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S U M M A R Y
We describe three approaches for computing a gravity signal from a density anomaly. The first
approach consists of the classical ‘summation’ technique, while the remaining two methods
solve the Poisson problem for the gravitational potential using either a finite-element (FE)
discretization employing a multilevel pre-conditioner, or a Green’s function evaluated with
the fast multipole method (FMM). The methods using the Poisson formulation described here
differ from previously published approaches used in gravity modelling in that they are optimal,
implying that both the memory and computational time required scale linearly with respect
to the number of unknowns in the potential field. Additionally, all of the implementations
presented here are developed such that the computations can be performed in a massively
parallel, distributed memory-computing environment. Through numerical experiments, we
compare the methods on the basis of their discretization error, CPU time and parallel scalability.
We demonstrate the parallel scalability of all these techniques by running forward models with
up to 108 voxels on 1000s of cores.

Key words: Numerical solutions; Numerical approximations and analysis; Gravity anoma-
lies and Earth structure; Geopotential theory.

1 I N T RO D U C T I O N

1.1 Background

The use of forward models to compute synthetic gravity signals is necessary to conduct inversions of the subsurface density structure. Given
a volume �M over which we have a density field ρ(x), the gravity attraction at a point r = (r, s, t) due to this body can be computed via

g(r) = G

∫
�M

ρ(x)
r − x

[(r − x)2 + (s − y)2 + (t − z)2]3/2
dV . (1)

An alternative way to compute the gravity field is to solve the gravitational potential equation

∇2φ = −4πGρ(x) in �∞, (2)

where φ is the potential, G is the gravitational constant, �∞ denotes the entire free space and we assume that ρ(x) = 0, ∀ x /∈ �M . The
potential is subject to the following Dirichlet boundary condition:

φ = 0, at x = ∞. (3)

The gravity field sought is given by the gradient of the potential φ;

g(x) = −∇φ. (4)

The physical model is depicted in Fig. 1. Forward gravity models typically fall into one of two categories: summation-based techniques which
evaluate eq. (1), or partial differential equation (PDE)-based techniques which solve the gravitational potential formulation in eqs (2)–(4).

The summation methods require the subsurface density structure to be discretized into a set of volumes. At each location r, in the
model domain where a gravity signal is sought, the gravitational contribution from each density element in the domain is evaluated using
eq. (1) and summed. The summation methods differ in the manner in which the integral expression in eq. (1) is evaluated. Several analytic
approaches exist in which a closed-form expression for eq. (1) is used in either Cartesian (see Li & Chouteau 1998, for an overview) or
spherical coordinates (Johnson & Lithehiser 1972; Smith et al. 2001). The limitation of analytic expression is that one is forced to choose a
spatial discretization for the density structure which is orthogonal to the coordinate system, and the density is usually required to be constant
over each element. The complexities and discretization restrictions of the analytic method can be overcome by using a sufficiently accurate
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162 D. A. May and M. G. Knepley

Figure 1. Problem domain for computing gravity. Here, we denote the infinite domain boundary by ∂�∞, the model domain by � and density anomaly domain
by �M . The centre of mass of �M is denoted by r0 and n is the outward pointing normal to the boundary of �.

quadrature scheme to approximate eq. (1). This approach permits any spatial discretization to be used provided a high-accuracy quadrature
rule can be defined over the geometry of each cell used in the discretization (Asgharzadeh et al. 2007).

Recently, there has been some interest in using PDE-based approaches to compute gravity anomalies, as these methods have been
demonstrated to be both faster and produce more accurate forward models than the summation techniques. In Cai & Wang (2005), a finite-
element (FE) method was used to obtain the solution to the Poisson equation. They favoured the FE method over the finite-difference method
as the former allowed more geometric freedom in meshing the density anomalies and the formulation easily permitted a variable density field
within each voxel. Their formulation used a Robin-type boundary condition to approximate the boundary condition in eq. (3). The method
was regarded as being ‘fast’ since within a finite-size domain, the Robin condition yielded a smaller error than setting φ = 0 on the boundary
of a finite domain. That is, the convergence of the error using this method was faster than simply setting φ = 0 on the boundary of the finite
domain. In contrast, Farquharson & Mosher (2009) employed a finite-difference discretization to solve eq. (2), where the boundary condition
φ = 0 at x = ∞ is approximated by ensuring that the model boundaries are ‘far’ from the density anomaly, which in their work constituted
using a model domain with side lengths six times larger than the side length of the anomaly.

The development of fast and efficient forward models is crucial to enable high-resolution inversion to be performed. In considering
the computation complexity of the summation algorithm, we see that if we discretize the domain with N density elements and we have M
measurements, that is, locations where we will evaluate the gravity, the calculation will require O(M N ) time. Given the ease with which
gravity measurements can be made on a regional scale using either a land-based relative gravimeter or via airborne measurements, or on a
global scale using satellite-based gravimetry, applied geophysics studies may typically have values of M on the order of 10 000. The number of
measurements M is continually increasing as new techniques are developed, or existing techniques become affordable or automated. We note
that the computational cost of evaluating the gravity contribution from one element via eq. (1) is not insignificant. Even the simplest one-point
quadrature rule requires: five additions, seven multiplications and one square root, which is equivalent to the cost of ∼20 multiplications (Fog
2011).

Using the PDE approach, one obtains the value of the potential over the entire domain, from which the gravity can be computed as a
post-processing task. Consequently, the PDE approaches have a computational complexity which is not a strong function of the number of
evaluation points, but instead is dominated by the complexity of the linear solver (X ) used to obtain the potential, that is, the overall method
scales according to O(N + X ). If sparse direct factorizations (such as Cholesky or LU) are used, the solve time will scale like X = O(n3/2)
in 2-D and X = O(n2) in 3-D, where n is the number of unknowns used to represent the discrete potential field. The memory usage for these
solvers is ∼O(n log n) and ∼O(n4/3) for 2-D and 3-D, respectively (Li & Widlund 2007). If unpre-conditioned Krylov methods like conjugate
gradient are used, the solve time will scale according to X = O(n3/2) and O(n4/3) in 2-D and 3-D, respectively. Numerous optimal multilevel
pre-conditioners exist for the Poisson equation in which both the solve time and memory usage will scale like O(n) (Trottenbert et al. 2001).

1.2 This work

Here, we examine several variants of the summation method, an FE method with two types of boundary conditions and a fast multipole method
(FMM) to compute synthetic gravity fields. Our examination of the different methods focuses on the accuracy and the algorithmic complexity
(optimality) of the techniques. All of the methods used in this study are developed to be executed on massively parallel, distributed memory
computer architectures. We also examine the parallel performance (scalability) of the three classes of the methods under consideration.
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2 N U M E R I C A L T E C H N I Q U E S

2.1 Summation

We considered three variants of the summation technique in this study. Each of the summation techniques is defined in a Cartesian coordinate
system and used a structured mesh of hexahedral cells to discretize the density field. The model domain considered was always ‘brick’ shaped
and thus was easily decomposed into a set of Mx × My × Mz cells . Within each cell, the density is assumed to be constant. The first summation
approach (which we identify as SUM-AN) uses the analytic expression from Li & Chouteau (1998) to evaluate the vertical component of the
gravitational contribution gz(x), given by eq. (1). The other two methods we consider use either a one point Gauss (SUM-G1), or a two point
Gauss (SUM-G2) quadrature scheme to evaluate the gravity integral.

Parallelism is achieved in the summation methods via a spatial decomposition of the mesh used to discretize the density field. The locations
where the gravity field is required to be evaluated are duplicated on each processor. Every processor calculates a local gravitational contribution
at each evaluation point from a subset of cells within the entire domain. This operation can be completed without any communication. The
only communication required is a global reduction of the local gravity contributions from each processors local subdomain.

2.2 FE method

The Poisson equation in eq. (2) is solved using a standard Galerkin FE formulation (Hughes 1987). The variational form is given by∫
�∞

v∇2φ dV = 4πG

∫
�∞

vρ(x) dV, (5)

where v is a test function which vanishes on all Dirichlet boundaries. Applying integration by parts to the second-order derivative in eq. (5),
we obtain

−
∫

�∞
∇v � ∇φ dV +

∫
∂�∞

v∇φ � n dS = 4πG

∫
�∞

vρ(x) dV . (6)

Here, we consider using two different approaches to approximate the ‘Dirichlet at infinity’ boundary condition in eq. (3). Both methods
first approximate the entire free space domain �∞, by a finite-sized domain �, satisfying �M ⊆�. The first approximation of eq. (3) we
consider simply requires that

φ |∂� = 0, (7)

where ∂� denotes the boundary of �. Clearly, the larger the domain � is compared to the domain of the density anomaly �M , the better the
approximation. We will denote this particular boundary condition approximation as FEM-D.

The second approximate boundary condition we considered was introduced by Cai & Wang (2005) and consists of approximating the
far-field gravitational attraction on a finite-sized domain �. The far-field gravity is approximated according to

g |∂� = φ

rs

∣∣∣∣
∂�

, (8)

where rs = x|∂� − r0 and r0 is the centroid of the density anomaly domain �M . These quantities are indicated on Fig. 1. Using the definition
of the potential from eq. (4), we can introduce eq. (8) naturally into the variational problem in eq. (6) as a Robin boundary condition. We
denote this boundary condition approximation as FEM-GT. For a thorough description of the FE formulation and the implementation of the
Robin boundary conditions, we refer readers to Cai & Wang (2005).

As in the summation method, the domain consisted of a brick-like geometry and was discretized with Mx × My × Mz hexahedral
elements. The discrete solution for φ was represented with piecewise trilinear (Q1 basis) functions over each hexahedral element. The same
mesh was used to define the density structure. In the FE implementation used here, the density was assumed to be constant over each element.
The resulting discrete problem from the FE discretization yields the sparse matrix problem

[L + F] x = b, (9)

where x, b represent the discrete potential and force term, L is the discrete Laplacian and F is the term associated with the far-field boundary
condition appearing in the surface integral in eq. (6). We note that F = 0 when the FEM-D approach is used.

Following the solution of eq. (9), we compute the gravity within each element by interpolating the gradient of the trilinear basis functions
used to approximate φ. This approach has the disadvantage that the gravity field computed is discontinuous across element boundaries. The
reconstruction of a continuous C0 nodal field from the gradient of an FE solution is a thoroughly studied problem. The Super Convergent
Patch Recovery (SPR; Zienkiewicz & Zhu 1992) and the Recovery by Equilibrium of Patches (REP; Boroomand & Zienkiewicz 1997) are
both appropriate techniques to recover an accurate nodal gravity field. In Cai & Wang (2005), a nodal gravity field was computed using a
global L2 projection. A local L2 projection can also be used (Hughes 1987), which has the advantage of not requiring the solution of a global
matrix problem. In practice, to enable the gravity field to be evaluated everywhere, a continuous gravity field defined on the nodes of the FE
mesh is the most useful representation. In this work however, we only use the results of the gravity field to compute error norms, for which
the element wise, discontinuous representation of the gravity field is sufficient.
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The matrix problem in eq. (9) was solved using the Flexible Generalized Minimal Residual (FGMRES) Krylov method (Saad 2003),
pre-conditioned with one V -cycle of geometric multigrid (GMG). The GMG pre-conditioner we used is fairly standard and we refer to Briggs
et al. (2000); Wesseling (1992) and Trottenbert et al. (2001) for an introduction to these methods. Here, we briefly summarize the components
used in our multigrid pre-conditioner.

The multigrid method uses a mesh hierarchy consisting of nl levels. Each level in the hierarchy defines a mesh of different spatial
resolution. In the results presented here, a grid refinement factor of 2 was used between each grid level. The mesh at level nl has the finest
resolution and represents the mesh used to discretize the potential field problem. The operator A = L + F was defined on each mesh within
the hierarchy by re-discretizing the PDE. Trilinear interpolation was used to define the restriction operator R, which is required to project
nodal fields from a fine grid, to the next coarsest grid. Interpolation of fields from a coarse to fine grid was given by RT . On every grid level
except the coarsest, we employed Nk Richardson’s iterations, combined with a Jacobi pre-conditioner as our smoother. Given a vector yk at
iteration k, the application of the smoother is given by the following sequence:

yk+1 = yk + diag(A)−1 (b − Ayk) . (10)

Unless otherwise stated, Nk = 2 was used in all experiments. On the coarsest grid level, the smoother was defined via an LU factorization.
In our Poisson solver, the action of Ayk , required by the smoother in eq. (10) (on all grid levels expect the coarsest) and during each

FGMRES iteration (finest grid only), was defined in a matrix-free manner. Similarly, diag(A) was computed element-by-element, without
explicitly assembling the full stiffness matrix A. On the coarsest grid, A was explicitly assembled to allow an LU factorization to be performed.

At each iteration i of the Krylov method, we monitor the 2-norm of the residual ri = b − Axi . The current estimated solution xi obtained
from the iterative method was deemed to be converged if ‖ri‖2 < 10−10‖r0‖2, where r0 is the initial residual.

Support for parallel linear algebra, Krylov methods and the structured mesh representation were provided by the Portable Extensible
Toolkit for Scientific (c)omputation (PETSc; Balay et al. 2010).

2.3 FMM

The FMM is an algorithm that accelerates the solution of an N-body problem

g(x′
j ) =

N∑
i=1

ρi K(x′
j , xi ), (11)

which is simply a discrete form of eq. (1). Here, g(x′
j ) represents the gravitational field evaluated at a point x′

j , where the field is generated
by the influence of sources located at the set of points {xi }. The sources are often associated with particle-type objects, such as charged
particles, or in this case rock masses. In summary: {x′

j } is a set of evaluation points; {xi } is a set of source points with densities given by ρ i

and K(x′, x) is the kernel that governs the interactions between evaluation and source particles. The kernel for the gravitational interaction in
three dimensions is given by

K(x′
j , xi ) = x′ − x

|x′ − x|3 . (12)

Obtaining the field g at all the evaluation points requires in principle O(M N ) operations, for N source points and M evaluation points. The
FMM obtains g approximately with a reduced operation count, O(M + N ).

In the FMM algorithm, the influence of a cluster of particles is approximately represented by a series expansion, which is then used
to evaluate far-away interactions with controllable accuracy. To accomplish this, the computational domain is hierarchically decomposed,
allowing pairs of subdomains to be grouped into ‘near’ and ‘far’, with far interactions treated approximately. Fig. 2 illustrates such a
hierarchical space decomposition for a 2-D domain, associated to a quadtree structure.

Using this decomposition of the computational domain, the sum in eq. (11) can be decomposed as

g(x′
j ) =

Nnear∑
k=1

ρkK(x′
j , xk) +

Nfar∑
k=1

ρkK(x′
j , xk). (13)

The first term, corresponding to the near field of an evaluation point, will have a small fixed size independent of N . The second sum of
eq. (13), representing the far field, will be evaluated efficiently using a series approximation so that the total complexity for the evaluation is
O(N ). We will use the following terminology for our field approximations:

Multipole Expension (ME) is a p term series expansion that represents the influence of a cluster of particles at distances large with
respect to the cluster radius.

Local Expension (LE) is a p term series expansion, valid only inside a subdomain, used to efficiently evaluate a group of MEs locally
in a cluster of evaluation points.

The centre of the series for an ME is the centre of the cluster of source particles, and it converges only outside a given radius cen-
tred at the cluster of particles. In the case of an LE, the series is centred near an evaluation point and converges only inside a given
radius.
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Figure 2. Quadtree decomposition of a 2-D domain: (a) presents a hierarchical tree related to the full spatial decomposition of the domain; (b) presents a
coloured 2-D spatial decomposition for interacting with particles in the black box, and its equivalence on the tree. The near field is composed by the dark
yellow boxes and the black box itself, while the far field is composed by the dark red coloured boxes. Note that the far field is composed of boxes of different
levels of the tree structure. The relationships between the nodes of the tree simplify the process of composing the near and far domains.

The introduction of a single representation for a cluster of particles, via the multipole expansion, effectively permits a decoupling of the
influence of the source particles from the evaluation points. This is a key idea, resulting in the factorization of the computations of MEs that
are centred at the same point, so that the kernel can be written

K(x′
j , xi ) =

p∑
m=0

Cm(xi ) fm(x′
j ). (14)

This factorization allows pre-computation of terms that can be reused many times, reducing the complexity of evaluation from O(N 2) to
O(N log N ). Similarly, the local expansion is used to decouple the influence of an ME from the evaluation points. A group of MEs can be
factorized into a single LE, which allows the O(N log N ) complexity to be further reduced to O(N ). By representing MEs as LEs one can
efficiently evaluate the effect of a group of clusters on a group of evaluation points.

2.4 Hierarchical space decomposition

To make use of the ME and LE, the domain must be decomposed into near and far subdomain pairs. A hierarchical decomposition provides an
efficient implementation for this operation. The hierarchical subdivision of space is associated to a tree structure (‘quadtree’ structure in two
dimensions, or an ‘octree’ structure in three dimensions) to represent each subdivision. The nodes of the tree structure are used to define the
spatial decomposition, and different scales are obtained by looking at different levels. Consider Fig. 2(a), where a quadtree decomposition of
the space is illustrated. The nodes of the tree at each level cover the entire domain. The domain covered by a parent box is further decomposed
into smaller subdomains by its child nodes. As an example of its use in FMM, consider Fig. 2(b) where the near field for the ‘black’ coloured
box is represented by the dark yellow coloured boxes, and the far field is composed by the dark red coloured boxes.

2.5 Overview of the algorithm

We use a diagram of the tree structure to illustrate the whole algorithm in one picture (Fig. 3). The importance of this presentation is that it
relates the control flow and computation to the data structure used by FMM.

After the spatial decomposition stage, the FMM can be summarized in three stages: the upward sweep, the downward sweep and field
evaluation. In the ‘upward sweep’, MEs are constructed for each node of the tree. For each leaf node, MEs are derived for each particle. On
succeeding levels, these expansions are translated to the centre of the parent node and combined. This is shown in Fig. 3 by the black arrows
going up from the nodes on the left side of the tree. In the ‘downward sweep’ phase, MEs are first transformed into LEs for all the cells in
the ‘interaction list’ of a given box. This process is represented by the dashed red-coloured arrows in Fig. 3. For a given cell, the interaction
list corresponds to the cells of the same level that are not nearest neighbours, but are children of the nearest neighbours of its parent cell.
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Figure 3. Overview of the FMM algorithm. The diagram illustrates the ‘upward sweep’ and the ‘downward sweep’ stages on the tree. The following operations
are illustrated: P2P, transformation of particles into MEs (particle-to-multipole); M2M, translation of MEs (multipole-to-multipole); M2L, transformation of
an ME into an LE (multipole-to-local); L2L, translation of an LE (local-to-local); L2P, evaluation of LEs at particle locations (local-to-particle).

After this series transformation, the LEs of upper levels are translated to the centres of child cells, and their influence is summed to obtain the
complete far field for each leaf cell. This process is represented by the dashed blue-coloured arrows going down the right side of the tree in
Fig. 3. At the end of the downward sweep, each box will have an LE that represents the complete far field for the box. Finally, during the ‘field
evaluation’ phase, the total field is evaluated for every particle by adding the near-field and far-field contributions. The near field is obtained
by directly computing the interactions between all the particles in the near domain of the box, consisting of nearest neighbour cells in the tree.

In this work, we used the open source PetFMM package (Cruz et al. 2010) to calculate the fast multipole operation in parallel. The
PetFMM library was designed to offer both high serial performance and scalability, but also to be easily integrated into existing codes. The
serial code is completely reused in the parallel setting so that we are never required to maintain two versions of the same algorithm. PetFMM
leverages existing packages to keep its own code base small and clean. Parallel data movement is handled by the Sieve package (Knepley &
Karpeev 2009) from PETSc (Balay et al. 2010, 2011), whereas load and communication are balanced using a range of different partitioners.
In this work, we employed either a simple geometric-based partitioner which subdivides the space into Nx × Ny × Nz cubes, or the graph
partitioner ParMETIS (Karypis & Kumar 1998; Karypis 2011).

3 N U M E R I C A L E X P E R I M E N T S

To understand the discretization error and CPU time required by each of the different classes of forward models, we considered a synthetic
gravity model for which we have an analytic solution for the vertical gravity component gz. The model domain � consisted of a cube with
side lengths L = 600 m, orientated such that � ≡ [0, 600] × [0, 600] × [− 450, 150] m. Located at the centre of the domain was a cube
with side lengths H = 100 m, to which we assigned the density, ρ = 2000 kg m−3. The surrounding material in the remainder of the domain
was regarded as void and assigned a density, ρ = 0 kg m−3. The model setup is identical to that used in Farquharson & Mosher (2009). By
regarding the dense cube as a simple prism, the analytic gravity field can be computed using the closed-form expression of Li & Chouteau
(1998). The model setup and the analytic gravity field component gz is shown in Fig. 4.

3.1 Discretization error (convergence)

The calculations for each numerical method used a mesh comprised of hexahedral elements. The number of elements in each direction was
chosen such that the density anomaly was exactly resolved by the hexahedral elements. Hence, the error we measure from each method does
not include any error due to the discretization of the density field. We quantify the error in the vertical component of the gravity field gz, using
the L1 norm

E1 =
∫

�

|gz(x) − gh
z (x)| dV, (15)

the L2 norm

E2 =
[∫

�

|gz(x) − gh
z (x)|2 dV

]1/2

(16)
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Figure 4. Synthetic model used thorough out the numerical experiments. (a) Domain and density anomaly and (b) the corresponding analytic gravity field gz

(mGal). The inclusion is indicated by the transparent blue cube. See text for dimensions of the domain and density anomaly.

and the L∞ norm

E∞ = max
x∈�

∣∣gz(x) − gh
z (x)

∣∣ . (17)

Here, gz is the exact gravity computed via the analytic solution from Li & Chouteau (1998), gh
z is the approximate gravity field computed

using one of three numerical methods (summation, FE and FMM) and � is the model domain.

3.1.1 Summation

We computed the gravity component gz with SUM-G1 and SUM-G2 using a number of meshes composed of M̄ elements in each x, y, z
direction. The following grid sequence was used to measure the convergence rate, M̄ = {12, 24, 48, 96}. The side length of each element
is given by h = 600/M̄ , hence for the mesh sequence used we have h = {50, 25, 12.5, 6.25} m. Given that SUM-AN employs an analytic
solution for the gravity at a point due to hexahedral-shaped density anomaly, the error expected is of machine precision. Hence, we omit
this method from the discussion of errors. The error in eqs (15), (16) and (17) was approximated via a one-point quadrature rule over each
hexahedral element in the mesh. The error E1 as a function of grid resolution is shown in Fig. 5. The convergence rate of gravity field in the
discrete error measures E1, E2, E∞ is shown in Table 1.

3.1.2 FE method

The convergence behaviour of the FE methods FEM-D and FEM-GT was computed using the same grid sequence as in the summation test.
Again, the mesh consisted of undeformed elements with �x = �y = �z = h. A high-order Gauss quadrature scheme was used to evaluate the
error measures E1, E2 and E∞. Details of how the error for the FE approaches was computed is provided in Appendix. The L2 discretization

Figure 5. Convergence rate of the L1 norm for the gravity field computed using SUM-G1 and SUM-G2.

C© 2011 The Authors, GJI, 187, 161–177
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Table 1. Convergence rates
obtained with the summation
methods.

error SUM-G1 SUM-G2

E1 2.08 2.05
E2 1.53 1.52
E∞ 0.99 0.99

error as a function of grid resolution h is shown in Fig. 6. The convergence rate of the gravity field in the discrete E1, E2 and E∞ norms is
shown in Table 2. From these results, it immediately obvious that using the Robin boundary condition not only produces smaller errors, but
the FEM-GT method yields much higher convergence rates.

To investigate sensitivity of the two boundary conditions used in the FE approaches to the size of the model domain, we performed
another convergence test and varied the aspect ratio L/H , where model domain and anomaly length are denoted by L and H , respectively. The
anomaly size H was kept fixed at 600 m, while L was increased such that we had the following aspect ratios L/H = {3, 12, 18}. As in the
other convergence tests, four meshes of increasing resolution were used. To keep the discretization errors comparable between the different
models, we ensured that element size on each of the four meshes, for each L/H yielded element sizes of h = {50, 25, 12.5, 6.25} m. The
L2 convergence rates are shown in Fig. 7. Here, we see that the convergence rate of FEM-GT is independent of the domain size, while the
convergence rate of the gravity field computed using FEM-D increases as the model domain increases. We expect that the rate from FEM-D
approaches 1.0 as L/H → ∞.

3.1.3 FMM

The convergence rate of PetFMM was performed using the same mesh sequence as in the summation experiments. As for the summation
methods, the error measures were approximated via a one-point quadrature rule over each hexahedral element. The accuracy of the solution
obtained via PetFMM is strongly related to the number of terms p used in the expansion of eq. (14). The measured convergence rate in the
different norms are presented for p = {1, 4, 8, 20} in Table 3. For the error measure E1, we show the variation with grid resolution h in Fig. 8.
Comparing with the rates from the summation methods from Table 1, we note that as p increases, the convergence rates of PetFMM approach
those obtained using SUM-G1 and SUM-G2.

3.2 Optimality (CPU time)

Here, we report the CPU time of the different numerical methods applied to the synthetic model described in Section 3. All timings
reported were obtained with code compiled using GCC 4.4.3 with level three optimization and with an optimized build of the PETSc library.

Figure 6. L2 error of the gravity field computed via FEM-D and FEM-GT.

Table 2. Convergence rates
of the finite-element methods
for L/H = 6.

error FEM-D FEM-GT

E1 0.23 0.68
E2 0.57 0.96
E∞ 0.97 0.97
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Figure 7. Convergence rate in L2 as a function of the domain size.

Table 3. Convergence rates of PetFMM
using different values of p.

error p
1 4 8 20

E1 −2.58 −0.66 1.45 2.08
E2 −1.81 0.08 1.51 1.53
E∞ −1.76 −0.04 0.99 0.99

The timing runs were performed on Octopus, which is an eight-core Intel Xeon 2.67 GHz (Nehalem) machine possessing 64 GBytes of
RAM.

3.2.1 Summation

On a given mesh, the time required for the summation methods is proportional to the number of locations where the gravity is evaluated.
For this series of tests, we evaluated the gravity on a regularly spaced array of 150 × 150 points, located at the upper surface of the model
domain. In Table 4, we report the total CPU time (seconds) per gravity station on the following sequence of meshes, M̄ = {6, 12, 24, 48, 96}.
Methods SUM-G1 and SUM-G2 compute the three components of the gravity vector, while SUM-AN and SUM-G1(z) only compute the
gravity field in the z direction. All methods possess an approximately linear relationship between the CPU time/station and the number of cells
used to discretize the domain. Considering the one-point quadrature rule methods, SUM-G1 is only a factor of 1.5 slower than SUM-G1(z).
The slight increase in time required for SUM-G1 is a consequence of a more general quadrature. In this implementation, arbitrarily deformed
hexahedral elements are permitted, while element edges were required to be perpendicular to the coordinate system in SUM-G1(z). Allowing
the elements to be deformed requires that the integration be performed in a reference coordinate system, which thus requires the inverse
Jacobian (coordinate transformation) to be evaluated. SUM-G2 was observed to be approximately seven times slower than SUM-G1, even
though it employs eight times as many quadrature points. The closed-form method, SUM-AN is ∼150 times slower than SUM-G1(z) and
∼13 times slower than SUM-G2.

3.2.2 FE method

The FE calculations were performed using meshes consisting of M̄ = {12, 24, 48, 96, 192, 384} elements in each direction. In all the
calculations performed, the multigrid pre-conditioner used a coarse grid consisting of 6 × 6 × 6 elements. The number of grid levels nl, was
chosen to give the desired value of M̄ on the finest grid level.

In Table 5, we report the time required to perform the linear solve of the system in eq. (9) using both FEM-D and FEM-GT. The time
required for the solve represented more than 99 per cent of the total execution time, thus only the solve time is reported. We observe that the
number of iterations required by both methods is independent of the grid resolution. Furthermore, both the CPU time and memory usage scale
approximately linearly with respect to the number of unknowns in the potential field, n = (M̄ + 1)3. The solve time for the FEM-D method
is slightly higher than that required by FEM-GT. The difference in CPU time is attributed to the manner in which the Dirichlet boundary
conditions were imposed during each application of the matrix-free product, Ay. This particular operation could easily be further optimized
in the future.
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Figure 8. Convergence rate of the L1 norm of the gravity field computed using PetFMM using different values of p.

Table 4. CPU time (sec) for the summation methods. The times
reported are normalized by the number of locations where the gravity
field was evaluated. Here, M̄ is the number of cells used to discretize
the subsurface in each direction and h is side length (m) of each cell.

CPU time (sec)/station
h (m) M̄ SUM-G1(z) SUM-G1 SUM-G2 SUM-AN

100 6 4.78e−07 7.36e−07 5.34e−06 7.39e−05
50 12 3.71e−06 5.72e−06 4.29e−05 5.50e−04
25 24 2.98e−05 4.56e−05 3.40e−04 4.39e−03
12.5 48 2.37e−04 3.65e−04 2.68e−03 3.76e−02
6.25 96 1.90e−03 2.92e−03 2.13e−02 2.83e−01

3.2.3 FMM

The performance of the PetFMM algorithm was measured using the same sequence of meshes as used in the FE approaches, that is, the mesh
contained M̄ = {12, 24, 48, 96, 192, 384} elements in each direction. The octree used to define the FMM data structure used k = 2L cells
along each axis, where L denotes the number of levels within the tree. For the mesh sequence used, we employed L = {2, 3, 4, 5, 6, 7}. In these
calculations presented, the gravity vector was computed at the centroid of each cell used to discretize the density field. In Table 6, we report
the CPU time (seconds) required to execute the PetFMM algorithm. The time required to evaluate the gravity field is negligible compared to
time spend in the PetFMM algorithm and is thus not reported here. For these experiments, the graph partitioner ParMETIS was used.

For the sequence of meshes used in our test, an optimal FMM algorithm may be expected to yield execution times and memory usage
requirements which increased by a factor of 8, for each increase in grid resolution. From Table 6, the memory usage is observed to follow
this scaling. However, we note that the CPU time for PetFMM is observed to only approach the anticipated result as M̄ increases. In Fig. 9,
the solution time (solid thin line, left y-axis) and the solution time ratio for tk /tk−1 (solid thick line, right y-axis), is plotted as a function of the
number of elements in each direction M̄ . The anticipated optimal value of tk /tk−1 = 8 is denoted via the thin grey line.

We can explain the deviation of this ratio observed with small numbers of voxels to a surface to volume effect. For a cube, divided into
k pieces along each axis, we obviously have k3 small constituent cubes. Of these, eight are corner cubes which have seven neighbours. There
are 12 edges of the large cube, each of which has k − 2 small cubes with 11 neighbours. Similarly, there are six faces of the large cube, each
of which has (k − 2)2 small cubes with 17 neighbours. The remaining (k − 2)3 interior cubes have 26 neighbours. We can check that the
number of small cubes is correct.

(k − 2)3 + 6(k − 2)2 + 12(k − 2) + 8 (18)

= (k3 − 6k2 + 12k − 8) + 6(k2 − 4k + 4) + 12(k − 2) + 8 (19)

= k3. (20)

If we assume that B particles are in every cube, then the direct work done per cube is given by

Wc = B(B − 1)

2
+ NB B2 ≈

(
NB + 1

2

)
B2, (21)
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Table 5. Performance of the FE methods. The CPU time (sec) and the number of
iterations required by the Poisson solver are reported. The memory usage (MB) for
FEM-D and FEM-GT are the same and are reported in the final column.

FEM-D FEM-GT
h (m) M̄ CPU time (sec) Iter. CPU time (sec) Iter. Mem. (MB)

50 12 1.17e−02 8 1.07e−01 8 <10
25 24 1.10e+00 9 1.01e+00 9 <10
12.5 48 8.87e+00 9 8.08e+00 9 4.00e+01
6.25 96 7.11e+01 9 6.45e+01 9 2.85e+02
3.13 192 5.67e+02 9 4.68e+02 8 2.20e+03
1.56 384 4.15e+03 8 3.74e+03 8 1.70e+04

Table 6. CPU time (sec) and memory usage (MB) for
PetFMM with increasing grid resolution. In these calcu-
lations, we used an expansion order of p = 8. We note that
the memory counter used in the implementation of PetFMM
was not able to represent the number of bytes required for
the case M̄ = 384.

h (m) M̄ L CPU time (sec) Mem. (MB)

50 12 2 8.02e−02 < 1.00e+00
25 24 3 1.19e+00 1.67e+00
12.5 48 4 1.34e+01 1.34e+01
6.25 96 5 1.27e+02 1.07e+02
3.13 192 6 1.11e+03 8.56e+02
1.56 384 7 9.33e+03 (counter overflow)

where NB is the number of cube neighbours. The ratio of work R, between a 2k division compared to a k division along each axis is given by

R

(
2k

k

)
= (2k − 2)3 53

2 + 6(2k − 2)2 35
2 + 12(2k − 2) 23

2 + 8 15
2

(k − 2)3 53
2 + 6(k − 2)2 35

2 + 12(k − 2) 23
2 + 8 15

2

(22)

= 53(2k − 2)3 + 210(2k − 2)2 + 276(2k − 2) + 120

53(k − 2)3 + 210(k − 2)2 + 276(k − 2) + 120
(23)

= (8k3 − 24k2 + 24k − 8) + 3.96(4k2 − 8k + 4) + 5.21(2k − 2) + 2.26

(k3 − 6k2 + 12k − 8) + 3.96(k2 − 4k + 4) + 5.21(k − 2) + 2.26
(24)

= 8k3 − 8.16k2 + 2.74k − 0.32

k3 − 2.04k2 + 1.37k − 0.32
. (25)

In the first two tests considered in Table 6, we have k = 2 and 4, thus

R

(
4

2

)
= 968.00

60.00
= 16.13. (26)

Even at k = 8, we have

R

(
16

8

)
= 95288.00

10392.00
= 9.17 (27)

and we can see that not inconsiderable surface-to-volume effects persist for larger octrees. The optimal ratio defined by eq. (25) is denoted
in Fig. 9 via the dashed line. The agreement between the optimal and measure work scaling illustrated in Fig. 9 verify the optimality of the
M2L–transformation.

3.3 Parallel scalability

To measure the parallel performance of an algorithm, two types of studies are typically employed. The first measure considers ‘weak scaling’,
in which a fixed number of unknowns per processor (i.e. the work per processor) is kept constant and more processors are introduced. Thus,
the overall problem size increases with the number of processors, but the work per process remains constant. Ideal weak scaling would yield a
solution time which was independent of the number of processors which were employed. Alternatively, ‘strong scaling’ considers a problem
with a fixed number of unknowns that is solved using an increasing number of processors. Thus, the unknowns per processor decrease as the
number of processors increases. Ideal strong scaling would yield a solution time, which linearly decreases in proportion to the number of
processors used to solve the problem.
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Figure 9. Computation time as a function of the number of density blobs M̄3 for PetFMM. The left y-axis denotes CPU time (sec) and right y-axis denotes
the ratio of solution times between the current and previous grid resolution. For the grid sequence used, the asymptotic (linear) scaling would yield a ratio of
8, here denoted via the dashed line.

In the interest of developing fast algorithms for performing gravity inversions in a reduced amount of time, here we only consider the
strong scalability of the three algorithms presented. If a simulation required t0 s on p1 processors, the optimal time topt, on p2 > p1 processors
is topt = t0(p1/p2). The parallel efficiency E of the strong scaling is measured according to

E = 100

(
topt

tmeasured

)
, (28)

where tmeasured is the measured time taken for the computation on p2 processors. All parallel results presented here were performed on the
CADMOS IBM Blue Gene/P (http://bluegene.epfl.ch).

3.3.1 Summation

All of the summation algorithms considered here exploit parallelism by subdividing the set of voxels used to represent the density structure
amongst np processors. The spatial decomposition of the mesh was defined by slicing the domain into Nx, Ny, Nz subdomains such that
np = Nx × Ny × Nz. The only communication required in our implementation is the global reduction (sum) of a vector of length equal to
the number of evaluation points. Thus, if the number of voxels in each processors subdomain is equal, the only departure from perfect strong
scaling can be attributed to the single call to MPI_Allreduce. In Table 7, we report the CPU times obtained from using SUM-G1(z) with a
model domain of 1283 voxels and 1002 evaluation points which were regularly spaced in a horizontal plane located at the upper surface of
the model. Both the CPU time for the total computation and the time for the global reduction are reported. We note the time for the global
reduction does not exhibit perfect strong scaling for this set of experiments. Accordingly, when the time required to perform the evaluation
and local sum of the gravity contributions is much larger than the time required for the reduction, excellent scalability is observed (np ≤ 256).

Table 7. Strong scaling for SUM-G1 on CADMOS BG/P,
using a mesh with 1283 cells and 1002 evaluation points.
Here, np indicates the number of processors used. (D) in-
dicates the job was executed in DUAL mode, implying two
processors per node were used. (V) indicates the job was
launched in VN mode, in which all four processors per node
were used.

CPU time (s)
np Total Reduction

1 1.0632e+03 1.6999e-04
8 1.3922e+02 1.2458e+01
64 1.8222e+01 3.1192e+00
128 9.3883e+00 2.0806e+00
256 (D) 4.8376e+00 1.3013e+00
512 (V) 2.4939e+00 7.8258e−01
512 2.4934e+00 7.8200e−01
2048 (V) 7.0128e-01 3.2787e−01
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When this time is comparable with the cost of the reduction, the suboptimal scaling of the reduction will become significant and deteriorate the
scaling of the total execution time. Comparing the total CPU times for np = 8 and 2048, we observe a parallel efficiency of E ≈ 78 per cent.

3.3.2 FE method

The success of a parallel multigrid is largely dependent on the type of coarse grid solver used. We consider a direct extension of sequential
multigrid algorithms, which employ a direct solver on the coarsest grid level. The direct solve on the coarse grid was performed in parallel
using either the multifrontal method MUMPS (Amestoy et al. 2001), or by TFS (Tufo & Fischer 2001). MUMPS is a general-purpose parallel
direct solver, while TFS is specifically designed for matrix problems in which a processors subdomain contains very few degrees of freedom
(as is the case on our distributed coarse grid). TFS has the limitation that the number of processors must be a power of 2.

To examine the strong scalability, we considered two experiments in which the fine grid contained either 2563 elements of 5123 elements.
The coarse grid was defined via M̄c elements in each direction. Both experiments used six grid levels, with M̄c being 8 and 16, respectively. In
our GMG implementation, we require for a given grid, that each processor’s local subdomain must contain at least one element. Accordingly,
the number of elements in the coarse grid thus places an upper limit on the maximum number of CPU’s we can use. The results of the
strong scalability are shown in Fig. 10. The scalability of FEM-D and FEM-GT are expected to be identical so only the results of FEM-D are
presented. The measured parallel efficiency on 512 CPUs was E ≈ 90 per cent for the problem using MUMPS and E ≈ 68 per cent on 2048
CPUs for the problem employing TFS.

3.3.3 FMM

To examine the strong scalability of PetFMM, we considered three different meshes with M̄3 elements where M̄ = {96, 192, 384}. For
a given number of input density values, there is a number of levels Lv which minimizes the total computation time. As in the multigrid
implementations, they are certain restrictions upon the number of CPUs (np) which can be used with PetFMM. The primary constraint is on
the number of local trees in the spatial decomposition. The number of local trees Nt is given by 2d×rl , where d = 3 is the spatial dimension
and rl is the root level of the tree. For efficiency, it is required that Nt > np, so that at least one tree is distributed to every process.

For the parallel runs presented here, the simple geometric-based partitioning algorithm was used to balance load and communication.
The total execution times are reported in Table 8.

The strong scaling efficiency is observed to decrease as the number of processors used increases and also as the root level increases.
To better understand the reason for this scaling behaviour, we examined the scalability of individual components within the PetFMM
implementation. The breakdown of CPU times for the np = {512 − 4096} series of jobs is shown in Fig. 11. The downward sweep event
involves both a parallel operation (indicated by ‘DownSweep’ in Fig. 11) and a sequential operation at the root level of the tree (indicated by
‘Root Tree DownSweep’ in Fig. 11). Thus, if the time required for the sequential operation is large compared to the time spent in evaluating
contributions from the local parts of the tree, strong scalability will obviously suffer. The local calculations are all observed to strong scale
well, however as the subdomains become smaller, the cost of the root tree will eventually dominate the overall execution time and reduce the
parallel efficiency. In our experiments, the cost of the root tree evaluation grows by a factor of 8 each time rl is increased by one. To offset
the increasing cost of root level calculation, that is, to observe better strong scalability, one can easily introduce work on each subdomain by
increasing M̄ .

Figure 10. Strong scaling on the CADMOS BG/P for two different resolution FEM-D simulations. The optimal time is indicated by the dashed line. The
coarse grid consisted of M̄c elements in each direction and each model used nl = 6 levels. Two different coarse grid solvers, MUMPS and TFS were employed
(see text for further details).
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Table 8. Strong scaling of PetFMM on CADMOS BG/P. The times re-
ported here represent the total time taken to perform the multipole sum-
mation (ParaFMMEvaluate). (S) denotes mode SMP, (D) denotes mode
DUAL and (V) denotes mode VN. ∗ indicates efficiency was computed
w.r.t the 64 CPU execution time (p1 = 64).

np rl Lv M̄ CPU time (sec) Efficiency

8 2 4 96 3.9740e+02 (S) -
16 2.0950e+02 (S) 95 per cent
32 1.1086e+02 (S) 90 per cent
64 5.9088e+01 (D) 84 per cent

32 3 5 192 9.2118e+02 (S) -,-
64 4.8627e+02 (D) 95 per cent, -
128 2.5809e+02 (S) 89 per cent, 94 per cent∗
256 1.4380e+02 (D) 80 per cent, 85 per cent∗
512 8.6693e+01 (V) 66 per cent, 70 per cent∗
512 4 6 384 7.8231e+02 (V) -
1024 5.5052e+02 (D) 71 per cent
2048 4.3421e+02 (D) 45 per cent
4096 3.7705e+02 (V) 26 per cent

Figure 11. Breakdown of the strong scalability of the individual PetFMM components. Note that not all components listed in the legend are visible in the bar
chart as they represent a very small fraction of the total execution time.

4 D I S C U S S I O N

In the experiments described in Section 3.1, the discretization error of the three methods was examined. In the norms measured, the
convergence rates obtained using SUM-G1 and SUM-G2 were nearly identical. A measurable difference in the absolute error between the
different quadrature rules was observed, with SUM-G1 yielding errors approximately 2.3 times larger than SUM-G2. The rates measured
between the two summation methods using Gauss quadrature and the rates obtained using PetFMM, were extremely similar, provided the
expansion order p was high enough. In the cases where p ≤ 4, suboptimal convergence (E2), or divergence was observed (E1, E∞).

Both PetFMM and the summation methods incorporate the analytic solution of the potential (or gravity) within the discretization, thus
these methods naturally satisfy the boundary condition, φ = 0, as x → ∞. Within the FE methods considered here, this boundary condition
was approximated. The convergence behaviour of the gravity field obtained using FE methods is thus likely to be dependent on the choice of
approximation made. In the absence of any boundary condition approximation and any approximations in defining the density structure, we
anticipate the gravity error computed with Q1 elements to behave like

‖g − gh‖2 ≤ c1h, (29)

where c1 is a constant independent of the grid resolution h. In the case of FEM-D, the boundary condition approximation is seen to limit how
close the discrete solution will approximate the exact solution. Since the approximate boundary condition doesn’t approach the true boundary
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condition in the limit of h → 0, the convergence of rate of the potential and gravity field will ultimately deteriorate with increasing grid
resolution. That is we have

‖g − gh‖2 ≤ c1h + c2

(
H

L

)
. (30)

This type of relationship is evident in Fig. 6 where we observe a low correlation between the straight line with slope 0.57 and the measured error.
In practice, this effect can be reduced if we ensure that the model domain is significantly larger than the domain defining the density anomaly,
thereby making the coefficient c2 smaller. However, adopting this approach introduces significantly higher computational requirements.

However, the alternative boundary condition approximation used in FEM-GT does not appear to place a bound on the minimum
discretization error possible on a finite-sized domain. This is apparent from Fig. 6 where a high correlation between the grid size and
discretization error is observed. This suggests that the Robin boundary approximation converges like O(h) as the mesh is refined, since we
observe the first-order convergence predicted from eq. (29) in the gravity field and this convergence rate appears to be independent of the
domain aspect ratio L/H (see Fig. 7). Nevertheless, despite the improved convergence rate of FEM-GT, the rates observed are lower than
those obtained using either the summation methods or PetFMM.

To assess the speed of the three methods examined, we consider defining the crossover point where the summation methods cease to be
less efficient than either FEM-GT and PetFMM. The crossover point occurs when the number of evaluation points exceeds tFEM-GT,PetFMM/tsum,
where tsum is the time per evaluation point obtained from one of the summation algorithms. The number of evaluation points required to reach
the crossover point for the sequential results are presented in Table 9. We note that the times from Table 4 are repeated in the second and
third columns. The summation methods were not run at a grid resolution of M̄ = {192, 384}, therefore the time required for the summation
algorithms was estimated from the time required by the M̄ = 96 case and scaling this value by 8 and 64, respectively.

All the three methods were observed to exhibit good strong scaling up to 1024 CPUs. By far, the easiest method to obtain good parallel
scalability was the summation methods. This is simply due to the lack of algorithmic complexity in the direct summation approach. Scalability
here is only limited by the network of the computer cluster used. Our tests were performed on an IBM Blue Gene/P, which is known to have
an excellent network with specialized hardware for performing global reductions. The techniques used by FEM-D,FEM-GT and PetFMM
are more difficult to obtain high strong scaling efficiency. In the context of the multigrid pre-conditioner, this was due to the design choice
that the mesh on the coarse grid had to be distributed and that we required at least one element per CPU. This particular restriction could be
relaxed if a different coarse grid solver was employed. For example, we could use a large coarse grid, use less levels in the pre-conditioner
and employ an exact coarse grid solve using an algebraic multigrid (AMG) pre-conditioner. The AMG algorithms are useful in this context as
they do not require any geometric information to determine how the work will be distributed across the CPUs. With PetFMM, speedup was
measured up to 4096 CPUs, however the measure efficiency was only 26 per cent. Strong scaling with PetFMM is hindered by the sequential
calculations, which have to be performed at the root level. This is a typical bottleneck in FMM algorithms, however it could be eliminated by
overlapping the root tree computation with the local direct summation work. This will be the object of future research.

Lastly, we consider the overall usability of the different methods for computing gravity anomalies from the perspective of an end user.
The quadrature-based methods are by far the easiest method to use. It permits complete geometric freedom in defining the underlying grid,
which is used to discretize the density field. No connectivity is required between the cells and the vertices. The only requirement is that the
cells used to partition the domain defined by the density anomaly do not overlap. Consequently, topography, curvature and locally refined
regions are easily introduced. In the method described here, a constant density was used within each cell. This is not strictly necessary and
spatial variations of density within a cell are possible, however the order of the quadrature rule used would likely have to be increased to
maintain the accuracy of the method.

To use the GMG, a mesh hierarchy is required. Here, we considered nested hierarchies of structured meshes. With such a topology,
generating a mesh that has element faces which conform to all the jumps in density may be difficult to construct. This could be partially
alleviated by using an unstructured mesh, but fully unstructured meshing in parallel is still a challenging task. Furthermore, an unstructured
mesh hierarchy would also be required to be generated. The convergence, and hence the CPU time required by the GMG method is strongly
dependent on the mesh geometry. For example, the implementation described here ceases to be robust if the mesh possesses a high aspect
ratio, or the elements are highly deformed. In such circumstances, stronger smoothers are required if rapid convergence is to be maintained.

Table 9. Crossover point between the summation algorithms and the PDE-based approaches.
The rows marked with the ∗ indicate that the summation times were estimated from the
summation simulation with M̄ = 96. Columns 4–7 indicate the number of evaluation points
below which the summation algorithms are faster than FEM-GT and PetFMM.

M̄ CPU time (s) / station FEM-GT PetFMM
SUM-G1(z) SUM-AN SUM-G1(z) SUM-AN SUM-G1(z) SUM-AN

12 3.71e−06 5.50e−04 2.88e+04 1.95e+02 2.16e+04 1.46e+02
24 2.98e−05 4.39e−03 3.39e+04 2.30e+02 3.99e+04 2.71e+02
48 2.37e−04 3.76e−02 3.41e+04 2.15e+02 5.65e+04 3.56e+02
96 1.90e−03 2.83e−01 3.39e+04 2.28e+02 6.68e+04 4.49e+02
192∗ 1.52e−02 2.26e+00 3.08e+04 2.07e+02 7.30e+04 4.90e+02
384∗ 1.22e−01 1.81e+01 3.08e+04 2.06e+02 7.67e+04 5.15e+02
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Stronger smoothers may, for example, include block Jacobi with ILU factorization defined on the subblocks. Such choices mandate additional
storage and careful selection and tuning of smoothers to remain optimal. To some extent, many of the aforementioned disadvantages related
to geometric restriction introduced by using GMG can be overcome using AMG. AMG pre-conditioners require the stiffness matrix to be
assembled and furthermore, maintaining both scalable and optimal solution times in parallel is still a challenge with these approaches. The
FE approaches do have the advantage that continuous density variations can be naturally introduce throughout the element.

The FMM does not possess any geometric restrictions in how the density structure may be defined. While structured grids were used
here, FMM can in principal be used with a random point distribution, which defines the location and value of density in space. In the case
when a random distribution of points is used, one also needs to provide the volume of the domain that is associated to each point. This
can be readily computed using a Voronoi diagram, or preferentially in parallel calculations using an approximate Voronoi diagram. Thus,
the method provides high geometric fidelity without having the burden of creating a mesh, conforming or otherwise. The time required to
compute the gravity signal is a function of the number of points used to discretize the density, and not dependent on their spatial distribution.
The convergence of FMM could be improved by introducing a basis with more smoothness than the current delta function discretization. In
future work, we will introduce a Gaussian basis for rock masses so that the convergence rate can be adjusted by varying the width of the
Gaussians. The initial interpolation problem for this new basis will be solved using the PetRBF code (Yokota et al. 2010).

Despite being more than two times slower than FEM-GT, we believe that the geometric flexibility permitted in defining the density
structure, combined with fact that the solve time is independent of the geometry of the discretization used for the density structure, make
PetFMM more useful in applied geophysics studies. PetFMM was shown to be comparable in accuracy to the SUM-G2 algorithm and should
be used preferentially over this method if the number of evaluation points exceeds 77 × 104.

5 C O N C LU S I O N

Fast and robust forward models for computing a gravity signal from a density distribution is essential to perform high-resolution inversions
of the density subsurface. Here, we have discussed three different forward modes for computing gravity anomalies and compared them based
on the convergence rates of the obtained gravity field, the execution time required to evaluate the gravity field and the parallel scalability of
the algorithms. We considered classical summation techniques based on closed-form expressions or quadrature schemes, and optimal and
scalable approaches suitable for solving the Poisson equation. The PDE-based approaches consisted of an FE discretization using a GMG
pre-conditioner and an implementation of the FMM.

The summation methods employing quadrature approximations are found to yield results of comparable accuracy to FMM. Only the
FE method that incorporated a far-field gravitational approximation in the form of a Robin boundary condition was deemed to be useful
in practice. The error incurred by specifying a vanishing potential on the boundary of a finite domain resulted in large errors, and low
convergence rates in the gravity field. All the forward models demonstrated good strong scaling up to 1024 CPUs. The FMM presents itself
as a viable alternative to classical summation methods due to the geometric freedom in defining the density structure and insensitivity of
the overall CPU time to the underlying density structure. In comparison to the summation algorithm employing analytic expression for the
gravity, FMM is faster provided more than 515 evaluation points are used. If the simplest quadrature-based summation algorithm is used,
FMM will provide a faster forward model if more than 77 × 104 evaluation points are used.
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A P P E N D I X A : E R RO R E VA LUAT I O N

Here, we discuss the method used to evaluate errors defined in eqs (15), (16) and (17). The spatial variation of the discrete solution for
the gravity field gh

z is defined by the representation natural to discretization. For the summation and FMM, this means gh
z is represented via

piecewise constant over each cell. For the FE methods, gh
z is represented via a bilinear function gh

z = a0 + a1x + a2y + a3xy, since the
potential φ was discretized via trilinear basis functions. The integrals in eqs (15) and (16) were approximate via Gauss quadrature. The order
of the quadrature used was determined empirically. The complexity of the analytic solution was such that low-order rules were not appropriate
to accurately estimate the norm. Over each cell in the discretization, we found that a four-point quadrature rule, applied over m × m × m
subdivision (in each x, y, z direction, respectively) of each cell was sufficiently accurate. The value for m was obtained by evaluating ‖gz‖1,
‖gz‖2, E∞ and examining how the error norm varied with m. The results from the experiment used to determine the value of m for each M̄
are presented in Table A1. The final value of m shown for each M̄ was used to calculate the norms in our experiments.

The same quadrature rule used to evaluate E1, E2 was used to evaluate E∞.

Table A1. Results of the gravity quadrature test. Estimated values of the integral of
the analytic gravity field obtained using a four-point Gauss quadrature scheme, with
different numbers of integration regions m3, within each cell.

M̄ m ‖gz‖1 ‖gz‖2 E∞

12 3 2.686359587701e+02 3.461398542186e−02 3.381867068310e−05
4 2.686359587702e+02 3.461399254307e−02 3.403021478492e−05
5 2.686359587700e+02 3.461399453156e−02 3.415713959000e−05
6 2.686359587701e+02 3.461399525775e−02 3.424175549691e−05
7 2.686359587703e+02 3.461399557324e−02 3.430219515320e−05
8 2.686359587699e+02 3.461399572806e−02 3.434752475888e−05

24 2 2.686359587702e+02 3.461399254307e−02 3.403021478492e−05
3 2.686359587702e+02 3.461399525775e−02 3.424175549691e−05
4 2.686359587698e+02 3.461399572806e−02 3.434752475888e−05

48 1 2.686359587702e+02 3.461399254307e−02 3.403021478492e−05
2 2.686359587698e+02 3.461399572806e−02 3.434752475888e−05

96 1 2.686359587698e+02 3.461399572806e−02 3.434752475888e−05
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