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Chronic inflammation is a major cause of human cancer. Clinical cancer therapies against inflammatory risk
factors are strategically determined. To rationally guide a novel drug development, an improved mechanistic
understanding on the pathological connection between inflammation and carcinogenesis is essential. PI3K-PKB
signaling axis has been extensively studied and shown to be one of the key oncogenic drivers in most types of
cancer. Pharmacological inhibition of the components along this signaling axis is of great interest for developing
novel therapies. Interestingly, emerging studies have shown a close association between PKB activation and

inflammatory activity in the vicinity of the tumor, and either blockade of PKB or attenuation of para-tumoral
inflammation reveals a mutual-interactive pattern through pathway crosstalk. In this review, we intend to
discuss recent advances of PKB-regulated chronic inflammation and its potential impacts on tumor development.

1. Introduction to inflammation

Inflammation is referred to a series of physiological responses of the
organism to a variety of stimuli including pathogens, physical/chemi-
cal/radioactive injuries and diseases. Initially it is a physiological,
defensive process involving different types of immune and vascular
cells to firstly protect tissue from damaging stimuli, and eventually
repair the occurred lesion. Inflammation is initiated, amplified and
regulated by a multitude of inflammatory factors, which are the critical
signaling molecules in the process. They act as baits to activate vascular
cells and attract defensive cells to the inflamed areas and to promote
wound healing. For example, during the acute phase, it is generally
accepted that neutrophils are the major effectors stimulated and first
attracted to the injured sites in response to the activation of tissue
resident mast cells and macrophages [1], followed by increased
recruitment of monocytes and dendritic cells. Migration of such
leukocytes is fundamentally mediated through chemotactic cytokines
with distinguishable specificities to individual types of leukocytes [2].
Assembly of multiple types of leukocytes at the site of tissue injury is a
prerequisite for a successful tissue healing, thus is believed as the most
important biological event during acute inflammation.

While inflammation is normally a self limiting process, in some
cases it may not terminate properly due to uncoordinated processes
between elimination of the noxious or infectious agent and tissue
repair. This results in a state of prolonged inflammation, defined as
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chronic inflammation, potentially leading to progressive tissue damage
by excessive secretion of chemokines and sustained activation of a
multitude of immune cells. Chronic inflammation is not only due to
persistent infection. It can also be caused by a deregulated immune
response within initially healthy tissues, resulting in chronic inflam-
matory and autoimmune diseases such as rheumatoid arthritis, ulcera-
tive colitis, and multiple sclerosis or by other chronic disease conditions
such as obesity, which subsequently leads to insulin resistance and
diabetes.

It has been appreciated for a long time that prolonged exposure to
pro-inflammatory factors as well as products of activated immune cells,
in particular radical oxygen species (ROS), during chronic inflamma-
tion causes genomic alteration and promotes proliferation that may
turn normal cells into cancerous cells [3]. In addition to pathogen
infection and autoimmune diseases, many environmental factors such
as UV radiation and smoking, can cause chronic inflammation mediated
by abnormal activation of a range of protective signaling pathways
including oxidative cellular stress. Hyperactivation of these pathways
increases genome instability resulting in subsequent high mutation
rates, which eventually promotes malignant cellular transformation and
uncontrolled cell proliferation. Therefore, inflammation is a powerful
biological process with a double-blade sword: on the one side its fine-
tuned activity is essential for host defence and repair, while on the
other side deregulated, sustained activity is a major causes of a number
of diseases including metabolic disorders and cancer.
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2. Molecular pathways linking inflammation and cancer

The connection between cancer and chronic inflammation has been
observed in the clinic for decades [4]. Initiating factors of chronic
inflammation promoting carcinogenesis include microbial and viral
infections (e.g. H. Pylori), chemical (e.g. gastric reflux) and physical
stimuli (e.g. smoke), autoimmune diseases and spontaneous local
inflammatory events. Cancer-related inflammation often associates
with the intra- or para-tumoral infiltration of leukocytes. Well-known
examples include bone marrow-derived (BMD) monocytes and tumor-
associated macrophages (TAM). In parallel, an enrichment of multiple
inflammatory factors including cytokines, chemokines and growth
factors characteristically correlate with and support the recruitment
and accumulation of different types of immune cells in the tumor
microenvironment. Which types of cells express these pro-inflammatory
factors and how immune cells are attracted to the tumor microenviron-
ment? Recent efforts have shed some light on the intrinsic signaling
pathways linking inflammation and cancer at the molecular level.

Several pathways have been demonstrated to mediate inflammatory
response through well-defined pro-inflammatory molecules including
cytokines, chemokines, growth factors, matrix proteins and cycloox-
ygenases/prostaglandins. Cytokines and chemokines participate in
many developmental events by regulating cell growth and differentia-
tion under physiological conditions. However, they are also essential
initiators of tumorigenic inflammation [5]. For example, activation of
CXCR2 promotes angiogenesis and intratumoral leukocyte infiltration
[6,7] and activation of CXCR4 and CCR7 promotes cancer metastasis in

L several malignancies [8].

Stimulation with cytokines/chemokines and growth factors acti-
GJ vates three main intracellular signalosomes closely associated with the
L regulation of inflammation: janus kinase (JAK)/signal transducer and
m activator of transcription (STAT), lipid kinase phosphoinositide 3
kinase (PI3 K) and mitogen-activated protein kinases (MAPKs). JAK
typically responds to a wide range of interleukins (ILs), and subse-
quently mediates diverse inflammatory responses depending on the
individual dimerization patterns of STATs [9,10]. Inflammatory stimuli
U activate the three signaling nodes along MAPK pathway — extracellular
signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK) and p38,
"= all of which are involved in malignancy of many types of human cancer
= ® [11]. Particularly, inflammatory activation of p38 is one of the most
Qcommon pathways that regulate stability of mRNAs encoding a number
of pro-inflammatory cytokines in multiple cell types [12,13]. Thus, the
e chemical signals in cancer stroma play a critical role in the pathological
=+ connection between inflammation and cancer. What factors determine
‘ the production of these signals? Growing data uncover the important
role of nuclear factor kB (NF-kB), a terminal effector of another
important oncogenic signaling axis termed as tumor necrosis factor
alpha (TNFa) pathway. Coordinated activation of TNFa axis leads to
nuclear translocation and activation of NF-kB, the most important
regulator that subsequently transcriptionally activates a number of
cytokines [14,15]. These studies indicate that persistent inflammation
and carcinogenesis exhibit a mutual-promotion pattern favoring resis-
tance to environmental stress and promoting cell proliferation. Pre-
patterning with a chronic inflammatory condition allows timely
activation of intracellular survival pathways, such as protein kinase B

(PKB), to reinforce cancer cell metabolism and survival.

3. PKB activation drives cancer development

Protein kinase B (PKB, also called Akt) family belongs to the AGC
protein kinase subfamily [16]. Three PKB isoforms (PKBa, PKBf and
PKBy or Akt-1, —2, —3) have been identified in mammals with high
sequence-identity and moderate diversity of tissue distribution [17].
PKB is an intracellular kinase, and a break-through discovery was the
unraveling of its mechanism of activation involving membrane target-
ing in response to activated PI3 K. Membrane association of PKB

triggers threonine 308 (Thr*°®) phosphorylation in its kinase domain
via phosphoinositide-dependent kinase-1 (PDK1), whereas its biological
activity is further enhanced upon phosphorylation on serine 473
(Ser*”®) in the regulatory domain mediated by mammalian target of
rapamycin complex 2 (mTORC2)- or DNA-dependent protein kinase
(DNAPK). Due to its direct response to PK3K-induced initial activation,
PKB is considered as a major downstream signaling node of PI3 K in the
transduction of extracellular signals controlling cellular behavior and
fate. Genetic studies in PKB isoform-knockout mice and in a number of
transgenic mice models overexpressing constitutively activated PKB
isoforms, have indicated a primary physiological role of PKB in the
regulation of cell proliferation and survival [18]. This has been
confirmed by the progressive discovery that its downstream targets
are significantly involved in promoting cell proliferation and survival
(anti-apoptosis).

Consistent with its physiological role in development, PKB is
commonly hyperactivated in human cancers. Its aberrant activation is
contributed via a number of mechanisms including oncogenic altera-
tions of components of the PI3 K pathway, such as mutations or
amplification of the PI3 K subunits or inactivation of PTEN [19] and
mutation of three PKB isoforms [20-22]. These mutations contribute to
a multitude of human cancers, including breast cancer, colorectal
cancer, ovarian cancer, lung cancer and melanoma. Excessive activa-
tion of the PI3K-PKB pathway, not only promotes cancer cell prolifera-
tion and survival, but also likely promotes cell migration and invasion
which concur to favor cancer metastasis [23]. For example, a direct link
between PKB and cancer cell invasion is highlighted by its downstream
target Twist, a key transcriptional regulator controlling cell plasticity
through epithelial-mesenchymal transition (EMT), a physiological
function frequently hijacked by invasive cancer cells [24]. PKB can
initiate EMT through differential phosphorylation on Twist in a context-
dependent manner, such as individual extracellular stimuli [25]. Taken
together, PKB is a central signaling hub that is responsive to extra-
cellular signal stimulation, and can extensively crosstalk with a number
of proto-oncogenic signaling molecules/pathways such as MAPK [26],
transforming growth factor-f (TGF-) [27], vascular endothelial
growth factor (VEGF) [28], and ephrins [29]. These orchestrated
signaling networks contribute to meet the increased metabolic demand
of cancer cells, to promote uncontrolled proliferation and survival, and
stimulate migration/invasion. Consistent with the cellular functions
regulated by PKB, its hyperactivation is observed predominantly in
poorly differentiated tumors that are invasive, fast growing, and
resistant to treatment and correlated clinically with poorer outcomes
[30].

4. PKB signaling regulated inflammation

PI3 K/PKB/mTOR is one of most frequently deregulated signaling
pathways in pathological conditions, including cancer [31]. In addition
to directly impacting on cancer cells, cancer cell-intrinsic PKB appears
to substantially shape the functionality of the cancer stroma, also called
the cancer microenvironment as well [32]. The cancer microenviron-
ment consists of a variety of cell types including cancer-associated
fibroblasts (CAFs), pericytes, blood and lymphatic vessels, endothelial
cells and tumor infiltrating immune and inflammatory cells [33]. CAFs
secrete factors amplifying inflammation and shape the stiffness and
density of the cancer stroma while endothelial cells promote angiogen-
esis to meet the metabolic demand of cancer cells. These two stromal
events are critically involved in tumor growth and malignant progres-
sion, such as metastasis.

4.1. Immune cell intrinsic role of PKB in motility, activation, differentiation
Tumor infiltrating immune cells represent a major fraction of the

cells present in the cancer microenvironment, which significantly
influence spontaneous cancer progression and response to anti-cancer
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therapy [1,4]. Tumor infiltrating immune cells consist of two major
classes: innate immune cells such as NK cells, macrophages and
monocytes and adaptive immune cells, namely T and B lymphocytes.
The majority of these immune cells are actively recruited along the
gradient of chemokines, which are secreted by cancer cells or by cancer-
educated immune cells recruited early in the cancer microenvironment.
Given the general crucial role of PKB in cell motility [23], it is not
surprising to observe a key contribution of PKB in lymphocyte
chemotactic migration. Indeed, activation of PKB is induced by S1P
(ligand for S1P1) [34], CCL19/CCL21 (ligands for CCR7) [34], CXCL13
(ligand for CXCR5) [34] and CXCL12 (ligand for CXCR4) [35], most
probably downstream of PI3 K [34]. Interestingly, PKB dependent
phosphorylation of S1P1 is required for S1P1 mediated chemotaxis
[36]. Furthermore, KLF2, a key transcriptional regulator of S1P1
expression, is dynamically controlled by a well-known PKB targets,
FoxO proteins [37,38]. Notably, activation of PKB in Th17 cells is
required for its trafficking towards tumor vicinity [39]. Additionally,
engagement of selectins with PSGL-1 and ICAM-1/LFA-1 clustering also
lead to intracellular activation of PKB [40], which results in the
cytoskeletal rearrangement facilitating lymphocyte rolling and adhe-
sion. Therefore, PKB activation and PKB mediated downstream signal-
ing are likely to be involved in all the aspect of chemotactic migration,
trafficking and adhesion of leukocytes to the cancer microenvironment.

In addition to its role in chemotactic migration, immune cell
intrinsic PKB has been shown to influence the plasticity of immune
responses. After egress from thymus, naive T lymphocyte circulates as
an inactive status. Upon TCR engagement and co-stimulatory signal
from CD28, T cells are activated and programmed into an effector
status. PKB, being activated during T cell activation and signaling
downstream of PI3 K, enhances proliferation of antigen specific mature
T cells, protects them from apoptosis and prolongs their longevity [41].
Meanwhile, T cell activation is also balanced by the inhibitory signal
from receptors like CTLA4 and PD-1 [42]. Thus while signals from CD3
and CD28 lead to PKB activation within an activated T cells, inhibitory
signals from CTLA4 and PD-1 can prevent PKB activation in T cells
[43].

The differentiation of CD4 helper T cells is shaped by the dominant
transcriptional landscape, namely T-bet, GATA3, FoxP3, RoRr3 signa-
tures for Thl, Th2, Treg and Thl7, respectively [44]. PKB-regulated
CD4 helper T cell differentiation relies on the functional switch of the
activity of driving transcription factors. For instance, PKB directly
'phosphorylates FoxO1 and FoxO3 [37,38], leading to their cytoplasmic
retention thus inhibiting its nuclear transcriptional activity [45]. This
further dampens FoxO-dependent transcriptional regulation of T-bet
[46,47] and FoxP3 [47-51]. Helper T cell differentiation is accompa-
nied by the activation of unique metabolic programs. Given its key role
in cellular metabolism, PKB additionally regulates helper T cell
differentiation by impacting on metabolism status. Indeed, activation
of PKB up-regulates Glut-1 expression and promotes its membrane
localization, thus facilitating glucose uptake in T cells [52]. Addition-
ally, PKB can phosphorylate the glycolytic enzyme hexokinase II,
promoting its localization to mitochondria and augmenting its enzy-
matic activity [53,54]. Importantly, PKB signals with mTOR, a master
regulator of global metabolism, thus emphasizing its importance in
controlling T cell metabolism [55,56]. CD4 T cells lacking mTOR fail to
differentiate into helper or effector cells after activation but instead
become FoxP3 regulatory cells [57]. mTOR forms two functional
distinctive complexes mTORC1 and mTORC2, which are the down-
stream and upstream of PKB, respectively[17]. While mTORC1 (down-
stream of PKB)-depleted T cells fail to generate Thl and Th17 lineage,
mTORC2 (upstream of PKB)-deficient T cells lose their ability to
differentiate into Th2 cells [58]. In addition to naive T cell differentia-
tion, mTORC1 and mTORC2 also substantially influence CD8 effector
response and memory status, respectively [59,60]. All these findings
highlight a complex paradigm linking the PI3K-PKB-mTOR pathway
with T cell differentiation and metabolism.

4.2. Role of tumor-derived PKB activity in inflammation

PI3K kinase itself is a key regulator of chemo-attraction through
PIP3 biogenesis [61]; PKB can substantially enhance cell motility in a
variety of aspects during cancer progression [23]. While the importance
of PI3K-PKB signaling in cancer cell survival, proliferation and motility
has been intensively studied in the past, its contribution to the cancer
microenvironment, especially in cancer inflammation, has only been
progressively unrevealed now [62].

Tumor associated inflammation is a hallmark of cancer and
inflammatory condition forms a feed-back loop with cancer progression
[63]. For instance, genetic driver mutations that induce cancer, can also
initiate the expression of pro-inflammatory- programs that facilitate the
development of an inflammatory tumor microenvironment. On the
other hand chronic inflammation predisposes to cancer initiation and
neoplastic progression by creating a mutagenic and supportive micro-
environment, which is well demonstrated by hepatitis B or C induced
liver cancer. Tumor associated inflammation is orchestrated by tran-
scriptional regulation of chemokines and cytokines predominantly
controlled by nuclear factor-kappa B (NF-kB) and STAT3 pathways
[64].

NF-kB is mainly activated by the inflammatory cytokines TNF-a and
IL-1pB via the toll-like receptor —MyD88 pathway. As a transcriptional
factor, NF-xB directly controls the expression of a variety of chemokines
and cytokines, which are required for the recruitment of inflammatory
cells [65]. For instance, NF-xB stimulates the expression of CCL20,
CCL19, CCL5 and CCL17/22, which are predominant chemotactic
driver for Th17, dendritic cells, macrophages and regulatory T cells,
respectively [5].

NF-xB activity is also tightly controlled via cross-talks with other
key intracellular pathways, such as PI3K-PKB-mTOR signaling. PKB has
been suggested to directly phosphorylate IKK complex and PKB induces
oncogenesis by partially relying on NF-kB signaling [66,67]. In line
with this, a subset of NF-kB target genes activated during T cell
activation is dependent on PKB activity [68]. Moreover, PKB-dependent
mTOR-IKK interaction stimulates IKK activity toward the phosphoryla-
tion of IkBa and p65 in PTEN-null/inactive prostate cancer cells [69].
Thus, it is tempting to speculate that PKB might directly influence on
NF-kB-dependent chemokine expression to regulate the trafficking of
tumor-attracted inflammatory cells.

STAT3 is activated downstream of JAK kinase in response to IL6
family cytokines [70]. STAT3-driven tumor-associated inflammation is
highly inter-connected and shares a large fraction of common target
genes with the NF-xB pathway [70]. The direct molecular connection
between PKB and STAT3 is IL6. It has been suggested that PKB
mediated inactivation of FOXOla down-regulates expression of IL6
[71]. Conversely, IL17 robustly induces IL6 expression and STAT3
activation in a PKB- dependent manner in HCC [72]. These distinct
observations seem to be context dependent given the dynamic regula-
tion of IL6 expression via different transcription factors. Notably, Snail,
an epithelial-mesenchymal transition inducer involved in cancer mi-
gration and invasion, is also transcriptionally regulated by NF-xB [73].
In addition to enhance NF-kB-dependent Snail transcription, PKB
activates Snail by phosphorylating and inhibiting GSK3 [74], an
upstream inhibitory kinase that prevents the nuclear translocation of
Snail [75]. Snail is also capable of transcriptionally up-regulate pro-
inflammatory cytokines, such as IL1, IL6 and IL8 [76], which substan-
tially enhances the chemotactic trafficking of both immune cells and
cancer cells via the activation of NF-kB and STAT3 pathways.

In addition to chemokines, NF-kB can regulate the expression levels
of their receptors, such as CCR5 and CCR7 [77]. Given the activating
role of NF-kB by PKB, PKB may also control the expression of these
chemokine receptors. Moreover, PKB activation induced by PTEN loss
promotes prostate tumor growth and metastasis by up-regulating
CXCR4 expression [78]. CXCR4 activation can further boost PKB
activity [35,79]. Functionally, PKB activation is required for CXCR4-
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induced cancer cell migration [80]. These observations suggest a
potential signaling and functional positive feedback loop between
PKB activity and chemokine receptors in cancer cell and inflammatory
cell migration.

4.3. Role of tumor-derived PKB activity in cancer immune surveillance

The infiltration and accumulation of different immune populations
within the tumor vicinity was thought to be crucial to the behavior of
cancer cells and the consequent prognosis [33]. Indeed, infiltration of
CD8" T cell, NK cells, and Thl cells within tumors predicts better
prognosis in most cancer types, while infiltration of Th2 cells, Treg,
Th17 cells, macrophages and neutrophils is associated with a poorer
prognosis [33,81]. Several mechanisms have been proposed, including
decreased antigen presenting efficiency in a defined inflammatory
microenvironment [82], Treg induced T cell anergy [83] and direct
inhibition of immune cells activation via cell-surface inhibitory recep-
tors such as PD-1 and CTLA4 [84].

Notably, escaping from the host immune editing mimics the
mechanism(s) of evasive resistance in cancer in response to chemother-
apy or targeted therapies. PKB (re) activation was widely observed in
therapy resistance development in difference types of cancers. Likely,
PKB might substantially influence the immune editing efficacy given its
key contribution to immune cell functionality and expression of
inflammatory factors. Interestingly, expression of PD-L1, whose binding
to inhibitory receptor PD-1 leads to inactivation of immune cells, is
tightly correlates and/or regulated by PKB (Fig. 1) [85]. Oncogenic
activation of PKB increases the expression PD-L1 in gliomas, lung
cancers and colon cancers in an mTOR-dependent fashion [85-87].
Conversely, selective inhibition of PKB with small molecules down-
regulates PD-L1 expression [85]. In line with this, interferon gamma
(IFNy), which can activate PKB-mTOR signaling, can also up-regulate
PD-L1 expression [88]. Nevertheless, the underlying direct link be-
tween PKB and PD-L1 expression as well as in the context of cross-
talking with interferon signaling merits further investigation.

RTK TLR

_\-"._Hi??J'HiF|'|'|'.‘$3?a'f'i|'HHi.'fHl|'|'|'H|'|'|'r'rHIHHfHia‘?r'HH|'|'H?J’r;HHfii_:.fr'iHHfU?r'i|'HFH??NHH|'iHHJ‘FHH|'Hl'H.‘.?r'H|'HHFHHJHHFFFJ‘EHH;J
i : ; ;
B

4.4. Targeting PKB in tumor-associated inflammation

Hyper-activation of PI3K-PKB signaling is frequently observed in
different types of cancers. Activated PKB intrinsically up-regulates NF-
kB pathway, which transcriptionally initiates pro-inflammatory net-
works to build up chronic inflammatory microenvironment. The
resultant inflammation can further support tumor cell growth and
migration via a combination of enhanced proliferation, favorable
metabolic adaption, increased immune surveillance and induced moti-
lity via cytoskeleton re-arrangement. Thus, pharmacological inhibition
of PKB in cancers not only significantly dampens PKB mediated cancer
cell proliferation and metabolic adaption, but also enable an effective
immune editing program by favoring the re-activation of immune cells
via down-regulating inhibitory signals. Indeed, in a mouse transplanta-
tion model, inhibition of PKB with an allosteric inhibitor (PKB inhibitor
VIII) reprograms the tumor-infiltrated CD8* T cells into phenotypic
memory cell types coupled with an enhanced and prolonged anti-tumor
effect [89]. A similar effect was confirmed with a grafted myeloma
mouse model [90]. Additionally, inhibition of PKB with MK-2206
selectively suppressed Treg proliferation and consequently improved
anti-tumor activity in a tumor-specific vaccine model [91]. These pre-
clinical studies all point towards a promising strategy with co-targeting
PKB for cancer cell specific inhibition as well as improved immune
editing.

5. PKB regulated macrophage function

Macrophages are pleiotropic cells with functional plasticity depend-
ing on their residing microenvironments. They can be broadly classified
into two functional distinct subtypes, namely M1 (classical) and M2
(alternative), in response to different polarization signals [92]. While
M1 macrophages are induced by IFNy or LPS to elicit the production of
pro-inflammatory cytokines, mount cytotoxic capacities and orches-
trate a Th1 response, M2 macrophages are stimulated by the cytokines
IL4 or IL13 to acquire tumor-remodeling capabilities and coordinate a

IL4R
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Cytokines/chemokines/PD-L1 ¢
tumor inflammation

Fig. 1. PKB-mediated signaling cross-talks and its impact on immune checkpoint regulation. Representative extracellular signals such as growth factors, cytokines and chemokines bind to
their membrane receptors and activate distinct intracellular pathways involved in tumor-related inflammation. Being a central responding node, PI3K-initiated PKB activation regulates
inflammation via upregulating pro-inflammatory factors through cross-talking with its downstream signaling pathways including C/EBP, FoxO, Snail transcriptional factors and IKK/NF-

kB axis.



Th2 response. In the context of cancer, M1 macrophages elicit anti-
tumoral effects, through cytotoxic activity (in part via cytokine secre-
tion, e.g. TNF, IL6, IL-1P), antigen presentation, and effector T cells
recruitment [93]. Conversely, M2 macrophages are pro-tumoral and
dampen the tumor inflammation by CCL22-mediated Treg recruitment
and arginase-I-mediated suppression of effector T cells [93]. Addition-
ally, M2 macrophages induce cancer cell motility, invasion and
metastasis by secreting angiogenic factors and facilitating angiogenesis
[93].

Tumor associated macrophages (TAMs) have been widely observed
in different types of cancers and often constitute the dominant myeloid
cell population in tumors [94]. During tumor initiation and malignant
progression, macrophages build up bidirectional interacting networks
with tumor cells and other cells of the tumor microenvironment.
Macrophages present during the cancer initiation phase are immune
active and promote a cytotoxic inflammation [95]. However, once
tumors are established, macrophages are educated to become pro-
tumoral [95,96]. In line with this, TAMs observed in cancer patients are
mostly M2 polarized and correlates with worse prognosis [96,97].

PI3K-PKB-mTOR signaling axis is one of the key pathways control-
ling macrophage activation and acquisition of context-dependent
functions. PKB has been demonstrated to be a crucial effector in

-C macrophage survival [98,99]. Mechanistically, PKB mediates macro-
phage survival by cross-talking with NF-xB, p38 MAPK and anti-
apoptotic signals mediated by Mcll and Bcl-xL [98-100]. Notably,
IKK deficiency in macrophages results in decreased viability accom-
panied with reduced activation of PKB [101], indicating a potential

Q. feedback between PKB-IKK/NF-«B in the regulation of macrophage

survival.

m Recruitment of macrophages into the proximity of tumors is driven
Q.. by gradients of chemokines and cytokines. Of them, CCL2 and CLL5 are
m the most potent chemokines to attract macrophages and their expres-
O sion is highly correlated with TAM density in human tumors [102].
CCL2 and CCL5 are produced by tumor cells, CAFs, endothelial cells
and even TAM themselves. Of note, global histone H3 Serine 10
phosphorylation has been linked to mediate IKK activation induced
CCL2 expression [103,104]. Given a positive input from PKB towards
IKK activation, it is tempting to speculate that PKB activation may
"= Dpositively regulate CCL2 expression. Indeed, expression of CCL2 is
= = tightly controlled by NF-kB signaling partially through PKB activation
Qin a PTEN-loss brain tumor model [105]. Furthermore, in an EMT
induced immunosuppressive condition, CCL2 expression is regulated by
the transcription factor Snail [106], which itself is negatively regulated
=+ by GSK3p, a direct target of PKB. Interestingly, PKB is also activated in
‘ response to CLL2 [107], indicating a positive forward signaling loop
between PKB activation and CLL2 expression. Colony stimulating factor
(CSF-1) is another main driving cytokine for macrophage recruitment
[102], which is transcriptional controlled by the SWI/SNF complex
[108]. Although members of the SWI/SNF chromatin-remodeling
complex have been shown to interact with and be phosphorylated by
PKB [109], a direct contribution of PKB in the context of SWI/SNF
mediated CSF-1 expression is still missing. Nonetheless, PKB has been
shown to be required for macrophage chemotaxis in response to both

CSF-1 and CCL2 [110].

Macrophage polarization programs directly shape the functionality
of macrophages. Notably, both M1 and M2 polarization signals can
potently activate PKB. Mechanistically, in the context of LPS mediated
M1 activation, B-cell adapter for PI3K (BCAP) bridges TLR4 signal to
PI3K activation [111], which activates downstream PDK1-PKB-mTOR.
In the scenario of IL4 induced M2 polarization, IL-4R recruits the
adaptor protein Insulin receptor substrate 2 (IRS2) [112], which
engages and activates PI3K resulting in the activation of PKB. Activa-
tion of PKB in response to polarizing signals suggests a potential and
crucial contribution in macrophage activation. Indeed, PKB appears to
promote M2 polarization, as inactivation of PKB leads to a defect of IL4-
induced M2 polarization in TSC-deficient macrophages [113]. This is

further supported by a PKB haplodeficient pulmonary fibrosis model
[114]. However, in line with M1 activation signals activating PKB,
several studies also demonstrate that PKB indeed is critically involved
in promoting M1 macrophage activation [115,116]. The clear discre-
pancy might come from an isoform specific effect of PKB in experi-
mental context. Indeed, in an isoform specific deficient model, it is
observed that while PKBa inhibits M1 activation and promotes M2
polarization, PKBP enhances M1 activation and suppresses M2 polar-
ization [115]. Another layer of regulation of macrophage polarization
contributed by PKB might come from the downstream effectors. M1 and
M2 activation and cytokine production programs are transcriptionally
controlled by NF-kB/IRFs and STAT6 signaling, respectively [117,118].
As discussed above, PKB positively contributes to NF-xB activation in T
cell mediated inflammation. Similar results were observed within
macrophages as well [116], indicating a promoting role of PKB in M1
activation. Interesting, an inhibitory effect of PKB has been also
observed in LPS induced and NF-kxB-mediated M1 polarization in
human monocytes, most probably via inactivation of MAPK signaling
[119]. Additionally, activation of PI3 K and PKB is required for nuclear
translocation of IRF7 and type 1 interferon production [120], indicating
a potential importance of PKB in the regulation of IRF mediated M1
activation program. Furthermore, FoxO1l induced M1 macrophage
activation can be dampened via an inhibitory phosphorylation of
FoxO1 by PKB [121]. Notably, PKB can tightly control the expression
of C/EBPf [115], a transcription factor implicated in both M1 and M2
activation. Taken together, although macrophage polarization is asso-
ciated with PKB activation, PKB mediated macrophage activation is
highly context and isoform dependent.

Targeting TAMs, especially functional switching from pro-tumoral
M2 to anti-tumoral M1, is a promising strategy in anti-cancer therapies.
Pharmacologically targeting PKB in TAMs might not provide a con-
sistent and desired effect in terms of macrophage polarization given the
dynamic and context dependent role of PKB in macrophage activation.
Nevertheless, targeting PKB might offer a potential option for depletion
of TAMs by accelerating their turnover and preventing the chemotactic
migration of macrophages to the vicinity of tumors.

6. Summary

Tumor related inflammation and genomic mutational landscape
collaboratively shape tumor progression and therapy response. Among
the key cellular pathways activated in tumorigenesis, hyperactivation
of PI3K-PKB signaling in tumors not only strongly promotes cancer cell
proliferation, survival and motility per se, but also substantially induces
an inflammatory tumor microenvironment, which subsequently influ-
ences behavior of cancer cells (Fig. 2). Thus, targeting PI3K-PKB axis
represents a promising strategy to enhance T cell mediated immune
editing in tumors. Recent exciting studies with immune checkpoint
blockers suggest a potential therapeutic combinatorial option with
PI3K-PKB inhibitors, which might release the immune-suppressive role
of TAMs [122]. Similar evidences have been obtained from the
combination of checkpoint inhibitory molecules targeting T cells with
CSF1R inhibitors targeting macrophage [123]. However, a context- and
isoform-dependent role of PI3 K and PKB in inflammation and immune
response call for caution when considering combination therapies with
PI3 K or PKB inhibitors. A second key issue with such combination
therapy is the therapeutic window, namely to enhance the anti-tumor
efficacy while maintain the side-effect acceptable. A deeper under-
standing the molecular mechanism of PI3K-PKB target therapy in the
context of tumor related inflammation and immune checkpoint inhibi-
tion is warranted and will be essential in order to pave the way for more
effective cancer therapies.
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