on the structure of [BSL(2, F5), BSU(2)]. This homotopy
set is determined by its restrictions at the primes 2, 3 and 5; we obtain 12
homotopy classes, which can be described by means of virtual repre-
sentations as follows:

{1, y*(i±)(* = 3, 4, 12), v'(»+)(/ = 5, 15, 20), i ± }. (2.7)

Here 1 corresponds to the trivial representation, t± to the two fixed point
free representations of 5L(2, F5) in 5(7(2) (the exceptional cuspidal
representations in the language of Section 4 below), and t̂ * denotes an
unstable Adams operation. This example will be generalized in the final
section.

3. A special case, G = SU(2)

Let K and L be arbitrary groups and let / € Homc {K, L). If x is an
arbitrary element of a group N containing K, define £ e Homc (xKx~l, L)
b v fx(y) =f(x~1yx) for all y e xKx~\

By analogy with [S] we say that the map / is stable (with respect to N) if
for all x e N

f\K(lxKx~l =fx | xKx~l n K as elements of Homc (K DxKx ' \ L).

Denote the set of N-stable elements in Hoir^ {K, L) by Horn,. (AT, L)N. If
AT is a normal subgroup of N, then the stable elements are just those
elements fixed under the induced N-action (compare the previous
section).

Since every map g: (BJI)Z,P—* BG is of the form fz/p for some map
/ : Bn-*BG (see (2.2)), it is clear that the set isomorphism in Theorem
2.5 factors through Horn,. (np, G)". We state this as

LEMMA 3.1. Let n and G satisfy the assumptions of (2.5). Then

Horn. [np, G)N^ = Homc (np, G)x.

The conclusion of (3.1) holds only in very special circumstances, for
example under the stringent assumptions in (2.5). The correct generaliza-
tion of (2.6), in which we replace 7V(^p)-invariant by the weaker
condition ^-stable and allow n to be an arbitrary group with periodic
cohomology, and which, as yet, we can only prove when G = 5(7(2) is the
following.

THEOREM 3.2. Let n be a finite group with periodic cohomology. Then
(i) the natural map into complex K-theory

[BJI, BSU(2)]^> K(BJI) = R(n)~
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is a monomorphism with image contained in the image of the completion
map R(n)^*R{n)" of the complex representation ring R(jt), and

(ii) [Bn, 55(7(2)] & f t Homc (JIP, 5(7(2))*.
P\\"\

Proof. Part (i) follows from (ii) and the diagram in the introduction
since the completed complex representation ring R(n)" is mapped
(1 — 1) into II R(nPY by general properties of cohomology theories,

P\\n\
and, since np has prime power order, Homc (JTP, 5(7(2)) is mapped
( 1 - 1 ) into R(jip)'. Given the discussion in Section 2 and Lemma 3.1
the proof of (ii) is reduced to a problem at the prime 2 for those groups
with periodic cohomology which do not satisfy the 2-normalizer condi-
tion. (We note that all groups in this class have 2-Sylow subgroups
isomorphic t o D j with t ̂ 4 . ) It will now be enough to show that

[{Bn)zn, 55(7(2)] s Homc (n2, 5(7(2))"

or equivalently, that

: [Bn, 55(7(2)3 ^ [BJZ2, 55(7(2)3*

(The definition of the jr-stable subset of the homotopy set on the right is
entirely analogous to that of Homc (JI2, 5(7(2))".) The argument which
we give below is motivated by and uses part of that in [M].

Res^^^j is monic. Write \Bn, 551/(2)3 = F U (7, where F consists of
all elements which map to faithful homomorphisms in Homc (n2, 5(7(2)),
and (7 the remainder. Theorem 1.7 from [M] shows that R e s ^ ^ | F is
monic when JI = 5L(2, Fy); in the proof one uses only the fact that the
cohomology of this group is periodic at 2. Hence the same argument
applies in general.

Let / belong to (7, and write

Xa = map (En X nlna, 55(7(2)$) , (3.3)

where pa: na^>SU(2) is a homomorphism representing the restriction
/ | Bna: Bjta—y BSU(2)2 {na a 2-subgroup of it, compare the notation in
[M]). Because / i s an element of (7, and because the proper quotients of
D£, which are subgroups of 5(7(2) are central (C2 and {1} are the
possibilities), we see that

Xa = BSU(2)l

This holds for each 2-subgroup na of n (see also (3.1) in [M]). Hence the
diagram of spaces {Xa}, indexed as in [M] by O2(n)op, gives rise to a
constant diagram {jz,(Xa)} for each is^O. It follows as in [M] that

,, I (7 is monic.



ON THE HOMOTOPY SET [Bn, BG) 73

^ is epic. Let <p e [Bn2, BSU(2)^\", which we identify with
Horn,. \n2, SU(2))". Hence q> is represented by a map of the form Bp2

for some homomorphism p2: n2—*SU(2). Once more it is useful to
distinguish between the cases when p2 is faithful and when p2 factors
through the centre of SU{2). (The group n2 is still isomorphic to D?,
t=*4.) If na is an arbitrary 2-subgroup of n, we obtain a well-defined
class Bpa in [Bna, BSU(2)] by first conjugating na onto a subgroup of n2

and then restricting the homomorphism p2. Note that in carrying out this
step we use the ;r-stability of the class p. Again as in (3.3) we have a
diagram of spaces indexed by O2(jt)

op. The homotopy inverse limit holim
Xa is then non-empty if and only if there exists some / in [Bn, BSU(2)^
with Res^_»H2(/) = q> (once again see [M]). Since the spaces Xa are all
simple, see [M, 3.1], we can again argue as in that paper to show that

This implies that the homotopy inverse limit is connected and non-empty.

4. Examples

(a) Let Dpq be the non-abelian group of order pq, where p and q are
distinct primes, q <p and q \ p — 1. Dpq has a presentation

Dpq = (A, B: Ap = Bg = 1, BAB~' = Ar, r" = 1 (rnodp)).

The irreducible complex representations of D w are of two kinds,
one-dimensional of the form

and q -dimensional of the form

Here % and r\ are primitive pth and ^th roots of unity 0 « h < q,
\^k<p, and the second type of representation is obtained by transfer
from the cyclic subgroup CP(A) generated by A. Since the defining
extension is split, Dpq retracts onto Cq(B), and Theorem 2.6 shows that

) , BU(q)] X [BCp{A), BU(q)]B

= Horn, (C,(B), U(q)) x Homc (CP(A), U(q))B. (4.1)

As usual the superscript refers to those classes left invariant under the
action of B. Since the structural map Cq(B)—* Aut (CP(A)) is faithful, the
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invariant homomorphisms of CP(A) into U(q) are represented on the
generator A by the matrix ak(A) above. Calculating the characteristic
roots shows that the periodic matrix ak(B) is conjugate to
diag {1, r\, . . . , r/*"1}; as is well-known the single entry equal to 1
excludes the possibility of a free linear action on S2*"1. However if the
class/in [BDpq, BU(q)] restricts at the prime q to a class represented by
the sum

/5*, + |8*2 + - - -+ /8 N (4.2)

then it is clear that / is represented by the virtual representation

c«, + 2 / 5 * ( t ) - S ^ ( 2 ) (4-3)
1 2

where either e = 0, E the sum (4.2) and E = 0, or e = 1, the first sum
1 2

running over those values of ht not occurring in ak\Cq{B) =
9-1
E Pj | Cq(B), and the second sum removing those summands not

; - 0

required. Note also that the class of k modp is uniquely determined up to
a power of r by the restriction of / to BCP(A); there are therefore
qg~l(p + q — 1) possibilities for the homotopy class /. In particular, one
can manufacture a class / whose Euler class e(J) generates

,, Z) = ZlpqZ, for example

/ = flft + j8,-(l). (4.4)

The positive representation ak + /3X in (4.4) is the one used in [P] to
construct a free action by DM on a Brieskorn variety, which is then
replaced using surgery in the middle dimension by a sphere, at least when
p>q=*3. (The negative summand —(1) = —/30 in / can be thought of
corresponding to a normal bundle.)

With suitable complications to the arithmetic it is clear that this
discussion extends to other metacyclic groups of Type I. As a first step
replace DM by D*qi, an extension of CP{A) by Cqi{B) in which the
structural map

C,2(B)->Aut(Cp(i4))

has kernel of order q. (We may think of this group as an odd order
variant of the binary dihedral group.) In this case one obtains q-
dimensional representations aki by transfer from the normal cyclic
subgroup generated by ABq, which do define free linear actions on S2*"1.
The difference from the pq-case is explained by the replacement of the
entry 1 by TJ' in the lower left-hand corner of the matrix akJ(B).
However, by "mixing" representations as in (4.3) above it is possible to
find classes aki + ph — pH', which correspond to homotopically exotic
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free actions. Again restricting attention to the case p>q>3 there is no
reason to suppose that an argument similar to Petrie's in [P] fails, which
implies that it is possible to choose the A:-invariant of a free topological
action on S2*'1 to restrict to any given generator of H^{CqA

B)> Z). If
this heuristic argument is correct, we have recovered Martin Taylor's
description of the Swan subgroup for D^. (This remains unpublished,
but uses methods of A. Frohlich, see [F].)

(b) Let JT = 5L(2, F;), / = 5 (mod 8), so that (i) a 2-Sylow subgroup n2

has order 8 and Theorem 2.6 applies, and (ii) the cohomological period
equals / — 1 (compare [S]). Furthermore (iii) there exist free smooth
actions by n on S'~2 which may be taken to be linear only if / = 5, see
[MTW]. With the previous example as motivation we consider the set
isomorphism defined by restriction

K H W (4.5)
We need the following information about SL(2, ¥,), see [DF] Vol. 1,

Ch. 38, for more detail. Let fi generate F, as an additive group, and v
generate the cyclic group F* = F, - {0} of order / - 1. Let

0 \
- l ) '

and B an element of order / + 1, which diagonalizes over the field F,J. A
and D generate a subgroup K of index / + 1, which is actually the
semi-direct product F; x FT in which v acts on (i by the square of the
usual action. We obtain one family of complex representations xk by

transfer from this subgroup; for 1 «Jfc « ( J these are irreducible and

the last one splits. The second family Qh of cuspidal representations is

harder to describe; for l « / i « ( — — j there are again irreducible, but

splits as the sum two exceptional representations y, and y2 both

(/ — 1\
—-—1. Besides these two families there is the trivial

representation of degree 1 and a final irreducible representation of
degree /. Of particular interest to us are the following virtual repre-
sentations (of Brauer type):

Pk,H = xk-eh. (4.6)

If 5, | and r/ are rth primitive roots of unity for r = I - 1, /, / + 1, then
the character of /3t h is as follows:

D~>dk + 5k, A^-l and B^>r\h + r]h.



76 G. MISLIN AND C. THOMAS

These virtual representations are all of the form VT^i for suitable ; 's; we
will see below that the set

i.i 1/3*0}

suffices to describe the restriction of Bn, Bu(——J away from the

prime /. However in order to handle / we need the two exceptional
cuspidal representations (<5() i = 1, 2) with characters:

(depending on whether i = 1 or 2) and B *-* 1.

Since we assume that / - 1 is divisible by 4 we have +/ rather than — /
under the root sign, see [DF] page 228 for the complete character table.

In looking more closely at the decomposition of Bn, Bill——j in

(4.5) it is clear that away from the prime 2 we need only consider the
stable subsets of

and

where n,= Ci(A) and, by abuse of notation, we write nt_x (respectively
ni+i) for C;_j(D) (respectively C,+l(B)). If we recall the action of F,x on
F/ which defined the (Borel) subgroup K, namely n >-* v2fi, it is clear that
at the prime / the stable elements are picked up by ResJt_^( (y,) for

i = 1, 2. The stable part of BJI,_1, BUl——1 equals the invariant part

under conjugation by elements of the normalizer Ar(^,_1), compare
Lemma 3.1, which is actually a group of quaternion type acting at worst
by inversion. Hence the image under restriction consists of classes which

decompose as I —-—) summands of the form 6* + 5*. The situation at

(/ + 1) is similar; we obtain I ) summands of the form T]h + fjh. It is

clear from the defining equation (4.6) that the virtual representations Bkih

and r\)'+lBkh cover both images. Finally there is no problem at the prime
2. Stability ensures that apart from the trivial representation, we are only
concerned with sums of copies of the unique faithful representation of D |
in SU(2); this can be seen from the natural bijection

Because BXA restrict on D | c n to the unique faithhful irreducible repre-

sentation, we conclude finally that the elements of \Bn, Bu(—— ) \
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correspond to (equivalence classes) of virtual representations of the form

of formal dimension (—r—J, with e, = 0 or 1, and exe2 =£ 1.

Remark. It is clear that, as in the case of metacyclic groups, it is

possible to choose a class/e BSL(2, ¥,), Bu(——J , given in terms of

a virtual representation p and with top dimensional Chern class gener-
ating the cyclic group Hl~\SL{2, F,), Z); for instance, one easily checks
using the character table (loc. cit.) that yl + /3 M - /3 (z_ iy4 i l restricts on
every Sylow subgroup of n to a fixed point free representation, giving
therefore rise to a p of the type desired. It would be most interesting to
know if p can be used to construct a free action by the group on some
generalized Brieskorn variety. Because of the number of homomorph-
isms making up p we do not expect this to be easy in general.
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