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Summary
Recent models based, in part on a study of Huntington’s

disease, suggest that the basal ganglia are involved in
on-line movement guidance. Two experiments were con-

ducted to investigate this idea. First, we studied advanced

Parkinson’s disease patients performing a reaching task

known to depend on on-line guidance. The task was to

‘look and point’ in the dark at visual targets displayed in

the peripheral visual field. In some trials, the target location

was slightly modified during saccadic gaze displacement

(when vision is suppressed). In both patient and control
groups, the target jump induced a gradual modification

of the movement which diverged smoothly from its original

path to reach the new target location. No deficit was found

in the patients, except for an increased latency to respond to

the target jump (Parkinson’s disease: 243 ms; controls:

166 ms). A computational simulation indicated that this

response slowing was likely to be a by-product of bradykin-

esia. The unexpected inconsistency between this result and
previous reports was investigated in a second experiment.

We hypothesized that the relevant factor was the charac-

teristics of the corrections to be performed. To test this

prediction, we investigated a task requiring corrections

of the same type as investigated in Huntington’s disease,
namely large, consciously detected errors induced by large

target jumps at hand movement onset. In contrast with the

smooth adjustments observed in the first experiment, the

subjects responded to the target jump by generating a dis-

crete corrective sub-movement. While this iterative

response was relatively rapid in the control subjects (220

ms), Parkinson’s disease patients exhibited either drama-

tically late (>730 ms) or totally absent on-line corrections.
When on-line corrections were absent, the initial motor

response was completed before a second corrective

response was initiated (the latency of the corrective

response was the same as the latency of the initial response).

Considered together, these results suggest that basal gan-

glia dependent circuits are not critical for feedback loops

involving a smooth modulation of the ongoing command.

These circuits may rather contribute to the generation of
discrete corrective sub-movements. This deficit is in line

with the general impairment of sequential and simulta-

neous actions in patients with basal ganglia disorders.
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Introduction
Initial studies investigating the neural substrates of on-line

motor control have emphasized the critical contribution of

two cerebral areas, namely the posterior parietal cortex in

the region of the intraparietal sulcus and the anterior parasa-

gittal cortex of the cerebellum (Desmurget et al., 2001;

Desmurget and Grafton, 2003; Blakemore and Sirigu, 2003).

More recent observations have also stressed the potential con-

tribution of subcortical structures (Day and Brown, 2001)

including the superior colliculus (Stuphorn et al., 1999,

2000; Sabes, 2000), and the basal ganglia. For the latter struc-

ture, the most convincing evidence came from a study by Smith

et al. (2000) showing that patients with Huntington’s disease
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were greatly impaired at correcting both self-generated errors

in movement trajectory and externally generated errors arising

from the application of a force pulse at the beginning of the

movement. To account for these observations, it was suggested

that basal ganglia could be involved in on-line movement

guidance and, more generally, in the process of forward mod-

elling. This latter idea was based on computational and beha-

vioural observations suggesting that feedback mechanisms

rely on a ‘forward model’ that combines both efferent and

afferent signals to estimate the location of the moving hand

without delays (Gerdes and Happee, 1994; Wolpert and Miall,

1996; Bhushan and Shadmehr, 1999; Desmurget and Grafton,

2000; Ariff et al., 2002). Consistent with the involvement of

basal ganglia in forward modelling, Lawrence (2000) recently

presented a large set of convergent observations showing that

basal ganglia dysfunctions affect the processes of motor pre-

diction and error detection in various domains related to action,

cognition and emotion (see also Schultz and Dickinson, 2000).

Although substantial, the evidence for specific basal ganglia

involvement in on-line movement guidance and forward mod-

elling is not totally compelling. Three reservations seem espe-

cially significant. First, a general predictive capability (i.e. for

reward prediction or error detection during cognitive tasks)

may be very different from the predictive process engaged

in on-line motor control. Secondly, it has been repeatedly

shown that Parkinson’s disease patients can successfully use

visual feedback to control reaching (Flowers, 1976; Flash et al.,

1992; Ghilardi et al., 2000) and tracking movements (Bloxham

et al., 1984; Day et al., 1984; Liu et al., 1999). Theoretically, a

deficit in on-line movement guidance and/or forward model-

ling should result in a dramatic inability to track a target and/or

correct the ongoing trajectory using visual feedback (Miall

et al., 1993; Desmurget and Grafton, 2003). Thirdly, with

respect to the study by Smith and colleagues (Smith et al.,

2000), Huntington’s disease does not affect the basal ganglia

network alone. This disease involves substantial anatomo-

functional abnormalities in other cortical and subcortical struc-

tures, even at the preliminary stages of the disease (Penney and

Young, 1998). These secondary abnormalities might theoret-

ically explain the inability of Huntington’s disease patients to

correct their ongoing movement. In addition, feedback control

may be impaired only in Huntington’s disease due to selective

involvement of critical striatal elements, i.e. cholinergic intrin-

sic and gabaergic output neurons (Penney and Young, 1998).

The aim of the present study is to address some of these

concerns by investigating the process of on-line motor correc-

tion in advanced Parkinson’s disease patients. In these patients,

functioning of the whole basal ganglia network is strongly

impaired due to the degeneration of dopaminergic neurons of

the substantia nigra pars compacta. We reasoned that if basal

ganglia dependent circuits are critical for the process of move-

ment guidance and more generally for the process of forward

modelling, Parkinson’s disease patients should exhibit the

same inability as Huntington’s disease patients to correct

their ongoing trajectory when it happens to be erroneous.

This hypothesis was tested in two successive experiments.

In the first experiment, we investigated the ability of

advanced Parkinson’s disease patients to amend the ongoing

movement in response to a small subliminal target jump. In this

task, often referred to as ‘the double-step paradigm’, the sub-

jectsarerequiredto‘lookandpoint’with their rightunseenhand

to visual targets presented in the peripheral visual field. In some

trials, the target location remains stationary while, in others, it

changes during the course of the ocular saccade. From a func-

tional point of view, the movements directed at stationary and

jumping targets have been shown to be identical when per-

formed by healthy subjects (Desmurget and Grafton, 2000,

2003). This similarity takes root in the organization of the

motor system. Indeed, when a subject is required to point

‘quickly and accurately’ at a stationary target located in the

peripheralvisual field,muscleactivationstartsnearly simultan-

eously for eyes and arm (Biguer et al., 1982; Gribble et al.,

2002), indicating that the motor command initially sent to

the upper limb is based on the initial peripheral visual signal.

As reported in several studies, this signal isnot entirely accurate

(Prablanc et al., 1979; Bock, 1993). At the end of the occular

saccade, which roughly corresponds to hand movement onset

(Prablanc and Martin, 1992; Desmurget et al., 2001), the target

location is recomputed on the basis of peri-foveal information.

The updated visual signal is then used by the nervous system to

adjust theongoing trajectory (Prablancetal., 1986).Subliminal

double-step experiments take advantage of this organization to

increase the initial motor error without modifying the func-

tional properties of the system (Desmurget and Grafton,

2000, 2003).

Results of the first experiment were inconsistent with pre-

vious reports suggesting that the basal ganglia mediate move-

ment guidance (Smith et al., 2000; Lawrence et al., 2000). The

second experiment was carried out to examine the origin of the

inconsistency. We hypothesized that the difference in experi-

mental designs was the critical factor. We thus investigated a

task requiring corrections of the same type as those previously

investigated in Huntington’s disease patients, namely large

consciously detected errors induced by large target jumps at

hand movement onset. A potential theoretical substrate for the

hypothesis that different experimental designs might lead to

different observations lies in behavioural results, suggesting

that different strategies might be used to correct different types

of errors (Desmurget and Prablanc, 1997; Prablanc et al.,

2003). Small subliminal errors might be corrected through a

subtle modulation of the ongoing motor command (Desmurget

and Grafton, 2003; Prablanc et al., 2003), whereas large con-

sciously detected errors might be corrected through the gen-

eration of a discrete sub-movement (Van Sonderen et al., 1990;

Flash and Henis, 1991; Paulignan et al., 1991).

Methods

Subjects
The subjects were enrolled after their informed consent was obtained.

Control subjects were recruited in the Department of Neurology of the
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Wertheimer Neurologic Hospital, among the persons visisting their

hospitalized relatives. They were all right-handed and the experi-

mental procedure was approved by the Human Investigations

Committee of the Wertheimer Neurologic Hospital. Neither the

parkinsonian nor the control subjects presented evidence of dementia

or other neurological disorders at enrolment. The patients involved in

this study were at a severe stage of disease and were under consi-

deration for surgical treatment. They did not exhibit major signs of

tremor. At the time of evaluation, they had been off medication for

>12 consecutive hours (patients were tested in the morning, having

been off medication since the previous evening). For each patient, the

Hoehn and Yahr score and the Unified Parkinson’s Disease Rating

Scale (UPDRS) were determined before the experiment. Seven patients

(four females and three males; age: mean 56 6 11 years) and seven

control subjects (three females and four males; age: mean

53 6 7 years) took part in the first study. Five patients (three females

and two males; age: 46 6 8 years) and five control subjects (three

females and two males; age: 55 6 10 years) took part in the second

study. The age difference observed between the two groups in

experiments 1 and 2 was not statistically significant (t < 1.5; P >

0.15). Table 1 summarizes the clinical features of the patients for

experiments 1 and 2.

Apparatus
The experimental device is illustrated in Fig. 1. It consisted of a

horizontal table in front of which the subject was seated comfortably.

The height of the table was adjusted to be level with the lower part of

the subject’s sternum. An array of red light emitting diodes (LEDs),

5 mm in diameter, was suspended over the pointing surface and a half-

reflecting mirror was placed between the eyes of the subject and the

table. Looking down at the mirror, the subject saw the virtual image of

the targets in the plane of the pointing surface. With this device, the

reaching hand could not occlude the virtual image of the LEDs, which

prevented the subject from gaining an indirect feedback of his/her

reaching accuracy. A light source was placed between the pointing

table and the mirror. When turned on, it allowed the subject to see

his/her hand. Vision of the hand was circumscribed, however, to the

starting location area (a small window was opened in a black card-

board placed below the mirror, thus preventing the subject from seeing

the actual location of the hand at the end of the movement; see below).

The hand starting position was located on the pointing table, in the

sagittal direction (y axis), 200 mm in front of the subject’s eye plane.

The starting position was defined by a green LED. When the index

fingertip was at the starting point, the forearm rested on the table in a

semi-flexed position. Eight targets (red LEDs) were defined along a

Table 1 Clinical characteristics of the group of patients with Parkinson disease

Patient Study Sex
Age
(years)

Motor UPDRS (off-medication)
(max score 108)

Hoehn and Yahr stage (off-medication)
(range 0–5)

Disease duration
(years)

1 1 F 49 26 3 11
2 1 F 67 52 4 14
3 1 M 52 17 2.5 8
4 1 M 52 42 2 6
5 1 F 49 45 3 17
6 1 F 76 13 2 8
7 1 M 48 29 3 6
8 2 F 38 24 2 9
9 2 F 49 54 4 ?

10 2 M 58 47 3 15
11 2 F 39 35 2 12
12 2 M 48 53 4 6

M = male; F = female.

X axis

Y axis

Fig. 1 Schematic representation of the experimental apparatus. S is the hand starting location and F is the visual fixation point. Black circles
symbolize the location of the targets. See text for details.
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fronto parallel-line (x axis). The sagittal distance of the ‘target line’ to

the hand starting position was 300 mm. The first target was located in

the sagittal plane (gaze fixation target; F). The other targets were

positioned to the right at 160 mm (T1), 180 mm (T2), 200 mm

(T3), 220 mm (T4), 240 mm (T5), 260 mm (T6) and 280 mm (T7).

During the experiment, the subject’s head was fixed with a chin-rest

and positioned along the line joining the hand starting point to the

fixation target. When expressed in eye coordinates, the target eccen-

tricities were: 17.7� (T1); 19.8� (T2); 21.8� (T3); 23.8� (T4); 25.6� (T5);

27.5� (T6); and 29.3� (T7).

Movement of a small sensor located on the subject’s index fingertip

was recorded with a magnetic tracking system (miniBIRD; Ascencion

Technology Corporation, Berlington, Vermont, USA) at a sampling

frequency of 100 Hz. Eye movements were recorded binocularly using

DC electro-oculography (EOG) at a sampling frequency of 1000 Hz.

During the experiment, eye velocity was extracted on-line from the

position signal using a two-point central difference derivative algo-

rithm (Bahill and McDonald, 1983). For the first experiment, the

change in target location in the ‘jump’ trials occurred when eye velo-

city reached a level roughly equal to half of the peak velocity. The

threshold for target jump was set manually on an oscilloscope at the

beginning of the experiment while the subject was required to perform

a series of 25� saccades. It was adjusted during the experiment if

necessary. For the second experiment, the change in target location

in the ‘jump’ trials occurred when the hand released a small switch

placed on the table at the starting location.

Experimental conditions and procedure
For the first experiment, the instruction was to ‘look and point as

quickly and accurately as possible to the targets presented on the

table’. For the second experiment, the instruction was to ‘look and

point as quickly and accurately as possible to the targets presented on

the table and to correct the movement, as quickly and accurately as

possible, in the case of a change in the location of the target after the

beginning of the trial’. For both experiments, a typical trial involved

four steps.

(i) The ambient light and the green LED were turned on, allowing

the subject to position his/her hand at the starting location.

(ii) The ambient light and the green LED were turned off. At the

same time, the visual fixation target (F) was turned on.

(iii) After a random delay ranging between 1 and 1.5 s, the fixation

point was turned off and a target was presented in the peripheral

visual field instructing the subject to initiate his/her movement.

The target location either remained stationary or jumped to a

new location during the course of the initial motor response of

the subject. Target jumps occurred only in the trials initially

directed at the T4 target (220 mm). This target, when presented,

could either stay stationary, jump to the left, or jump to the right.

In the first experiment, it jumped, during the saccadic gaze shift,

from T4 to T2 (220!180 mm) or T6 (220!260 mm). In the

second experiment, it jumped, at hand movement onset, from T4

to T1 (220!160 mm) or T7 (220!280). The targets that were

not directly involved in these combinations (first experiment: T1,

T3, T5, T7; second experiment: T2, T3, T5, T6) were mainly used

as ‘decoys’ to increase spatial uncertainty and thus prevent the

occurrence of learning and anticipatory strategies. For a given

experiment, each of the decoy targets was presented five times

(20 trials), while each of the relevant targets was repeated 10

times (50 trials; first experiment: T2, T4, T6, T4–2, T4–6; second

experiment: T1, T4, T7, T4–1, T4–7;). The total number of trial per

session was thus equal to 70.

(iv) After completion of the pointing, the target was turned off while

the ambient light and the green target were turned on again

instructing the subject to bring his/her hand back to the starting

point. As emphasized above, vision of the hand was only allowed

in a small area around the starting location, which prevented the

subject from gaining information about the accuracy of his/her

former motor response.

Data analysis
The technique used for calibrating the EOG signal has been described

elsewhere in detail (Pélisson et al., 1988). In brief, the signal was

measured while the subject looked at a sequence of peripheral targets.

A calibration curve was then computed by fitting a polynomial through

the data. This curve was used to transform the EOG signal into a

calibrated eye position signal. The eye position signal was filtered

numerically at 30 Hz with a finite impulse response dual pass filter

using 33 coefficients. Movement velocity was computed from the

filtered position signal using a two-points central difference derivative

algorithm (Bahill and McDonald, 1983). The beginning and the end of

the primary saccade were automatically detected using a velocity

threshold procedure (50�/s). The results of this procedure were

checked off-line and corrected, if necessary. The main saccade-related

parameters analysed in this experiment were the reaction time (RTeye),

the movement duration (MDeye) and the amplitude (AMP) of the

primary saccade. This parameter was expressed in absolute (AMP;

gaze displacement in degrees) or relative value (AMP%; ratio of the

actual to the required displacement).

For arm movements, the x, y and z position signals were filtered at

10 Hz with a finite impulse response dual pass filter using 33 coeffi-

cients. Movement velocity was computed from the filtered position

signal using a two-points central difference derivative algorithm

(Bahill and McDonald, 1983). The same method was used to compute

the hand’s acceleration from the velocity signal. The onset and the end

of the movements were computed automatically using the following

thresholds:handvelocity = 30mm/s,handacceleration = 500mm/s2.

The results of this procedure were checked off-line and corrected, if

necessary. The main arm-related parameters analysed in this experi-

ment were movement reaction time (RT), movement duration (MD),

movement peak velocity (PV), the movement path linearity (PL), the

movement end-point location (Mloc), the movement final error (Merr),

the movement end-point variability and the hand path variability. PL

was defined, in the reaching plane, as the ratio of the largest deviation

of arm trajectory from the line connecting the start and end points of

the movement to the length of this line (Atkeson and Hollerbach,

1985). It accounted for the global movement curvature (Desmurget

et al., 1999). The hand path linearity index is equal to 0 when the

movement is perfectly straight and to 0.5 when the movement is semi-

circular. Mloc was defined as the x (xloc) and y (yloc) coordinates of the

index fingertip at the end of the movement. Merr was expressed in the

same Cartesian reference and thus decomposed into x errors (x err: x loc

minus x target) and y errors (y err: y loc minus y target). Movement end-

point variability was represented by the 95% confidence ellipse of the

end-point distribution; the lengths of the axes of this ellipse are the

square roots of the eigenvalues of the variance–covariance matrix of

the end-point distribution scaled to contain 95% of the theoretical

end-point population (Johnson and Wichern, 1982). The end-point

confidence ellipse was characterized by: (i) its surface; (ii) its

shape, defined as the ratio of the lengths of the axes of the confidence
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ellipses (major axis/minor axis); and (iii) its orientation, defined as the

angle between the major axis of the ellipse and the movement direction

(because hand paths were not straight, movement direction was

defined as the orientation of the regression line computed over the

last third of the trajectory). Hand path variability was represented

according to a procedure described by Goodbody and Wolpert

(1998). In brief, the hand position, for each movement, was re-sampled

at 50 evenly spaced points along the path length. For each point of the

re-sampled trajectory, a 95% confidence ellipse was computed.

Statistical analysis was performed in two steps. First, movements

directed at stationary targets were compared for the Parkinson’s dis-

ease patients and the control subjects. Two-way between by within

subjects analysis of variance (ANOVA) design was used to determine

significant differences between experimental conditions for arm and

eye movement parameters. The between subject factor was the Group

factor (two levels: Parkinson’s disease, controls). The within subject

factor was the target factor (seven levels: T1, T2, T3, T4, T5, T6, T7). In a

second step, the effect of the target jump was addressed by comparing

the reference condition (T4) to the perturbed conditions. As pre-

viously, a two-way between by within subjects ANOVA design

was used. The between subject factor was the Group factor (two levels:

Parkinson’s disease, controls). The within subject factor was the target

factor (three levels: Experiment 1: T4, T4–2, T4–6; Experiment 2: T4,

T4–1, T4–7). The threshold for statistical significance was set at 0.05.

In addition to the these analyses, specific investigations were per-

formed to identify the motor reaction time to the target jump (MRT) in

each group. As shown in previous reports (Prablanc and Martin, 1992;

Desmurget and Prablanc, 1997), variation of the characteristics of the

velocity vector is the most sensitive parameter allowing determination

of MRT. Therefore, this variable was used in the present study. For the

sake of sensitivity, only the projection of the velocity vector in the

pointing plane was considered (path corrections occurred mainly

along the horizontal direction). In addition, only the perturbed con-

ditions were studied (path corrections required opposite adjustments

for the two target jump conditions, making kinematic divergences

easier to detect when these conditions were contrasted with each

others). In each group, the x–y coordinates of the velocity vector

were determined with a temporal increment of 10 ms. For each

time increment, a one-way MANOVA (multivariate analysis of

variance) with repeated measure (two levels: experiment 1: T4–2,

T4–6; experiment 2: T4–1, T4–7) was performed on the coordinates

of the velocity vector to identify the first visible kinematic change

on the trajectory (Desmurget and Prablanc, 1997). MRT was defined

as the first point for which the velocity vector was different in the two

perturbed conditions.

Results
Movements directed at stationary targets
Because the first and second experiments showed similar

results for the movements directed at stationary targets, only

the data related to the first experiment are reported below.

Eye movement characteristics
There was a trend for the Parkinson’s disease patients to exhibit

longer saccadic RT than the control subjects (RTeye:

controls = 225 ms; Parkinson’s disease = 294 ms). This

difference was close to the statistical threshold without

reaching it [F(1,12) = 4.4; P > 0.05]. There was no effect of

the target location on RTeye and no significant interaction was

observed for this parameter between the two experimental

factors [Fs(6,72) < 1.2; P > 0.30]. In contrast to RTeye, the

saccadic duration was clearly independent of the group factor

[MDeye: controls = 79 ms; Parkinson’s disease = 81 ms;

F(1,12) = 0.3; P > 0.55]. However, MDeye varied substantially

as a function of the target location [F(6,72) = 29.8; P <

0.0001]. This parameter increased quasi linearly with the sac-

cadic amplitude (T1 = 70 ms; T4 = 80 ms; T7 = 92 ms). No

significant interaction was observed for MDeye between the

two experimental factors [F(6,72) = 0.2; P > 0.95].

Individual saccadic responses toward stationary targets are

illustrated in Fig. 2 (continuous lines). As already reported in

several studies (Prablanc and Jeannerod, 1975; Harris, 1995),

the oculomotor response consisted of two phases: (i) a primary
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Fig. 2 Individual eye position signals recorded in the reference (T4, continuous line) and perturbed (T4–2, dashed line; T4–6, doted line)
conditions for a control subject (left panel) and a Parkinson’s disease (PD) patient (right panel). Experiment 1: see text for details.
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saccade undershooting the initial target position and covering,

on average, 92% of the initially required displacement; and

(ii) a corrective saccade achieving accurate target acquisition.

There was a tendency for the initial saccadic undershoot to be

greater in the Parkinson’s disease patients (AMP% = 91%)

than in the control subjects (AMP% = 94%). This difference,

however, did not reach the statistical threshold [F(1,12) = 3.2;

P > 0.10]. In both groups, the saccadic undershoot presented a

similar magnitude irrespective of the saccade amplitude, as

shown by the absence of significant effect of the target factor

on AMP% [F(6,72) = 3.0; P > 0.10]. This stability of AMP%

produced, de facto, a nearly linear increase of the absolute

amplitude of the primary saccade (AMP) as a function of

the target location [F(1,12) = 0.8; P > 0.60; T1 = 16.4�;
T4 = 22.0�; T7 = 27.2�]. There was no significant interaction

for the saccade amplitude (AMP, AMP%) between the two

experimental factors [Fs(6,72) < 1.7; P > 0.10].

Hand movement characteristics
The patients exhibited longer hand RT (Parkinson’s disease =

438 ms; controls = 320 ms) and hand MD (Parkinson’s dis-

ease = 686 ms; controls = 527 ms) than the control subjects

[Fs(1,12) > 5.1; P < 0.05]. There was no significant effect of the

target location and no significant interaction between the

experimental factors for these parameters [Fs(6,72) < 1.5; P >

0.15]. The increase of MD in the Parkinson’s disease group

was accompanied by a diminution of the peak velocity

[F(1,12) = 25.7; P < 0.0005]. The absence of significant

lengthening of MD as a function of the target eccentricity

(i.e. the movement amplitude) was achieved by increasing

the movement velocity for the targets requiring the highest

movement amplitudes [F(6,72) = 27.1; P < 0.0001]. This

scaling is illustrated in Fig. 3. It was similar in both groups

as shown by the absence of significant interaction between the

target and group factors [F(6,72) = 1.9; P > 0.075].

As illustrated in Fig. 3, both the Parkinson’s disease patients

and the control subjects exhibited curved hand paths. For all

target locations, the movement was slightly more curved in the

control group than in the Parkinson’s disease population

(controls = 0.058;Parkinson’s disease = 0.051). This between

group difference, however, did not reach the statistical thresh-

old [F(1,12) = 0.4; P > 0.55]. A different result was observed

for the target factor [F(6,72) = 14.5; P < 0.0001]; path curva-

ture tended to increase monotonically with target eccentricity

(T1 = 0.042; T4 = 0.054; T7 = 0.069; Fig. 3). No statistical

interaction was observed for the movement curvature between

the experimental factors [F(6,72) = 0.3; P > 0.90], indicating
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Fig. 3 Individual and path and corresponding velocity profiles exhibited by a control subject (left panels) and a Parkinson’s disease (PD)
patient (right panels) for movements directed to the intermediate (T4, continuous line) and extreme (T1, dashed line; T7, dotted line)
stationary targets. For the sake of clarity, velocity curves are aligned on movement onset. Experiment 1: see text for details.
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that the effect of target eccentricity on this parameter was

similar in both groups.

An interesting result with respect to the present study lies in

the absence of significant difference in the mean accuracy of

movement between the Parkinson’s disease patients and the

control subjects. As shown by statistical analyses, no effect of

the group factor [Fs(1,12) < 0.56; P > 0.45] and no group by

target interaction [Fs(6,72) < 0.72; P > 0.60] was observed for

either xerr or yerr. Similar results have been observed in previous

studies in which vision of the hand had been provided to

Parkinson’s disease patients prior to movement onset (Poizner

et al., 1998; Ghilardi et al., 2000). We will return to this issue in

the discussion.

While movement mean accuracy was not different between

groups, trial-to-trial end-point variability was significantly

higher in the Parkinson’s disease population. On average, the

surface of the end-point confidence ellipse was increased by

nearly 60% in the patients with respect to the control subjects

[Parkinson’s disease = 2513 mm2; controls = 1598 mm2;

F(1,12) = 4.8,P<0.05].Theotherparametersoftheconfidence

ellipse did not vary significantly as a function of the group

factor; in both the patients and the healthy subjects, the end-

point confidence ellipse presented a typically elongated shape

[Parkinson’s disease = 2.9; controls = 2.6; F(1,12) = 0.6,

P > 0.45], roughly oriented along the final movement direction

[Parkinson’s disease = 7.1�; controls = 9.8�; F(1,12) = 0.1, P

> 0.80]. The surface, shape and orientation (computed with

respect to the final movement direction; see Methods) of the

end-point confidence ellipse were not significantly affected by

the target and the interaction factors [Fs(6,72) < 1.9, P > 0.10].

These resultsare illustrated inFig.4forall subjectsandthe three

targets involved in the jump trials (T2, T4, T6).

Not only end-point variability, but also hand path variability

was larger in the Parkinson’s disease patients. For instance, at

the point where 40% of the total movement distance had been

covered, the surface of the 95% confidence ellipse was �75%

higher in the Parkinson’s disease patients than in the control

subjects. This result is interesting inasmuch as it suggests that

the difference in spatial variability between the patients and the

control subjects was present early in the movement, i.e. that it

was not related to a feedback dysfunction. Figure 5 illustrates

this point by displaying hand path variability for two subjects

and three ‘stationary’ targets (T2, T4, T6; columns 2–4).

Eye–hand coordination
The previous kinematic data indicate that the arm response

started around completion of the primary saccadic movement

Fig. 4 95% end-point confidence ellipses exhibited by the control subjects (left columns) and the Parkinson’s disease patients (right
columns) for movements directed at the T2, T4 and T6 stationary targets (continuous lines) and the T4–2 and T4–6 jumping targets
(dotted lines).
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in the control group [RThand – (RTeye þ MDeye) = 16 ms],

as reported in previous studies (Prablanc and Martin, 1992;

Desmurget et al., 2001). A slightly different behaviour was

observed in the Parkinson’s disease population. In this case,

hand movement was found to start later, after completion of the

primary saccade [RThand – (RTeye þ MDeye) = 63 ms]. How-

ever, this difference can be accounted for by previous results

showing that pre-movement EMG in limb muscles is markedly

lengthened in Parkinson’s disease patients; the build-up of

muscular activity is slowed by 50–100 ms in this population

of patients with respect to healthy subjects (Godaux et al.,

1992; Pfann et al., 2001). Thus, in both groups, the initial

motor command sent to the arm was likely issued before visual

capture of the target (i.e. on the basis of a partially inaccurate

peripheral retinal input).

Movements directed at jumping targets: small
subliminal target jumps (Experiment 1)
In this experiment, none of the subjects reported the existence

of a change in target position during the saccadic response,

even when questioned explicitly at the end of the study. In the

same vein, none of the participants had the feeling of correcting

the movement during its time course. Both the Parkinson’s

disease patients and the control subjects reported that they

reached ‘straight to the target’.

Eye movement characteristics
The main parameters of the primary saccadic response did not

depend on any of the experimental factors. Of particular

interest with respect to this result is the absence of effect

of the target jump. For both the patients and the controls,

the latency [RTeye; F(2,24) = 1.2; P > 0.30], the duration

[MDeye: F(2,24) = 0.1; P > 0.90] and the amplitude [AMP,

AMP%; Fs(2,24) < 1.3; P > 0.25] of the main saccade were

similar in the reference (T4) and perturbed conditions (T4–2,

T4–6). As illustrated in Fig. 2 for a Parkinson’s disease patient

and a control subject, correct foveation of the target was

achieved in the perturbed trials by adjusting the amplitude

and the direction of the corrective saccade, which was already

present in the reference condition. When the perturbation was

forward (T4–6), the target jump added with the natural

saccadic undershoot resulting in a large hypometria. By

Fig. 5 95% confidence areas for the hand paths and hand velocity profiles for two representative subjects and five targets (T4–2, T2, T4, T6,
T4–6). Data were obtained by resampling hand position, for each individual movement, at 50 evenly spaced points along the path
length (see methods). PD = Parkinson’s disease.
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contrast, when the perturbation was backward (T4–2), the

target jump was partially cancelled by the natural saccadic

undershoot creating a limited hypometria. Visual inspection

of the data indicated that one corrective saccade was gener-

ally enough to achieve correct foveation in both the

Parkinson’s disease population and the control group. With

respect to this point, however, it should be mentioned that our

recording technique (EOG) did not allow reliable detection of

small corrective saccades.

Hand movement characteristics
Figure 6 displays representative individual hand paths and

corresponding velocity profiles for a Parkinson’s disease

patient and a control subject in the reference (T4) and the

perturbed conditions (T4–2, T4–6). As shown in Fig. 6, clear

corrections occurred in both participants in response to the

target jump. For T4–2 and T4–6, the trajectory was initially

directed at the reference target (T4) before diverging smoothly

toward the new target location. These individual observations

are representative of the behaviour observed at the population

level for both the Parkinson’s disease patients and the control

subjects.

In agreement with earlier studies (Pélisson et al., 1986;

Desmurget et al., 1999, 2001), hand path corrections caused

a very limited and non-significant [F(2,24) = 2.4; P > 0.10]

increase of the movement duration in both the Parkinson’s

disease (T4 = 680 ms; T4–2: 691 ms; T4-6: 696 ms) and the

control (T4: 518 ms; T4–2 = 531 ms; T4–6 = 530 ms) groups.

There was no group by target interaction [F(2,24) = 0.1; P >

0.85], indicating that the effect of the target jump on MD was

similar in both the patient and the control populations. Inter-

estingly, the absence of significant variation of MD as a func-

tion of the jump factor was accompanied by a clear modulation

of the peak velocity [F(2,24) = 18.1; P < 0.0001]. PV tended to

decrease with respect to the reference condition when the target

jumped backward and to increase when it jumped forward. The

effect was similar in the Parkinson’s disease (T4 = 1096 mm/s;

T4–2 = 1057 mm/s; T4–6 = 1130 mm/s) and the control

(T4 = 1704 mm/s; T4–2 = 1635 mm/s; T4–6 = 1746 mm/s)

groups, as shown by the absence of significant group by target

interaction [F(2,24) = 0.9; P > 0.40]. This result indicates that

the hand path was already affected by the target jump at the time

to PV, which occurred 196 ms and 273 ms after hand movement

onset in the control subjects and Parkinson’s disease patients,

respectively. We will return to this issue in the next section.
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Fig. 6 Individual hand paths and corresponding velocity profiles exhibited by a control subject (left panels) and a Parkinson’s disease (PD)
patient (right panels) for movements directed to the reference (T4, continuous line) and jumping targets (T4–2, dashed line; T4–6,
dotted line). For the sake of clarity, velocity curves are aligned on movement onset. Experiment 1: see text for details.
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At the spatial level, the target jump induced significant var-

iations of the movement end-point as a function of the target

factor. These variations concerned mainly the x component,

along which the perturbation was generated [F(2,24) = 380;

P < 0.0001; T4 = 211 mm; T4–2 = 183 mm; T4–6 = 240 mm].

The variations observed along the y component did not reach

the significance threshold [F(2,24) = 1.35; P > 0.25;

T4 = 297 mm; T4–2 = 295 mm; T4–6 = 298 mm]. No effect

of the group factor [Fs(1,12) < 0.62; P > 0.40] and no group

by target interaction [Fs(2,24) < 0.32; P > 0.70] was detected

for either the x or y components, indicating that the between-

group similarity in movement accuracy observed for stationary

targets (see above) was preserved in the perturbed conditions.

Regarding movement variability, we found no evidence that

feedback responses were noisier in the patient population than

in the control group. No effect of the target factor and no group

by target interaction was observed for the parameters charac-

terizing the 95% end-point confidence ellipses (surface, shape,

orientation) when the jumping and reference targets were com-

pared [T4–2, T4–6, T4; Fs(2,24) < 3.0; P > 0.07]. These negative

results were not changed by inclusion of the final targets in the

analysis [T4–2, T4–6, T2, T4, T6; Fs(4,48) < 1.4; P > 0.25].

Specific tests were also conducted to determine whether the

end-point variability could have been increased more specifi-

cally along one of the axes of the confidence ellipse or along the

perturbation axis (fronto-parallel axis). These tests failed to

provide a significant result. Neither the major nor the minor

axis of the end-point confidence ellipses nor the end-point

variability observed along the perturbation axis were found

to increase as a function of the target or interaction factors

[Fs(2,24) < 1.9; P > 0.15]. These results are illustrated in

Fig. 4, which displays end-point confidence ellipses computed

for all subjects and all targets involved in the present analysis

(T4–2, T4–6, T2, T4, T6).

The analysis of hand path variability also failed to provide

support for the idea that feedback responses are noisier in the

patient population. No significant effect of condition and inter-

action factors was observed for the surface of the spatial con-

fidence ellipses at 20, 40, 60 or 80% of the trajectory [Fs(2,24) <

2.1; P > 0.10]. The same result was observed when hand velo-

city was considered. The magnitude of the confidence interval

of the velocity profile did not vary as a function of the target or

interaction factors at 20, 40, 60 or 80% of the trajectory

[Fs(2,24) < 1.7; P > 0.20]. These results are illustrated in

Fig. 5, which displays variability in hand paths and hand velo-

city profiles for Parkinson’s disease and control subjects and

for the T4–2, T4–6, T2, T4, and T6 targets.

Hand reaction time to the target jump
For the control group, longitudinal analyses performed on the

velocity vector showed that movement trajectory began to

change 150 ms after hand movement onset [F(2,5) = 7.22;

P < 0.035]. At this time, the velocity vector started, in parti-

cular, turning to the left in the T4–2 condition and to the right in

the T4–6 condition. A slightly longer MRT was observed in the

Parkinson’s disease group. In this case, the first significant

change was observed 180 ms after movement onset

[F(2,5) = 5.8; P < 0.05]. As for the control subjects, this effect

was mainly related to a rotation of the velocity vector to the left

in the T4–2 condition and to the right in the T4–6 condition.

One may argue that MRT should not be computed with

respect to the onset of the hand movement, but with respect

to the end of the primary saccade. Indeed, it is the updating of

the target location at the end of the main saccadic response that

allows implementation of the required movement correction

(Prablanc et al., 1986; Prablanc and Martin, 1992; Desmurget

and Grafton, 2000). As already reported, the gap between the

end of the saccadic response and the onset of the hand move-

ment was 47 ms longer in the Parkinson’s disease group than in

the patient population. This indicates that the difference in

MRT could be longer than the 30 ms observed when hand

movement onset is considered as the time reference. When

the time origin is taken at the end of the ocular saccade,

MRT reaches, on average, 166 ms in the control population

and 243 ms in the Parkinson’s disease group. This 77 ms dif-

ference could reveal a deficit in the ability of the Parkinson’s

disease patients to compute the motor command required to

correct the ongoing movement. Alternatively, it might also

reflect the inability of these patients to implement an otherwise

adequately planned correction. The logic underlying this sec-

ond hypothesis is as follows: because Parkinson’s disease

patients have a reduced capacity to change movement accel-

eration (Teasdale et al., 1990; Godaux et al., 1992; Jordan et al.,

1992; Weiss et al., 1997), they should also have a reduced

capacity to modify quickly the direction of the hand velocity

and the curvature of the hand path.

To test the latter idea and to illustrate the mathematical link

existing between the changes in the direction and the extent of

the acceleration vector, a simulation was conducted (Fig. 7). In

this simulation, we supposed that a control subject and two

Parkinson’s disease patients needed the same arbitrary delay

(200 ms) to plan the required correction of movement accel-

eration from the change in target location. The correction

involved a 20� rotation of the ongoing acceleration vector.

For the sake of simplicity, we supposed that the subjects

planned the desired acceleration, rather than, for instance,

the desired force. The maximal acceleration was arbitrarily

set at 500 cm/s2 for the control subject (Fig. 7A, bottom

row, first column). For the Parkinson’s disease patients, two

alternatives were considered: (i) the maximal desired accel-

eration was equal to that of the control subject (Patient A,

Fig. 7A, bottom row, second column); and (ii) the maximal

desired acceleration was 30% smaller than that of the control

subject (350 cm/s2, Patient B, Fig. 7A, bottom row, third col-

umn). The second alternative was considered on the basis of

behavioural results showing that Parkinson’s disease patients

exhibit usually smaller force and acceleration than control

subjects (e.g. Flowers, 1976; Majsak et al., 1998; Berardelli

et al., 2001; and the present study).

The speed in implementing a given correction was

represented by a unique time constant (TC) characterizing
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the quickness to change either the longitudinal or the normal

component of the acceleration vector. More precisely, we sup-

posed that if AD and AA were the desired and actual values of a

Cartesian coordinate of the acceleration vector, respectively,

then the derivative of this coordinate would be given by the

equation dAA/dt = (AD – AA)/TC. We estimated the ratio of

the time constants in the control and Parkinson’s disease

populations by measuring the ratio of the maximal jerk, i.e.

the maximal derivative of the longitudinal component of the

acceleration, in the two populations. This ratio was found to be

equal to 3.14, and was consistent with the values graphically

inferred from an earlier study (Godaux et al., 1992). In the

control population, TC was fixed at 70 ms on the basis of a

recent modelling study (Kashima et al., 2000). In the

Parkinson’s disease group, TC was thus estimated around

70 � 3.14 = 220 ms. Note that the results of the present simu-

lation are much more dependent on the ratio of the time con-

stants in the two populations than on the value chosen for the

control population. The actual acceleration vector (AA) was

determined from the desired acceleration vector (AD), with a

20 ms increment, by applying the equation AAtþ 20 =

AAtþ (AD – AAt) � 20/TC. It can be seen in Fig. 7A (middle

row) that the extent of AA increases more quickly for the

control than for the patient, in agreement with the experimental

observations.

The next step of the simulation was to compute velocity from

the actual acceleration. As visible in Fig. 7A (upper row), the

variations of the velocity vector, both in length and direction,

are smaller for the Parkinson’s disease patients than for the

control subjects. Consequently, hand movement onset—

illustrated by a horizontal dotted line—is detected earlier in

the control than in the patients, and the difference is larger for

Patient B (56 ms) than for Patient A (37 ms). The same

tendency is observed later along the trajectory. For instance,

at t = 300 ms (vertical dotted lines), i.e. 100 ms after the change

in desired acceleration, velocity is 114 cm/s with a 6.3� tilt for

the control, 66 cm/s with a 4.2� tilt for Patient A and 46 cm/s

with a 4.2� tilt for Patient B.

As a final step, the position of the hand was derived from the

computed velocities in order to assess the effects of the time

constant and maximal acceleration on the hand paths. As

shown in Fig. 7B, the first detectable spatial deviation with

respect to the reference trajectory occurred sooner in the con-

trol subject than in the Parkinson’s disease patients. For

instance, the amount of spatial correction observed for the

control subject at t = 300 ms is reached 40 ms and 60 ms

later in Patients A and B, respectively. Note that since the

patients moved more slowly than the control subject in the

simulation, their hand paths started deviating from the refer-

ence direction at a point that was closer to the starting point than

the point observed for the control subjects (in agreement with

the present experimental observations).

In summary, the present simulation shows that any deficit in

the rate of change of the muscle contractions results in both

bradykinesia and slowness to execute desired directional

changes. As illustrated by our data, a larger time constant in

Fig. 7 Results of the simulation study carried out to illustrate the
mathematical link existing between the changes in the direction and
the extent of the acceleration vector. In this simulation, a control
subject and two Parkinson’s disease (PD) patients were supposed to
need the same arbitrary delay (200 ms) to perceive a change in the
target location and to plan the required correction of movement
acceleration (a 20� rotation of the ongoing acceleration vector). The
desired acceleration (A, bottom row) was arbitrarily set at 500 cm/s2

for the control subject (first column), 500 cm/s2 for Patient A (second
column) and 350 cm/s2 for Patient B (third column). The speed in
implementing a given correction was represented by a unique TC
fixed to 70 ms in the control subject and to 220 ms in the Parkinson’s
disease patients. Based on these time constants the actual accelera-
tion (A, middle row) and actual velocity vectors (A, top row) were
determined from the desired acceleration vector. The computed
velocities were then used to assess the effects of the time constant and
maximal acceleration on the hand paths (B). See text for details.
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changing force or acceleration causes the hand path to deviate

latter from its reference trajectory. This suggest that a consist-

ent part, if not all, of the additional delay needed by Parkinson’s

disease patients for reacting to the target displacement can be

ascribed to movement execution deficits rather than to impair-

ment of on-line control processes.

Movements directed at jumping targets:
large consciously detected target jumps
(Experiment 2)
In the second experiment, all the participants were able to

identify the existence of a change in target position after

hand movement onset. As reported previously (Castiello

et al., 1991; Desmurget and Prablanc, 1997), the subjects

had the subjective feeling that the target jump occurred very

late, toward the end of the movement. When questioned at the

end of the experiment, the control subjects reported that they

had to be ‘very careful’ to correct the movement and avoid

reaching to the first target location. The Parkinson’s disease

patients, by contrast, were often very frustrated with most of

them claiming that they did not have enough time to correct the

movement. Two patients called the task ‘impossible’.

Eye movement characteristics
The characteristics of the primary saccade were not affected by

the target jump, which is not surprising considering that the

hand started moving after completion of the first saccade

(Parkinson’s disease = 67 ms; controls = 27 ms). In most

cases, the corrective saccade directed toward the first target

location could not be inhibited or modified. As a consequence,

a third saccade was generally initiated to achieve correct fovea-

tion of the target. Interestingly, we could not find any difference

in the pattern of hand movement adjustment depending on

whether one or two corrective saccades were initiated. In

fact, when on-line corrections were observed (see below),

the first sign of modification of the ongoing hand trajectory

was observed well before target foveation and even, in most

instances, before the completion of the first corrective saccade

(as was the case in the first experiment). This result suggests

that hand and eye corrections were driven independently by the

nervous system.

Hand movement characteristics
Figure 8 displays the mean hand path for the control and Par-

kinson’s disease groups. As shown in Fig. 8, a clear modifica-

tion of the ongoing trajectory was observed in the control

population; the trajectories directed at the reference target

(T4) diverged progressively to reach the new target locations

(T4–1; T4–7). These corrections were hardly visible in the

Parkinson’s disease population. Statistical analyses reflect

this difference by showing the existence of a significant a

group by target interaction for the x component of the move-

ment end-point [the component along which the perturbation is

generated; F(2,16) = 11.0; P < 0.002].

The general inability of the Parkinson’s disease patients to

correct their ongoing movement in response to the target jump

hides some significant inter-individual differences. As shown

in Fig. 9, a true absence of correction was only observed in three

patients. These patients achieved target capture by generating a

second movement, after completion of the primary response

(Fig. 10, third column). In two other patients, clear path cor-

rections were identified at the end of the primary movement.

Interestingly, these patients exhibited movement durations

(1128 and 1125 ms) that were consistently longer that the mo-

vement durations presented by the control subjects (647 ms)

and the other patients who failed to exhibit any adjustment of

their primary motor response (710 ms). In the Parkinson’s

X axis (mm) X axis (mm)

Y
 a

x
is

 (
m

m
)

Y
 a

x
is

 (
m

m
)

Fig. 8 Mean primary motor responses for the control (left panel) and the Parkinson’s disease (PD) (right panel) populations, for movements
directed to the reference (T4, continuous line) and jumping targets (T4–1, dashed line; T4–7, dotted line). Experiment 2: see text for details.
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(1) (2) (3)

(4) (5) (6)

Fig. 9 Mean primary motor responses exhibited by a control subject (panel 1) and the five Parkinson’s disease (PD) patients (panels 2–6) for
movements directed to the reference (T4, continuous line) and jumping targets (T4–1, dashed line; T4–7, dotted line). Experiment 2: see
text for details.

Fig. 10 Individual hand paths (first row) and corresponding velocity profiles (second row) for movements performed by a control subject (first
column), a Parkinson’s disease (PD) patient exhibiting on-line corrections (second column) and a Parkinson’s disease patient exhibiting no
corrections (third column). For the sake of clarity, velocity curves are aligned on movement onset. Experiment 2: see details in text.
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disease patients, the path corrections caused the occurrence of

clear discontinuities on the velocity profiles (Fig. 10, second

column), in contrast to what was observed in the first experi-

ment. Although less marked, these discontinuities were also

present in the control population (Fig. 10, first column).

Hand reaction time to the target jump
For the control group, longitudinal analyses performed on the

velocity vector showed that the perturbed trajectories started

to diverge 220 ms after hand movement onset [F(2,3) = 9.6;

P < 0.05]. For the Parkinson’s disease population, no signifi-

cant divergence time could be identified due to the absence of

corrections in three of the five patients.

In order to estimate the reaction time to the perturbation

in the Parkinson’s disease population, a less sensitive within-

subject approach was used. In the two subjects who exhibited

path corrections, the perturbed trajectories were found to

diverge after 730 and 910 ms, respectively (when the same

within-subjects analyses were used in the control population, a

mean value of 294 ms was identified). For the three subjects

who failed to exhibit any modification of the ongoing traject-

ory, the instant of initiation of the second corrective response

was determined with respect to the instant of completion of the

primary movement. A mean value of 563 ms was found. This

value is close to the initial movement RT, which reached

527 ms for the Parkinson’s disease population in the present

experiment. This suggests that these patients had to wait until

completion of the ongoing movement to generate another

entirely new corrective response. We did not find any relation

between the severity of the disease (as measured by the UPDRS

motor score) and the impairment in generating movement

corrections.

Discussion
The main aim of the present study was to elucidate the con-

tribution of the basal ganglia-thalamocortical network to the

process allowing correction of the ongoing motor command. In

a first experiment, we showed that Parkinson’s disease patients,

who present with a severe dysfunctioning of the whole basal

ganglia network, are easily able to correct their ongoing tra-

jectory when small subliminal target jumps are generated dur-

ing gaze shift (a paradigm that mimics the nature of the slight

automatic corrections that occur in normal movements direc-

ted at stationary targets). This result is inconsistent with pre-

vious observations gathered for Huntington’s disease patients

(Smith et al., 2000). To elucidate the origin of this inconsist-

ency, we performed a second study under the assumption that

the relevant factor explaining the difference between our data

in Parkinson’s disease patients and the observations already

published for Huntington’s disease patients did not lie in the

nature of the disease, but in the characteristics of the correc-

tions to be performed. This prediction was tested by investigat-

ing a task requiring corrections of the same type as those

used previously for Huntington’s disease patients, namely

large consciously detected errors. Results showed that the

Parkinson’s disease patients had great difficulties performing

this task. These results and their main implications are

discussed below.

Feedback loops involving a smooth modulation
of the ongoing motor command are preserved
in Parkinson’s disease patients
In the present study, the Parkinson’s disease patients were

easily able to correct their ongoing response when the target

location was modified during gaze shift. The only noticeable

difference observed between the patients and the controls lay in

a lengthening of the time required to react to the target jump

(77 ms). As shown by a simulation study, this lengthening is

likely to reflect, for a substantial part (if not all), the inability of

the Parkinson’s disease patients to rapidly modify movement

force. While Parkinson’s disease patients are able to generate a

desired force level quite accurately in the absence of stringent

time constraints, they are not able to reach a given level of force

with the same temporal characteristics as healthy subjects

(Stelmach and Worringham, 1988). This deficit concerns

mainly the rate of force development (Teasdale et al., 1990;

Godaux et al., 1992; Jordan et al., 1992) and force release

(Wing, 1988; Kunesch et al., 1995). It results de facto in a

slowed execution each time a force change has to be imple-

mented. From these observations, one may conclude that the

non-visual feedback loops allowing smooth modulation of the

ongoing motor command are well preserved, if not normal, in

the patient population. Additional indirect evidence supporting

this view can be found in the observation that adjustments

observed in the perturbed trials did not cause the movement

duration to increase, as would be expected if the ability to detect

or implement the required correction was severely impaired in

the Parkinson’s disease patients.

The idea that the non-visual feedback loops allowing a

smooth modulation of the ongoing response are preserved in

Parkinson’s disease patients is also supported by the kinematic

characteristics of the movements directed at stationary targets.

In the present study, we provided evidence that the motor

command sent to the arm was issued prior to target foveation

in both the Parkinson’s disease patients and the control sub-

jects. This indicates that the initial motor response engaging the

upper limb was computed, in both groups, on the basis of an

inaccurate peripheral visual signal (Prablanc et al., 1979; Bock,

1993). In healthy subjects, it has been repeatedly demonstrated

that this initial inaccuracy was corrected on-line when the

system had the opportunity to update the target location at

the end of the saccadic response and as was the case in the

present study (Prablanc et al., 1986; Desmurget and Grafton,

2000). In light of this result, the fact that end-point accuracy

was not significantly different, for the unperturbed trials, in the

control subjects and the Parkinson’s disease patients can be

considered as an additional (even if indirect) evidence that

on-line feedback loops were neither disrupted nor dramatically

biased in the Parkinson’s disease population. With respect
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to this conclusion, it is also worth noting that the absence

of increase of the movement end-point variability in the

‘jump trials’ fits well with the idea, emphasized in the Intro-

duction, that similar feedback loops are engaged in the control

of movements directed at stationary and subliminally dis-

placed targets.

One may question the results above based on the report of

dramatic end-point errors in Parkinson’s disease patients for

reaching movements performed in the dark (Flowers, 1976).

We suggest that the possibility to see the hand at rest in the

present experimentexplains thegoodaccuracy displayedbythe

patients. Indeed, end-point errors during reaching movements

reflect, for a large part, systematic biases in the estimation of the

initial hand location (Rossetti et al., 1995; Vindras et al., 1998).

As shown in several studies, when vision of the hand at rest is

allowed, the localization errors and hence the end-point errors

decrease dramatically with respect to a condition where vision

of the hand is prevented (Ghez et al., 1995; Vindras et al., 1998;

for a review, see Desmurget et al., 1998). Without vision of the

stationary hand, estimation of the initial state of the motor

apparatus relies on static proprioception alone. Since this

sense is impaired in Parkinson’s disease patients (Schneider

et al., 1987; Jobst et al., 1997; Zia et al., 2000), one might

predict that the effect on movement accuracy of not seeing

the hand at rest will be more dramatic in a group of Parkinson’s

disease patients than in a group of control subjects. Two studies

by Flowers (1976) and Ghilardi et al. (2000) support this view.

In both studies, the subjects were required to move a cursor in

the horizontal plane without seeing their limb. Starting and

target positions were presented on a vertical screen. In the

Flowers study, the starting location was hidden before target

presentation, thereby favouring ‘localization errors’. A dra-

matic alteration of end-point accuracy was then observed in

Parkinson’s disease patients. In contrast, the starting location

was always visible in the study by Ghilardi and colleagues. This

allowed patients to minimize ‘localization errors’. No accuracy

degradation was reported in this case, in agreement with our

own observations. Note that a preserved movement accuracy

was also observed by Poizner et al. (1998) in a study allowing

vision of the hand at rest and involving unrestrained reaching

movements directed at memorized targets.

The absence of significant accuracy degradation in the

patient population is also puzzling if one considers: (i) that

parkinsonism causes significant impairments of the dynamic

proprioceptive sense (Klockgether et al., 1995; Demirci et al.,

1997); and (ii) that on-line feedback loops make use of dynamic

proprioception (Cordo, 1990; Wolpert et al., 1995; Bhushan

and Shadmehr, 1999). Obviously, if proprioception is both

biased and used to guide the hand to the target, movement

end-point should be affected. In line with this idea, it was in

particular suggested that the hypometria often exhibited

by Parkinson’s disease patients could be explained by a

proprioceptive deficit causing the distance covered by the

arm to be overestimated (Moore, 1987; Klockgether et al.,

1995; Demirci et al., 1997). The results of the present

experiment seem inconsistent with this claim (see also Poizner

et al., 1998; Ghilardi et al., 2000). A potential explanation to

this discrepancy might be that the proprioceptive deterioration

was too marginal in our patients to significantly bias movement

accuracy. An alternative interpretation could be that on-line

feedback loops dealing with small errors in the estimation of

the target location do not rely on the proprioceptive input, but

mainly on the efferent signal. Evidence supporting this inter-

pretation have been presented elsewhere (Desmurget and

Grafton, 2000; Desmurget et al., 2003).

Recent studies showing that automatic reach adjustments are

cortically organized in humans also support the view that the

basal ganglia network does not provide an essential contribu-

tion to the non-visual feedback loops that mediate smooth

corrective modulations of the ongoing motor commands (for

a review, see Desmurget and Grafton, 2000, 2003). A recent

PET imaging study showed that hand path corrections involved

a restricted network engaging the posterior parietal cortex, the

primary motor cortex and the anterior parasagittal cerebellar

cortex (Desmurget et al., 2001). No contribution of the basal

ganglia network could be identified, even when the statistical

analyses were conducted at an unusually permissive threshold

(P = 0.01, uncorrected for multiple comparisons). In agree-

ment with this result and with the idea that the ability to mod-

ulate the ongoing motor command is a cortically mediated

function, recent studies have shown that smooth on-line

movement corrections were disrupted when the contribution

of posterior parietal cortex to this function was disrupted either

due to a lesion (Pisella et al., 2000; Grea et al., 2002) or the

application of a transcranial magnetic pulse at hand movement

onset (Desmurget et al., 1999).

Iterative on-line motor control is severely
impaired in Parkinson’s disease patients
In the present study, the control subjects were easily able to

correct for large consciously detected target jumps generated at

hand movement onset. The corrections, which started to influ-

ence the ongoing trajectory after only 220 ms, produced

perceptible discontinuities in the velocity profiles. These dis-

continuities are generally thought to reflect the generation of

discrete sub-movements that overlaps with the ongoing

response (Meyer et al., 1988; Novak et al., 2002). As shown

in several modelling studies, this ‘overlapping’ can be char-

acterized as a composite of several sub-movements, each of

which represents a scaled version of a prototypic ‘ballistic’

entity (Flash and Henis, 1991; Milner, 1992). Interestingly,

the Parkinson’s disease patients were dramatically impaired

when generating this type of iterative corrections. Three

patients had to wait until completion of the initial motor

response before initiating a corrective action. The latency of

this correction was roughly equal to the reaction time observed

for the movements directed at stationary targets. This

suggests that the corrective sub-movements could not be

implemented in parallel with the ongoing action. In two

other patients, some overlap was observed. However, these

patients presented with unusually long movement durations
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(>1.1 s) and with abnormally slow corrective reaction times

(730 and 910 ms, respectively). One may not exclude the

hypothesis that the increased movement duration reflected,

in these patients, a deliberate strategy to deal with the potential

occurrence of target jumps.

Our results are consistent with observations in Huntington’s

disease (Smith et al., 2000) and with indirect evidence suggest-

ing that subcortical structures may be involved in the correc-

tions of large consciously detected errors (Day and Brown,

2001). With respect to this conclusion, however, it is important

to recognize that impairments associated with basal ganglia

pathology, such as those described here, may arise either from

loss of a normal basal ganglia function per se or, equally likely,

from disruption of downstream brain regions secondary to

aberrant inhibitory output from a pathologic basal ganglia

(Wichmann and DeLong, 1998; Berardelli et al., 2001). It is

also essential to bear in mind that, in advanced Parkinson’s

disease, pathology is not restricted to the basal ganglia–

thalamocortical circuits (Braak et al., 2000). These experi-

ments do not provide information on the exact contribution

of these different circuits.

Two main, non-exclusive hypotheses can be proposed with

regard to the root cause for the dramatic impairment of iterative

corrections in Parkinson’s disease patients. First, Parkinson’s

disease patients need significantly more time than control sub-

jects to initiate reaching movements. In our study, for instance,

the movement reaction time was 37% longer in the patient

population than in the control group. This akinesia is likely

to affect the ability to implement iterative path corrections by

lengthening the time required to initiate the corrective sub-

movement. Secondly, Parkinson’s disease patients experience

significant troubles when required to string together successive

motor acts (Cools et al., 1984; Benecke et al., 1987; Agostino

et al., 1992). Of particular interest with respect to this point is

the apparent difficulty of Parkinson’s disease patients to switch

from one coordinated movement to another (Giladi et al., 1992,

1997; Weiss et al., 1997; Almeida et al., 2003). This difficulty

worsens in situations where the movement sequence is not

known in advance (Curra et al., 1997), as is the case when a

corrective sub-movement has to be generated and added to the

current movement in response to a motor error. Within this

context, the difficulty of Parkinson’s disease patients to gen-

erate iterative motor corrections may be seen as the expression

of their more general inability to execute sequential and simul-

taneous actions.

Distinct corrective processes coexist
in the motor system
The idea that distinct control processes coexist in the brain has

been questioned in several modelling studies, suggesting that a

single iterative model may account for smooth correction

patterns provided that the corrective movement is small

with respect to the initial motor response (Flash and Henis,

1991; Hoff and Arbib, 1993; and Feldman and Levin, 1995).

Although mathematically efficient, these models are hard to

reconcile with recent behavioural results arguing for the exist-

ence of an automatic feedback mechanism that would not act

by generating an independent corrective sub-movement, but by

modulating the ongoing motor command (Desmurget and

Grafton, 2003; Prablanc et al., 2003). Within this context, a

correction of the movement magnitude would, for instance, not

be achieved by planning a new corrective response but simply

by prolonging the duration of the initial agonist burst. In agree-

ment with this view, subtle on-line modulations of the EMG

activity have been described during goal-directed movements

(Angel 1975, 1977; Hallett and Marsden, 1979; Flanders et al.,

1996). In addition, our data indicate that a dramatic impairment

in the ability to generate iterative corrections does not prevent

Parkinson’s disease patients from smoothly updating the

ongoing trajectory. This deficit mirrors nicely the deficit exhib-

ited by a patient presenting with a bilateral posterior parietal

lesion (Pisella et al., 2000), which showed that automatic feed-

back control was absent in this patient, despite her preserved

ability to plan reaching movements to visual targets. Compa-

tible observations were recently found in a PET study

(Desmurget et al., 2001), which showed that the smooth

path adjustments studied in experiment 1 engage a set

of areas that is marginal with respect to the large network

required to plan a motor response.

Based on the evidence presented above, it may be tempting

to speculate that there is a functional limit to motor flexibility.

When this limit is reached, the required correction can no

longer be achieved by smoothly modulating the ongoing

motor command and a discrete corrective sub-movement is

generated instead (Desmurget and Prablanc, 1997). This

may happen when the error to be corrected is either too

large or too late, as was the case in our second experiment

with respect to the first one. Indeed, in the second experiment,

the target jump was larger (60 versus 40 mm) and delayed by

�70 ms and 15 ms in the patients and controls, respectively;

these delays correspond to the mean delays between the end of

the saccadic shift and the onset of the hand movement.

Beyond the magnitude and the instant of occurrence of the

target jump, the ability to consciously perceive the ongoing

error might also be a critical factor explaining the transition

from a smooth automatic control to an iterative strategy. With

respect to this idea, one may speculate that awareness of an

error overrules the automatic control regulations to impose an

‘abort-and-replan’ scheme. A more general formulation of

this (speculative) hypothesis might be that different control

policies coexist in the brain. Computationally, a control policy

defines the type of feedback control law that has to be imple-

mented in response to a given situation (Kirk, 1970). For

instance, based on the assumption presented in the Introduction

that movements directed at stationary and subliminally dis-

placed targets are functionally identical (experiment 1), one

may hypothesize that the same control policy is used irrespect-

ive of the type of trials (jump versus stationary). This control

policy might require, for instance, to move the hand as

smoothly as possible to the target (Hoff and Arbib, 1993).

In experiment 2, the existence of a large consciously perceived
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target jump might make the initial control policy incompatible

with the level of error that is tolerable. As a consequence, the

target jump might cause the ongoing policy to be abandoned for

a new policy. If such a change in the ongoing control policy is

allowed on the basis of a measure of estimated reward potential

(i.e. ‘will the movement be successful’), then segmentation in

action can be observed. With respect to this point, it is tempting

to speculate that the delay underlying the change in control

policy might be increased in Parkinson’s disease patients (due,

for instance, to a difficulty in estimating the potential reward of

the ongoing movement), thus increasing the difficulty of these

patients to perform the large conscious corrections investigated

in the second experiment.

Forward modelling and the basal
ganglia network
On-line feedback control is generally thought to rely on a

forward model (see Introduction). Provided this (well substan-

tiated) hypothesis is true, one may suggest on the basis of

experiment 1 that the process of forward modelling is pre-

served in Parkinson’s disease patients. This conclusion is

coherent with recent reports showing fairly sound tracking

abilities in Parkinson’s disease patients (Bloxham et al.,

1984; Day et al., 1984; Liu et al., 1999). It is also in accord

with the preserved ability of Parkinson’s disease patients to use

visual feedback loops to guide ongoing movements (Flowers,

1976; Flash et al., 1992; Ghilardi et al., 2000).

Based on the previous remarks, it is tempting toconclude that

the deficit exhibited by the Parkinson’s disease patients in

experiment 2 is not related to a deficit in forward modelling

and hence that the basal ganglia network is not involved in this

type of predictive behaviour. Although plausible, this conclu-

sion remains questionable for two main reasons. First, the pre-

sent study did not involve any specific component that tested

directly the issue of forward modelling. Secondly, a deficit in

the ability to generate a forward model is compatible with the

type of difficulties exhibited by the Parkinson’s disease pati-

ents in experiment 2. Indeed, due to the existence of non-

linearities in the motor plant, the summation of motor com-

mands is not linear, meaning that an identical command pulse

given at different times during a movement produces different

results. In order to add successive movements, it is therefore

necessary to estimate (in real time) the position and speed of the

limbandhence torelyonaforwardmodelof thearm’sdynamics

(Novak et al., 2002). When the process of forward modelling is

impaired, estimation of the hand location has to be based on

proprioception. This sensory-based estimation is thought to be

reliable only when velocity is null (i.e. after movement com-

pletion) or low (i.e. toward the end of the movement)

(Hollerbach, 1982; Gerdes and Happee, 1994). A deficit in

forward modelling could thus explain the pattern of corrections

exhibited by the Parkinson’s disease patients in experiment 2.

Based on the discussion above, one may not exclude the

hypothesis that different neural networks are recruited to

estimate the state of the motor apparatus in experiments

1 and 2. This idea is compatible with the fact, already

mentioned, that a larger set of areas is engaged when a new

movement has to be planned with respect to a situation in which

the ongoing command is only slightly modulated (Desmurget

et al., 2001; Desmurget and Grafton, 2003). Further studies are

required to investigate this possibility.
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