Erratum

On the positive, "radial" solutions of a semilinear elliptic equation in \mathbb{H}^{N}
[Adv. Nonlinear Anal. 1 (2012), no. 1, 1-25]
Catherine Bandle and Yoshitsugu Kabeya

1 Singular solutions at $\boldsymbol{t}=\mathbf{0}$

In Section 2.2 we have studied solutions of the equation

$$
u^{\prime \prime}+(N-1) \operatorname{coth}(t) u^{\prime}+\lambda u+u^{p}=0
$$

near $t=0$. Performing the Emden-Fowler transformation

$$
x=(2-N) \log (t), \quad v=t^{\frac{2}{p-1}} u, \quad \sigma:=\frac{2}{(p-1)(N-2)},
$$

we get, by substituting $\operatorname{coth}(t)=t^{-1}+\frac{t}{3}+O\left(t^{3}\right)$ (taking the second term into account) and setting $v^{\prime}:=d v / d x$

$$
\begin{align*}
v^{\prime \prime}-(1-2 \sigma) v^{\prime} & +v\left\{\sigma^{2}-\sigma+e^{\frac{-2 x}{N-2}}\left(\frac{\lambda}{(N-2)^{2}}-\frac{\sigma}{3} \frac{N-1}{N-2}\right)\right\} \tag{1.1}\\
& +v^{p}(N-2)^{-2}+O\left(e^{-\frac{2 x}{N-2}}\right) v^{\prime}+O\left(e^{-\frac{4 x}{N-2}}\right) v=0 .
\end{align*}
$$

In case of $\sigma<1$, we look for a local solution of the form

$$
v=\left\{\sigma(1-\sigma)(N-2)^{2}\right\}^{1 /(p-1)}+\eta(x) .
$$

It turns out that such a solution exists and that we have $\eta \sim e^{\frac{-2 x}{N-2}}$ as $x \rightarrow \infty$.
Lemma 2.7 (iii) has to be corrected as follows:
If $p>\frac{N}{N-2}$, there exists a singular solution of the form

$$
u(t)=t^{-2 /(p-1)}(c+o(t))
$$

near the origin.
This correction is consistent with a result in the preprint by Wu, Chen, Chern and Kabeya entitled "Existence and uniqueness of singular solutions for elliptic equation on the unit ball".

2 Pohozaev type identity for singular solutions

In Section 3.2, we have introduced the Pohozaev type identity to

$$
\begin{equation*}
u^{\prime \prime}(t)+(N-1) \operatorname{coth}(t) u^{\prime}(t)+\lambda u(t)+u^{p}(t)=0 \quad \text { in } \mathbb{R}^{+}, \quad u>0 \tag{2.1}
\end{equation*}
$$

We argued as follows:
In a first step we transform (2.1) into an equation without first order derivatives. For this purpose set

$$
u(t)=\sinh ^{-\frac{N-1}{2}}(t) v(t)=\sinh ^{-\lambda_{0}}(t) v(t)
$$

Then $v(t)$ solves

$$
\begin{equation*}
v^{\prime \prime}-a(t) v+b(t) v^{p}=0 \tag{2.2}
\end{equation*}
$$

where

$$
a(t)=\lambda_{0}-\lambda+\lambda_{0} \frac{N-3}{2} \operatorname{coth}^{2}(t) \quad \text { and } \quad b(t)=\sinh ^{-\lambda_{0}(p-1)}(t)
$$

If we multiply (2.2) with $v^{\prime} g$ and integrate, we obtain

$$
\begin{align*}
& \frac{1}{2} \int_{0}^{T} g^{\prime} v^{\prime 2} d t=\left.\frac{v^{\prime 2} g}{2}\right|_{0} ^{T}-\left.\frac{a g v^{2}}{2}\right|_{0} ^{T}+\left.\frac{b g v^{p+1}}{p+1}\right|_{0} ^{T} \tag{2.3}\\
&+\frac{1}{2} \int_{0}^{T}(a g)^{\prime} v^{2} d t-\frac{1}{p+1} \int_{0}^{T}(b g)^{\prime} v^{p+1} d t
\end{align*}
$$

Multiplication of (2.2) with $g^{\prime} v$ and integration yields

$$
\begin{align*}
& \frac{1}{2} \int_{0}^{T} g^{\prime} v^{\prime 2} d t=\left.\frac{1}{2} g^{\prime} v v^{\prime}\right|_{0} ^{T}-\left.\frac{1}{4} v^{2} g^{\prime \prime}\right|_{0} ^{T} \tag{2.4}\\
&+\int_{0}^{T}\left[\frac{g^{\prime \prime \prime}}{4}-\frac{a g^{\prime}}{2}\right] v^{2} d t+\int_{0}^{T} \frac{g^{\prime} b}{2} v^{p+1} d t
\end{align*}
$$

Suppose that

$$
\begin{equation*}
v(0)=v(T)=0, \quad\left|v^{\prime}(T)\right|<\infty \quad \text { and } \quad \lim _{t \rightarrow 0} v(t) v^{\prime}(t)=0 \tag{2.5}
\end{equation*}
$$

Then (2.3) and (2.4) lead to the following Pohozaev type identity:

$$
\begin{equation*}
\left.\frac{v^{\prime 2} g}{2}\right|_{0} ^{T}+\int_{0}^{T}\left[\frac{a^{\prime} g}{2}+a g^{\prime}-\frac{g^{\prime \prime \prime}}{4}\right] v^{2} d t=\int_{0}^{T}\left[\frac{(b g)^{\prime}}{p+1}+\frac{g^{\prime} b}{2}\right] v^{p+1} d t \tag{2.6}
\end{equation*}
$$

Now we apply this Pohozaev type identity to solutions which are singular at $t=0$. For later use, we put $g=\sinh t$.

Since $u(t) \sim t^{-2 /(p-1)}$ near $t=0$, we have

$$
v(t)=\left(\sinh ^{(N-1) / 2} t\right) u(t) \sim t^{\{(N-1) p-(N+3)\} / 2(p-1)}
$$

near $t=0$. For our purpose, we seek conditions so that all the boundary value in (2.3) and (2.4) vanish. In (2.3), the following three conditions are necessary:

$$
\begin{align*}
\lim _{t \rightarrow 0}\left(v^{\prime}\right)^{2} g & =0 \tag{2.7}\\
\lim _{t \rightarrow 0} v^{2} g & =0 \tag{2.8}\\
\lim _{t \rightarrow 0} b(t)(\sinh t) v^{p+1} & =0 \tag{2.9}
\end{align*}
$$

For (2.7), near $t=0$, we have

$$
\left(v^{\prime}\right)^{2} g \sim t^{\{(N-1) p-(N+3)\} /(p-1)-1}
$$

and thus

$$
\frac{(N-1) p-(N+3)}{p-1}-1>0
$$

is a necessary condition. This is equivalent to

$$
\begin{equation*}
p>\frac{N+2}{N-2} \tag{2.10}
\end{equation*}
$$

From (2.10), (2.8) follows immediately. Concerning (2.9), we see that

$$
b(t)(\sinh t) v^{p+1} \sim t^{-(N-1)(p-1) / 2} t^{\{(N-1) p(p+1)-(N+3)(p+1)\} / 2(p-1)} t
$$

Thus we have a necessary condition

$$
\frac{2(N-3) p-2(N+1)}{2(p-1)}>0
$$

This condition is equivalent to

$$
p>\frac{N+1}{N-3}
$$

Since

$$
\frac{N+1}{N-3}>\frac{N+2}{N-2}
$$

it follows that

$$
p>\frac{N+1}{N-3}
$$

is a necessary condition.

From (2.4), we see that

$$
\begin{equation*}
\lim _{t \rightarrow 0} g^{\prime} v v^{\prime}=0 \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow 0} v^{2} g^{\prime \prime}=0 \tag{2.12}
\end{equation*}
$$

are also necessary conditions. Since $g=\sinh t$, (2.12) is nothing but (2.8) and (2.11) is equivalent to

$$
\begin{equation*}
\lim _{t \rightarrow 0} v v^{\prime}=0 \tag{2.13}
\end{equation*}
$$

This is equivalent to

$$
\frac{(N-1) p-(N+3)}{p-1}-1>0
$$

and thus

$$
p>\frac{N+2}{N-2}
$$

Finally, the Pohozaev type identity holds for $p>(N+1) /(N-3)$. The statement of Lemma 3.1 (ii) should be as follows:

Suppose that $N \geq 4$. If $p>(N+1) /(N-3)$ and $\lambda \leq N(N-2) / 4$, then we have $B_{s}=\emptyset$.

Received October 9, 2012.

Author information

Catherine Bandle, Universität Basel, Rheinsprung 21, CH-4051 Basel, Switzerland.
E-mail: catherine.bandle@unibas.ch
Yoshitsugu Kabeya, Osaka Prefecture University, Gakuencho 1-1, Sakai, 599-8531, Japan.
E-mail: kabeya@ms.osakafu-u.ac.jp

