provided by RERO DOC Digital Library

Proc. London Math. Soc. (3) 91 (2005) 273—-299 © 2005 London Mathematical Society
doi:10.1112/50024611504015199

KOSZUL COMPLEXES AND SYMMETRIC FORMS
OVER THE PUNCTURED AFFINE SPACE

PAUL BALMER anp STEFAN GILLE

1. Introduction
Let X be a scheme. We are studying the (total) graded Witt ring
W(X) = P W(X)

i€z
where the groups W' are the derived Witt groups of Balmer [2, 3] with the
multiplicative structure of Gille and Nenashev [11]. See more in §3.

We fix an integer n > 1 for the entire article. Consider the following open subset
Uy C Ay of the affine space Ay = Spec(Z[Ty,...,T,]):

Uy = U Spec(Z[Ty, ..., T,, 771]) C A7,
j=1
For any scheme X, define by base-change the open subscheme U C Ay, called
the punctured affine space over X, that is, define U% to be the following pull-back:

U% := X x Ug.

Our main results are summarized in Theorem 9.13 below, which is as follows.

THEOREM. If X is regular, contains% and has finite Krull dimension, there is a
decomposition W™ (U%) = W' (X) & W' (X) e for some Witt class e =Y in
WL (U%). If n =1, we have e = 1. If n. > 2, we have € = 0 and an isomorphism
W (X[

2

Wt()t Un o~
() = W

of graded rings, with the generator € in degree n — 1.

When n =1, and at least for X affine, U consists of the ‘Laurent polynomials’
over X, in which case the above theorem is due to Ranicki [16]; see also [15]. Note
that the decomposition of W' (U%) for n =1 as two copies of W™ (X) remains
true for n > 2, but that the second copy is shifted by n — 1, which is of course not
visible when n = 1. Note also that the ring structure is different from the Laurent
case when n > 2. The special case n = 1 also shows that this result cannot hold in
general for non-regular schemes; see [15, §8] by Ojanguren and Panin.

The second goal of the article is an explicit description of the Witt class
ey € W' H(U%). It is constructed as the Witt class of a symmetric space denoted
E<X> = (E()"()7 5()"(')), which exists for any scheme X, not necessarily regular. Here E()”() is
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a complex in the derived category of vector bundles over U% and the form &Y is a
symmetric quasi-isomorphism. Both are constructed via a suitable truncation of
the Koszul complex over A% for the regular sequence (Ti,...,T,). This explicit
description is necessary to prove the following fact (see Theorem 9.10).

THEOREM. Assume n > 2. The symmetric space EY is locally metabolic on U’.

This result does not hold for n = 1 and is used to establish the announced relation
(5%’3)2 = 0; see Theorem 9.12. On the other hand, Theorem 10.2 says the following.

THEOREM. The symmetric space EY cannot be extended from U% to A’y, not
even up to Witt equivalence. In particular, E<X) is not metabolic on U.

In other words, this symmetric space Eg’() is a little miracle happening over U,
which vanishes when restricted to smaller open subschemes and which cannot be
extended to the bigger scheme A'y.

Our last goal is a description of the generator €}/ € W1 (U%) in ‘classical’ terms.
Recall a few facts. First, the derived Witt groups are 4-periodic: W' = Wit
Secondly, WY and W? are naturally isomorphic to the usual Witt groups Wi, and W,
of symmetric and skew-symmetric vector bundles respectively, as defined by
Knebusch [14]. Thirdly, W' and W* = W~! are groups of formations; see Walter
[18]. So, describing ‘in classical terms’ our generator £y in W"™! amounts to
producing an explicit element of the above nature, that is, a +1-symmetric form or
formation, depending on the congruence of n modulo 4. This short symmetric space is
denoted F(X) and appears in § 8.

There are two appendices. In the first one, we show that when n >4 our locally

free Oyu-module Y cannot be extended to a locally free Oyn-module and in

X X
particular €Y is not free. The second appendix contains the compatibility between

product and 4-periodicity, a fact which we use several times in this work.

2. Conventions and notation

We collect here the notation which is kept unchanged in all sections.
First, recall that we have fixed an integer n > 1. We decompose it as

n=4q+r+1 (1)
where ¢ € N and r € {—1,0,1,2}. Note that n —1 =r mod 4. We also baptize

{g} =) (2)

CONVENTION 2.1. Unless otherwise mentioned, a ring means a commutative
ring with unit.

CONVENTION 2.2.  As always, when using a notation defined for schemes X in
the affine case, X = Spec(R), we shall drop ‘Spec’ as, for instance: VBp, D"(VBp),
W'(R) instead of VBgpe(r): ]D)b(VBSpCC(R)), W'(Spec(R)), and so on. See also
Remark 3.3.



KOSZUL COMPLEXES AND SYMMETRIC FORMS 275

CONVENTION 2.3. We shall say that a scheme is regular if it is noetherian
and separated and if all its local rings are regular.

NOTATION 2.4. Let f:Y — X be a morphism of schemes. We denote by A%
the affine n-space and by U% the punctured affine n-space as in the introduction.
The obvious structure morphisms and base-change morphisms will be denoted:

Oy
KJJY’ " | — Y
vy g J f
, (3)
Ug—— Ay ——— X
o e
Uy . A% - Spec(Z)

3. Recalling derived Witt groups

This section is a quick course on triangular Witt groups over schemes, included
only for the reader’s convenience. Here, X is a scheme with structure bundle Oy.

3.1. Categories and dualities

We denote by the symbol VBy the exact category of locally free Ox-modules of
finite rank, that is, vector bundles. The usual duality on VBy is abbreviated

(=) ="Homo, (-, Ox).

Here DP(VBy) stands for the bounded derived category of VBy. We use homo-
logical notation for complexes. The translation functor ¥ : D’(VBy) — D"(VBy),
also written P, — P,[1], is given by (P,[1]); = P;_;; as usual, ¥ changes the sign of

all differentials: d/") = —dl’,.

Let P, = (P,,d") be a complex in D"(VBy). Its dual Dy(P,) is the complex
L
DX(R) = Pij\/ - P7<j71)v—>...

deg j deg (j—1)
and similarly for morphisms of complexes. In other words, Dy is the derived
functor of (=)' = Homg, (—, Ox). This defines a l-exact duality on DP(VBy)
turning it into a triangulated category with duality in the sense of [2]. Recall that
‘l-exact’ means that the dual of an exact triangle

LA S N

.

is given by
Dx(¢) n Dx(p) Dx(¢)[1]
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The isomorphism between the identity and the double dual,
@ :idpy(yp,) = DyDy,
is given in each degree j by the canonical (evaluation) isomorphism
canp, : P, — PjW.
We consider VBy as a subcategory of DP(VBy) via the natural embedding
VBy — DP(VBy), which we denote ¢,. The restriction of the duality Dy to this

subcategory is the original duality of VBy and the restriction of w is the above
isomorphism can.

DEFINITION 3.1. Let P, be a complex in DP(VBy). Let i€ Z, and let
¢ : P, — Dx(P,)[i] be a morphism in D"(VBy). We say that ¢ is a symmetric
i-form on the complex P, if

Dx($)i] - wp, = (1) 2.

We then say that (P,, ¢) is a symmetric i-pair. If ¢ is moreover an isomorphism,
we say that (P,,¢) is a symmetric i-space over X. Two symmetric i-pairs (P,, ¢)
and (Q.,%) are called isometric if there exists in D"(VBy) an isometry between
them, that is, an isomorphism h : P, = Q, such that ¢ = Dx(h)[i] - - h.

REMARK 3.2. Note that if (P,,¢) is a symmetric -pair then (P,[2], ¢[2]) is a
symmetric (i + 4)-pair because Dy(P,)[1] = Dx(P,[—1]) for all P, € D"(VBy).

Let f:Y — X be a morphism of schemes. There is a natural isomorphism of
functors 7y : f*Dx = Dy f* which is induced by the natural isomorphism of locally
free Oy-modules

fHome, (P, Ox) = Home, (f*P, Oy).

If now (P,,¢) is a symmetric i-space over X then the isomorphism

)L 0y Pyl = 1 Dy~ Dy (P

is a symmetric i-form and so f*(P,,¢):= (f*(P.),nspli] - f*(¢)) is a symmetric
i-space over Y.

3.2. ‘Short’ i-forms: forms and formations

We present examples of symmetric i-pairs (P,, ¢) in four cases i = —1,0,1,2:
deg 0 i=1 deg 1 deg 0
0 Py——0--- .0 P, d P, 0---
J% = ¢y o J J—Qslv
i 0—— P ——0--- .0 P P 0---

—dVv
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deg 1 i=—1 deg 0 deg —1

d
J¢1¢Y ¢0J Jsbg
o 0—— P ——0--- .0 P vpOV 0---
—d

In each case, the complexes P, and P,Y are depicted horizontally and the sym-
metric i-form ¢ : P, — Dx(P,)[i] vertically. The symmetric pairs of the left-hand
column are classical symmetric and skew-symmetric forms embedded in DP(VBy)
via the functor ¢, (slightly pushed to the left for i = 2). These symmetric i-pairs
are i-spaces exactly when ¢, and ¢; are isomorphisms. The symmetric i-pairs of
the right-hand column are i-spaces when ¢ is a quasi-isomorphism, that is, when
its cone is an exact complex; these are formations; we call them symmetric if
i = —1 and skew-symmetric if ¢ = 1. The four types of i-form presented above will
be called short, for the obvious reasons.

3.3. Product of symmetric spaces

The precise definition of this product is given in [11], where the reader will also find
an explanation for the existence of two different products — the left and the right
one — which differ by signs. To fix the ideas, we will use here the left product. Let
(P,,¢) be a symmetric i-form and (Q,,v) a symmetric j-form. The product

(P §) * (Qu; )

is then a symmetric (i + j)-form on the tensor product (of complexes) P, ®o, Q.
and we denote it by (P, ®¢, Q.,¢*1). Up to signs and identifications like, for
instance, P, ®o, (Q)[j]) ~ (P, ®o, Q))[j], the morphism of complexes ¢ % is
equal to the tensor product ¢ ® ¥. Via ¢, this product coincides on short 0-spaces
with the usual tensor product of symmetric spaces as defined by Knebusch in [14].

3.4. Symmetric cones

We now recall the important cone construction. Let ¢ : P, — Dx(P,)[i] be a
symmetric i-form (maybe not an isomorphism). Let @, be the mapping cone of ¢.
Then, there exists an isomorphism % such that the following diagram commutes:

P Dyl v 0. ’ Pl

o~ J/(_l)l(ﬂrl)/? wp J/ _ QZJJZ (_1)7(I+1)/2 WP[].} Jg
DxDx(P,) ——Dx(P,)[i] ———Dx(Q.)[i + 1 : DxDx(P,)|1
( )Dx(qﬁ)[ﬂ e —Dx(v)[i +1] @ (1) Dy (w)[i + 1] I

If the isomorphism 1) is moreover a symmetric (i + 1)-form, we call such a diagram a
cone diagram (over ¢) and we say that (Q,,) is a symmetric cone of the pair (P,, ¢).

Note that both rows of the diagram are exact triangles in ]D)b(VB x): the upper
one by definition and the lower one is the dual of the upper row, shifted ¢ times.
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Assume for a moment that 2 is invertible over our scheme X. Then we can always
choose the isomorphism ¢ to be a symmetric (i + 1)-form; see [2]. Moreover, if
(Q!,9") is another symmetric cone of ¢, then there exists an isometry
(Q., ) = (Q!,7"). We say then that (Q,,) is the symmetric cone of ¢, in symbols:

(Q.,v) = cone ¢ = cone(P,, ¢).

3.5. Witt groups

The usual Witt group of symmetric (respectively skew-symmetric) spaces
Wo(X) (respectively W (X)) classifies these spaces up to isometry and modulo
metabolic ones. More information about these Witt groups can be found in the
fundamental paper of Knebusch [14]. The ith derived Witt group W'(X) classifies
symmetric i-spaces up to isometry and modulo neutral spaces, that is, spaces with
Lagrangian (cf. [2, §2]). In fact, a symmetric i-space is neutral exactly if it is a
symmetric cone of some symmetric (¢ — 1)-form, as described above. Observe that
this definition does not require 2 to be invertible in X. We denote by [P,, ¢] the
Witt class of (P, ¢).

The Witt groups are contravariant functors. If f:Y — X is a morphism
of schemes then the assignment [P, ¢]+— [f*(P,,¢)] defines a homomorphism
[ WHX) — WYY) for all i € Z.

3.6. Periodicity

The derived Witt groups are 4-periodic. The shift by 2, P, P, [2], induces an
isomorphism 7: W/(X) = W™(X) for all i € Z and all schemes X. The same
periodicity applies to the Witt groups with support defined below.

3.7. Agreement

We assume now that ‘X contains 3, that is, that X is a Z[1/2]-scheme, that is,

2 is invertible in the ring I'(X, Ox). The main result of [3] is that the functor
o : VB — D"(VBy) induces isomorphisms:

W(X) = Wy (X) = WU(X),  [P.¢]— [co(P), co(9)]

and

W (X) = Win(X) S WHX),  [@,¢] — [eo(Q)[1]; co(e)[1]].

3.8. Localization (with $)

Other Witt groups appearing in this work are the Witt groups with support.
For a complex P, € D"(VBy) let

supp P, := {z € X | H;(P,), # 0 for at least one j},

be its (homological) support. Let Z be a closed subscheme of X with open
complement U. The full triangulated subcategory of D"(VBy) which consists of
complexes with support contained in Z is denoted DY%(VBy). The restriction of
the duality Dy to DY(VBy) is again a duality, turning D%(VBy) into a
triangulated category with duality. The corresponding triangular Witt groups
W4 (X) (i € Z) are called the derived Witt groups of X with support in Z. They



KOSZUL COMPLEXES AND SYMMETRIC FORMS 279

appear in the localization sequence of Balmer [2]. If X is a regular scheme then
there is an exact sequence

— Wi{(X) WiH(U) 0 WH(X) — WH(X) — ...

The connecting morphism d comes from the cone construction (cf. §3.4) as follows.
Let w € W'(U). Then 9(w) = [cone(P,, )], where (P,, ¢) is any symmetric i-pair over
X with [(P,, ¢)|y] = w (the existence of (P,, ¢) is guaranteed by the regularity of X).
The Witt groups with support are natural and so is the localization sequence.

3.9. The graded Witt ring
The (left) product of symmetric spaces of §3.3 yields a product structure

*: WH(X) x WHX) — WH(X), ([P, g],[Q..¢]) — [(P., ¢) * (Q., )]

for any i¢,j € Z, any scheme X and closed subset Z C X. Via this pairing,
W (X) := @Pjez W'(X) is a graded skew-commutative associative WO(X)-algebra,
the graded Witt ring of X and W'(X) := @,z W5 (X) is a graded W (X)-module.

REMARK 3.3. Of course, Convention 2.2 applies here as well. For instance, if
X = Spec(R) is affine and Z C X is defined by the ideal I, we might say that a
complex ‘has support in the ideal I’ and we shall write W;(R) instead of W7 (X).

4. Basic facts about Koszul complexes

In this section, Aisaring, T = (T},...,T,) isany sequence in A, and I := > 1" AT;
is the ideal generated by T. As before, we write the dual as M" := Hom (M, A),
for any A-module M.

We first recall the definition of the Koszul complex
K,(AT) = (K,,d,).

Let e, es,...,e, be a basis of the free A-module A" = ;- A-e;. The A-module
K, = K;(A,T) := \' A" is by definition the ith exterior power of A". As is well-
known, the module K; is free with basis {e; A...Ae; [1<j; <... <j;<n}. The
differential d; = d;(A,T) : K; — K;_; is given by

i
k-1 —~
e, N...\Nej »—>Z(—1) T -ej N...ej ... \ej,
k=1

where the symbol € indicates that e; has been omitted. We consider this
(homological) Koszul complex K,(A,T):

dn(sz) dl (A’I)

as an element of DP(VB,) with K;(A,T) in degree j.

There is a structure of symmetric n-space on K,(A,T) that we now give in an
economic way; see more details in Remark 4.2. For each i=1,...,n, let
K.(A,T;)) € D"(VBy) be the short Koszul complex for the one-element sequence
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(T;), that is,

T
K, (AT) = 0 A A 0
deg1l degO
This complex can be equipped with the following symmetric 1-form:

K, (AT;) = .0 A A 0---

o1 | = | a

(-T)

DAK.AT)] = —-0—A4 A——0---

deg 1 deg 0
where we identify A = Homy (A, A) as usual. This is the cone of the symmetric

form ALA = Hom, (A4, A), and so, in particular, a symmetric 1-space. It is
easily checked that the tensor product of complexes K, (A, T)) ®4...®4 K,(A,T),)
is equal to the Koszul complex K, (A,T) of the sequence T = (T},...,T,) and
therefore we can give the following definition.

DerFINITION 4.1. With the above notation, we define a symmetric n-form
O(A,T) : K.(A,T) — Da(K.(A,T))[n]
as the product (see §3.3)
(K.(A,T),0(A, 1)) := (K.(A,T1),0(A,T1)) x ... x (K.(A, T,), O(A, T,,)).

This defines a symmetric n-space (K,(A,T),0(A,T)) which we call the canonical
space on the Koszul complex K, (A,T).

REMARK 4.2. To define this canonical space on K, (A,T), it is not necessary
to use the product structure of the derived Witt groups. The advantage of this
approach is that we see at once that the canonical n-space is a symmetric n-space,
but for calculations in the sequel it might be useful to have a good description of
the symmetric n-form ©(A,T). We define an isomorphism

p: K.(A,T) —Dy(K.(A,T))n]

following [7, §1.6]. We fix for this an isomorphism w: A"(A") = A, and define an
A-bilinear pairing
bt Ki(A,T) x K, ;(A,T) — A

by (z,y) —w(xz Ay) for all 0<i<n. This b; induces a homomorphism
KL(A’I) %HomA( n— L(A T) A) rL L(A T)

which is an isomorphism for all 0 <i<n. It is straightforward to check (see [7,
Proposition 1.6.10] if necessary) that

Ao i) (A, D) - gy = (—1) oy - di(AT).

Consider the family of morphisms (p;);cz defined by p; := (—1)2'(”1)/2*”("71)/2 - 0;
for 0<i<n, and p; := 0 otherwise. This defines an isomorphism of complexes
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p=p.: K(AT)— Dy(K.(A,T))n], which coincides with the morphism of com-
plexes ©(A,T) as a thrilling calculation, using (in particular, the sign conventions
of) [11, Example 1.4, Remark 1.9], shows.

By the following lemma this is easier to see if T is a regular sequence, which is
the only interesting case for us here.

LEMMA 4.3. Assume that T is a regular sequence. Identify A =~ Homy(A, A)
as usual. Then for any morphism in ID)b(VB 4) between the Koszul complex and its
n-dual

[ K.(sz) - DA(K.(sz))[n]a
there exists an s € A such that ¢ = s-©(A,T) in D*(VBy). If s’ € A is another

element with this property then s — s’ € I. The morphism < is an isomorphism in
DP(VB,) if and only if s+ I is a unit in the quotient ring A/I.

Proof. By assumption T = (T},...,T,) is a regular sequence and so the
complex K, (A,T) and its dual D (K,(A,T))[n] are A-free resolutions of A/I by
[7, Proposition 1.6.10 and Corollary 1.6.14]. The lemma follows because ©(A,T) is
an isomorphism of complexes. 0

REMARK 4.4. Tt is clear that the restriction of K,(A,T) becomes zero in the
derived category D"(VB ary) for all 1<j<n. Hence the complex K, (A,T) has
support in the closed subset of Spec(A) defined by the ideal I =37, AT;.
Therefore the symmetric n-space (K,(A,T),0(A,T)) defines an element in

[K.(A,T),0(A,T)] € Wi (A).

PROPOSITION 4.5. Let 1<i<n. Define the ideal I, := ) ;. ; AT}, of A. Then
[K.(A,T),0(A,T)] =0 in W} (A).

Proof. The group WZ_I(A) obviously contains the element
y = [K.(A,T), 0(A, )] * ... x [K.(A,Ti1),0(A, T,-1)]
* KA, Ti1), O(A, Ty % ...+ [K(A,T,), O(A, T,)].
Since the product is skew-commutative, we have
[K.(A,T),0(A,T)] xy = (=1) ' [K.(A,T), O(A, T)],

where we consider [K,(A,T;),0(A,T;)] as an element of W'(A). Therefore the
result follows from the observation that this element is indeed zero in W!(A). In
fact, the complex cy(A) € D*(VB,) is a Lagrangian (cf. [2, §2]) of the symmetric
1-space (K,(A,T;),0(A,T;)):

co(A) = 0 0 A 0
| R
K.(A,T) = 0 A A 0

and so [K,(A,T;),0(A,T;)] =0 in W!(A). O
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In the above proof, note that the class y € W}~ (A) does not belong to W}~ '(A)
and thus the argument cannot be used to deduce that [K,(A,T),0(A,T)] =0 in
W7 (A). On the contrary, see Theorem 9.2.

COROLLARY 4.6. We have [K,(A,T),0(A,T)] =0 in W"(A).
Proof.  This is clear since Wy (A) — W"(A) factors via Wy (A), for instance. [

REMARK 4.7. Our ‘canonical’ Koszul symmetric space [K,(A,T),0(A,T)] is
only canonical up to sign. In fact, its definition obviously depends on sign con-
ventions, as usual when working in derived categories, as well as some personal sign
choices as, for example, in the definition of the symmetric 1-form on the Koszul
complex of length 1, at the beginning of this section. The reader should not consider
this sign question as crucial and can equally well use his own set of conventions.
Applying Lemma 4.3 to A =Z[T},...,T,] and to T = (Ty,...,T,), as we shall do
below, we get A/I =7 and no other unit than +1 can really enter the game.

Indeed, our main result Theorem 9.13 says that for any regular scheme X of
finite Krull dimension the total Witt ring W' (U%) is a graded W'™"(X)-algebra
with only one generator ¢ which satisfies the relation e> =0 if n>2 and €2 =1 if
n =1, so, this result clearly does not depend on any choice yielding a sign change
in the definition of €. A reader who prefers different sign conventions would maybe
get from our construction —e as generator which obviously satisfies the same
relation as €. Once again, these signs are not really relevant and we could have
written everything ‘up to sign’ using Lemma 4.3 extensively. We only carry the
(hopefully) exact signs throughout the paper for sake of consistency.

5. Koszul cut in two

We want to ‘split’ the Koszul complex of §4 into two pieces, dual to each other.
This is easy to understand but a little tricky to write. Recall our running
conventions of §2 that r +4¢ =mn —1 (see (1)) and that £:=[%] (see (2)). Now,
more precisely, we want to define a symmetric r-pair (C,(4,T),Z(A,T)), such

that there is an isometry
cone(C,(A,T),E(A,T)) ~ (K.(A,T),0(4,T))[—2q].

We abbreviate the canonical form on K, := K, (A,T) by © := O(A,T), and set
dei2(A,T)

S = S(A,T) := Coker (KM(A, 7) Ko (A, z)). (4)

Let prg = pryar) : Key1 — S = Cokerdy, be the projection. Since dyyidyys =0,
there exists a unique morphism dy;., = dy (A, T) : S — K, such that

dl+1 (A7 I) = E€+1 (A7 I) - Prg. (5)

For each j=0,...,n, we have rank,(K;) = (’]‘) In particular, if n = 2041 is
odd, we have rank, K, = rank, K,,; and life will be easy. When n = 2/ is even,

K, has maximal (even) rank (%) and we need some preparatory considerations. In

this case, the symmetric n-form O, : K, = D4(K,)[n] gives an isomorphism
("‘)( : Kg e Kz/ = HOIDA(K[,A)

which is symmetric if ¢ is even and skew-symmetric otherwise.
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LEMMA 5.1. If n=2( is even, there exist two totally isotropic subspaces L
and M of (K;,©y), of the same rank 3 (2;), such that K, = L & M and such that
©, becomes

Lyv
O, = (2 (—1) )\0 CaHM) ZK[ZLEBM—>LVEBMVZK2/,

where X : L = MV is an isomorphism. Moreover, we have

(=1)'dyyy - (pr)” - XY - canyy - pray - dpyy + dfiy - (pra)’ - A- pry, -dgy =0, (6)

where pry, : K, — L and pry; : K, — M denote the projections.

Proof. Let eg,...,e, be a basis of A" and define L :=¢; A /\12—1 A". The space
M = @ A-eil/\eiz/\.../\ei/

2< 1 <ip<... <y <n

is obviously a complement of L in K, = /\é A" and both subspaces have rank

(2;:11) = (%[_1) = % (2;) Now use the description of ©, given in Remark 4.2. Let

w:\"A" = A be the isomorphism which sends e; A...Ae, to 1€ A. Then
O/(z)(y) = fw(z Ay). From this we easily see that both subspaces are totally
isotropic: for L it is because e; A e; = 0 and for M it is because two subsets with /¢
elements in {2,...,n} must intersect. Since O, is a (—1)"-symmetric isomorphism,
its decomposition in L & M must be as claimed in the lemma. Equation (6) follows
from the fact that © : K, — D, (K,)[n| is a morphism of complexes. O

5.1. Definition of (C,(A,T),Z(A,T))

As the above discussion shows, we will have to distinguish the cases where n is
odd from those where n is even and the definition extends over Cases 5.1.1-5.1.4
below. We shall consider a sign €, € {—1, 1} which will be fixed later on; see §7.1.

We start with n =2¢+ 1 odd.

5.1.1. Case r =0. Here £ =2q is even and (C,(A4,T),E(A,T)) is defined to be
the following symmetric O-pair:

dn dl+2
0 — K, = — K, o 00— —0—0
dy’ s dy
0 0 0 K., K)y——K/ — 0
deg /¢ deg 0

If T is a regular sequence then the Koszul complex K, is exact and so we have the
following quasi-isomorphism:

dn df+2
C-(sz) = O—>Kn,—> T —>K/f+2 K/f+1 0—
p ZP(A,I)J:Z J J prsJ J
o(S) = 0——0— - 0 S 0—

deg ¢ deg 0
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5.1.2. Caser =2. Here { =2¢+1is odd and (C,(A,T),Z(A,T)) is defined to
be the following symmetric 2-pair:

dn dﬂ+2
0—)K71—)"'_)KZ+2 KZ+1 0 0—0
J J _en@é . d[+1 J J J
d), d’
v 42 v n v
0 0 0 K., K)y— - =5 K —0
deg £+ 1 deg 1

As above, if T is a regular sequence, the projection prg: K,,; — S induces a
quasi-isomorphism of complexes

p=pAT): C(AT) — c(S)[].

Now let n = 2/ be even.
We fix two totally isotropic subspaces L and M of K, and an isomorphism
A:L — M"Y as in Lemma 5.1 and keep notation as there. We set

hi= X cany - pry - dey 0 Kooy — LY.

We now define the space (C,(A,T),Z(A,T)) for n even. It follows from equation
(6) in Lemma 5.1 that both squares in the middle of the two diagrams below
commute and so the morphism Z(A,T) is really a morphism of complexes.

5.1.3. Case r = —1. Here £ =2q is even and (C.(A,T),Z(A,T)) is defined to
be the following symmetric (—1)-pair:

d d rrd
0— K, 20 Ry, L g 0 0
J J eth j e,h"cany J
0 0 0 LY K)y s — K — 0
—(prp dps)” _d1v+2 —d,
deg ¢ — 1 deg 0 deg —1

If the sequence T is regular, the homology of C,(A,T) is not concentrated in one
degree (as in the case n odd) but there exists a ‘short’ complex F,(A,T) defined as
follows and which is quasi-isomorphic to C,(A,T):

d pry - d
CAT)= - — Ky = Ky Sa L 0— -
p=p(A7I)J:= J Jprs J = J
F(AT):= - 0 S — L 0—s .-
prr - dpgy

deg 0 deg —1
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5.14. Caser =1. Here { =2q+1is odd and (C,(A,T),=Z(A,T)) is defined to
be the following symmetric 1-pair:

: d pryd,
00— K, o o Ky Ky ——— 0-- 0 ——0
J J eth J —e,hVcany, J
0 0 0 LY VKZH y ~--—V>K7¥—>0
—(pry deyy) —djyy —d,
deg /¢ deg 1 deg 0
As in the case r = —1, when T is a regular sequence, we have a quasi-isomorphism

p=p(AT):C(AT)— F,(AT), where F,(A,T) is now the complex

4,
. —0 PIL i 0— ...

deg 1 deg 0

REMARK 5.2. Let f: A — B be a morphism of rings. The natural isomorphism

F(K(AD) = K.(A,T) @4 B—= K.(B, {(I))
induces a natural isometry
[HE(A D), 0(A, 1)) = (K.(B, f(T)),0(B, f(1)))-

Restricting this isomorphism above to the subcomplex C,(A4,T) we get a natural
isometry f*(C.(A,T),E(A, 1)) ~ (C.(B, f(1)),Z(B, f(1))).

LeEmMMA 5.3. The mapping cone of the morphism Z(A,T) is isomorphic (as a
complex) to K,(A,T)[—2q].

Proof. This is an easy direct computation, which we leave to the reader. It is
clear in the cases where n is odd and it requires Lemma 5.1 for n even. In all four
cases, we use the isomorphism © to replace the Kjv by K,_; for j>{+1. O

6. The Koszul symmetric space Ky over A%

Let R be a ring. We apply the constructions of §4 to A:= R[T},...,T,], the
polynomial ring in n variables over R, and to the sequence T := (T},...,T,). The
reader can think of R = Z or R = Z[1/2], since these are the important cases, from
which the rest will be deduced.

DEFINITION 6.1. The Koszul symmetric n-space K% = (K}, 0%) over A} is
the symmetric n-space where K(}’é) = K,(A,T) is the Koszul complex over A} and
the symmetric n-form O} := ©(A,T) is the one of Definition 4.1.

REMARK 6.2. Pay attention: Kg) is a symmetric n-space defined over the ring
A = R[Ty,...,T,] and not over the ring R, as the notation might suggest.
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It is clear that the Koszul symmetric n-space behaves well with respect to base-
change. More precisely, let f: R — R’ be a morphism of rings and let

ap: RITy,..., T, — R'[T},...,T,]

be the obvious induced morphism. Then, by Remark 5.2 there is a natural isometry
@ (Ky) — Ky

In particular, K} is extended from KJ'. This justifies the following extension of
Definition 6.1.

DEFINITION 6.3. Let X be a scheme. We define the symmetric n-space
KY = ax(K}))

where ay : A’y — A% is the base-change morphism; see (3). We call KY the
Koszul symmetric n-space over A%. As before, we denote the underlying complex
of free OA}—modules and its symmetric n-form by

KY =ax(Ky) and OYF =ak(0}).

REMARK 6.4. It is obvious from the definition that for any morphism of
schemes f:Y — X we have an isometry o} (K(X)) ~ K\ over A}.

DEFINITION 6.5. By Remark 4.4, the complex K()”() has support in the closed
subset A’y \ U of A’y which we identify with X in the following via the zero section of
the bundle A%y — X. Therefore, the symmetric n-space K'Y represents a Witt class

ry = [KY] € Winus (A%) = Wi(A%).

7. The half-Koszul symmetric space EY over U

DEeFINITION 7.1. Let R be a ring. We now apply the splitting of §5 to the space
K of §6. As above, we put A:= R[T,...,T;] and T := (T},...,T,). We define

Cy:=C(AT) and EY :=E(AT)
as defined in 5.1.1 to 5.1.4. For any scheme X we define
CY :=ax(Cy) and EY :=ak(Ey)

where ay : Ay — A7 is the base-change morphism. This coincides with the above
(n) =(n)

in the affine case by Remark 5.2. For all n € N, the symmetric r-pair (CY,ZEY) on
v will be denoted by CY.

7.1. The symmetric cone of CY

Instead of calculating cone(CY) directly (which is possible, but cumbersome) we
take full advantage of Lemma 4.3. More precisely, we use the fact that any quasi-
isomorphism ng — DZ[TM_an](Kg"))[n] is equal to the symmetric n-form +0} in
D*(VBz,...1.))-

So let, for a moment, R = Z and A = Z[T},...,T,]. We abbreviate K, := K (A,T)
and © = ©(A,T). We get from Lemma 5.3 the following commutative diagram
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(where D =D,):

=(n)
u v

Cy ————D(Cy)l]————K.[-2]

ey

J (*1)7("*1)/21”(;(") J— (71)7(,-,1)/213('(,,) 1] J (7)
Z Z

DD(CY))———D(CY)[r] —— D(K,[-2q])[r + ]| ——DD(C}))[1
()5 PO o DU 20+ 1) e PR
Here the rows are exact triangles for all n € N (the bottom row is the dual of the
upper one, shifted r times). By the very basic properties of triangulated categories

there exists an isomorphism

¢+ K.[=2¢] — D(K.[-2¢])[r + 1] = (D(K.)[n])[-24],
in DP(VB,) such that diagram (7) commutes. By Lemma 4.3 the isomorphism ¢

is equal to £0[—2¢]. Replacing E<Z") by fE(Z’” if necessary, that is, replacing ¢, by
—¢, in the definition of C}, we can assume that ¢ = ©[—2¢] for all n € N, that is,
(K.[-2q],s) = K}'[-2¢] for all n € N.

We fix €, as explained above, namely €, is the unique element in {—1,1}, such
that cone(C}) = K};'[-2¢].

REMARK 7.2. A straightforward but slightly cumbersome calculation shows
that

€, = (_1)n(n+1)/2. (8)

Note that this depends on the sign choices made in 5.1.1-5.1.4. The latter have
been made such that formula (8) is true.

However, as already said in Remark 4.7, these signs are not important for our

work. We only need the fact that there exists a symmetric r-pair Cj over Aj,
such that cone G} = K}'[—2q].

We can now calculate cone(CY) for any scheme X and any n € N. The pull-
back via the base-change morphism ay : A% — A7 of diagram (7) above is a cone
diagram for the symmetric r-form a’(Cy'). We have an isometry CY ~ a%(C})
(cf. Remark 5.2) and so we get cone(CY) ~ oy (K} [—2q]) ~ ax(Ky)[—2q] (cf.
Lemma B.1 for the later isometry). We have proven the following result.

THEOREM 7.3. With this choice of €,, the cone of the symmetric pair CY is
the Koszul symmetric space shifted as follows:

cone(CY) = K'{[—2q].

=)

In particular, =y
K.|y; vanishes.

vy 18 an isomorphism in D® (VBy; ) because the homology of

DEFINITION 7.4. Let X be a scheme. The symmetric r-space
(n) .__ (n)
EX = CX |]U§(
will be called the half~-Koszul space over the scheme X. Its Witt class is denoted by
ey = [EY] € W'(U%).

The following result is obvious (cf. Remark 5.2).
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LEMMA 7.5. Let f:Y — X be a morphism of schemes. Then there is a
natural isometry

i) .

8. The short symmetric space F()"() over U

By the main result of [3] we know that EY is Witt equivalent to a space living
on a short complex; see §3.2. In fact, we will now see that E(”) is not only Witt
equivalent, but isometric to such a short symmetric space’.

We use the notation of 5.1.1-5.1.4 with R = Z, that is, A = Z[T},...,T,] is the
polynomial ring in n variables over Z, T = (Ty,...,T,), and K, = K,(A,T) is the
Koszul complex of the sequence T over A. As in 5.1.1-5.1.4 we denote the
differential of this Koszul complex by d, and set

dpyo
S = S(A,T) = Coker (K/+2—>K/+1>
Note that T is a regular sequence and so K, is a finite free resolution of Z ~ A/I,

where [ is the ideal generated by T. It follows that K,(A,T)|gpecair1) is a split
exact sequence and so

d
&y == Coker (KHQ ﬂKZH)

w Sluy ~ Ker dy|y, 9)

is a locally free Oy,-module of rank Sio(=1)"(,") = (")) Clearly the same is
true for the pull-back

EY = vx(EY), (10)

where vy : Uy — Uy is induced by base change; see (3). Note that we have

&y = COker(KX)H—Q - Kg?,z+1) Uy = Ker(KXI - K(;()é—l)m}’(?

where K = KY_ = ax(Ky') (see Definition 6.3).
We con31der now the cases n odd and n even separately.

8.1. The space E()’? ifn=20+1 is odd, that is, r =0 or r = 2

Since the functor (—)" = Hom(—, A) is left exact, we have

dy
§" = Ker (K)ys = Kl.»)
and hence a well-defined homomorphism

@%) = (_1)Zen -0, -d

u &g — Homo,, (€7, 0u) = 5" |u
which is (—1)Z—symmetric, where d,; is the unique morphism S — K, such that

dpy1 =dpq - prg (cf. (5)). We set

(F, g0 = C()(S(Zn)»w(zn)) if 7 1is even,
EOTETT O o(ER, Q8)[A]if £ s odd.
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This is a symmetric r-pair. Recall now from 5.1.1-5.1.4 that the projection
prg: K;oy — S induces a quasi-isomorphism (hence an isomorphism in DP(VB,))

Pluy = P(Z Dy : CF o)) (respectively CF > cy(€5)[1]),

which is easily seen to be an isometry E(Z"> ;(FZ(”),qb(Z")). It follows that ¢y is an
isomorphism and so (F,"”, ¢;') is a symmetric r-space. In particular, (€5, ¢}') is a
(—1)"-symmetric space over U}. Applying the pull-back v% we get the following:
(i) the pair
(EX, %) =vx(€7), 97
is a (—1)“-symmetric space over U%;
(ii) the half Koszul space EY is isometric to the short symmetric r-space:
c(EY, 0%) if /is even,
P = (R 00) = vk (B, 05) =
co(EY, o)1) if £is odd.

8.2. The space EY if n =2 is even, that is, r = —1 or r =1

We fix L, M C K, and \:L=>M" as in Lemma 5.1 (with R=2Z), and
let pr;: K, — L and pry; : K, — M be the respective projections. We denote
,C = LU% and pry ‘= prp U% : Kg ]U% — ,C

On the complex F" := F,(A,T)

pyr» we have the following symmetric r-form:
Z

~dy|un
F) = ce—0 &y P Getluy
(ZMJ:: J eh U;J (—1)'e,(h Ug)v canLJ
Dy, (F)(-D)" = - —0 c () —
(prz - desaluy)
if r=-1 deg 0 deg —1
ifr=1 deg 1 deg 0

where h = \- cany, - pry, -d, ;. Since d4+1|U£ = (dyy1 - pry) vz, we see that the
quasi-isomorphism p|U.73 : Cy) = F) is an isometry Ej =(F), ¢5)), and so ¢ is an
isomorphism in DP(VBy). Therefore (Fy", ¢3)) is a symmetric r-space over UZ.
Applying the pull-back vy we see that the half Koszul space EY is isometric to
the short symmetric r-space

By o= (F0%) = vk (FS 05).

9. Witt groups of the punctured affine space

Recall the notation of §2, like formula (3), defining r € {—1,0,1,2} by
n =4q+r+ 1. We begin with an easy application of triangular Witt theory.

THEOREM 9.1. Let X be a regular scheme containing % There exists a split
short exact sequence

*

) o ) 0 )
0—— W/(X)—— W' (U}) —— Wi (A%) ——0,



290 PAUL BALMER AND STEFAN GILLE

for all i € Z, where O is the connecting homomorphism of the localization
U% C A%. This sequence is natural in X in the obvious way. Moreover, a left
inverse to o’ is given by v* : W{(U%) — W'(X) for any X-point vy : X — U%, that
is, any morphism 7 : X — U% such that oy oy =idy.

Proof. This result follows from the localization sequence [2] and homotopy
invariance [4]. O

We want to apply ‘dévissage’ to the relative groups W™ (A%) and we will need
the following theorem.

THEOREM 9.2. Let X be a regular Z[1/2]-scheme of finite Krull dimension.
Consider the structure morphism mwy : A%y — X. Then, the homomorphism

IY : W(X) — Wi(A%), wr— 7y (W) x kY
is an isomorphism for all i € Z.

Proof. The affine case X = Spec R is [10, Theorem 9.3] and the global case
follows from this using the Mayer—Vietoris exact sequence [4, Theorem 2.6]. [

REMARK 9.3. We do not know whether 9% is an isomorphism for more
general schemes like, for example, regular schemes of infinite Krull dimension. The
proof of [10, Theorem 9.3] uses coherent Witt theory and therefore only applies to
regular rings of finite Krull dimension.

THEOREM 9.4. Let X be a Z[1/2]-scheme. Let 1<i<n be an integer and
consider the X-point v; : X — Uy C Ay corresponding to T; = 1 and T; = 0 for all
j#i. If n>2, then the evaluation at this point of the Witt class €%y € W"(U%) of
the half-Koszul space is zero,

WED =0 in W(X),

Proof. Counsider the ‘same’ point ~; = (0,...,0,1,0,...,0) but over Z[1/2]
instead of X, that is, v; : Spec(Z[1/2]) — Ug; 5. We have a commutative diagram

W7 (U2 ) — o W (Z[1/2))

i |

W (U%) ——— W'(X)
Vi

with the obvious morphisms, and we know from Lemma 7.5 that v}(e(z"fl ) = ey,

Therefore, it suffices to prove the result for Z[1/2].
If r # 0 this is trivially true because in this case W'(Z[1/2]) = 0. In fact, since
Z[1/2] is a Dedekind domain, we have, by [6, Theorem 10.1],

W(Z[1/2)) = W(Z[1/2]) = 0



KOSZUL COMPLEXES AND SYMMETRIC FORMS 291

and

W' (Z[1/2]) ~ Coker (W( [1/2]) —»@w 7./ 7p) )

p#2

where 0, is a second residue homomorphism associated with the prime number p.
But this cokernel is also zero by the classical calculation of the Witt group of Q,
cf. for example, [17, Theorem VI.6.11].

If r = 0, that is, n = 2¢ + 1 with ¢ # 0 even, this follows from the next lemma. [

LEMMA 9.5. Let R be a ring and n =2{+ 1 with £>2 even. Then ~; (E})) ~
YH(EY, W) is trivial in W(R) ~ W(R).

Proof. After renumbering we may assume i = 1. Let K, = K (A,T) be the
Koszul complex of the regular sequence T = (T},...,T,) over A= R[T},...,T,],
and © = O(A,T) : K, =D, (K,)[n] the canonical symmetric n-form. Recall that
the differential d, : K, — K,_; is then given by

S
Ao Ne — Y (17T ey Ao Ney  Aeg AL A,

tj-1 tjt1

where e, ..., e, constitute a basis of A". We denote by ¢y the open immersion
U < A% (cf. (3)). Then we have v; (E})) =71 13(Cy) and K = y{1;(K,) is the
Koszul complex K, (R,t) for the sequence ¢ = (1,0,...,0) C R. We denote the

differential of this Koszul complex by d’. Note that this complex is split exact.
The isomorphism of complexes ©' := ~v;1;(0) is a symmetric n-form on K and

(C',Z) = 5ita(C)

is the symmetric 0-pair (C,(R,t),Z(R,t)) (see 5.1.1) which is in fact a symmetric
0-space since K/[—2¢] = coneZ(R, 1) is split exact.

We give now a direct summand S’ of K/, such that the projection K, ; — S’
induces a quasi-isomorphism C! = ¢,(S"), where ¢, : VB — D(VBy) is the natural
embedding.

The elements v; =1®e; (i =1,...,n) are a basis of R®,4 A" = v{t(A"), and
so the exterior products v; A...Av; (1<i; <...<iy<n) are free generators of
K]~ A\’ R". The differential d. acts on them as follows:

{O for 2<i; < ... <1iy,<n,

/ J—
dy(vy, A-- Avy) = v, Ao ANy for 1 =i <idy <. <idg<n.

a s
Therefore the R-module S’ := v, A (A\'R") C K/, is isomorphic to Cokerd; .
Hence ¢y(S’) =~ C! because C! has non-vanishing homology only in degree 0,
Cy=Kj,, and C{ =0 for i <0. We get an isometry c¢,(S’,¢") ~ (C',E’), where
o = (O] - diy) 5

Consider now the following free submodule M’ := (v, Avy) A (AP R") of . We
claim that M is a totally isotropic subspace of (S’, ¢'). From this the lemma follows
because rank M’ = Jrank S" and so (S’, ¢') is hyperbolic by [1, I, Theorem 4.6].

To see this we use the description of © given in Remark 4.2. Let w: A" A" = A
be as in this remark and w’:=idy ®w. Then w'(v; A...Av,) =1 and

O/(z)(y) = tw'(x Ay) forallx € K/ and y € K/, ;.
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Ifnow x,y € M’ theny = v; Avy Ay’ and dj,,(x) = vy Az’ forsomez’,y' € A\ R",
and so +¢'(2)(y) = w'(dy,(z) Ay) =0 since vy A vy = 0. O

THEOREM 9.6. Let X be a regular Z[1/2]-scheme. The composition of the
connecting homomorphism with the 4-periodicity isomorphism,

T n a T n Tq n n
W(U%) —— Wi (A%) — Wi (A%),
maps the Witt class € € W'(U%) of the half-Koszul space to the Witt class
kY € Wi (A%) of the Koszul space over A'.

Proof. Recall that we always have n = 4g + r + 1. The statement is a direct
consequence of Theorem 7.3, using the definition of the connecting homomorphism
9 via the symmetric cone and the fact that ey = [C{/|yz] by Definition 7.4. [

THEOREM 9.7. Let X be a regular Z[1/2]-scheme. For all i € Z, define the
following homomorphism:

Py WT(X) — WH(UY), w— ox (w) xey.

Then the diagram

. 74 )
Wl—’r'(X) — W’H—l—n(X)

p?J 2Jﬁ?

, P ,
WH(U) —— W (A%)

commutes, for all i € 7, where the isomorphism 19()"() is the one of Theorem 9.2 and
where T is the 4-periodicity isomorphism.

Proof.  Recall of course that r =n —4¢—1 by (1). We have to show that

0py ([2]) = 0% (r*([1) (11)
for all [x] € W'™"(X). Using the fact that oy : Uy — X factors as

U5 Ay 5 X,
we get
993l = D))+ =)
T ([z]) * O(eY) (by [11, Theorem 2.11])
= mx([z]) x 7 UKY) (by Theorem 7.3).

But this is equal to the right-hand side of (11) because
IY(rU([x])) =7 Urx([z]) * kY (by Lemma B.1)
= i ([2]) * 77U(KY) (by Lemma B.3). U
COROLLARY 9.8. Let X be a regular Z[1/2]-scheme. We have an isomorphism

(0%, ) - W(X) @ W' (X) = W (UR).
for all i € Z.
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Proof.  Comparing the split exact sequence of Theorem 9.1 and the obvious
split exact sequence 0 — W' (X) - W'(X) @ W (X) - W (X) — 0, we need
only note that 9-py is an isomorphism, as follows from Theorem 9.7. |

To understand the ring structure on W''(U%), we need some properties of the
symmetric spaces K(X) and Eg’g, which can also be proven for schemes that are not
necessarily regular. The case m =1, that is, the ‘Laurent scheme’ case, is well
known, so we have to deal with n > 2.

THEOREM 9.9. Let X be a Z[1/2]-scheme. If n > 2 then the symmetric r-space
EY is locally trivial, that is, for any x € U we have [(EY),] =0 in W (Ouy ).

Proof. Define for all i € {1,...,n} the principal open V% (i) of A% given by
the equation T; # 0. Let J C {1,...,n} C N. We define

Vi(J) = [J V() C Uk = VX({1,...,n})
jed
and denote the corresponding open immersion by ¢ : V5 (J) — Uk. Since n > 2,
we can cover Uy with the open subschemes V%(J) with |J| <n — 1. So it suffices
to prove the following stronger result. O

THEOREM 9.10.  With the above notation, if |J| < (n —1) then [EY|y; )] =0
in W(V%(J)).

Proof.  We easily reduce to the case X = SpecZ[1/2]. In this case we argue as
follows. For brevity we set R := Z[1/2].

For J empty, the result is trivial since Vi;(J) = ) and its Witt group is zero. So
we assume that J # (. Consider the closed complement Yp(J) := A%\ VE(J) of
Vi(J) C Ug. Note that A% \ U} C Yi(J). By Theorem 9.1, we have the following
commutative diagram with exact rows:

*

r %R r n 9 r+1 n
0—— W' (R) W7 (UR) —— Wity (AF) ——0
JOR

0——W"(R)——W"(V(J)) —— Wy, (AR) ——0

We get from the right-hand commutative square, from Theorem 9.6, and from
Proposition 4.5 that 9(:5(e})) = 0. Therefore, by exactness of the above second
row, there exists a unique class w € W'(R) such that tj(%) = ¢j(0;(w)). In fact,
w=~*(5(y)) for any R-point ~:Spec(R) — Vi(J), which exists by the
assumption J # (). Choose j € J and define the R-point 7 : Spec(R) — Vi(J) to
be given by T; =1 and T; = 0 for i # j. Since w=~"(.3(e})) = (t;-7)"(e}) and
since ¢; - : Spec(R) — U} is simply the R-point v; of Theorem 9.4, we conclude

from it that w = 0. Hence ¢j(%) = 0 as wanted. O

REMARK 9.11. The statement of Theorem 9.9 is obviously not true for
n = 1. The proof fails for n =1 because then V%(J) =0 for any J such that
|[J|]<n—1=0 and hence we cannot cover U% with these.
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Tt follows from this theorem above and [5, Theorem 4.2] that if n >2 the space
el is nilpotent in W**(U%). We prove a more precise result.

THEOREM 9.12. Let X be a Z[1/2]-scheme. Assume that n>2. Then

() =¥ xef =0
in WU UY). If n =1 then (e§)* =1 in W'(U%).

Proof. The case n =1 is classical, so let n>2. Since
vy : WUz o) — W(UY)

is a morphism of graded rings (cf. [11, Theorem 3.2]) and v}(s(z"fl /2]) =l (cf.
Lemma 7.5) it is enough to prove this for the affine scheme X = SpecZ[1/2].

Because we assume n > 2 there exist non-empty subsets Jy, J, C {1,...,n} with
J, # Jy and J; U Jy ={1,...,n}. We define Vg[lm(J) C U”[lm as in the proof of
Theorem 9.9 above and let Y%[l/Q}(J-) =Uz19 \ V12 (Ji) be the complement
(1=1,2). Note that J; UJy = {1,...,n} implies Yy, o (J;) N Y7 1/2 1(Jy) = 0.

By Theorem 9.10 we know that [E ")1 /2] |Vn (9] = 0 for i = 1,2. Therefore by

LI/Z
the localization sequence there exists z; € WY” ( J)(Ug[l /2]) with z; = 5%1 /2] in
B (i

WUz ) for i =1,2, and so z; xzy = (5%)[1/2}) in W2T(Ug[1/2]). But the space
Ty % Ty lives on a complex with support in Yz[1/2](J1) ﬂY%[lm(JQ) = and so
(e51/9)° = 0. O

Denote by W™"'(X)[e] the graded skew polynomial ring in one variable € of degree
7 over the graded ring W*'(X). Recall that this means that c-e = (—1)" %€ (e . ¢)
for a homogeneous element ¢ € W' (X). We have a homogeneous homomorphism
of graded rings given by

m m

WX — W (UR), Y ce' — Y ok(e) * (€R)
i=0

i—0
Using this morphism we can restate Corollary 9.8 and Theorem 9.12 as follows.

THEOREM 9.13. Let X be a regular scheme of finite Krull dimension over
Z[1/2]. Then we have an isomorphism of graded rings:

ifn>2, Wt0t<X)[6]/(€2) }thOt(U?()-
ifr =1, WtOt(X)[E]/(EZ_l)

ExXAMPLE 9.14. Let R be a regular ring of finite Krull dimension which
contains % and

E?n ! := Spec(R[TY,...,T,,Y1,...,Y, /(1—ZTY)
be the hyperbolic (2n — 1)-sphere over R. The R-algebra morphism
R[Tl,"‘a/I;I,]_)R[le"aTnv}/lv'”v n/(l_ZTy>

which maps T, to T, mod 1 — > T;Y;, induces a flat morphism f:%%'~! — U%
whose fibers are affine spaces over the appropriate residue fields. Therefore by
strong homotopy invariance [9, Corollary 4.2] we get an isomorphism of graded
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Witt rings f*: W(UR) = WO'(2271), In particular, W'(X%71) is also a free
W (R)-module with two generators. This has been proven by Karoubi [13] if R is
the field of complex numbers.

Note that if R is a regular domain and R(X%'') is the function field of the
hyperbolic sphere then Theorem 9.9 implies that the natural morphism

W(EE™) — W(RERT)

is not injective.

10. Witt non-triviality of the (half) Koszul spaces

THEOREM 10.1. Let X be a scheme which is not of equicharacteristic 2. Then
the Witt class of the symmetric n-space K<X) is non-trivial in the Witt group with
support W (A%).

Proof. By assumption, there is a point x € X whose residue field k(z) has
characteristic different from 2. By specialization at z (see Remark 6.4 for
naturality), it suffices to prove the result for the regular Z[1/2]-scheme
X := Spec(k(z)). Here, we apply Theorem 9.2 with i:=n and w:=1¢ W°(X),
the unit of the Witt ring. |

THEOREM 10.2. Let X be any scheme which is not of equicharacteristic 2.
Then the Witt class Y of the symmetric r-space EY is not in the image of the
natural homomorphism W' (A%%) — W"(U%). In particular, EY} cannot be extended
to the whole affine space A'.

Proof. Again, by specialization at a point x with char(k(z)) # 2, we are
reduced to proving the result for the Z[1/2]-regular scheme X := Spec(k(x)). In
this case, the following composition vanishes:

TOAT L;( (TN 9 r+1/An
WI(AY) —— W' (UY) —— Wi (A%).
Here, the connecting homomorphism 0 is, for instance, as in Theorem 9.6, where
we proved that 8(5(;(')) coincides with [K()"()}, up to 4-periodicity. So, 5()’? cannot be
extended to A’y since [KY]#0€ W%(A%) by Theorem 10.1. Note that we pass
via the regular case to use the connecting homomorphism 0. |

Appendix A. The locally free module EY

We use the notation of the main part of the text. We want to prove
the following.

THEOREM A.l. Let X be a noetherian scheme and n > 4. Then there does not
exist a locally free Oyn -module F such that F |U)n(, ~ &Y. In particular, £Y is not a

free OUQ( -module.

Let z € X and Spec k(m)LX be the corresponding point. If there exists a
locally free Oy, -module F, such that Fly, =~ EY, then

5;"&) ~ v(EY) = vi(F vy) = af(F)

Uz-k.p) ’
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and so it is enough to show the theorem for X = Spec R with R a field. Similarly,
localizing R[Ty,...,T,] at the origin, we are reduced to the local case which
follows from the following result of commutative algebra.

THEOREM A.2. Let (A,m) be a regular local ring, T = (T\,...,T,) be a
regular system of parameters (see [7, Definition 2.2.1]), and

U= USpec A = Spec A\ {m}

i=1
be the punctured spectrum of A. Assume that dim A =n >3. Then

d;(A,T)
_

S; = Ker (Kj(A, T) K, (A, z)) ‘U

cannot be extended to a free A-module if n > j>2.

In the following let Z; = Kerd;(A,T), that is, S; =Z,|y. Recall also that
(=)' = Homy(—, A). For the proof we need the following result.

PrROPOSITION A.3. (i) Let j>2. Then the A-module Z; is reflexive, that is,
the natural morphism can :Z; — I]W is an isomorphism.

(ii) If M and N are finitely generated A-modules, such that M|y ~ N|y, and
both M|y and Nl|y are locally free, then M"Y ~ N".

Proof. By assumption, Z; is a second syzygy and so (i) is a consequence of [8,
Theorem 3.6]. For (ii), by [12 Theorem 6.9.17] there exists ¢>0, such that the
given isomorphism M|y = N|y is the restriction of a morphism m°M — N.
Therefore we can assume that there exists g: M — N, such that g|y is an
isomorphism, that is, Ker g and Coker g have finite length.

Now we use the following fact (see [7, Theorem 1.2.8]). Since dim A >2 and A is
regular (and hence in particular Cohen—Macaulay), we have Ext’ (G, A) =0 for
any finite length module G and i =0, 1.

This and the exact sequences

0 — Kerg — M — Img—0 and 0 — Img — N — Cokerg — 0
give MY ~ (Img)" ~ NV. O
Proof of Theorem A.2. Assume that P is a free A-module, such that
Ply ~ 8;. We have |y ~ S, too, and so Z; ~ P" by Proposition A.3(ii). Part (i)
of this proposmon tells us that Z;is reﬂexwe and hence 7; ~ /Y ~ P"" is free.
But this is impossible, because

Tor; ;(Z;, A/m) ~ Tor; (A/m, A/m) ~ A/m # 0

(note that here we need j < n =dim A). We have the required result. (]
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Appendix B. Product and 4-periodicity

We have used in this work the fact that the product commutes with the
translation. This has not been established in [11]. For the sake of completeness we
give here a proof but refer to [11] for unexplained notation and definitions.

To start with let A = (A4, Dy, 64, @) and B = (B, Dy, 65,°) be triangu-
lated categories with 8 4- respectively dz-exact duality (like, for example, D"(VBy)
with the usual l-exact duality as in the main part of this work). We denote the
shift functor in these triangulated categories by X A respectively ¥z (to distinguish
we do not use X — X[1]). A symmetric i-space in A is a pair (X, ) consisting of an
object X € A and a symmetric i-form ¢ : X — E D 4 X which is an isomorphism; the
symmetry of an i-form reads XD 4(v) - oy = ( 1)"0+D/280 .4p. As in the case of
derived categories, if (X, 1)) is a symmetric i-form then (X2 AX Y% (1)) is a symmetric
(7 + 4)-form.

Let (F,p) : A — BO be a duality-preserving functor, that is, p : FD 14— DgF
is an isomorphism of functors satisfying some compatibility axioms. We will only
use the following. Since F' is a covariant exact functor between triangulated
categories, there exists a family of isomorphisms of functors ) : F ZAiE%F
(i € Z) which are related by the following formulas:

90U+ =y (09 . oY) (B.1)
ZA
(i,7 € Z). Then we have
DY (00)) - s = (6485) - Ss(p) - O (B.2)

A
(cf. [11, Definition 1.8]). These axioms are made such that if (X, ) is a symmetric
i-space in A then

(F,0).(X, %) = (FX, (6.465) Sis(px) - 05 - F(1))

is a symmetric ¢-space in B

LemMA B.1. Let (X, ) be a symmetric i-space in A. Then there is an isometry
(F, ). (B5X, 224(¥)) — B5((F, p). (X, ¥)).

Proof. We claim that 9&?) . F ZiX 5 Z%FX is an isometry, that is, we have to
show that

(6488) S (ps20) - 0yt - FEA(0)

= (8408)' S5 ' Ds(07)) - S (ox) - SHOY) ) - SEF(1) - 65, (B.3)

We observe first that Y3F(¢) -0 X _9211) « FY%() since 0% is a natural
transformation. By using ( 1) three timés we get (recall that ¥ 4D, =D, e
by definition)
(i+4)  _ yit3g(l) i+2 (1) 2 (pli) 2)
GDAEjX =25 (QDAEjX) 2 (GDAEAX) ) (QDA)() QEIADAX

and so (B.3) is equivalent to

i i i i+4 2 i
S5 (Psz) - B0 e ) - S0, x) = S5 DY) - 2 (o).
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Hence the result follows from the following calculation:
i 1 i 1
S5 (Ca(ps3x) 0 e ) - 55 (O, )
i — 1 i 1
= (640) 25" (Da¥5 (05 ) - psx) - B2 (O ) (by (B2))
= <6A63>z”4<1>39<;jx> 3 (S(ps.x) - Op s x)

= S Du(3s0 - 08) ) - 35 (o) (by (B.2))
E7+4DB(0 ) E7+2( )
since Hg? = EBHX -GEAX by (B.1). O

Assume now that we have a third triangulated category with duality, say
Y = (C, D¢, b0, @°), and a dualizing pairing [11, Definition 1.11]

®: A x B0 — ¢

ExXAMPLE B.2. Let X be a scheme and Z C X a closed subset. Then the
(derived) tensor product

®o, : D'(VBy) x Dy(VBy) — D%(VBy)
is a dualizing pairing. Note that in this case 64 = 5 = 60 = 1.

Let (X, 1) be a symmetric i-space in A and (Y, ¢) a symmetric j-space in B
The left product (X, ¢) x; (Y; ¢) is then defined by considering X X — as a duality-
preserving functor with the aid of a duality transformation £(1)) which depends
on 1, that is, the left product (X,)*; (Y;¢) of these spaces is by definition
(XX —, L(9)),(Y,¢). The right product *, is defined analogously by making the

functor — XY duality preserving using the symmetric j-form ¢. Both products are
related by the following isometry:

(X, 9) % (Y, 9) = (840¢) - (886¢)" - (=1)7 - (X, 9) %, (Y. 9)). (B4)
(see [11, Theorem 2.9]). From this we easily deduce the following.
LEMMA B.3. There is an isometry
(ZAX, ZA() % (Y 9) = (X, 0) 1 (T5Y, T5(9)),

and the same is true for the right product.

Proof. From Lemma B.1 we get isometries

(X, ) % (SEY, 5(9)) = Se((X, ) (Y 0))

and
(B4X, Z4(9)) % (Y, 0) = Be((X,9) %, (Y, ).
Hence the lemma follows by applying (B.4) twice. d
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