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ABSTRACT
Given a standard model to test, an experiment can be designed to (i) measure the standard model
parameters, (ii) extend the standard model or (iii) look for evidence of deviations from the
standard model. To measure (or extend) the standard model, the Fisher matrix is widely used in
cosmology to predict expected parameter errors for future surveys under Gaussian assumptions.
In this paper, we present a framework that can be used to design experiments that will maximize
the chance of finding a deviation from the standard model. Using a simple illustrative example,
discussed in Appendix A, we show that the optimal experimental configuration can depend
dramatically on the optimization approach chosen. We also show some simple cosmology
calculations, where we study baryonic acoustic oscillation and supernovae surveys. In doing
so, we also show how external data, such as the positions of the cosmic microwave background
peak measured by Wilkinson Microwave Anisotropy Probe, and theory priors can be included
in the analysis. In the cosmological cases that we have studied (Dark Energy Task Force Stage
III), we find that the three optimization approaches yield similar results, which is reassuring
and indicates that the choice of optimal experiment is fairly robust at this level. However, this
may not be the case as we move to more ambitious future surveys.
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1 IN T RO D U C T I O N

In cosmology, the � cold dark matter (�CDM) concordance model
has become our standard model of the Universe. This model sat-
isfies current data and depends on three critical sectors: (i) dark
energy, (ii) dark matter and (iii) initial conditions. These sectors
are linked through our theory of gravity – general relativity. Al-
though this model is well defined, the addition of each component
has typically been done to explain the available data rather than
arising from some fundamental theory of the cosmos. Hence, cos-
mology is currently in a data-driven era, with little known about the
fundamental nature of dark matter and dark energy. As a result, a
significant effort is underway in this very active field to build experi-
ments to measure and extend our standard model. These include the
Kilo-Degree Survey (KIDS), Panoramic Survey Telescope & Rapid
Response System (Pan-STARRS),1 Dark Energy Survey (DES),2

Large Synoptic Survey Telescope (LSST),3 Joint Dark Energy Mis-

�E-mail: adam.amara@phys.ethz.ch (AA); tdk@roe.ac.uk (TDK)
1 http://pan-starrs.ifa.hawaii.edu
2 http://www.darkenergysurvey.org
3 http://www.lsst.org

sion (JDEM)4 and Euclid.5,6 In planning such future observations,
the approach to date has been to optimize the experimental and
methodological designs to minimize the errors on extended pa-
rameters. In particular, the dark energy equation of state [the ratio
of pressure to density of dark energy w(z)] garners the most at-
tention and is typically parametrized in terms of a second-order
Taylor expansion in the scalefactor or redshift z [e.g. w(z) = w0

+ waz/(1 + z)]. Experiments are then designed to measure these
equation-of-state parameters to the highest possible precision. The
dark energy figure of merit (FoM; Albrecht et al. 2006), which is
proportional to the area of the error ellipse in the w0–wa plane is
widely used to gauge performance. Other possible metrics have
also been suggested, such as the addition of parameters to test
for deviations from Einstein gravity or the division of w(z) into a
large number of redshift slices that can then be used to construct
principal components through a matrix inversion (Huterer & Stark-
man 2003; Albrecht et al. 2009). However, these two suffer from
their own problems. For instance, the additional modified gravity
parameters may not be strongly motivated and the eigenfunction

4 http://jdem.gsfc.nasa.gov
5 http://www.euclid-imaging.net
6 http://sci.esa.int/euclid
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decomposition of w(z) can suffer from instabilities (Kitching &
Amara 2009). Other studies have also investigated FoMs in the
Bayesian framework (for instance, see Bassett 2005 and chapter 5
of Hobson et al. 2010).

In this paper, we present an alternative methodology to be applied
to experimental design when faced with a standard model and no
guidance from theory. We show that an experiment can be designed
such that the probability of breaking the standard model (finding
evidence against the model) can be maximized.

This paper is organized as follows. In Section 2, we review the
alternative approaches to experimental design. In Section 3, we
then compare each approach using a simple explanatory model, as
well as a cosmological example that studies the performance of
the ‘current’ and Stage III experiments discussed in Albrecht et al.
(2006). We summarize our conclusions in Section 4.

2 A PPROACHES TO EXPERIMENT
DE SIGNING

When planning an experiment with a standard model (a set of pa-
rameters) in mind, we can think of three possible approaches that
we can take. The first is to stay within the standard model and to
design an experiment that will measure the parameters of this model
to the highest possible precision. The next is to extend the standard
model (add extra parameters), and ideally this extension would be
driven by a compelling theoretical framework with clear testable
predictions. Finally, in the absence of any compelling theory, one
can take a more exploratory approach, where the driving aim is
to design an experiment with the greatest chance of breaking the
standard model. Ideally, this approach would depend only on well-
founded knowledge, such as today’s data, the expected error bars of
future data and the standard model that is being tested.

2.1 Measuring the standard model

Within a well-specified model, the Fisher matrix formalism
(Tegmark, Taylor & Heavens 1997) is a well-defined framework
for estimating the errors that a given experiment will have on the
measurement of the parameters of the model. For an experiment
where the parameters have an effect on the mean, the Fisher matrix
is defined as

Fij =
∑ 1

�C2

∂C

∂�i

∂C

∂�j

, (1)

where C is some observable signal, �C is the expected error for an
experiment and � is a vector containing the parameters. A cosmol-
ogy model may include � = {σ 8, �m, �b, ��, ns, h, etc.}, where,
for instance, the dark energy equation of state is assumed to be a
cosmological constant [w(z) ≡ −1]. The errors on each of these pa-
rameters are then given by the diagonal elements of the parameter
covariance matrix (Cov), which is given by Cov = F−1.

2.2 Extending the standard model

When seeking out new physics, we look for ways of going beyond
the standard model. Ideally, this would be done through the guid-
ance of theory. There are many examples of cases where theories
have been put to test by experiments based on verifiable predic-
tions. One such example is neutrino mass. In the standard model
of particle physics, neutrinos have zero mass, but the assumption
of zero mass is an ad hoc choice. A natural and physically moti-
vated extension of this model was to add mass to neutrinos (through

the lepton mixing matrix addendum). Neutrino mass has now been
experimentally confirmed by a number of particle physics experi-
ments (Eguchi et al. 2003; Ahmed et al. 2004; Ahn et al. 2006), and
cosmological experiments should be able to constrain this mass to
high accuracy (e.g. Kitching et al. 2008; Thomas, Abdalla & Lahav
2009; Refregier et al. 2010).

Extra parameters, �, can be added to the parameters of the stan-
dard model, �. In this case, the Fisher matrix formalism can once
again be used to estimate the errors on all the parameter sets. Here,
it becomes useful to decompose the matrix as

F =
(

F�� F��

F�� F��

)
, (2)

where the matrix F�� contains the Fisher matrix elements for the
parameters of the standard model, F�� contains the elements for
the new model parameters and F�� contains the cross-terms.

This approach has been widely adopted by the cosmological
community in dark energy studies. In this case, the extra parameters
are typically added in the form of equation-of-state parameters (the
ratio of pressure to density) of dark energy (w). However, this
is a specific way of thinking about dark energy (as a dynamical
fluid). Therefore, models that do not treat dark energy as a fluid
have to work in terms of an ‘effective’ equation of state. A further
complexity arises because the observed low-redshift acceleration
that motivates dark energy could result from other physics, such as
the breakdown of Einstein gravity on cosmic scales. A move away
from Einstein gravity may not be well represented by the addition
of equation-of-state parameters and may require the addition of new
parameters that specifically allow for such deviations. As a result,
these extra dark energy parameters do not have a firm theoretical
basis but are, in fact, an arbitrary expansion of the equation of state
(Kitching & Amara 2009).

2.3 Breaking the standard model

Here, we introduce a new approach to experimental planning, where
we explicitly design an experiment to maximize the probability of
finding a deviation from the standard model. This deviation is al-
lowed to come from any part of the theory and should not depend
on any particular theoretical extension of the standard model. The
robustness of such an approach can be achieved by relying on min-
imal inputs, namely (i) current data, (ii) expected error bars of
future measurements and (iii) the standard model that we want to
test.

We begin by defining some basic parameters. Let X be a data
vector containing today’s measurements (for instance, a correla-
tion function). These data points have associated errors, σ 2

X , which
means that the measured data points are randomly scattered about
T , the data vector that would be measured with no measurement
error or systematic error, i.e. the underlying values of the observable
as measured with the perfect experiment.7 The expected error bars
of a future experiment are σ 2

Y , which would produce a data vector
Y . Given today’s data, we can calculate the probability of the future

7 As an example, if X is calculated from the mean of n-independent data
points and the errors are given by the variance [σ 2(X̄) = σ 2(X)/n2], then
T would be the measure given as n goes to infinity in the absence of
systematics. We note that, in this case, cosmic variance would come from
the fact that due to a finite Universe the number of independent data points
will be limited to a finite number.
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data, P(Y |X), by marginalizing over T :

P (Y |X) =
∫

P (Y |T )P (T |X)dT , (3)

where P(T |X) is the probability of T given today’s data and P (Y |T )
is the probability of the future data given T . The integral is per-
formed over all possible T since we do not know what T is a priori.

For each realization of the future data, there will be an associated
best fit that can be achieved with the standard model. We focus here
on the χ 2

min. With the probability distribution of future data given
current data [P (Y |X)], which, for simplicity, we will sometimes
also denote using P (Y ), we can calculate the expectation value of
the minimum χ 2 by integrating over all possible future data vectors:

〈χ 2
min〉 =

∫
χ 2

min(Y )P (Y )dY . (4)

A high χ 2
min means that the standard model is not able to give a

good fit to future data. Hence, an experiment designer who wants to
maximize his or her chances of breaking the standard model should
focus on an experiment configuration that maximizes the expecta-
tion value of the minimum χ 2 (max[〈χ 2

min〉]). Strictly, we should use
a quantity that is robust to the number of data points (for instance,
the reduced χ 2). We avoid such problems in what follows by only
making comparisons between experiments with equal numbers of
data points. The χ 2 and reduced χ 2 are therefore simply scaled ver-
sions of each other. In this work, we have focused on the expectation
value of the minimum χ 2 of the future data, with the understanding
that a χ 2 corresponding to a reduced χ 2 significantly larger than
1 will require additional parameters beyond those available in the
standard model. However, it may be interesting to also consider
the higher order statistics of the minimum χ 2 distribution. Along
similar lines of thought, our FoM could also be recast in terms of
the probability that a future experiment will give a χ 2

min greater than
some threshold value. For the work presented here, we use the sim-
plest expression (given in equation 4), but continue to investigate
further possible expressions of this model-breaking FoM.

Here, we use the maximum likelihood fit to the data (minimum
χ 2). We have used this frequentist measure, as opposed to a Bayesian
evidence criterion, because there are no objective Bayesian mea-
sures for assessing the quality of a theoretical fit for a single model,
given that a single model Bayesian evidence must conclude (through
a normalization of probabilities) that there is 100 per cent evidence
for that model (see Taylor & Kitching 2010 for further discus-
sion). In general, this χ 2

min(Y ) measure could be replaced with any
‘goodness of fit’ criteria G(Y ), where equation (4) optimizes the
fit.

3 A PPLICATION

3.1 Illustrative example

In Appendix A, we explore the impact of the choice of optimization
metric on a simple illustrative example. We set up a system of
three data points and ‘a standard model’ that is a straight line with 1
degree of freedom – the slope of the line. This shows that the optimal
configuration of a future experiment can vary drastically and can
lead to exactly opposite optimizations in some cases depending on
whether model-breaking or standard model extension is used.

The simple model that we set up has a ‘pivot point,’ where the
model makes an exact prediction, C(x = 8) ≡ 10. To measure the
standard model parameter (the slope), assuming that this model is
correct, it is clear that there is no sensitivity at this point. Therefore,

an optimization will minimize future error bars away from the pivot
point. However, in the model-breaking mode, it is optimal to place
the smallest future error bars at the pivot point, since it is here
that even the slightest deviation from the standard model prediction
would yield proof that the standard model is broken. Of course, the
model-breaking paradigm here is a high-risk, high-gain approach.
If T happens to have the same value as that of the pivot point, then
this approach would yield no extra information. When extending
the standard model, the optimal configuration is entirely dependent
on the exact form of the extension. For instance, a clear difference is
seen between a standard model that is extended by adding a constant
parameter and one that is expanded with a parabolic term about the
pivot point, thereby preserving the pivot point.

3.2 Cosmological application

We now apply our approach to investigating the planning of cos-
mology surveys. In this work, we focus on some simple examples
that show how this can be done, with a more complete investigation
of future surveys to follow in later work. In these examples, we
focus on supernovae (SNe; Tegmark et al. 1998) and baryon acous-
tic oscillation (BAO; e.g. see Rassat et al. 2008 for discussion). In
addition, we will show (i) how external data, in this case the cosmic
microwave background (CMB) peak separation, can be added; (ii)
how priors coming from theory can be included and (iii) a simple
treatment for systematics errors.

3.2.1 Survey configurations

Due to the computational limits of performing the integral shown in
equation (4), the dimensionality of which scales with the number of
data points, we have decided to bin the low-redshift data (i.e. SNe
and BAO) into four redshift bins (0.1 < z < 0.4, 0.4 < z < 0.7, 0.7
< 1.0 and 1.0 < z < 1.3). By fixing the number of redshift bins,
and therefore the number of degrees of freedom since the standard
cosmology model is the same for all cases, we are able to compare
the χ 2

min values directly. This simplifies the comparison between
different survey configurations. For current BAO data, we use the
galaxy number counts presented in Percival et al. (2010). This work
presented a BAO analysis of the Sloan Digital Sky Survey Data
Release 7 (DR7) sample. This is composed of roughly 900 000
galaxies over 9100 deg2 in the redshift range z = [0.0, 0.5]. We
rebinned these data into our four redshift bins which leads to the
distribution shown in Table 1. For current SNe data, we use the
Union data presented in Kowalski et al. (2008). This is a compilation
of SNe data coming from a number of measurements, including the
Supernova Legacy Survey, the Equation of State: Supernovae Trace
Cosmic Expansion (ESSENCE) Survey and SNe measurements
from the Hubble Space Telescope. Once again, as with the BAO
data, we have rebinned these data to match the four bins that we use
in this paper (see Table 2). In Section 3.2.2, we include constraints
coming from the current measurements of the CMB peak separation
presented in Komatsu et al. (2009), who used the WMAP data.

For future surveys, we have decided to focus on a configuration
that illustrates the technique presented here, rather than to make
concrete recommendations about specific mission concepts. The
reason for this is that the calculations that we present here include
a number of simplifications, such as using only four redshift bins.
These, we feel, allow us to calculate trends and make some state-
ments about the relative merits of broad concept ideas. However, to
draw detailed conclusions on specific mission configurations would
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Table 1. Parameters of the BAO surveys considered in this study. The current survey is chosen to
be close to the BAO survey parameters for the SDSS DR7 (Percival et al. 2010). The future surveys
have been chosen from the Stage III surveys of the DETF report (Albrecht et al. 2006).

Area Number density of galaxies (ng) (num/amin2)
0.1 < z < 0.4 0.4 < z < 0.7 0.7 < z < 1.0 1.0 < z < 1.3

Current 10 000 0.013 0.000 56 0.0 0.0
Stage III WiggleZ 1000 0.0 0.022 0.089 0.0
Stage III BOSS 10 000 0.014 0.019 0.0 0.0
Stage III WFMOS 2000 0.0 0.056 0.22 0.18

Table 2. Parameters of the SNe surveys considered in this study. The current survey
is chosen to be close to the Union SNe sample (Kowalski et al. 2008). The future
surveys have been chosen from the Stage III surveys of the DETF report (Albrecht
et al. 2006).

Number of SNe (ns)
0.1 < z < 0.4 0.4 < z < 0.7 0.7 < z < 1.0 1.0 < z < 1.3

Current SNe 51 107 131 18
Stage III SNe 965 1940 860 57

require further detailed work that we will address in follow-up pub-
lications on this topic. For the future surveys that we will use to
illustrate our method we will rely on the Stage III surveys described
in Albrecht et al. (2006), although many of the projects may have
evolved since this paper was published. Once again, we rebin the
Stage III data into our four redshift bins (see Tables 1 and 2).

For the BAO surveys, we simplify the analysis by only using the
tangential modes, which is pessimistic, and assume no systematics,
which is optimistic. Due to these reasons, the results below are
illustrative, and we do not claim that the optimistic and pessimistic
approaches cancel out each other. We calculate the errors on BAO
scale using the fitting function given in Blake et al. (2006), which
has been implemented in ICOSMO (Refregier et al. 2008; Kitching
et al. 2009). For the SN error calculations, we have used the Fisher
matrix approach outlined in Tegmark et al. (1997) and Huterer &
Turner (2001) and have assumed a systematic contribution outlined
in Kim et al. (2004) and Ishak, Upadhye & Spergel (2006). However,
we will also show results without systematics in order to gauge their
impact.

3.2.2 Including external data

In this study, we focus on the potential of future BAO and SNe
surveys. It is, however, straightforward to include other data sets.
To do this, we must decide whether to only include current mea-
surements (for instance, in the case of the CMB to include WMAP
data) or try and anticipate the joint impact of future measurement of
that probe (for instance, to include predictions for Planck8). If the
latter is desired, then the prescription for doing so follows the same
logic as that used for the BAO and SNe calculations and would
increase the data vectors (F and X) in equation (4). While concep-
tually simple, adding external data in this way can quickly lead to
computational challenges, since the dimensionality of the integral
scales the number of data points. The computation time for conver-
gent results can diverge quickly, even using a simple Monte Carlo
integration scheme. To solve potential problems, we would either

8 http://www.rssd.esa.int/SA/PLANCK/docs/Bluebook-ESA-
SCI(2005)1_V2.pdf

need to develop a sophisticated Monte Carlo integration scheme
with, for instance, importance sampling that is tailor made for this
problem or try to reduce the number of data points by focusing on
specific features of the external data that we wish to consider. For
instance, in the case of the CMB we can consider adding the peak
position and height information rather than implementing the full
correlation data [C(
)].

If we only add existing external data, then the calculation is
greatly simplified, since the dimensionality of the integral in equa-
tion (4) remains the same. Instead, the external data are simply used
when calculating the minimum χ 2. In the work presented here, we
have included the measured spacing of the acoustic oscillation peaks
of the CMB, 
A, which depends on the ratio of angular diameter
distance to the sound horizon at photon decoupling epoch (z∗):


A = (1 + z∗)
πDA(z∗)

rs(z∗)
, (5)

where DA is the angular diameter distance and rs is the sound
horizon. This peak spacing has been measured to be 
A = 302.1 ±
0.86 for Wilkinson Microwave Anisotropy Probe(WMAP; Komatsu
et al. 2009), which gives an expression for z∗ in equation (66). For
the sound horizon calculation, we follow the calculations presented
in appendix A of Parkinson et al. (2007).

3.2.3 Theory priors and calculating probabilities

We now turn our attention to priors coming from our theory and
how these can bound our results. For example, if we impose no
knowledge at all about what we expect, then the probability den-
sity functions (PDFs) for each of the data points in equation (3)
are independent. A simple consequence of this is that the probabil-
ity distribution for future data in bins where no current data exist
[P (F |X)] will be flat between −∞ and ∞. Inputting this PDF into
equation (4) would lead to a 〈χ 2

min〉 of infinity, which is not fully
useful when comparing expected performances. One can view this
result in two ways. The first is that a data purist (i.e. someone who
wishes not to add any bounds from theory) would conclude that the
best surveys are those that explore new regions where no measure-
ments have yet been made. The alternative approach is to introduce
some expectation from our knowledge of basic cosmological theory.

C© 2011 The Authors, MNRAS 413, 1505–1514
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Figure 1. Fractional errors on the observed quantities for current (black)
and Stage III (red) experiments. For the BAO measurements, these are the
errors on the transverse BAO scale from Blake et al. For the SNe surveys,
the observable is the flux loss of the SNe.

Theory priors modify the PDFs of future data by imposing relation-
ships between different data points. A simple addition is to impose
a link between the angular diameter distance and the luminosity
distance.

For the configurations shown in Table 1, we see that if we take
no guidance from theory then we will be driven towards WiggleZ
and Wide-Field Multi-Object Spectrograph (WFMOS) (see Fig. 1),
since these two surveys will provide BAO measurements at redshifts
that are currently not explored by current BAO experiments and,
hence, have an expectation value of minimum χ 2 of infinity. Once
again, a data purist may argue that these surveys should therefore
be our top priority. In contrast, another simple approach is to rely
on the widely accepted relationship between the angular diameter
distance (DA) and the luminosity distance (DL) given by

DL = (1 + z)2DA. (6)

By explicitly adding this very weak prior from the theory, the prob-
ability of future data is modified (equation 3) to

P (Y |X) =
∫

P (Y B|DL)P (Y S|DL)P (DL|XB)P (DL|XS)dDL,
(7)

where Y B and Y S are the data vectors for future surveys for BAO and
SNe, respectively, and XB and XS are the data vectors for today’s
surveys. This PDF therefore includes a relationship between the SNe
measurements and the BAO measurements at any given redshift.
For what we present later, this relationship between distances is the
only information that we obtain from theory. However, a natural
question is: what would happen if the future data were to extend to
redshifts that are not covered by either the BAO or the SNe data?
A detailed exploration of this will be presented in follow-up work.
None the less, here we give a brief discussion of the basic principles.
Once again, priors from theory can be used to impose relationships
between different data points, which in turn modify the PDF of the
future data. In particular, the question raised here would look for
relationships between data points at different redshifts. This can be
done by introducing an integral relationship between the distance

(comoving Dc) and the Hubble function, H(z):

Dc = c

∫ z′

0

dz′

H (z′)
, (8)

where c is the speed of light. Without resorting to the Friedmann
equation, which links H(z) to density parameters of the matter–
energy components of the Universe, we can place simple constraints
on the functional form of H(z) that can be used to compute the
probability of future data. For instance, an assumption that H(z)
is a positive definite function over cosmic time would bound the
comoving distance at a redshift of zi to be between the comoving
distances at zi−1 and zi+1, i.e. that of the redshifts on either side.
Here the inclusion of the CMB, with z ∼ 1100, becomes very useful.
The advantage of this approach is that all knowledge from theory,
including simple relationships, such as that between DL and DA,
must be included explicitly. This then allows us to decide explicitly
what assumptions should be included.

3.2.4 Computation of 〈χ 2
min〉

For each realization of the future data (Y ) we calculate the weighted
average data, which are given by

Xc = σ 2
X Y + σ 2

Y X
σ 2

X + σ 2
Y

, (9)

where Xc is the value of the combined data, Y and X are the future
and current data values and σ are the associated errors. The errors
on the combined data are

σ 2
c = σ 2

Xσ 2
Y

σ 2
X + σ 2

Y

. (10)

The data vector Xc can also contain external data for which there
will not be corresponding future measurements. In this case, the data
vector entries that correspond to the external data have Xc = X and
σ c = σ x. With this combined data vector, we then calculate χ 2:

χ 2 =
∑ (Xc − M)2

σ 2
c

, (11)

where the sum is over the entries of the data vector. In our case,
this corresponds to a total of nine data points (BAO scale at four
redshifts, SNe at four redshifts and the CMB peak spacing). For a
given choice of cosmology parameters, M is the value given by the
model. For each integration step, we use a minimizer to find the
parameters that lead to the smallest χ 2 value.

The Stage III surveys will look for deviations from the standard
�CDM concordance model. We consider the standard cosmological
model as one with Gaussian initial conditions9 following inflation,
with scale-free perturbations (ns = 1), where spatial curvature is
allowed and dark energy is understood to come from the cosmolog-
ical constant � (i.e. w = −1). Since we only consider the distance–
redshift measurements, we are sensitive to the following parameters
of the model:10 {�m, ��, h}. The model-breaking approach does
not rely a adding further parameters beyond these well-understood
ones and will test how likely it is that future experiments, based on

9 See Amara & Refregier (2004), Desjacques & Seljak (2010) and Pillepich,
Porciani & Hahn (2010) for examples of how non-Gaussian initial conditions
impact observables at low redshifts.
10 We note that there is a weak dependence on �b through z∗ , but we
have neglected this here since it has little impact on the results and only
complicates the calculation.
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today’s data, would find any deviation from �CDM, including, for
example, evidence for w 
= −1.

We perform the integral in equation (4) over all possible realiza-
tions of the future data, which corresponds to an eight-dimensional
integral (four future BAO and four future SNe). For practical rea-
sons to do with computational feasibility, we use the simple Monte
Carlo integration technique outlined in section 7.7 of Press et al.
(2007). Here, a multidimensional integral (in our case, equation 4)
can be expressed as∫

f dV ≈ V 〈f 〉 ± V

√
〈f 2〉 − 〈f 〉2

N
, (12)

where the expectation values, denoted by the angular brackets, can
be calculated by randomly sampling the function f at positions xi

with

〈f 〉 ≡ 1

N

N−1∑
i=0

f (xi). (13)

The volume of the parameter space is denoted as V . This is set by
the bounds of the integral, which we have chosen in such a way so
as to ensure that the integrand is vanishingly small at this limit.

3.2.5 Results

Performing survey optimizations for future experiments typically
involves a trade-off between different configurations that compete
for resources. A classic example is a trade-off between the depth and
area of a survey for a fixed exposure time (see Amara & Réfrégier
2007, for an example of this for weak lensing surveys). Another,
more difficult and often controversial trade-off study is to trade off
resources between different proposed probes. For instance, if due
to limited resources it is not possible to support both SNe and BAO
missions envisioned for Stage III, a natural question might be as
follows: should we invest in one over the other or should scaled-
down versions of each mission be pursued? This is a complex issue
for a number of reasons, but the model breaking FoM, along with
other FoMs, can help guide such decisions by quantifying the likeli-
hood of finding a deviation from ‘the standard cosmological model’.
For this reason, our first illustrative example focuses on a possible
trade-off study between SNe and BAO Stage III surveys. We again
note that a thorough treatment of such a trade-off is complicated.
For instance, quantifying the impact of limited resources is signifi-
cantly more complicated than that of limited observation times. We
made a number of simplifying assumptions, so the results stated
here are only to illustrate the method rather than to offer concrete
recommendations about one experiment over another. In this spirit,
we will show results for the full Stage III surveys as well as for the
scaled-down versions. We do not attempt to make a link between the
scaled-down versions for a fixed set of resources, since this is well
beyond the scope of this work. For scaling down the surveys, we
have decided to fix the distributions in redshifts (i.e. the PDF of the
number of SNe and galaxies as a function of redshift is fixed), and
we vary an overall scaling. For BAO this corresponds to a change
in the survey area, and for SNe this corresponds to a reduction in
the total number of SNe.

In Fig. 2, we show the expectation value of the minimum χ 2

when we consider only some fraction of the area of the Stage III
surveys shown in Table 1. For instance, for a fraction of 0.5 we
divide the areas of all the BAO missions by a factor of 2. The
results are shown for different realizations of Stage III SNe surveys,
where once again the fraction refers to the fraction of the total SNe

Figure 2. Expectation value of the minimum χ2 as a function of the areas
of the SIII BAO surveys. The fraction corresponds to the fraction of the full
survey areas (shown in Table 1) used. These are shown for three configura-
tions of Stage III SNe surveys, where only a fraction of the SNe in Table 1
are used. The solid curves include SNe systematics while the dotted curves
do not. The dashed line shows the χ2 that would correspond to a reduced
χ2 of 1.

numbers shown in Table 2. We see that for a range of SNe Stage
III configurations increasing the area of the BAO survey from 1
to 10 per cent of what is expected in Stage III has no effect on
the expectation value of the minimum χ 2. Beyond this, however,
we see a large increase in 〈χ 2

min〉 as the area of the BAO surveys
is increased, leading to mean χ 2

min values that are greater than 5
(i.e. a reduced χ 2 greater than 1) for all survey configurations with
100 per cent of the DEFT Stage III survey area. This is true with
and without SNe systematics. In Fig. 3, we show similar results
as a fraction of future SNe surveys. We see a linear increase in
〈χ 2

min〉 with the SNe fraction increasing from 1 to 100 per cent in
Stage III experiments. Here, the increase is less dramatic than in
the BAO case, and this suggests that it is more likely that some
discovery will be made from the BAO experiment. This result can
be seen in Table 3, where we also show the comparison with the
other FoMs discussed in Sections 2.1 and 2.2. The middle column
shows the errors on the standard model parameters, in this case
the density of �, and right-hand column shows the FoM proposed
by the Dark Energy Task Force (DETF), which is proportional to
the area of the error ellipse in the w0–wa plane (Albrecht et al.
2006). It is reassuring to see all three measures show similar trends,
which would suggest that the simple optimizations done here are
reasonably robust and the overall information content is increased
between experiments with lower FoMs and those with higher ones.
This is different from the trade-off studied in Appendix A, where
the overall error bars are fixed and the sensitivity in different regions
(x values) leads to changes in the FoMs.

Finally, we investigate a simple optimization where we explore
the model-breaking redshift sensitivity of the Stage III surveys. We
do this by boosting the performance of the surveys at a particular
redshift and by dividing the statistical errors at that redshift by a
factor of 2. This is not a physically motivated optimization. Instead,
it can be thought of as simply probing where an improvement would
be the most effective. The results are shown in Fig. 4. The coloured
bars show the fractional increase in 〈χ 2

m〉 for the calculations where
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Figure 3. Expectation value of the minimum χ2 as a function of the number
of SNe of the Stage III surveys. The fraction corresponds to the fraction of
the full survey number (shown in Table 1) used, where the PDF is fixed and
only a global fraction is applied. These are shown for three configurations of
the Stage III BAO survey area where only a fraction of the areas in Table 1
are used. The solid curves include SNe systematics while the dotted curves
do not. The dashed line shows the χ2 that would correspond to a reduced
χ2 of 1.

Table 3. Comparison between the model-breaking approach (〈χ2〉), work-
ing within the standard model (here we show errors on �� in a model
with only the cosmological constant) and DETF FoM (which involved
parametrizing the equation of state in terms of w0 and wa). The numbers in
parentheses are when no systematics are included for SNe, while the other
numbers mean that this systematic is included.

〈χ2
m〉 σc(��)/σIII(��) FoMIII/FoMc

BAO III 5.5 10 2.2
SNe III 3.5 (4.0) 6 (14) 1.1 (2.6)
BAO and SNe III 7.0 (8.0) 10 (19) 2.2 (4.4)

SNe systematics have been included. We see here that improving
the SNe survey in the two lowest redshift bins causes a notable in-
crease in the 〈χ 2

min〉, while improving the SNe performance in higher
redshift bins has little effect, except in the no-systematics case. This
suggests that in order to go beyond Stage III SNe experiments, we
should first focus on improving errors at low redshifts, unless we
can demonstrate that the systematics levels can be brought below
those presented by Kim et al. (2004) and Ishak et al. (2006). For the
BAO experiments, we find a different result. Improving the errors in
our lowest redshift bin has no effect on 〈χ 2

min〉. However, we see that
if the errors in our final redshift bin (0.7 < z < 1.0) are improved,
then we see the largest increase in 〈χ 2

min〉. This suggests that a BAO
experiment beyond Stage III should aim to make measurements at
high redshifts.

4 C O N C L U S I O N S

We have presented a framework in which experimental optimization
can be placed. Given a standard model, one can either (i) measure
the standard model parameters to high precision, (ii) attempt to
extend the standard model or (iii) attempt to find deviations from
the standard model.

Figure 4. The impact of boosting the performance in one of the redshift
bins. This is done by reducing the statistical error in the relevant bin by
a factor of 2. The y-axis shows the ratio of the expectation value of the
minimum χ2 of the boosted Stage III survey to that the standard Stage III
survey. The different colours correspond to which probe has been enhanced;
the solid colours are when SNe systematics are included and the dashed
lines show the results when SNe systematics are eliminated.

When designing an experiment to measure or extend the standard
model, the Fisher matrix formalism can be used. We have introduced
a framework that can be used to design an experiment that will have
the best chance of finding discrepancies in the standard model. This
framework only depends on three sets of information (current data,
future expected error bars and the standard model). No external
assumptions are needed for the calculations, though we have also
shown how priors from the theory can, if needed, be added.

By using a simple illustrative example, we find that the op-
timal future experiment configuration can depend very strongly
on the choice of optimization metric. In our simple model,
C = m(x − 8) + 10, the data position x = 8 is a pivot point
since C(x = 8) ≡ 10. When designing an experiment to measure
the standard model, it is optimal to have small errors away from the
pivot point. However, when designing an experiment to break the
model, it is optimal to have a small error at the pivot point since
any measurement of C(x = 8) 
= 10 would provide evidence that
the standard model was incorrect. When extending the model, the
optimization naturally depends on the exact parametrization of the
extension.

In cosmology we have a standard model, �CDM. A large number
of experiments have been designed to measure an ad hoc extension
of this model, parametrizations of the dark energy equation of state,
to high accuracy. Our recommendation here is that future cosmol-
ogy missions should be optimized by using the three approaches we
have outlined above: (i) measure the standard �CDM parameters;
(ii) measure extended parameters, specifically the equation-of-state
parameters, the DETF FoM and the modified gravity parameter γ ;
and (iii) calculate the expectation value that the experiment will
find a deviation from �CDM. We calculate quantities in these three
regimes for SNe, BAO (transverse modes) and the CMB peak po-
sitions by focusing on ‘current’ and the DETF Stage III surveys.
Should the three quality quantifiers agree, we can be reassured that
the optimization is somewhat robust. For instance, there has been
some concern that the DETF FoM is biased in favour of redshifts.
However, in the calculations shown in this paper, we do not find ev-
idence for this, with the results for the DETF FoM being consistent
with the other figures that we have shown. In the event that the three
approaches lead to conflicting configurations, the fact that these
measures look for a distinctly different thing means that we should
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be able to make a choice based on a judgement of the priorities of
a given experiment.
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APPENDIX A : ILLUSTRATIVE EXAMPLE

To illustrate the distinction among the three optimization ap-
proaches highlighted in this paper, we will present a simple worked
example. We begin with a standard model where the signal C at
x depends only on the parameter m (i.e. � = {m}). Our standard
model is

C = m(x − 8) + 10. (A1)

For this simple example, we also assume that measurements can
only be made at x = {4, 8, 12}, where today’s measurements

Figure A1. The system being used to illustrate the available optimization
options. For this example, the black points are today’s data and the red lines
are examples of our standard model that are consistent with today’s data. In
the top-right corner, an example of the typical size of the error bars in the
future experiment is shown.

have yielded X = {10, 10, 10} with Gaussian errors of variance
σ 2

X = {1, 1, 1}. This is shown in Fig. A1. We will assume that
future experiments can be built to measure the signal at the same
x positions as today but that the errors on the measurements will
be significantly smaller than those of today. Specifically, we will
assume that the quadratic sum of the future errors, over all data
points, is

∑
x σ 2

Y (x) = 2.01 (this creates a symmetry between the
top-left and -right corners of Figs A2–A5). The global performance
of the future experiment is therefore a little better than the current
one, and the optimization process is to decide how to optimally
distribute the errors among the three data points.

A1 Measuring the standard model

To measure the performance of a future experiment, we use the
Fisher matrix to estimate the errors on the parameter m for specific
configurations of the errors. This allows us to find the optimal
configuration of the errors for the purpose of measuring m.

Fig. A2 shows how the future errors at the x = 4 and 8 points
are optimized such that the error on m is minimized. It is clear
that the optimal configuration is insensitive to the error at x = 8.
This is understandable since within the standard model there is
no sensitivity to m at x = 8, so there is no gain in placing any
measurement at this point. The optimal strategy to measure the
standard model m is then to place small future error bars at either
x = 4 or 12. It is also interesting to note that since the value of the
standard model at x = 8 is fixed, it is better to have one small error
at either x = 4 or 12 (with the other being large) than to distribute
the errors between these two points.

A2 Extending the standard model

To extend the model, we first have to decide on a way of extending
the standard model. We must also decide whether to optimize or
minimize the errors on the extended parameters – after marginal-
izing over m – or to minimize both the standard and extended
parameters simultaneously.
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Figure A2. The results of an optimization analysis designed to measure m
(the only parameter of our standard model) to the highest precision possible.
The quadratic sum of the errors of the three data points (σ 2

x=4 + σ 2
x=8 +

σ 2
x=12) has been set to 2.01. We see that the minimal errors are achieved for

small σ 2
x=4 (and by symmetry σ 2

x=12). The fact that the lines are close to
vertical shows that this optimization is totally insensitive to the measurement
precision at x = 8. This can be understood since x = 8 is a pivot in our
standard model and therefore offers no information within our standard
model as it can only have a value of 10. For a fixed error at x = 8, we see a
clear preference to minimize the errors at either x = 4 or 12, which means
that it is better to have one small error bar than minimizing both.

For illustration, we assume that there are two equally valid ways
of extending the standard model used here. The first is the addition
of a quadratic term:

C = m(x − 8) + 10 + p1(x − 8)2, (A2)

and the second is the addition of a constant:

C = m(x − 8) + 10 + p2. (A3)

Again, the Fisher matrix formalism is used to predict the future
errors on the model parameters, (m, p1) or (m, p2), given a configu-
ration for the future data error bars.

The results are shown in Figs A3 and A4. We show the errors on
m (marginalized over pi) and on pi (marginalized over m). We could
have constructed an FoM that combines the errors of m and pi, but
this is somewhat superfluous in this illustrative example.

In Fig. A3, we show how the errors on m and p1 from model 1 are
optimized. In this case, x = 8 is a pivot point of the extended model
so the optimal strategy is to maximize future errors at x = 8 since
the parameters are not sensitive to data at this point. The quadratic
sum of the errors at x = 4 and 12 is then minimized. We note that
in this example, both of these data points are needed to distinguish
between the parabolic and the linear terms.

In Fig. A4, we show how the errors on m and p2 from model 2 are
optimized. In this extended model, x = 8 is no longer a pivot point of
the model. In fact, a small future error bar at x = 8 could measure p2

very accurately (for a given m) because the errors are not degenerate
with m at this point. Hence, the optimization places a small error

Figure A3. Optimization for the two parameters of extended model 1, C
= m(x − 8) + 10 + p1(x − 8)2. The plots show the expected marginalized
errors on m and p1 as a function of possible measurement errors at x = 4 and
8. As in Fig. A2, the errors at x = 12 are set by fixing the quadratic sum of
the errors to 2.01. For this extended model, we see that we are pushed to a
configuration with maximum errors at x = 8 for both parameters m and p1.
As with the standard model, this extended model has a pivot point at x = 8
and so the measurement here does not bring useful information. Unlike the
example shown in Fig. A2, here the errors at both x = 4 and 12 are important
since they are both needed to distinguish between m and p1 (with only one
data point the two parameters are degenerate). This is why maximizing the
error at x = 8, and hence minimizing the quadratic sum at x = 4 and 12, is
preferred.

bar at x = 8. Next, to accurately measure m, the optimization tries to
minimize the errors on one of the two remaining errors in a similar
way to that shown in Fig. A2.

A3 Breaking the standard model

For the Fisher matrix calculations, we have made the implicit as-
sumption that future measurement errors are Gaussian (Tegmark
et al. 1997). For the model-breaking approach, we make the same
assumptions, namely that the probability of T given today’s data is
given by

P (T |X) = exp

[
− (T − X)2

2σ 2
X

]
, (A4)

where today’s data vector is once again X = {10, 10, 10}, and the
probability of the future data given T is

P (Y |T ) = exp

(
− (Y − T )2

2σ 2
Y

)
. (A5)

The future χ 2 is given simply by

χ 2 =
∑

i

1

σ 2
Y i

(Ci − Y i)
2, (A6)

which for the illustrative standard model used here (equation A1)
is a minimum for

m =
∑

i σ
−2
i (xi − 8)(10 − Y i)∑

i σ
−2
i (xi − 8)

, (A7)

where the sums are over x = 4, 8, 12. These allow us, for the simple
model being considered here, to solve equation (4) analytically.

Fig. A5 shows the result of the model-breaking optimization for
this illustrative example. To have the best chance of breaking this
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Figure A4. Similar to Fig. A3, this shows the optimization for the two
parameters of extended model 2, C = m(x − 8) + 10 + p2. For the extended
parameter p2, we are pushed towards a configuration with minimal errors at
x = 8. Because this point is not a pivot point of the model, it can be used
to directly measure p2. For m we see that maximum precision is reached by
minimizing the errors at x = 4 and 8 (or by symmetry at x = 8 and 12). This
is because the data point at x = 8 gives the best measure of p2, which is
degenerate with m. Once p2 is measured, only one extra data point is needed
in this model. Hence, either x = 4 or 12 should be minimized.

standard model, one should place a very small error bar at x = 8.
This is understood since x = 8 has a very stringent prediction that
C(x = 8) ≡ 10; any deviation from this prediction would be proof
that the standard model was incorrect.

This paper has been typeset from a TEX/LATEX file prepared by the author.

Figure A5. The expectation value of the future χ2
min. This expectation value

must be maximized to have the best chance of breaking our standard model.
The colour scheme for this plot has been chosen such that the best config-
uration (max〈χ2

min〉) is purple (dark), which is consistent with Figs A2–A4
where the optimal strategies are also purple (dark). We see that using this
criterion that the optimal configuration is one that minimizes the errors at x
= 8. This can be understood since any deviation from y ≡ 10 at this point
cannot be explained within our standard model. Given today’s data and no
guidance from theory, a high precision measurement here is, therefore, most
likely to break the standard model.
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