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Usnal and unusual antibacterial effects of quinolones

Y. X. Furet and J.-C. Pechére
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Recently documented antibacterial effects of quinolones are reviewed. DNA gyrase
is most likely to be the primary target site for these agents. Quinolones rapidly kill
susceptible bacteria; the mechanisms of the bactericidal activity, still poorly under-
stood, probably involve new protein synthesis. Quinolones alter membrane integrity
before cell death, leading to leakage of cytoplasmic constituents. In Gram-negative
bacteria, quinolones act as chelating agents for outer membrane divalent cations,
disorganizing the bacterial lipopolysaccharide layer and facilitating the further entry
of quinolone molecules in a ‘self-promoted’ pathway. Quinolones inhibit plasmid
replication and reduce the efficacy of plasmid conjugation. Subinhibitory concentra-
tions of quinolones can interfere with bacterial virulence factors, such as bacterial
adherence to the host cell, phagocytosis and production of enzymes implicated in
virulence. Recent studies also indicate synergism of quinolones with oxacillin against
methicillin-resistant  staphylococci and describe improved activity of newer
compounds against Gram-positive pathogens.

Introduction

Development of quinolone agents has been impressive during recent years, accounting
for their wide use in clinical practice. These drugs have shown a remarkable potency
against usual pathogens, as well as against bacteria that are less common and difficult
to treat, including multiply resistant nosocomial bacteria and various intracellular
pathogens. How quinolones act against these numerous organisms, however, is not
completely understood. This review will focus on some recently discovered antibacterial
effects of quinolones.

Quinolones inhibit DNA gyrase functions

DNA gyrase is an enzyme capable of introducing negative supercoils into bacterial
DNA, and responsible for the accommodation of the long circular chromosome within
the limited space provided by the cell envelope. The principal prerequisite for the
various and complex activities of the enzyme is its ability to cleave and rejoin double-
stranded DNA. )

Most of the multiple biochemical functions of DNA gyrase on cell physiology are
affected as a result of the quinolone activity, including the inhibition of DNA
replication, post-replicational repair (Priel, 1984), recombination of DNA and separa-
tion of the two circular daughter chromosomes in the terminal phase of replication
(Smith, 1986; Sutcliffe, Gootz & Barrett, 1989). Yet exactly how quinolones interfere
with DNA gyrase function remains unclear or controversial. Do quinolones exert their
effect by binding to DNA gyrase? Such a hypothesis can be supported by several
observations: inhibition of the enzymatic activity of purified DNA gyrase by quinolones
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(Barrett, Sutcliffe & Gootz, 1990), bacterial resistance associated with DNA gyrase
mutations (Gellert et al., 1977; Sato et al., 1986) and ’F nuclear resonance experiments
showing the affinity of pefloxacin for DNA gyrase (Le Goffic, 1985). However, if
quinolones bind directly to DNA gyrase, the exact binding site remains to be deter-
mined. Other reports have suggested that quinolones bind to DNA, and not directly to
DNA gyrase (Shen & Pernet, 1985; Tornatelli & Pedrini, 1988) or to the tertiary DNA
gyrase-DNA complex (Shen et al., 1989). As a final remark, a computer program,
matching experimental data pertaining to DNA gyrase inhibition with quinolone
structures predicted with acceptable accuracy the consequences of structural variations
for MICs (Klopman er al., 1987): DNA gyrase is indeed a primary target for the
quinolones.

Killing of bacteria by quinolones: a puzzling guestion

Since DNA gyrase inhibition blocks bacterial replication, the expected effect of
quinolones would be bacteriostatic. In fact, exposure of a susceptible bacterial popula-
tion to a quinolone results generally in rapid cell death, followed by a plateau at a
viable cell count about 10~*fold below the initial inoculum (Wolfson, Hooper &
Swartz, 1989). Bactericidal activity can even be shown during the stationary phase of
growth (Zeiler, 1985). .

The mechanisms of these lethal events remain unclear. Killing is reduced, paradoxi-
cally, by increasing the quinolone concentration over a certain level and is also
markedly inhibited by adding rifampicin or chloramphenicol (Crumplin, Kenwright &
Hirst, 1984). Rifampicin, chloramphenicol and high quinolone concentrations have in
common the capacity to inhibit protein synthesis suggesting that the killing activity by
quinolones is associated with new protein synthesis.

Quinolones and SOS response

One possible explanation for the bactericidal activity is that quinolones cause DNA
gyrase to damage DNA (Smith, 1984), inducing the SOS DNA repair system. Cell-
damaging environmental conditions trigger the synthesis of specific cascades of pro-
teins, whose physiological role is to repair the affected cellular system, and protect it
from further damage. Among other phenomena, this SOS response enhances DNA
repair capacity and mutagenesis and blocks cell division (producing filamentation) and
cell respiration (Little & Mount, 1982). The quinolones were found to trigger the SOS
response, with a maximum intensity at the quinolone concentration that produced the
greatest bactericidal effect (Phillips et al., 1987). In SOS mutants however, quinolone
killing did not correlate necessarily with the SOS phenotype; furthermore induction of
the SOS response was protective to fleroxacin and enoxacin treated bacteria, but not to
ciprofloxacin treated bacteria (Walters, Piddock & Wise, 1989). Taken in aggregate,
these experiments dealing with the SOS response do not close the discussions about the
killing, but suggest that the mechanisms of action of different quinolones are not
uniform in their precise detail, as was originally thought.

Less of membrane integrity

Electron microscope studies showed that quinolone treated Escherichia coli cells
displayed areas of reduced cytoplasmic contrast at the time when cell death occurred
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(Dougherty & Saukkonen, 1985). At the same time, the cells became more susceptible
to detergent, and exhibited increased membrane permeability. These quinolone-induced
changes were attributed to the loss of membrane integrity, leading to leakage of
cytoplasmic constituents, and, ultimately, cell death (Dougherty & Saukkonen, 1985).
Again in Esch. coli, quinolones induced lipopolysaccharide release and increased cell
surface hydrophobicity (Chapman & Georgopapadakou, 1988). The same authors
showed evidence that quinolones acted as chelating agents vis-d-vis outer membrane-
bound divalent cations, notably Mg?* which is well known to antagonize quinolone
antibacterial activity (Auckenthaler, Michéa-Hamzehpour & Pechére, 1986). This
chelating effect leads to disorganization of this bacterial surface layer, facilitating the
further entry of quinolone molecules through the outer membrane in a ‘self-promoted’
pathway similar to that described for the aminoglycosides (Hancock, Raffie & Nicas,
1981). An alternative route for penetration through the outer membrane is through the
water filled protein porin channels. It is likely that for Esch. coli quinolone molecules
may enter either way, the primary route depending on their solubility: the more
hydrophilic compounds via the porin channels and hydrophobic compounds via the
‘self-promoted’ pathway.

Paradoxical quinolone action on phage replication

Additional insight into the mode of action of quinolones is given by experiments
performed with phage T7 which does not seem to require DNA gyrase for growth in
Esch. coli, since a normal phage burst size occurs at an elevated temperature in host
bacteria containing a thermosensitive DNA gyrase. Strikingly, virus replication leading
to the same burst was preserved in the presence of nalidixic acid at the elevated, but not
at the permissive temperature. Hence inhibition of phage T7 was thought to be due to
formation of an irreversible quinolone-gyrase complex, which did not simply have a
passive role in blocking a cascade of biochemical reactions, but was thought to act as a
poison, mediating cell death (Kreuzer & Cozzarelli, 1979).

Filamentation

Filamentation, caused by the inhibition of cell division, occurs before cell death and
may result, at least in part, from antagonism of DNA synthesis and induction of the
SOS response (Phillips e¢ al., 1987). Filamentation might also be involved in the killing
action of quinolones, since a mutant of Esch. coli, incapable of filamenting, appeared to
be less susceptible to quinolones than was the parent strain (Walters ef al., 1989). Cell
enlargement and cessation of septation were also observed in Staphylococcus aureus
after norfloxacin treatment in a fashion very similar to the alterations produced by
cephalexin, which binds almost exclusively to PBP3 (Georgopapadakou, Dix &
Mauriz, 1986). Since a significant increase of PBP synthesis has been shown in
filaments obtained from nalidixic acid-treated Esch. coli cells (Amaral, Schwarz &
Lorian, 1986), a direct interaction between quinolone agents and PBPs (or PBP
metabolism) represents a hypothesis deserving further investigation.

Unexpected oxacillin-quinolone synergism against methicillin-resistant staphylococci

According to fractional inhibitory concentration indices and killing kinetics, the
combination of a quinolone with oxacillin was regularly synergistic or additive against
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methicillin-resistant staphylococci (Rohner er al.,, 1989). Little or no interaction
occurred when the same combinations were tested against methicillin-susceptible
strains. At first sight, the synergism was somewhat surprising, since the target of
oxacillin, that is the bacterial cell wall, appears quite independent from the target of
quinolones. Explanatory hypotheses include direct or indirect interactions of quino-
lones with the PBPs (especially PBP2a which accounts for methicillin resistance) and
quinolone induced plasmid cures, since PBP2a regulator genes are known to be located
on plasmids. Even though they are little understood, these observations provide in-
vitro evidence for the potential clinical use of quinolones in combination with a
f-lactamase resistant penicillin in treating infections due to methicillin-resistant
staphylococci.

Quinolones and plasmids

In vitro, quinolones were found to eliminate plasmids of Esch. coli at subinhibitory
concentrations (Weisser & Wiedemann, 1986). This effect resulted from inhibition of
plasmid replication, which scemed to be more sensitive to the quinolone action than
chromosomal replication. Curing of plasmids by quinolones remains incomplete and
limited however; it is unlikely to be of clinical relevance in the individual patient, but
may have ecological implications when quinolones are widely used (Platt & Black,
1987). Furthermore, an Esch. coli mating system showed that various quinolones were
able to reduce by 90% the efficiency of plasmid conjugation when concentrations were
one to six times the MIC for the parent strain (Weisser & Wiedemann, 1987). Again,
the phenomenon is probably not clinically important, since the lethal effect of the drug
was predominant over the potential inhibition of plasmid transfer. Certainly more
pertinent for the clinician is the remarkable scarcity of plasmid-mediated quinolone
resistance. As a rare example, a transferable resistance to nalidixic acid has been shown
in Shigella dysenteriae and Esch. coli (Munshi et al., 1987).

Subinhibitory concentrations of quinolones can alter bacterial virulence

The strength of the attractive and repulsive forces involved in bacterial surface
interactions with nearby cells are of prime importance for bacterial attachment to host
cells, which is a key step in bacterial pathogenesis. Antibiotics that alter the bacterial
surface can alter bacterial adhesion (Schifferli & Beachey, 1988) and subsequently
phagocytosis. Quinolones do produce bacterial surface changes and, not surprisingly,
interfere with the adherence process. Subinhibitory concentrations of pefloxacin (3 to
the MIC) markedly diminished the capacity of Staph. aureus for adhesion to buccal
cells (Desnottes ez al., 1987). Whether these effects involve DNA gyrase or represent
another drug action remains as yet unclear, but they may have a clinical impact. In a
dog model of arterial grafts, subinhibitory concentrations of pefloxacin were efficient in
protecting the foreign body material from Staph. aureus infection after bacteraemic
challenge (J.-C. Pechére, unpublished observation). However, sub-MICs of quinolones
(pefloxacin was not investigated) had no effect on the adherence of slime-producing
Staph. epidermidis to vascular prostheses in an in-vitro system (Schmitt et al., 1989), a
discrepancy probably due to the absence of host factors in the latter experiments. Other
investigations showed that subinhibitory concentrations of pefloxacin decreased the
adhesion of Esch. coli to human uroepithelial cells, and that this effect was associated
with a decrease in P-fimbria formation (Desnottes, Le Roy & Diallo, 1988). In good



Antibacterial effects of quinolones 1

agreement with this, quinolones were also capable of altering the affinity of various
Enterobacteriaceae for the ileal mucosal cell surface in vitro (Edmiston & Goheen,
1989). Subinhibitory concentrations of ciprofloxacin also reduced Pseudomonas aerugi-
nosa tissue injury in a rat lung model. This effect was attributed to a decrease in elastase
and exoenzyme S production in one non-mucoid isolate, but remained unexplained in a
mucoid isolate (Grimwood et al., 1989).

The post-antibiotic effect (PAE)

PAE refers to a temporally limited suppression of regrowth of organisms that have
been exposed to an antimicrobial agent for a certain period.

Quinolones have been shown to produce a prolonged (4 h or more) PAE, in both
Gram-positive and Gram-negative isolates (Neu et al., 1987). Of particular interest, it
seems that the effect can be demonstrated after exposure to quinolones at an acidic
pH as well as at high Mg?* concentrations, that is, in conditions that are unfavourable
to quinolone antibacterial action. Organisms resistant to quinolones also showed PAE
after treatment with quinolone concentrations that are achievable in urine (Neu et al.,
1987).

Recently documented antibacterial activity of quinolones

The wide antibacterial spectrum of the new generation of quinolones is now well
established (Bellido & Pechére, 1989; Wolfson & Hooper, 1989), but some of the
recently documented antibacterial activities may broaden present clinical applications.
Several newer compounds have shown enhanced potency against Gram-positive patho-
gens: temafloxacin (Nye e al., 1989), sparfloxacin (Kojima, Inoue & Mitsuhashi, 1989),
WIN 57273 (Jones & Barry, 1990) and Am-1091 (Neu, Novelli & Chin, 1989), to quote
only a few. These improvements would be of great interest since infections with
Streptococcus pneumoniae, Listeria monocytogenes and even Enterococcus faecalis,
which have hardly been amenable to quinolone therapy until now, would be in reach in
the future. This, however, will require clinical confirmation. The genus Nocardia is
another example of a pathogen which shows limited susceptibility to the presently
marketed quinolones but is more effectively inhibited by a newer compound, tosuflox-
acin (Yazawa, Mikami & Uno, 1989).

Several recent studies (Leysen, Haemers & Pattyn, 1989) have confirmed a promising
antimycobacterial activity. Quinolones penetrate readily into host cells, a relevant
property for treating tuberculosis and leprosy. Hence selected quinolone agents are
likely to increase our therapeutic weaponry against these infections. Of the commer-
cially available agents, ofloxacin and ciprofloxacin appear most active, but investiga-
tional drugs such as sparfloxacin, and WIN 57273. showed even greater potency.
Susceptible mycobacterial species include Mycobacterium tuberculosis (Fenlon &
Cynamon, 1986; Gorzynski, Gutman & Allan, 1989), M. paratuberculosis (Chiodini,
1990), M. leprae (Franzblau, 1989; Ramasesh, Krahenbuhl & Hastings, 1989;
Franzblau & White, 1990), M. avium complex (Khardori er al., 1989) and rapidly
growing mycobacterial species (Wallace et al,, 1990). In-vitro synergistic activity
between ethambutol and fluorinated quinolones was observed against M. avium complex,
probably associated with an enhanced penetration of the quinolone induced by
ethambutol (Hoffner er al., 1989). Clinical experience is as yet limited. Ofloxacin
(Tsukamura, Mizuno & Toyama, 1986) and pefloxacin (Fu et al., 1987) have been used
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with success in combined therapy for treating tuberculosis. Ofloxacin resistance
emerged in cases in which ofloxacin was the only active drug administered (Tsukamura
et al., 1985). Other intracellular pathogens against which quinolones have gained recent
attention are the Legionella species, which showed a good response in an animal model
(Saito et al., 1986), and Coxiella burnetii (Raoult, Yeaman & Baca, 1989; Yeaman,
Roman & Baca, 1989) which was very susceptible to ofloxacin and pefloxacin.

Conclusions

The first fluoroquinolone, pefloxacin, was developed less than ten years ago. During the
last decade we have witnessed a rapid increase in information regarding this class of
antimicrobial agents, due to the development of new compounds, broadening clinical
indications, and increasing knowledge of molecular aspects. Obviously, the field
remains very active, and we shall have to follow developments in the years to come.
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