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SUMMARY

Best linear unbiased prediction of spatially correlated multivariate random processes, often
called cokriging in geostatistics, requires the solution of a large linear system based on the covari-
ance and cross-covariance matrix of the observations. For many problems of practical interest, it
is impossible to solve the linear system with direct methods. We propose an efficient linear unbi-
ased predictor based on a linear aggregation of the covariables. The primary variable together
with this single meta-covariable is used to perform cokriging. We discuss the optimality of the
approach under different covariance structures, and use it to create reanalysis type high-resolution
historical temperature fields.
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1. INTRODUCTION

The prediction of a geophysical quantity based on observations at nearby locations of the
same quantity and on other related variables, so-called covariables, is often of interest. Typical
examples are drawing pollution maps, establishing flood plans or simply predicting temperatures.
Obviously, all available observations should be taken into account, and their contributions ought
to be weighted by the strength of their correlation with the location of interest. In many of those
applications, we have large or even massive amounts of data available, implying the need for a
careful choice of methodology in order to keep the analysis computationally feasible.

For a single variable of interest, spatial best linear unbiased prediction, i.e., kriging, has been
intensively studied and many approaches exist; see Sun et al. (2011) for a recent review. However,
if information from several different variables is available, this information should be used for
prediction and a classical approach is cokriging. Unfortunately, the problems implied by large
amounts of data are then further amplified.

We assume that we have a primary variable and two or more secondary variables. We aim at
predicting the primary variable at some location based on observations of the primary variable at
a set of distinct locations and on observations of the secondary variables at a possibly different
set of distinct locations, i.e. a particular form of cokriging.

Cokriging was extensively studied in the late 1980s and early 1990s (e.g., Davis & Greenes,
1983; Abourfirassi & Marino, 1984; Carr & McCallister, 1985). For a more theoretical discus-
sion see, for example, Myers (1982, 1992), Ver Hoef & Cressie (1993, 1994) and references
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therein. However, since the cokriging system is of order O(N 2), where N is the total number of
observations, practitioners often try to reduce the number of equations by taking into account only
a few neighbours of the prediction location. Myers (1983) and Long & Myers (1997) provided
other solutions to reduce the computational burden of cokriging, based on linear combinations
or linear approximations. Another common tool is coregionalization (e.g., Journel & Huijbregts,
1978; Gelfand et al., 2004). Each component of the process is assumed to be a linear combina-
tion of orthogonal random functions. The orthogonality is exploited with a linear transforma-
tion, reducing the multivariate setting to a univariate one. However, the transformation has to be
estimated, often iteratively, cancelling out the computational gains (e.g., Bourgault & Marcotte,
1991). Finally, the extremely simple alternative solution of full cokriging in a moving neighbour-
hood is often used in practice, see, for example, Haas (1990a,1990b). The moving neighbourhood
approach is quite useful when predicting at a limited number of locations (e.g., Johns et al., 2003)
but has disadvantages, such as the potential introduction of discontinuities.

For the applications of interest to us, in numerical weather prediction, the linear systems
involved in calculating the best linear unbiased predictor and its mean squared prediction error
are often too large to use direct methods. We present a novel approach to reduce this computa-
tional burden, by aggregating the secondary variables with carefully chosen weights. The result-
ing combination of secondary variables should contribute as much as possible to the prediction of
the primary variable in the mean squared prediction error sense. The prediction is then performed
using a cokriging approach with the primary variable and the aggregated secondary variables.
This reduces the computational burden of the prediction from solving a (n + �m) × (n + �m) to
solving a (n + m) × (n + m) linear system, where n and m are the numbers of observations of
the primary and secondary variables, respectively, and � is the number of secondary variables.
We assume n and m to be such that we are able to solve a (n + m) × (n + m) linear system but
not a (n + �m) × (n + �m) one. By construction we know that the resulting mean squared pre-
diction error lies between that of kriging and of cokriging. Since the computational complexity
is comparable with bikriging, i.e. cokriging with only one of the secondary variables, we aim for
a mean squared prediction error between bikriging and cokriging.

2. AGGREGATION-COKRIGING

2·1. Definitions and basic properties

We assume that we have a primary variable, denoted by Y0(·), and two or more secondary
variables, denoted by Y1(·), . . . , Y�(·), � > 1. We aim to predict the primary variable at a new
location sp based on observations and we write Y0(sp) = Yp, where the subscript p stands for
predict. We assume n observations from distinct locations of the primary variable, denoted by
Y0, as well as m observations from distinct locations of each of the secondary variables, denoted
by Y1, . . . , Y�. We use a generic notation for the indices of the secondary variable(s), e.g., Yg

might be the vector Y1, or (Y T
1 , . . . , Y T

� )T, or a linear combination thereof. Accordingly, the ele-
ments of var(Yg) = �gg are determined by the covariance structure of the secondary variables
cov(Yi , Y j ) = �i j (i, j = 1, . . . , �). Further, we assume that the first moment of the multivariate
random process is zero and for the second moment we write

var

⎛⎝Yp

Y0
Yg

⎞⎠=
⎛⎝�pp � p0 � pg

�0p �00 �0g

�gp �g0 �gg

⎞⎠ , (1)

where �pp = var(Yp), �00 = var(Y0), �p0 = cov(Yp, Y0), etc. By separating between prediction
Yp and primary variable Y0, we can incorporate measurement errors. For example, denote a
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covariance function by c(si , s j ), then �pp = c(sp, sp) and [�00]i j = c(si , s j ) + τ 2 I (si = s j )

with τ 2 the magnitude of the measurement error and I the indicator function.
The best linear unbiased predictor of Yp given Y0 and Yg is

(
� p0 � pg

)(�00 �0g

�g0 �gg

)−1(
Y0
Yg

)
, (2)

and its mean squared prediction error is given by

�pp − (� p0 � pg
)(�00 �0g

�g0 �gg

)−1(
�0p

�gp

)
. (3)

We now introduce the aggregation-cokriging method. For each location si (i = 1, . . . , m),
where the secondary variable is observed, we need to find an �-vector a(si ) =
{a1(si ), . . . , a�(si )}T which defines the weights for Y1(si ), . . . , Y�(si ). To simplify the exposition,
we define the aggregation matrix A ∈ R

m×m�, such that the corresponding linear combination
of the secondary variables is simply AY , with Y = (Y T

1 , . . . , Y T
� )T. Then, in (1)–(3), Yg is AY ,

and the corresponding covariance matrices are calculated accordingly, e.g., �gg =A var(Y)AT.
The matrix �gg is positive definite and the inverse in (2) exists if A has full row rank.

The aggregation matrix takes the form A= {diag(L1), . . . , diag(L�)}, with Lr =
{ar (s1), . . . , ar (sm)}T. The i th row of A is a(si )

T ⊗ eT
i where ⊗ is the Kronecker product

and ei is the i th canonical basis vector. In the special case where the weights do not change with
the location si , A= (a1 I, . . . , a� I ) = aT ⊗ I , where I ∈ R

m×m is the identity matrix. In this
notation, bikriging with the first variable corresponds to A= (I, 0, . . . , 0) = eT

1 ⊗ I .
To relate or link the aggregation scheme to the resulting mean squared prediction error, let

E−1 =A(�YY − �Y0�
−1
00 �0Y)AT, where �YY is the covariance matrix of Y and �Y0 = �T

0Y
is the cross-covariance matrix between Y and Y0, and define the function

g(A) =
{

‖A(�Y p − �Y0�
−1
00 �0p)‖2

E if E is positive definite,

0 otherwise,

where ‖z‖2
E = zT Ez and �Y p is the cross-covariance matrix between Y and Yp. The mean

squared prediction error based on the aggregation matrix A is

MSPE(A) = �pp − � p0�
−1
00 �0p − g(A), (4)

and minimizing (4) over all admissible A is equivalent to maximizing g(A). If A= aT ⊗ I , we
abbreviate to g(a). For example, g(0) = 0 and g(er ) are linked to the mean squared prediction
error of simple kriging and bikriging with the r th variable, respectively.

Direct maximization of g(A) over A is only possible in very specific cases, and numerical
maximization often requires more computational effort than solving the best linear unbiased pre-
dictor with all secondary variables. We now propose a few aggregation schemes that are intuitive
and suboptimal. We choose the weight vectors as the solution of

a(si ) = argmax
x

xT Ai x − λ(xT Bi x − 1), (5)

a(si ) = argmin
x

xTCi x − λ(xTω − 1), (6)
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where Ai ∈ R
�×� is symmetric positive semidefinite, Bi , Ci ∈ R

�×� are symmetric positive def-
inite, ω ∈ R

� has at least one nonzero element and λ is the Lagrange multiplier. Cokriging with
the aggregation matrix A based on (5) and on (6) will be called AGG(Ai , Bi )-cokriging and
AGG(Ci , ω)-cokriging, respectively. It is straightforward to show that the solution of (5) is a(si ) =
B−1/2

i αi , where αi is the eigenvector associated with the largest eigenvalue of B−1/2
i Ai B−1/2

i

and the solution of (6) is a(si ) = C−1
i ω/(ωTC−1

i ω). If the aggregation matrix A is based on the
vectors a(si ) (i = 1, . . . , m), we also write AGG{a(si )a(si )

T, I }-cokriging.
Individually rescaling the weight vectors a(si ) (i = 1, . . . , m) has no effect. Hence, we

will often scale the weight vectors to a(si ){a(si )
Ta(si )}−1/2 or a(si ){a(si )

T1}−1, provided
a(si )

T1 |= 0, to simplify theoretical concepts.

LEMMA 1. Prediction and mean squared prediction error of aggregation-cokriging based on
the weight vectors a(si ) are independent of any scaling γi a(si ), with γi |= 0 (i = 1, . . . , m).

For cleverly chosen Ai and Bi , or Ci and ω, the weight vectors obtained with this approach
are not too far from the exact optimum under certain covariance models.

2·2. Example: canonical correlation analysis

An intuitive choice of the weight vector a(si ) = {a1(si ), . . . , a�(si )}T is such that the correla-
tion corr{Yp, a1(si )Y1(si ) + · · · + a�(si )Y�(si )} is maximized. The solution of this optimization
is a particular case of canonical correlation analysis, see, e.g., Mardia et al. (1979).

PROPOSITION 1. Assume that cov{Yp, Yr (si )} |= 0 for at least one r . The vector a(si ) =
{a1(si ), . . . , a�(si )}T maximizing corr{Yp, a1(si )Y1(si ) + · · · + a�(si )Y�(si )} is a(si ) = argmaxx
xTCipC pi x − λ(xTCii x − 1) where the matrices Cii ∈ R

�×� and the vectors Cip ∈ R
�

(i = 1, . . . , m) are defined by

[Cii ]rs = cov{Yr (si ), Ys(si )} = [�rs]i i (r, s = 1, . . . , �), (7)

[Cip]r = [C pi ]
T
r = cov{Yr (si ), Yp} = [�r p]i (r = 1, . . . , �). (8)

The vector a = a(si ) depends on the locations si where the secondary variables are observed
and on the prediction location sp. Hence, with AGG(CipC pi , Cii )-cokriging, the weights a(si ) ∈
R

� (i = 1, . . . , m) form � fields, denoted by Lr (r = 1, . . . , �). For simplicity, we use the term
weights for these � fields. By construction, these weights take into account the cross-covariance
structure of the secondary variables at the locations si (i = 1, . . . , m) and they do not take into
account the covariance structure [�rr ]i j (i |= j) of the individual variables. This means that only
diagonal elements of the cross-covariance matrices enter the calculation of the weight vector
a(si ), e.g. (7). This fact may lead to rapidly varying weights.

Further, with compactly supported covariance functions (see, e.g. Gneiting, 2002) the cross-
covariance cov{Y (si ), Yp} might be zero, resulting in a zero vector Cip. In this case, the matrix

C−1/2
i i CipC pi C

−1/2
i i has only zero eigenvalues and the question arises what weight vector a(si )

we should choose. Intuitive choices are: the r th canonical basis vector, where r corresponds to
the variable also used for bikriging; and �−1/21, i.e., all variables receive the same weight. Later
we will see that the second case can be competitive but often inferior to the first case, for which
we need to determine the variable r , implying additional computational costs.
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2·3. Example: maximum covariance analysis

The canonical correlation based approach has the disadvantage that we need to calculate m
vectors a(si ) (i = 1, . . . , m). Instead of simplistically choosing an arbitrary location s j and using
a(si ) = a(s j ) for all i , we now discuss a more intuitive procedure for which the weights do not
depend on the location si . We propose to maximize the ordinary L2-norm of

cov

(
Yp,

�∑
r=1

ar Yr

)
=

�∑
r=1

ar� pr , (9)

which is

tr

⎛⎝ �∑
r,s=1

ar as�r p� ps

⎞⎠=
�∑

r,s=1

ar as tr(�r p� ps) = aT[� ps�r p]a,

under the constraint aTa = 1. Straightforward algebraic manipulations imply that a is the eigen-
vector associated with the largest eigenvalue of the matrix with elements [� ps�r p]rs . Hence,
we perform AGG(� ps�r p, I )-cokriging, where I ∈ R

�×�. This approach is a particular case of
maximum covariance analysis, see, e.g., Jolliffe (2002).

We could also define the weight vectors a(si ) of § 2·2 via a covariance instead of a correlation
approach. Or we could constrain the vector a of this section to aT Ba = 1, for some symmetric
positive definite matrix B. These cases would result in AGG(CipC pi , I )- and AGG(� ps�r p, B)-
cokriging.

2·4. Generalized intrinsic model for the secondary variables

If we consider constant weights induced by a = (a1, . . . , a�)
T, then g(a) takes the form

g(a) =
(

�∑
r=1

ar cr

)T( �∑
r,s=1

ar as Srs

)
−1

(
�∑

r=1

ar cr

)
, (10)

with cr = �r p − �r0�
−1
00 �0p and Srs = �rs − �r0�

−1
00 �0s . Although the previous expression

has well-known derivatives with respect to ai , it is only possible in very specific cases to analyt-
ically find the maximum of g(a). One example of such a simple model is based on the following
specification of the covariance matrix:

var

⎛⎝Yp

Y0
Y

⎞⎠=
⎛⎝ �pp � p0 ωT ⊗ � pc

�0p �00 ωT ⊗ �0c

ω ⊗ �cp ω ⊗ �c0 	 ⊗ �cc

⎞⎠ , (11)

with 	 ∈ R
�×� a symmetric positive definite matrix and ω ∈ R

� a vector with at least one nonzero
element. The matrix �cc ∈ R

m×m is the common correlation structure of the secondary variables.
Further, up to a constant, � pc ∈ R

1×m is the cross-covariance between Yp and any secondary
variable and �0c ∈ R

n×m is the cross-covariance between the primary variable and any secondary
variable. Without explicitly stating all conditions, we assume that the matrix (11) is positive
definite.

Model (11) is more general than the standard intrinsic correlation model, e.g., Wackernagel
(2006, p. 154). In (11), only the secondary variables form an intrinsic correlation model.
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PROPOSITION 2. Under the model specified by (11), AGG(	, ω)-cokriging minimizes the
mean squared prediction error (3).

In practice, we often have var(Y) |= 	 ⊗ �cc as, for example, the secondary variables may
have different correlation ranges. A simple approximation of the variance in (11) is illustrated in
§ 4. In the case of stationarity, we could use as a first-order approximation [	rs] = [�rs]i i and
ω = [�r0]i , for some i . A more formal approximation approach is to find the closest intrinsic
approximation to the covariance structure (1), in a similar spirit to Genton (2007).

2·5. Identical cross-covariance structure

We work through a simple case, assuming that all the secondary variables have the same cross-
covariance structure with Yp and with the observations of the primary variable.

LEMMA 2. Assume that �r p = �1p and �r0 = �10 (r = 2, . . . , �). Let A and B be aggre-
gation matrices based on aggregation vectors a(si ) and b(si ) with a(si )

T1 |= 0 and b(si )
T1 |= 0

(i = 1, . . . , m). Then, MSPE(A) < MSPE(B) if and only if the matrix

�∑
r=1

�∑
s=1

�rs ◦ (Hrs − Grs) (12)

is positive definite, where ◦ is the Schur or direct product, Hrs = {br (s1), . . . , br (sm)}T

{bs(s1), . . . , bs(sm)} and Grs = {ar (s1), . . . , ar (sm)}T{as(s1), . . . , as(sm)}.
The proof, given in the Appendix, is based on the fact that �r0�

−1
00 �0s is independent of r and

s, due to the identical covariance structure. The condition based on (12) is often not practical, but
Hrs − Grs being positive semidefinite for all r and s also implies positive definiteness of (12)
(Horn & Johnson, 1994, Theorem 5·2·1). Further, (12) can be simplified considerably if the sec-
ondary variables all have the same cross-covariance �rs = �12 (r |= s = 1, . . . , �).

In the case of constant weights, Grs and Hrs are proportional to 11T.

LEMMA 3. Assume that �r p = �1p and �r0 = �10 (r = 2, . . . , �). If the aggregation matri-
ces A and B are based on constant weights given by a and b, then MSPE(A) < MSPE(B) :

(i) if and only if
∑�

r=1
∑�

s=1 �rs ◦ 11T{br bs(bT1)−2 − ar as(aT1)−2} is positive definite; or
(ii) if br bs(aT1)2 � ar as(bT1)2 for all r, s = 1, . . . , �, with strict inequality for at least

one pair.

Additionally, if �rs = �12 (r |= s = 1, . . . , �), then MSPE(A) < MSPE(B) if and only if
∑�

r=1 Kr ◦
11T{b2

r (b
T1)−2 − a2

r (aT1)−2} with Kr = �rr − �12, is positive definite. Lastly, if �rr = �11 and
�rs = �12 (r |= s = 1, . . . , �), then MSPE(A) < MSPE(B) if and only if the weight vectors satisfy
bTb(bT1)−2 > aTa(aT1)−2.

COROLLARY 1. Assume that �r p = �1p, �r0 = �10, �rr = �11 and �rs = �12 (r |= s =
1, . . . , �). If we use the first variable for bikriging, then:

(i) if aT1 = 0, then g(a) = g(0) = 0;
(ii) if |aT1| = (aTa)1/2, then g(a) = g(e1). Further, the equality signs can be replaced with

strict inequalities.

Using (4), the statements also relate the mean squared prediction errors.
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PROPOSITION 3. Assume that �r p = �1p, �r0 = �10, �rr = �11 and �rs = �12 (r |= s =
1, . . . , �). The vector a defined in Proposition 1 and the vector a of AGG(	, ω)-cokriging are
proportional to 1 and the mean squared prediction errors of aggregation-cokriging and cokriging
are identical.

The last statement supports using 1 as the weight vector whenever Cip = 0 as discussed in § 2·2.
If the secondary variables do not have a common cross-covariance structure, then we cannot

derive theoretical results about the performance of aggregation-cokriging. Simulations indicate,
however, that aggregation-cokriging is often still very competitive.

2·6. Computational complexity

In order to compare the computational complexity of the methods discussed above, we assume
that dot and matrix products and the calculation of inverses are performed in O(n), O(n2)

and O(n3) computing time, respectively, although we acknowledge the existence of iterative
methods which are of lower order, e.g., Billings et al. (2002). Calculating an inverse �−1 can
often be avoided by solving the associated linear system instead, which is usually done with a
Cholesky decomposition of �, generally of order O(n3) and two triangular solves, generally
of order O(n2). Assume that we know the covariance structure and its parameters. Then for
prediction with zero mean, we need to solve a linear system, perform a matrix-vector and a
vector-vector multiplication, see (2). For kriging, bikriging and cokriging, the associated size is
n, n + m and n + �m, respectively. Aggregation-cokriging is on top of calculating the weight
vectors, as complex as bikriging. Calculating the weight vectors for AGG(CipC pi , Cii )-cokriging
and AGG(� ps�r p, I )-cokriging is of order O(m�3) and O(�3 + �m), negligible compared with
the prediction step. If the secondary variables are second-order stationary, Cii is independent of
i , and we only need to calculate C−1/2

i i once.
In practice, the first two moments must often be estimated. Assuming that the mean is a linear

combination of k known basis functions besides the vector-vector products, the computational
complexity increases from solving one to solving k + 1 linear systems. As the Cholesky decom-
position dominates the calculation, the order of complexity of the computation does not change.

An unknown second moment structure implies a much heavier computational burden, often
requiring O(n2) or even O(n3) computing time. Hence, another advantage of AGG(CipC pi , Cii )-
cokriging is that it requires only the cross-covariances cov{Yr (si ), Ys(si )} at identical locations
but not the cross-covariances cov{Yr (si ), Ys(s j )} (i |= j) of the secondary variables. After the
aggregation, �gg is estimated directly from the meta-covariable AY .

3. NUMERICAL COMPARISON

We illustrate variants of the proposed method with simple cases and contrast their mean
squared prediction error with bikriging and cokriging. Throughout this section, we assume
Gaussian processes with a primary variable observed at n = 82 equispaced locations and three
secondary variables (� = 3) observed at m = 142 equispaced locations in the unit square [0, 1]2.
We perform prediction along two paths situated near the edge and at the centre of the domain,
see Fig. 1. We assume a zero first moment and that the cross-covariances are given by isotropic
stationary spherical covariance functions

c(h; θ1, θ2) = θ1 max(0, 1 − h2θ−2
2 ){1 + h(2θ2)

−1}, θ1, θ2 > 0. (13)
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Fig. 1. Layout of the locations for the primary variables (circles)
and the secondary variables (crosses). The two arrows indicate the

paths along which we predicted.

Table 1. Parameter values of the spherical covariance matrix for the four different examples
Example 1 2 3 4

Sill θ1

⎛⎜⎜⎝
1 0·3 0·25 0·2

1 0·2 0·3
1 0·2

1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0·3 0·3 0·1
1 0·3 0·2

1 0·3
1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0·45 0·3 0·1
1 0·3 0·2

1 0·3
1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0·6 0·1 0·1
1 0·1 0·1

1 0·1
1

⎞⎟⎟⎠

Range θ2

⎛⎜⎜⎝
1·2 0·7 0·7 0·7

0·6 0·6 0·6
0·6 0·6

0·6

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0·6 0·5 0·4
0·5 0·3 0·2

0·2 0·1
0·1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0·6 0·5 0·4
0·5 0·3 0·2

0·2 0·1
0·1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0·6 0·1 0·1
0·5 0·1 0·1

0·1 0·1
0·1

⎞⎟⎟⎠
The components match the parameters of the corresponding primary and secondary variables, e.g. the elements
[·]12 contain the parameters of the cross-covariance between the primary and the first secondary variable.

We call θ1 the sill and θ2 the range. To simplify the notation, we assume that Yp and Y0 have the
same second moment structure, i.e., τ 2 = 0. In what follows, we discuss four examples of differ-
ent cross-covariance parameter combinations all resulting in positive definite covariance matri-
ces. The parameter values of the spherical covariances are given in Table 1. Those of Example 1
are chosen so that it represents an intrinsic model (11). Example 2 does not represent a specific
covariance structure but the parameters are chosen to ensure positive definiteness. Example 3
is almost identical to Example 2 except for one different sill value, to explore the sensitivity of
small changes. The last example is such that there is only considerable correlation between the
primary and the first secondary variable. The secondary variables of all examples are ordered
such that bikriging with the first and the third variable has the smallest and the largest mean
squared prediction error, respectively.

We compare AGG(CipC pi , Cii )-, AGG(CipC pi , I )-, AGG(� pr�sp, I )-, AGG(	, ω)- and,
AGG(11T, I )-cokriging, i.e., aggregation-cokriging based on the vector 1. Only Example 1 is of
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Fig. 2. Relative mean squared prediction error along the path in the lower left corner of Fig. 1 for the four
examples with parameters in Table 1. Bikriging and aggregation-cokriging approaches are dotted and dashed,
respectively. AGG(Ai , Bi )-cokriging is denoted by ‘Ai , Bi ’. The labels are ordered according to the relative mean

squared prediction error at the endpoint.

the form (11) and we approximate the covariance structure of Examples 2 to 4 with an intrinsic
structure var(Y) ∼ 	 ⊗ �cc, where 	 contains the respective sills and �cc is unspecified.

Figure 2 gives the relative mean squared prediction error along the path in the lower left corner
of Fig. 1. The mean squared prediction errors are bounded by the kriging and the cokriging
curves. The local minima at (0·06,0·11) are due to the close observation of the secondary variable.
Except in Example 3, several aggregation-cokriging schemes outperform bikriging. Among the
aggregation-cokriging schemes, AGG(CipC pi ,Cii )- and AGG(	, ω)-cokriging have in seven out
of eight cases the smallest and second smallest relative mean squared prediction error.

The figure for the relative mean squared prediction error along the path at the centre of Fig. 1
is very similar and Table 2 gives the relative mean squared prediction error for its end point
(0·5,0·5). Because more primary observations are available at the centre, it is much harder to
compete with bikriging with the first variable, which has the lowest relative mean squared pre-
diction error in two cases. In three cases, AGG(CipC pi ,Cii )-cokriging has the second smallest
relative mean squared prediction error and AGG(	, ω)-cokriging has the third smallest relative
mean squared prediction error in Examples 2 to 4.

Although still competitive, AGG(CipC pi , I )-cokriging and AGG(� pr�sp, I )-cokriging often
have a slightly higher relative mean squared prediction error than their computationally equiv-
alent counterparts AGG(CipC pi , Cii )-cokriging and AGG(	, ω)-cokriging, respectively. Of both
approaches, AGG(� pr�sp, I )-cokriging performs slightly better in general.

Introducing a nugget effect or scaling all ranges does not change the overall picture. The sys-
tem is however often sensitive to a change of the sill parameters. As illustrated by Examples 2
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Table 2. Relative mean squared prediction error for the prediction at (0·5, 0·5)

Example Bikriging with Aggregation-cokriging with arguments Cokriging
Y1 Y2 Y3 CipC pi , Cii CipC pi , I � pr �sp, I 	, ω 11T, I

1 0·961 0·973 0·983 0·941∗∗ 0·942 0·942 0·941∗ 0·944 0·941
2 0·959∗ 0·972 0·993 0·963∗∗ 0·967 0·966 0·965 0·971 0·920
3 0·900∗ 0·972 0·993 0·916∗∗ 0·937 0·933 0·923 0·947 0·809
4 0·775∗∗ 0·987 0·987 0·811 0·798 0·775∗ 0·777 0·925 0·770

∗Smallest value among bikriging and aggregation-cokriging. ∗∗Second smallest value among value among bikriging
and aggregation-cokriging.
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Fig. 3. Relative mean squared prediction error based on cokriging with an aggregation vector aT1 � 0 defined by
the spherical angles (ϑ, φ) for prediction at location (0·5,0·5). The contour lines are the relative mean squared pre-
diction error for bikriging with the three secondary variables a = ei (i = 1, 2, 3), and hence passing through the
spherical angles (0, 90), (90, 90) and (0, 0). The numerical minimum is denoted with +. The aggregation vectors

for AGG(� pr �sp, I )-, AGG(	,ω)- and AGG(11T, I )-cokriging are indicated with �, ◦ and 	, respectively.

and 3, a change in the sill of the cross-covariance between the primary and the first secondary
variable from 0·3 to 0·45 not only changes the relative mean squared prediction error dramati-
cally, but even the corresponding weights.

The examples illustrate that there is unfortunately no general rule to choose the aggrega-
tion scheme. We advocate using AGG(	, ω)-cokriging, especially if the covariance structure is
close to an intrinsic model (11). Otherwise, AGG(CipC pi , Cii )-cokriging should be favoured or
AGG(� pr�sp, I )-cokriging if computation time prohibits the former, in all cases with plug-in
estimates where necessary.

For a low-dimensional setting as given here, we can numerically find the aggregation vector
a by directly maximizing g(a), i.e. minimizing the mean squared prediction error. As an illus-
tration, we perform a grid search over all vectors a, aTa = 1, when predicting at (0·5,0·5). We
use spherical coordinates and represent all vectors a by the angles ϑ and φ. Figure 3 shows rel-
ative mean squared prediction error as a function of a for aT1 � 0. The plane aT1 = 0 divides
the sphere in two half spheres which are symmetric with respect to the mean squared prediction
error. This explains the bowl shape of the area in Fig. 3. The contour lines give the relative mean
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Fig. 4. September 1957 average temperature model output from five general circulation models in degrees Cel-
sius. The data are interpolated to a 5 × 5 degree latitude-longitude resolution.

squared prediction error for the bikriging approaches with the three secondary variables, corre-
sponding to a = ei (i = 1, 2, 3) and the aggregation vectors for AGG(� pr�sp, I )-, AGG(	, ω)-
and AGG(11T, I )-cokriging are indicated as well. In Example 1, AGG(	, ω)-cokriging and the
numerically found minimum mean squared prediction error coincides with the aggregation vector
(0·754,0·589,0·292)T, which is (38◦,73◦) in spherical coordinates. For Example 4 relatively few
angles lead to a smaller mean squared prediction error compared with bikriging with the first
variable, in other words, the contour encloses a very small area.

4. IMPUTATION OF OBSERVED TEMPERATURE FIELDS

We illustrate the proposed methodology with an example from numerical weather prediction.
A major contribution of the National Center for Environmental Prediction or the European Centre
for Medium-Range Weather Forecasts is the reanalysis of temperature or precipitation fields. A
reanalysis consists of blending sparse past weather observations with a numerical model and
deriving best guess fields, see Kalnay et al. (1996). The construction of a reanalysis is a very
time consuming computing process. Here, our goal is to illustrate our methodology to supply a
similar product using much less computing time.

In order to provide a reanalysis type field, we consider temperature fields from general circu-
lation model data. Within the context of the Fourth Assessment Report of the Intergovernmental
Panel for Climate Change, several centres provided publicly available detailed climate model out-
put for the last century (Meehl et al., 2007). For the analysis here, these fields are interpolated
to a common 5 × 5 degree resolution ranging from −85 to 85 degrees of latitude (m = 2448).
Figure 4 shows the five temperature fields considered for September 1957.

It is important to note that the climate model temperature fields represent one possible real-
ization of a September 1957 temperature field and it is not adequate to directly compare these
with observations at the same time. The differences between climate model fields and observa-
tions are representative of the natural climate variability, as well as of the differences between
different climate models. An optimal reanalysis for a specific month should be based on climate
model fields exhibiting similar climatological modes, e.g., similar indices for the North Atlantic
Oscillation, Southern Oscillation Index. On the other hand, the commonly used reanalysis fields
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Table 3. Weighted residual sum of squares of the fit and relative, to kriging, root
average squared prediction error of the prediction with each bikriging and with
AGG(	̂, ω̂)-cokriging. The aggregation weights of the secondary variables are given

in the last row.
Variable AGG(	̂, ω̂)-cokriging

Y1 Y2 Y3 Y4

WRSS 1·766 1·339 1·244 1·363 18·978
Relative RASPE 0·970 0·988 1·044 0·977 0·477
Weights 0·730 0·789 0·763 0·631

WRSS, weighted residual sum of squares; RASPE, root average squared prediction error.

differ at many grid points by more than 2◦C from observations in mid latitudes (Hertzog et al.,
2006), and by more than 4◦C over the Antarctic sea ice among themselves (Ma et al., 2008).
These differences are comparable to the differences between the climate model fields; see Fig. 4.
Therefore, we avoid a lengthy introduction of real or true gridded temperature observations by
using the output of NCAR-CCSM3.0 as the truth. In order to nevertheless mimic a reanalysis to
at least a certain extent, we reduce this true temperature field, i.e., our primary variable, to the
same locations as in the observational field for September 1957 described in Jones et al. (1999)
and Brohan et al. (2006), leading to n = 1507. The remaining � = 4 temperature fields are used
as secondary variables.

We assume a known common mean structure consisting of the point-wise mean of the temper-
ature fields. The centred temperature variable for i = 0, 1, . . . , � = 4 at location s = (δ, ϑ) with δ

and ϑ the latitude and longitude, is assumed to be second order stationary with spherical covari-
ance function (13). The cross-covariances Crs between different temperature variables are given
by a spherical covariance function, where we relax the condition on the sill parameter to θ1 ∈ R.
In general, there is no closed form characterization of the parameters for such a multivariate pro-
cess. A necessary condition on the cross-covariances though is that frs(ω)2 � frr (ω) fss(ω) (e.g.,
Wackernagel, 2006, p. 152), where frs is the spectral density, i.e., the Fourier transform, of the
covariance function Crs . The spectral density of the spherical covariance function is proportional
to {1 − cos(θ2ω)}2{1 − sin(θ2ω)}2(θ2ω)−4 and implies in practice that the range parameter has
to be the same for all covariance and cross-covariance functions.

Matheron’s classical variogram estimator (Matheron, 1962) is used to estimate the variograms
and cross-variograms. To fit the parameters, we bin the empirical variograms according to a
series of lags and then use weighted least squares, where the weights depend on the number of
pairs in each bin (e.g., Cressie, 1993, § 2.4). For bikriging and AGG(	̂, ω̂)-cokriging, a common
range parameter was fitted. Table 3 gives the weighted residual sum of squares of the fit, serving
as a crude measure of goodness-of-fit. The weighted residual sum of squares of aggregation-
cokriging is larger because all cross-covariances among the primary and secondary variables and
among the secondary variables need to be fitted as well.

Each secondary variable has m = 2448 observations, so straightforward implementations of
bikriging are computationally challenging and cokriging is infeasible. Since the spherical covari-
ance structure implies sparse matrices, the use of sparse matrix algebra allows the calcula-
tions to be carried out on ordinary desktop computers (Furrer et al., 2006; Furrer & Sain, 2010).
With a Centrino powered GNU/Linux laptop estimation/fitting/prediction take approximately
1·57/0·00/0·28, 2·93/0·03/1·78 and 9·42/0·66/1·75 s for kriging, bikriging and aggregation-
cokriging, respectively. However, depending on the parameters passed to the optimization func-
tions, the fitting times may increase by one order of magnitude. Without the use of sparse matrix
algebra, simple kriging and bikriging steps take 2·4 and 23·4 s, respectively.
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Fig. 5. Centred observed (a) and predicted (b) monthly average temperatures for September 1957 using
AGG(	̂, ω̂)-cokriging. (c) Prediction errors. The marks indicate the locations for which the aggregation-
cokriging residuals are larger in absolute value compared with the simple kriging ones. (d) Log ratios of the
absolute errors of AGG(	̂, ω̂)-cokriging and of bikriging with the third variable. The marks indicate the locations

for which the aggregation-cokriging residuals are larger in absolute value compared with the bikriging ones.

Figures 5(a) and 5(b) show the centred observed and predicted monthly average temperatures
for September 1957 using AGG(	̂, ω̂)-cokriging. Figures 5(c) and 5(d) show the prediction errors,
i.e., the difference between the predicted monthly average temperatures for September 1957 using
AGG(	̂, ω̂)-cokriging and the actually observed temperatures. Aggregation-cokriging has a rel-
ative root average squared prediction error of 0·48. For a simple kriging approach, prediction
in high and low latitudes relies only on observations that are far away. With the aggregation-
cokriging approach, observations from the secondary variables are available and improve the
prediction. The relative root average squared prediction error of the bikriging approaches range
from 1·04 to 0·97; see also Table 3. There is no structure in the locations where bikriging with the
first variable performs better than aggregation-cokriging. For this application, the aggregation-
cokriging performs well because the weighted average smooths the secondary variables close to
the poles, which can be interpreted as a regression towards the mean effect.

5. EXTENSIONS

The methodology was applied to gridded temperature anomaly fields from general circu-
lation models to construct a best guess reanalysis temperature field. The approach can be
applied to other multivariate settings, where we measure different variables on common loca-
tions to predict a primary variable. Examples include air pollution data like carbon monox-
ide and nitrogen oxides to predict tropospheric ozone production (Schmidt & Gelfand, 2003;
Majumdar & Gelfand, 2007; Apanasovich & Genton, 2010) and gridded wind speed and wind
direction model data to predict sea surface temperature (Berliner et al., 2000). If n + m is too
large to solve the associated linear system, it is possible to first apply aggregation-cokriging to
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address the large � problem, and then, for example, employ reduced rank representations of the
spatial process (e.g. Banerjee et al., 2008; Cressie & Johannesson, 2008) for the bikriging step.

We have assumed that the secondary variables are observed at all the distinct m locations. If
this is not the case, we cannot derive the aggregation matrix A as discussed in § 2 and it is not
possible to derive optimality results. If there are only a few missing values, or the sets of locations
are at least similar, we propose to proceed by first kriging the secondary variables to a common
set of locations and then apply the aggregation-cokriging procedure.

When the weights do not depend on sp, predicting at more than one location is straightforward
by changing the covariance matrices in (7)–(9) accordingly.

If the primary and the secondary variables have a polynomial or regression type mean, it is
possible to formulate the aggregation-cokriging solution as a minimization problem. However,
except for very simple or pathological examples, we are not able to formulate closed form expres-
sions for the optimal solutions. Nevertheless, the canonical correlation based derivation of the
aggregation-cokriging weights can still be made because canonical correlation analysis is mean
invariant (Mardia et al., 1979, Theorem 10.2.4).
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APPENDIX

Throughout the paper and the subsequent proofs, we must evaluate quantities of the form xTC−1w,
where the vectors and matrices involved are often partitioned. We first evaluate and simplify such quan-
tities. In the following, assume all matrices and vectors have the required dimensions, and are positive
definite where required. Then:(

xT yT
)(C B

BT A

)−1(
x
y

)
= xTC−1x + ‖y − BTC−1x‖2

E

with E = (A − BTC−1 B)−1 and ‖z‖2
E = zT Ez. If D is a nonsingular matrix, then(

xT yT DT
)( C B DT

DBT D ADT

)−1(
w

Dz

)
(A1)

= xTC−1w + xTC−1 B E BTC−1w − xTC−1 B Ez − yT ET BC−1w + yT Ez. (A2)

Proof of Lemma 1. Define the diagonal matrix containing the nonzero scalings G = diag(γ1, . . . , γm).
Using scalings results in using GA instead of A and we have to prove that (2) and (3) are invariant under G.
Both the predictor and the mean squared prediction error are of the form (A1), with D taking the role of G.
Because (A2) is independent of D, the prediction and the mean squared prediction error are independent
of the scalings γ1, . . . , γm . �

Proof of Proposition 2. With (11), we have ck = ωk(�cp − �c0�
−1
00 �0p) and Srs = 	rs�cc −

ωrωs�c0�
−1
00 �0c and (10) may be written as(

�∑
k=1

akωk c̃

)T( �∑
r,s=1

ar as	rs�cc − ar asωrωs S̃

)−1( �∑
l=1

alωk c̃

)
,
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where c̃ = ck/ωk and S̃ = �c0�
−1
00 �0c. Similar to Lemma 1, we scale a such that aTω = 1. Hence,

c̃T(aT	a�cc − S̃)−1c̃ = c̃TU (λ)−1c̃,

with λ = aT	a and U (λ) = λ�cc − S̃. Note that λ > 0 because a |= 0 and U (λ) is positive definite
because (11) is so. For any c̃, maximizing maxλ c̃TU (λ)−1c̃ is equivalent to minλ c̃TU (λ)c̃ and to
minλ λc̃T�ccc̃, and to mina λ = mina aT	a, yielding the desired result. �

Proof of Lemma 2. Because a(si )
T1 |= 0, we scale the weight vectors and use ãi = a(si ){a(si )

T1}−1.
Then with A based on ãi we have

A(�Y0�
−1
00 �0p − �Y p) =

�∑
r=1

diag(Lr )cr = c1,

where ck = �k0�
−1
00 �0p − �kp. Let EA = {A(�YY − �Y0�

−1
00 �0Y)AT}−1. Equivalent expressions hold

for the second aggregation matrix. We need to show that cT
1 EBc1 < cT

1 EAc1 if and only if 0 < cT
1(EA −

EB)c1. Now, EA − EB is positive definite if and only if E−1
B − E−1

A is positive definite (Harville, 1997,
Theorem 18.2.4), if and only if

B(�YY − �Y0�
−1
00 �0Y)BT − A(�YY − �Y0�

−1
00 �0Y)AT (A3)

is positive definite. The matrix �YY − �Y0�
−1
00 �0Y is defined by its �2 blocks, �rs − �r0�

−1
00 �0s , each

being a positive definite m × m matrix. The second term of the blocks does not depend on s or r . Thus,

A(�YY − �Y0�
−1
00 �0Y)AT =

�∑
r=1

�∑
s=1

diag(Lr )(�rs − �r0�
−1
00 �0s) diag(Ls)

=
�∑

r=1

�∑
s=1

�rs ◦ Lr LT
s −

�∑
r=1

diag(Lr )�10�
−1
00 �01

�∑
s=1

diag(Ls)

=
�∑

r=1

�∑
s=1

�rs ◦ Lr LT
s .

Therefore, (A3) is positive definite if and only if (12) is positive definite. �

Proof of Lemma 3. In the case of constant weights given by a(aT1)−1 and b(bT1)−1, Grs =
ar as(aT1)−211T and accordingly Hrs = br bs(bT1)−211T. Therefore, (12) reduces to

∑�
r=1

∑�
s=1 �rs ◦

11T{br bs(bT1)−2 − ar as(aT1)−2}, proving the first statement. A sum of positive definite matrices is
positive definite and the Schur product of a positive definite matrix with a nonnegative definite
matrix is positive definite (Horn & Johnson, 1994, Theorem 5.2.1), proving the second statement. For
the third statement, we write �rr = Kr + �12, implying

∑�
r=1

∑�
s=1 �rs = �2�12 +∑�

r=1 Kr . Hence,∑�
r=1

∑�
s=1 diag(Lr )�rs diag(Lr ) = �2�12 +∑�

r=1 Kr ◦ 11Ta2
r (a

T1)−2, because
∑�

r=1 Lr = 1. Finally, if
�rr = �11, the problem reduces to

∑�
r=1 b2

r (b
T1)−2 − a2

r (a
T1)−2 being positive. �

Proof of Corollary 1. The first item is trivial. In the case of bikriging, b = e1 and the second item
follows immediately from the last statement of Lemma 3. �

Proof of Proposition 3. The matrices Cii and Cip defined by (7) and (8) are of the form b1 I + b211T

and b31. Thus, the vector a = 1 is an eigenvector of C−1
i i CipC pi and because of the symmetry of Cii also

of C−1/2
i i CipC pi C

−1/2
i i . The covariance structure with (11) implies that ω is proportional to 1 and 	 =

α I + β11T, for some constants α and β. Recall that the largest eigenvalue of 	 is α + �β with associated
eigenvector 1. Further, AGG(	,ω)-cokriging uses an aggregation vector a = 	−11(1T	−11)−1 and with
	−1 = α−1 I − β(α2 + �αβ)−111T we can conclude that a is proportional to 1.
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We write the covariance between different secondary variables as �12 and the within covariance of the
secondary variables as �12 + �R . For aggregation-cokriging, we use A= 1T ⊗ I to show that

g(1) = m(�1p − �10�
−1
00 �0p)

T(�R + m�12 − �10�
−1
00 �01)

−1(�1p − �10�
−1
00 �0p).

For cokriging, we write the matrices with Kronecker products, namely

(�Y p − �Y0�
−1
00 �0p)

T(�YY − �Y0�
−1
00 �0Y)−1(�Y p − �Y0�

−1
00 �0p) = {1T⊗ (�1p − �10�

−1
00 �0p)}T

× (I ⊗ �R + 11T ⊗ �12 − 11T ⊗ �10�
−1
00 �01

)−1{1T ⊗ (�1p − �10�
−1
00 �0p)}T = g(1). �
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