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Abstract

Multiple attribute search is a central feature of economic life: we consider much more than
price when purchasing a home, and more than wage when choosing a job. Nevertheless, while
single attribute search problems have been studied extensively, little is known about optimal
search in multiple attribute environments. I introduce a partial characterization of optimal
sequential search in a problem with multiple searchable attributes and alternatives, no order
restrictions on search, and full recall. Upon applying the partial rational benchmark to a
rich dataset I find that subjects systematically deviate from optimal sequential search by (1)
searching too deeply within alternatives and (2) switching too adjacently between alternatives.
Finally, I explore how these deviations affect payoffs, and explain why they may constitute a
form of boundedly rational search behavior in which subjects re-optimize only occassionally,
while “smoothing” search order so as to make costly memory failures less likely.
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1 Introduction

Optimal search policies have been fully characterized for a wide variety of search problems in

which a single attribute of an alternative, usually its price, determines its desirability, with varying

assumptions about value distributions, search costs, number of searchable alternatives, and recall

options (Kohn and Shavell 1974; Lippman and McCall 1976; Weitzman 1979). Although these

analyses yield invaluable insights, many important applications have alternatives whose values are

determined by multiple attributes: we consider much more than wage when choosing a job, and

much more than price when purchasing a home.

In this paper I study multiple attribute optimal sequential search problems of the following

type: Jon will ultimately choose a car from the list of alternatives A, B, and C. He wishes to choose

the car with the highest overall sum rating across the attributes price, safety, and fuel economy,

but he initially only knows the price ratings of each car, say, 3, 2, and 1, respectively. Given this

limited information, he can either choose one of the cars immediately (car A), or he can engage

in costly search in order to learn more. Say that Jon decides to learn the safety rating of car A.

After acquiring this additional information, he must then decide whether to continue by learning

the fuel economy rating of car A, instead learn the safety or fuel economy rating of car B or C, or

stop costly search entirely to choose one of the cars, and so on.1

More precisely, I study problems in which the value of each alternative is equal to the sum of

up to many attributes.2 For each alternative, one attribute value is initially known, and the rest

are unknown. Each unknown attribute value is an independently and symmetrically distributed

random variable. In each alternative the attributes are ordered according to variance, by a form

of symmetric second-order stochastic dominance (henceforth “s.s.o dominance”), in which each

dominated attribute can be obtained by a (symmetric) mean-preserving spread of a dominating

attribute.3 Any attribute of any alternative can be searched separately, following any search history,

at a cost that is constant across attributes. Similarly, any alternative can be chosen following any

search history (i.e. there is full recall), and even before any search has occurred.4 Finally, the

1Similar real world search problems are now ubiquitous on internet websites, in which suppliers facilitate the comparison
of multiple alternatives across multiple attributes, for a wide variety of products from digital cameras to cars and
homes, to health care plans and 401k’s (Lee and Lee 2004; Shi, Wedel, and Pieters 2013).

2The separability assumption is standard in the multiple attribute search literature; see, e.g. (Caplin, Dean, and
Martin 2011; Gabaix, Laibson, Moloche, and Weinberg 2006; Klabjan, Olszewski, and Wolinsky 2014; Lim, Bearden,
and Smith 2006; Payne, Bettman, and Johnson 1993), and is a natural first step. Analogs to the results reported in
this paper can also be provided assuming weighted additive utility.

3Symmetric second-order stochastic dominance implies second-order stochastic dominance in the sense of Rothschild
and Stiglitz (1970).

4The standard assumption in single attribute search problems, for instance, is that an alternative can only be chosen
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searcher is rational and risk-neutral.

The optimal sequential search policy, which characterizes both the complete optimal order of

search and the optimal stopping rule, is known only for a dimensionally small version of this

problem, in which there is a single searchable alternative with two unknown attributes, and whose

expected value is the same as that of a deterministic outside option (Klabjan, Olszewski, and

Wolinsky [2014]; Proposition III).5 In the same context, for any number of searchable (binary)

attributes in the single searchable alternative, the authors’ Proposition II characterizes the complete

optimal order of sequential search: the next attribute searched is the one that is s.s.o dominated

by all the others, i.e. the attribute with the most variance.6

In Section 2 I introduce several necessary conditions for optimal sequential search. Condition V

(for “variance”) is a more general version of Proposition II from Klabjan, Olszewski, and Wolinsky

(2014). It characterizes the complete optimal order of sequential search across the attributes within

any single alternative, in search problems with: (1) up to any number of searchable alternatives,

(2) alternatives that can differ in expected value, (3) each alternative with up to any number of

symmetric s.s.o-ordered independent attributes, and (4) attribute distributions that can assume

any shape from a large class of symmetric distributions. In particular, the result shows that within

any given alternative, search always proceeds with the highest variance attribute first. If there

is just one searchable alternative, then Condition V characterizes the complete optimal order of

sequential search. This result is reminiscent of Weitzman (1979)’s on the optimal order of sequential

search across single attribute alternatives.

In Corollary V2 I extend Condition V to characterize the complete optimal order of sequential

search across alternatives when there are exactly two alternatives, each with up to any number of

searchable attributes. In particular, the optimal order of search proceeds by searching the attribute

with highest variance among the two alternatives, regardless of which alternative it is in; that is,

the optimal order does not depend on the expected values of the alternatives, or on their sets of

(additional) searchable attributes.

The intuition behind Corollary V2 is that in the case of exactly two alternatives a special

symmetry holds: receiving good information from the currently more promising alternative is just

once it has been searched. Allowing also for pre-search choice is non-trivial, as explained in Section 2.
5This problem is equivalent to one in which there are exactly two alternatives, each with the same expected value and
one searchable attribute (see Corollary V2 in Section 2).

6Relatedly, the optimal sequential search policy has been characterized analytically when just one of multiple attributes
can be searched in each alternative, and alternatives must be searched in a fixed order, though with full recall (Neeman
1995), and numerically for a multiple alternative, two attribute search problem in which the order of search across
alternatives and attributes is fixed, and there is no recall (Lim, Bearden, and Smith 2006).

3



like receiving equally bad information from the currently less promising alternative. Thus, the

problem with exactly two alternatives, both searchable, can effectively be reduced to a problem

with just one searchable alternative. When moving from two to three or more alternatives, however,

this symmetry no longer holds, making it more difficult to obtain results on the optimal order of

sequential search across alternatives.

Condition T (for “trade-off”) partially addresses the fundamental question in search with any

number of multiple attributes and alternatives—how to optimally trade-off depth (within alterna-

tives) against breadth (across alternatives) in search. Roughly speaking, the condition says that

alternatives with higher expected values, or more unsearched attributes, all else equal, should be

searched before their counterparts. Despite the intuitive appeal of this condition, the dimensional-

ity of the problem makes it generally difficult to demonstrate analytically.7 While I am not able to

prove Condition T for the general case, I do prove it for the case in which there are any number

of alternatives, one of which has any number of unknown attributes, and all of the others of which

have at most one unknown attribute. This case allows for the searcher to first partially explore an

alternative, then: (1) explore the same alternative further, (2) switch to exploring another alterna-

tive, or (3) end search and choose an alternative. The first feature separates this multiple attribute

search problem from its single attribute counterparts, e.g. Weitzman (1979). The second feature

separates it from the multiple attribute search problem with just one searchable alternative, e.g.

Klabjan, Olszewski, and Wolinsky (2014). In Section 2.2 I explain how the techniques that I use

to make analysis tractable in the above case no longer work in the case of multiple alternatives

with multiple searchable attributes in each. As a consequence, in order to confirm that Condition

T holds more generally, I perform numerical computations on the simplest versions of this case, in

which there are up to three alternatives and two searchable attributes in each.8 Finally, I run sim-

ulations on numerically intractable versions of the problem that have many searchable attributes

in each of many alternatives. Simulation results corroborate those obtained in the theoretical and

numerical analyses (see Section 6).

Conditions V and T can be used to identify potentially important violations of optimality

in search data: whereas Condition V identifies instances in which attributes are searched in the

incorrect order within an alternative, Condition T identifies instances of over-search, which occurs

7Condition T is generally more difficult to work with analytically than Condition V, as in the case of the latter
alternative policies start search in the same alternative, which relatively facilitates comparison for technical reasons
that are explained in Section 2.

8To get a sense of the dimensionality issue, in the search problem with three alternatives, and two searchable attributes
in each, in principle, there are

∑6
i=0

6!
i!

= 1957 different possible search paths.
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when the same alternative is searched again though another alternative should have been switched

to, and biased switch, which occurs when the searcher switches alternatives, but to a sub-optimal

alternative. Two additional conditions, called R and C, though theoretically trivial, are also of

interest for studying search data. Condition R (for “repeat”) requires that each attribute in an

alternative be searched at most once, and Condition C (for “choice”) requires that when search

ends, the alternative with the highest currently revealed value be chosen. All conditions are stated

formally in Section 2.2.

I use the necessary conditions to analyze the data from an especially rich multiple attribute

(ten), multiple alternative (eight) search experiment that not only tracks the choices of 390 subjects,

but also the complete order and duration of their information search behavior (Gabaix, Laibson,

Moloche, and Weinberg 2006; henceforth GLMW).9 Although optimal sequential search would

be a natural benchmark with which to compare subjects’ behavior, GLMW find that the high

dimensionality of their problem makes characterizing optimal search analytically and numerically

intractable (p. 1055). As a result, they focus instead on comparing a behavioral model of search—

their Directed Cognition model—with several simple heuristics taken from the psychology literature

(e.g. Tversky [1972]), and find that their model outperforms the others. The Directed Cognition

model’s first main departure from rationality is that it is myopic in that it intentionally omits

option value, which simplifies the search problem considerably by treating each search decision as

if it were the last.10 Its second main departure is that it (myopically) re-optimizes occasionally,

rather than after every time it searches an attribute in an alternative.11 By contrast, the partial

rational benchmark introduced here describes the behavior of a rational searcher who considers

the full option value of search, and re-optimizes after every time she searches an attribute in an

alternative.

After describing GLMW’s design in Section 3, in Section 4 I provide an overview of the basic

features of subjects’ search behavior and performance. GLMW conduct most of their data analysis

at the aggregate level, pooling both subjects and tasks, and considering which attributes in which

alternatives were searched in each task, i.e. the search footprints, but not the order in which the

attributes were searched. In Sections 4-6 I build on GLMW’s analysis by studying subjects’ search

9I know of no other experimental design with nearly as many searchable attributes and alternatives as GLMW, while
also providing sufficient structure for optimal sequential search to have an objective interpretation.

10By analogy, one might consider how much simpler the game of chess could be if a player were to consider the current
move as if it were the last.

11The model further deviates from optimal sequential search by assuming that when multiple attributes are searched
at a time, they must all be from the same alternative, and bases the decision of where to search next on the ratio of
expected benefits to costs, rather than the difference.
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behavior on the more granular subject/task level, and by considering the full order of search in

each task.

In Section 5 I compare subjects’ behavior to the partial rational benchmark, and find that

subjects systematically (and substantially) deviate from optimal sequential search by (1) searching

too deeply within alternatives and (2) switching too adjacently between alternatives. The first

result suggests an insensitivity to acquired information. I use an econometric analysis to show that

the second result is driven by subjects’ responding to “irrational” spatial considerations just as

much as to rational value considerations.

In Section 6 I explore the economic consequences of subjects’ deviations, both with regression

and simulation analysis. While I find that subjects’ who violate Condition T more often do tend to

obtain less valuable information, and earn less, their deviations are, surprisingly, not as costly as

what one might expect given their high violation rates, and that simulations show violations of the

conditions to generally be quite costly. Also, importantly, I find that the economic losses associated

with failing to choose the alternative that has been revealed by search to be the most promising

(i.e. a violation of Condition C) overwhelm those associated with violations of Conditions T,V,

and R.

In Section 7 I offer an explanation that can accommodate this pattern of findings. Specifically,

while subjects do very often violate the order of optimal sequential search, the search footprints

that they leave in each task happen to overlap with the footprint of violation-free search more than

the high rate of order violations suggests. In particular, the evidence indicates that subjects may

effectively commit to searching several attributes at a time, in whatever order they prefer. This

behavior would be consistent with an optimal sequential searcher who sometimes lapses into “clas-

sic” search (Stigler 1961), which is generally consistent with the proposed occasional re-optimizing

of the Directed Cognition model, the model of Morgan and Manning (1985), and field evidence

in De los Santos, Hortaçsu, and Wildenbeest (2012). Further, the orders that subjects deviate in

happen to systematically reduce working memory load (Sanjurjo 2017), which has been shown to

reduce the probability of making (severely) costly choice errors (Sanjurjo 2015). Taken together,

this evidence suggests that subjects’ systematic deviations from optimal sequential search may be

adaptive, and boundedly rational.
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2 Necessary Conditions for Optimal Sequential Search

Section 2.1 states the multiple attribute optimal sequential search problem posed in the introduction

more formally, and Section 2.2 proposes a partial characterization of optimal sequential search, in

the form of several necessary conditions.

2.1 Framework

The value of attribute a ∈ A in alternative i ∈ I is an independent random variable x̃ia with

symmetric distribution Fia, such that E(x̃ia) = 0.12 It is assumed that Fia = Fa for i ∈ I and

a ∈ A, i.e. the distribution of attribute values is independent of the alternative.

Further, Fa ≺s.s.o Fb whenever a < b, meaning that Fa can be obtained by a symmetric

mean-preserving spread of Fb of the following type: for each realization xb of x̃b there is a unique

realization xa of x̃a such that Fb = Fa. The correspondence xa to xb can be represented by the

function h : R→ R, and because h is invertible, h−1(xb) = xa. If xb > 0 then h−1(xb) = xa > 0 and

h−1(xb)−xb > 0 (by definition of h). Likewise, if xb < 0 then h−1(xb) = xa < 0 and h−1(xb)−xb < 0.

These differences in payoffs are symmetric around xb = 0, so h−1(xb)−xb = −(h−1(−xb)− (−xb)).

Further, let h−1(xb) − xb be (weakly) increasing in Fb, and call this the stretching property. This

property is satisfied by a large class of distributions, including the commonly used binary, uniform,

and normal distributions.

The value of each alternative i ∈ I is Ṽi =
∑

a∈A x̃ia. In order to observe realization xia of x̃ia

when a > 1, the searcher must pay a cost of c > 0, whereas xi1 is assumed observed ex ante, at no

cost, for all i ∈ I. The searcher is rational and risk neutral, can search any attribute at any time,

and can terminate search to select an alternative whenever she chooses. Thus, the current state is

sufficiently described by, for each alternative i ∈ I, the set of unobserved attributes Si ⊆ A and the

expected value E(Ṽi|(xia)a∈A\Si
), which I will call E(Ṽi), or sometimes simply vi, for short, and is

equal to the current revealed value of the alternative. Finally, the search policy that next searches

x̃ja, and then proceeds optimally thereafter is Ψja[(E(Ṽi))i∈I , (Si)i∈I ], or Ψja for short, and the

expected value of following this policy is Φja. The stopping rule is that if Φja < maxi∈I E(Ṽi) for

every a ∈ Sj and j ∈ I then search ends, and any j ∈ arg maxi∈I E(Ṽi) is chosen.13

12Fia is symmetrically distributed if Fia(x) = 1− Fia(−x) for all x.
13Notice that the current expected value of an alternative i ∈ I is equal to the sum of its observed realized attribute

values:
∑

a∈A xia, where a ∈ A \ Si. Also, the framework allows for any subset of attributes to never have been
available for search, simply by treating them as already observed, with realized values of zero. Similarly, a problem
in which the searcher knows nothing about any alternative ex ante can be represented by setting xi1 = 0 for all i ∈ I.
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Thus, in the problem a searcher can choose to explore any single attribute, in any alternative,

whenever she likes, at some fixed cost. Intuitively, the searcher would like to discover one alternative

to have a sufficiently higher expected value than all others, after having searched as little as possible;

how much higher the expected value has to be generally depends on the full distribution of the other

alternatives’ current expected values, and also on the set of remaining unsearched attributes in each

alternative. Accordingly, after each time the searcher observes an attribute in an alternative she

must decide whether to more deeply explore the currently searched alternative, switch to another

alternative and search an attribute there, or terminate search now and choose the currently most

promising alternative.

2.2 Necessary Conditions

Throughout the section attribute distributions are assumed to be continuous and unbounded, for

simplicity.14

Condition V (Variance) Let there be m ≥ 2 alternatives with expected values E(Ṽ1), . . . , E(Ṽm),

and at least one alternative i ∈ I with at least two unsearched attributes, i.e. |Si| ≥ 2. For any

such alternative, if Fia ≺s.s.o Fib then Φia > Φib.
15

Proof: See Appendix A.1.

Condition V says that an attribute cannot be searched next if it has less variance than an-

other attribute in the same alternative, in the sense that it s.s.o dominates the other attribute.

The result is reminiscent of (Weitzman 1979)’s on the optimal order of sequential search across

alternatives when each alternative has just one attribute. Here the order of optimal sequential

search is instead characterized within each alternative, across its attributes.

Condition V is similar to Proposition II of Klabjan, Olszewski, and Wolinsky (2014), but more

general, as it allows: (1) up to any number of searchable alternatives with up to any number of

14It is straightforward to extend all proofs to the discrete unbounded case. For bounded distributions in some (relatively
uninteresting) problems the results hold only weakly. To illustrate, consider the simple search problem in which the
values of the two alternatives, respectively, are v1 + x̃12 + x̃13 and v2. If v1 > v2, and the unsearched attribute
distributions x̃12 and x̃13 have sufficiently small bounded supports, then the expected value of searching any attribute
is zero, i.e Φ12 = Φ13 = 0, because alternative 1 will be chosen no matter what combination of attribute realizations
x12 and x13 are observed. In this case Condition V holds only weakly.

15In the case of only one alternative, search has no value, so the lone alternative is chosen immediately. On the other
hand, without at least two attributes it is impossible to consider multiple possible search orders within an alternative.
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attributes in each, rather than a single searchable attribute, (2) the expected values of alternatives

to differ, i.e. E(Ṽi) 6= E(Ṽj) for i 6= j, and (3) a large class of distributions in addition to the binary

distribution.16

While Condition V addresses which attribute ought to be searched first within an alternative,

it is also important to consider which attribute ought to be searched first across alternatives.17

Whereas Condition V characterizes the complete optimal order of sequential search within any

alternative, Corollary V2 extends this result to characterize the complete optimal order of sequential

search across alternatives, when there are exactly two alternatives, each with any current revealed

value, and any number of unsearched attributes.

Corollary V2 Let there be exactly two alternatives I = {1, 2}, with expected values E(Ṽ1) ≥ E(Ṽ2),

w.l.o.g., and at least two attributes total across the alternatives, i.e. |S1|+ |S2| ≥ 2. If Fia ≺s.s.o Fjb

for i, j ∈ I then Φia > Φjb. If Fia and Fjb are the same then Φia = Φjb.

Proof: See Appendix A.1.

It immediately follows from Corollary V2 that when there are exactly two alternatives, the

next attribute searched must be the highest variance attribute, regardless of whether it belongs to

the alternative with higher or lower current revealed value, and the sets of attributes belonging to

each alternative. This may initially seem surprising, as it goes against the intuition that all else

equal, one ought to search the alternative with highest currently revealed value first. After all,

this is the alternative that is most likely to sufficiently separate itself above the other(s) within

any number of searches. However, what this intuition misses is that in the case of exactly two

alternatives, good news about the currently more promising alternative is equivalent to equally

bad news about the currently less promising alternative. As mentioned in the Introduction, this

symmetry means that the problem with two searchable alternatives can be reduced to the problem

with one.

16In principle, analysis of the present problem is relatively complicated by the larger class of possible search paths
that is permitted, the complex trade-offs that result from alternatives not sharing the same expected value, and by
allowing for continuous distributions the analysis is “. . . complicated by the absence of a deterministic ranking of the
absolute values of the outcomes” (p. 11; Klabjan, Olszewski, and Wolinsky (2014)). The keys to keeping analysis
tractable are: (1) finding ways to reduce the dimensionality of the problem so that comparisons can be made on
the basis of just two attributes, (2) creating new (sub-optimal) search policies that facilitate comparison, and (3)
exploiting the stretching property to stretch (or compress) distributions with different variances so that they align.

17In principle, this relatively complicates the analysis by further loosening the basis of comparison between different
possible search policies, which can now start in different alternatives.
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Once a third alternative is added to the problem, even if it has no searchable attributes, the

symmetry that allows the optimal order of sequential search to be characterized across alternatives,

by Condition V together with Corollary V2, no longer holds. The simplest such problem has

two alternatives with one searchable attribute in each, and a third alternative with none, i.e.

|S1| = |S2| = 1 and |S3| = 0. While this problem may initially appear identical to a single attribute

search problem, such as those addressed by the elegant reservation rule of Weitzman (1979), there

is a subtle, but important difference. In Weitzman’s version of the problem an alternative can be

chosen only once its uncertainty has been resolved. By contrast, in the version of the problem

that I consider here, the alternative can be chosen once the uncertainty is resolved, or before it is

resolved. In Weitzman’s setup this would be like having a trivial outside option equal to the current

revealed value of an alternative that then disappears once that alternative is searched. Thus, this

simple single attribute version of the multiple attribute search problem can be seen as a version of

Weitzman’s setup in which there is “incomplete recall” (p. 649), a condition for which Weitzman’s

result does not readily extend. Having said that, for the special case in which the deterministic

outside value is the highest of the three current revealed values, i.e. v3 ≥ v1, v2, the difference in

the setups disappears, as a rational searcher would never be interested in immediately choosing

a lower payoff than that offered by the outside option. Thus, it follows from Weitzman’s result

that in this case optimal sequential search starts with the attribute in the alternative with higher

current revealed value, so long as the attribute is weakly s.s.o dominated by the other attribute,

i.e. Φia > Φjb if vi > vj and Fia �s.s.o Fjb.

Obtaining the result for the case of v3 � v1, v2, on the other hand, is non-trivial as in prin-

ciple the analysis depends on the relative positioning of the current revealed values of the three

alternatives, the reservation intervals of the two searchable alternatives (see Appendix A), and the

(possibly weak) s.s.o dominance ordering among attributes. Result T.1 in Appendix A proves the

result when there is one searchable attribute in both of the searchable alternatives.18 Further,

Result T.2 extends T.1 to allow for up to any number of attributes in the first alternative, and

Result T.3 extends T.2 to additionally allow for up to any number of alternatives with a single

searchable attribute. I present Result T.3 here alone, as it generalizes T.1 and T.2.

Result T.3 Let there be m ≥ 3 alternatives, the first m − 1 of which are ordered from highest

18The proof also includes an alternate demonstration, relative to simply applying Weitzman’s result, for the case of
v3 > v1, v2
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to lowest expected value, w.l.o.g., i.e. E(Ṽi) ≥ E(Ṽj) if 1 ≤ i < j ≤ m − 1. Assume that the first

alternative has any number of unsearched attributes, i.e. S1 ⊆ A, while alternatives 2 through m−1

each have exactly one unsearched attribute, i.e. |Si| = 1 for 2 ≤ i ≤ m− 1, and alternative m has

none, i.e. Sm = {∅}. If F1a �s.s.o Fib for all b ∈ Si and i ∈ {1, 2, . . . ,m − 1}, then Φ1a ≥ Φib for

any b and i. Further, if Fjc �s.s.o Fib for 2 ≤ j < i then Φjc ≥ Φib.
19

Proof: See Appendix A.2.

Result T.3 says that if the alternative with highest current revealed value has multiple search-

able attributes, and the other alternatives have at most one, then the highest variance attribute of

this alternative should be searched before any other attribute (in any alternative) so long as it has

more variance than each of those attributes (in the sense of s.s.o dominance). Also, among any two

alternatives that each have exactly one searchable attribute, it is better to search the alternative

with higher current revealed value, so long as its attribute has more variance.

The result contains the fundamental trade-off present in the multiple-attribute search problem

with multiple searchable alternatives. In particular, after an attribute is searched in alternative

1, the searcher must then decide whether to 1) search another attribute in the same alternative,

2) switch to search an attribute in another alternative, or 3) end search immediately and choose

the highest valued alternative. As mentioned in the Introduction, the first feature is not present

in single-attribute search problems, e.g. Weitzman (1979), and the second feature is not present

in multiple-attribute problems with a single searchable alternative, e.g. Klabjan, Olszewski, and

Wolinsky (2014).

Now, if one adds to this problem even just one searchable attribute to an alternative that

previously only contained one, then tractability is compromised, as a dimensional reduction crucial

to the proofs of Condition V and Results T.1-T.3 is no longer possible.20

Nevertheless, for the sake of completeness, and because I will use it in my empirical analysis of

19That any number of alternatives with no searchable attributes are allowed is implicit as E(Vm) = Vm can be
interpreted as the maximum value among said alternatives. The proof in Appendix A.2 shows that the result
typically holds strictly, detailing the particular (relatively uninteresting) versions of the problem in which it only
holds weakly.

20In particular, the dimensional reduction allows the analysis to focus on sequential search across just two attributes (see
Appendix A). A similar approach is used in the proofs of related results in Weitzman (1979) and Klabjan, Olszewski,
and Wolinsky (2014). To illustrate why the reduction is no longer possible, imagine the simplest problem with
multiple searchable attributes in multiple alternatives: the three alternatives, respectively, have values v1 + x̃12 + x̃13,
v2 + x̃22 + x̃23, and v3. Policy Φ22, that starts search with attribute x̃22, can continue searching with either x̃12 or
x̃23, depending on the realization x22. By contrast, in the absence of x̃23, search can only proceed with x̃12. I leave
this class of challenging problems for future work.
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experimental search data in Section 5, I propose a more general version of Result T.3, Condition

T, without proof:21

Condition T Let there be m ≥ 3 alternatives, ordered from highest to lowest expected value,

w.l.o.g., i.e. E(Ṽi) ≥ E(Ṽj) if i < j. Assume that each alternative i ∈ I has some number of

unsearched attributes Si ⊆ A. If Si ⊇ Sj and i ≤ j, then ∃a ∈ Si such that Φia ≥ Φjb for all b ∈ Sj.

Condition T says that among any two alternatives that each have any number of searchable

attributes, it is better to search the alternative with higher current revealed value, so long as its

set of searchable attributes nests that of the other alternative.

Due to the analytical challenges posed by the general search problem, I switch to numerical and

simulation analysis to support that Condition T holds more generally than under the restricted ver-

sion of the general search problem presented in Result T.3. In particular, numerical computations

in Appendix B show that Condition T holds for versions of the search problem with up to three

alternatives, and two unsearched attributes in each. Then, in Section 6 these numerical, and the

earlier analytical, results are corroborated with simulations from dimensionally large, numerically

intractable problems. In particular, the problems considered have many alternatives (eight) and

unsearched attributes (nine) in each, which matches the dimensions of the search data studied in

Section 5.

The intuition behind Condition T is that because search can only end once an alternative has

sufficiently separated itself in value above the others, it is best to first search alternatives with

relatively high expected values, and relatively more remaining uncertainty; the worst thing to do is

search an alternative with a relatively low expected value and relatively little remaining uncertainty,

as it is the least likely to make the searcher “change her mind” about which alternative to choose.

Condition T speaks to the fundamental tension in multiple attribute/alternative search—the

trade-off between the depth and breadth of search. When applying the condition to search data,

there are two behaviorally distinct ways that Condition T can be violated. As mentioned in the

Introduction, the first is that a subject, having decided to search another attribute, continues

searching in the same alternative, but should have switched to another (over-search). The second

occurs when the searcher switches to another alternative, but to a sub-optimal alternative (biased

21To be precise, this is a generalized version of Result T.3 in which the attributes in alternatives 2 through m are
constrained there to be elements of S1.
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switch).

Isolating the over-search violation of Condition T allows for a partial answer to the question

of whether subjects search too many or too few alternatives, and too many or too few attributes

within alternatives—a natural extension to the nested question commonly asked in single attribute

search—whether subjects search too many or too few alternatives Camerer (1995).22

Isolating the biased switch violation of Condition T allows for study of another important

aspect of subjects’ search behavior. In terms of payoff consequences in the data, violations that

occur in alternative switching can be particularly costly because subjects tend to search several

attributes in a sub-optimal alternative once they have switched to it, which further compounds the

cost. In single attribute search problems Weitzman (1979) characterizes which alternative should

be searched next, if one is to be searched at all. The condition presented here is weaker in that

it does not always identify which alternative should be searched next, but it does identify most of

the cases in which the switch from one alternative to another is sub-optimal. Further, in Section

5 I explain why compliance with Condition T in alternative switches is straightforward, making

violations of this type particularly revealing.

Conditions R and C hold for search problems with any number of alternatives and attributes.

Condition R (Repeat) No repeat look-ups.

The no repeated look-ups condition follows directly from the assumptions of rationality and costly

search.

Condition C (Choice) Once search ends choose any alternative j ∈ arg maxi∈I E(Ṽi).

Once search ends, the chosen alternative must have a weakly higher expected value than any

unchosen alternative. This condition also follows directly from the assumptions of rationality and

risk neutrality. Thus, while Conditions R and C are both theoretically trivial, they hold for a

broader class of search problems than those described in Section 2.1. In Section 5 I show that the

conditions are useful for studying search behavior.

22Camerer (1995) reports that a robust finding in single-attribute search problems is that subjects systematically search
too few alternatives. Bearden and Connolly (2007) find the same result in their two-attribute, fixed order, no recall
search problem. When combined with the empirical results from Section 5 what is (tentatively) suggested is that
when performing multiple-attribute search subjects may have a tendency to search too few alternatives and explore
searched alternatives too deeply.
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Necessary but not Sufficient

Consider the four necessary conditions applied to the search problem described in Section 2.1.

Condition T (over-search/biased switch) identifies which alternative search should begin with, if

it begins at all, and Condition V (Variance) identifies which attribute should be searched within

an alternative given that the alternative is being searched. Given that a switch is occurring from

one alternative to another, Condition T identifies a list of alternatives that cannot be switched to,

which may or may not be exhaustive, depending on the history of search. In addition, Condition

T identifies cases in which search must switch from the currently searched alternative to another.

Condition C (choice) identifies the optimal alternative choice at the completion of search.

That the partial characterization of optimal sequential search that I propose here falls short of

a complete characterization is due to two reasons. First, in terms of the optimal order of sequential

search, it is unable to determine which alternative is better to search when, relative to another, one

alternative has a lower expected value but is also less searched. As such, the partial characterization

cannot always determine when search should switch out of an alternative, nor can it always make a

complete prediction of which alternative should be switched to, when a switch does occur. In terms

of identifying over-search within alternatives, then, the partial characterization can be thought of

as identifying the more egregious violations while being blind to the more subtle ones. Second,

independent of the optimal order of search, it says nothing about when search in a problem should

stop.23

Despite the necessary conditions not being sufficient, the partial characterization of optimal

sequential search nevertheless allows for a strong test of the degree of optimality in multiple at-

tribute/alternative sequential search behavior; Condition T alone would be violated 70.9% of the

time in the average task if the subject were to select an alternative to search at random.24 On the

other hand, the corresponding sufficient condition—if it were known—would yield a violation rate

of slightly less than 85.8%, meaning that Condition T identifies more than 82.6% of the violations

that the corresponding sufficient condition would identify.25 The remaining three necessary condi-

23In single attribute search problems Weitzman (1979) is able to characterize the optimal order of sequential search
and the optimal stopping rule. As mentioned earlier in this section, Klabjan, Olszewski, and Wolinsky (2014) are
able to do the same for a problem with one searchable attribute with two unsearched attributes and one deterministic
outside option.

24This violation rate is obtained via simulation, taking the number of attributes searched by each subject in each task,
and having a robot subject search at random, restricted to obey all necessary conditions other than Condition T (see
Section 6). The violation rate is first averaged across tasks within subject, then across subjects.

25This violation rate is computed directly in each subject/task by averaging (r − 1)/r across look-ups, where r is the
number of remaining alternatives that have not been searched exhaustively. The violation rate is then averaged across
tasks within subject, and finally across subjects. It is a weak overestimate because it assumes that for each look-up
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tions are sufficient within their respective categories—that is, they identify 100% of all respective

violations.

3 GLMW’s Experimental Design

In GLMW’s experiment, subjects face a series of problems in which they choose one of eight al-

ternatives, with a limited amount of time. The value of each alternative is equal to the sum of its

ten individual attribute values, nine of which are initially unknown to the subject (imagine com-

paring eight different potential employers using information collected on attributes such as wage,

benefits, commuting distance, etc.). Attributes are mean zero, normally distributed, independent,

and linearly decaying in variance from attribute 1 (σ2) to attribute 10 (0.1σ2). Attributes can be

searched in any order and any alternative can be chosen at any moment, to end search. By limiting

the amount of time that subjects have to search GLMW create a shadow cost of time in both of

their experimental treatments. In the “Endogenous” treatment subjects are given 25 minutes to

complete as many different problems as they choose to, given a 20 second buffer screen between

problems. In the “Exogenous” treatment subjects are allocated between 10 and 49 seconds, drawn

from a uniform distribution, to complete each of 12 different problems.26 The design is within

subject, so each subject completes both of the treatments, with half of the subjects starting in the

Exogenous, and the other half in the Endogenous, in order to control for order effects.

The experiment’s 390 Harvard undergraduate subjects are given complete information of the

distribution of all attributes, and the amount of time remaining in each problem. Subjects are paid

the sum of attributes 1 through 10 in the alternative they choose, regardless of how many of these

attributes they searched.

Building on work by Johnson, Payne, Bettman, and Schkade (1989); Payne, Bettman, and

Johnson (1993) GLMW use the MouseLab experimental interface in order to track the complete

order and duration of all information acquisitions made by subjects. MouseLab is essentially a

mechanical analog to eye-tracking, in which attribute values are contained within “boxes” on the

there is always a unique best attribute to search.
26When analyzing GLMW’s data in Section 5 I follow the reasonable assumption made by GLMW for their endogenous

treatment: that there is a constant shadow cost of time. Further, because I find little difference in search behavior
between the Exogenous and Endogenous treatments I use the shadow cost assumption when analyzing the pooled
dataset. Repeating the analysis without including data from the Exogenous treatment yields similar results. Assuming
constant costs is a reasonable approximation of more complicated potential cost structures, in which costs could change
over time, spatially over the information display, or even depend on the values of previous attribute realizations.
Similarly, one could consider a model of search in which the searcher has a limited time budget and time cost per
look-up, with varying search horizons as time decreases.
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Figure 1: Search problem from GLMW

Alternatives 1-8 run from top to bottom. Attributes 1-10 run from left to right. Attribute 1 values are

observable for the duration of the problem. Of the remaining 72 attributes, only one can be observed at a

time. In this particular moment of search the subject is observing attribute 4 of alternative 5. Choice boxes

corresponding to each of the alternatives can be seen lining the bottom of the display. The amount of time

remaining for each problem is continuously represented by the decaying disc in the top right corner of the

display.

computer screen that can be opened, one at a time, by clicking the left button of the computer

mouse (see Figure 1). Each box must be closed, with a right-click of the mouse, before the next

attribute box can then be opened. In GLMW’s design attribute 1 values for each alternative

are openly observable for the entirety of the search problem, whereas attributes 2 through 10

are covered (unless one is opened). At the bottom of the display are choice boxes—one for each

alternative. In order to choose an alternative after search is completed, one must left-click once on

the corresponding choice box to choose it, and then again to confirm the choice.

The GLMW search problem satisfies all of the conditions of the slightly more general search

problem presented in Section 2.1. Thus, the necessary conditions for optimal sequential search

presented in Section 2.2 can be applied to the GLMW’s experimental dataset in Section 5.
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4 Basic Search Behavior and Performance

I give a descriptive analysis of the basic properties of search behavior in the average problem. All

averages are taken first across all of the search problems of a subject, then across subjects. First,

search is described in terms of breadth, depth, speed, and the corresponding monetary earnings

obtained by subjects, then in terms of the types of search transitions that occur from one searched

attribute to the next.

On average, subjects take 1.0 second for each attribute look-up, and perform 31.4 look-ups per

search problem, which on average span 4.9 different rows and 7.8 different columns.27 Further, on

average, they complete 41.8 problems, and earn $0.53 per problem. Comparing this to an extreme

benchmark, if for each problem they were able to resolve enough uncertainty to always choose the

highest-valued alternative, they would earn an average of $0.75.

Tables 1 and 2 together summarize the characteristics of search transitions from one attribute to

the next. Table 1 reports, for the average search problem, that subjects transition within alternative

(horizontal) 16 times as frequently as they transition within attribute (vertical). Of the relatively

small percentage of search transitions that occur neither within alternative nor within attribute,

the majority are identical in one important respect—they are transitions to the first attribute of a

transitioned-to alternative as part of a “typewriter” acquisition pattern.28

Table 1: Search transitions: horizontal, vertical, and other

Transition Type Mean

Within Alternative 25.4
Within Attribute 1.5
Other(typewriter) 3.7 (3.4)

Table 2 reports the frequency of search transitions to each of the four cardinal directions, along

with the corresponding extent to which these transitions are spatially adjacent. The majority of

these transitions occur from left-to-right (88%) and are adjacent (97%).

The results of this unstructured analysis are straightforward. In general, search sequences are

smooth and highly systematic. On average, 99 out of every 100 look-up transitions occur either

within alternative, within attribute, or as an example of deliberate typewriter alternative switching.

27In the GLMW problem there are 72n possible search paths for every n boxes searched.
28This typewriter search pattern typically performs multiple sequential look ups in one alternative going left-to-right,

then switches to the left-most attribute of any other alternative, followed by another run of left-to-right look-up
transitions, and so on.
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Table 2: Search transitions: direction and degree of adjacency

Transition Type Mean

Right 23.7
(adjacent) (23.3)
Left 1.6
(adjacent) (1.4)
Down 1.1
(adjacent) (1.0)
Up 0.4
(adjacent) (0.3)

5 Violations of the Necessary Conditions

I compare the search behavior observed in GLMW’s experiment to the partial rational benchmark

for optimal sequential search introduced in Section 2.2. I find behavior to deviate from optimal se-

quential search at high rates. In particular, 94% of all search problems, and 57% of all search actions

within search problems violate at least one of the four necessary conditions.29 More importantly,

these deviations are systematic. Consistent with the finding in Section 4 that subjects’ search

patterns tend to be “smooth” and highly systematic, this section reports that they sequentially

search too deeply in alternatives and switch too adjacently between alternatives. Interpretations

of violations of necessary conditions will, for the most part, be postponed until Sections 6 and 7.

Table 3 reports subjects’ summary statistics, averaged first across tasks within subject, then

across subjects. From left to right, columns contain (N) the number of subjects, (Time) end time

of search task, (LU’s) number of attribute look-ups; also, the violation rates of (1) Condition T—

Trade-off, (T↔) Condition T violated by over-search in an alternative, (Tl) Condition T violated

by a biased switch between alternatives, (2) Condition V—Variance, (3) Condition R—Repeat, (4)

Condition C—Choice, (T∪V∪R) attribute look-ups in which at least one of Conditions T, V, or

R is violated, and (Payoff) the expected payoff (in dollar-cents). For Conditions T, V, and R (%)

represents the percentage of violations on all look-ups that permit a violation, and for Condition

C the percentage of violations on all final choices.

29Search actions consist of all attribute look-ups, and choice of alternative. Averages are taken first across tasks within
subject, then across subjects.
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Table 3: Violations of necessary conditions in search behavior

N Time LU’s T T↔ Tl V R C T∪V∪R Payoff
secs. % % % % % % % $-cents

390 32.4 31.3 48.6 47.2 54.9 5.6 12.0 30.8 57.0 53.4

5.0.1 Condition V

Because all attributes are symmetric second-order stochastically dominated by any attribute located

to their right in GLMW’s design, a subject should never search an attribute that has an unsearched

attribute to its left, in the same alternative. A small fraction of all attribute look-ups, roughly 6%,

on average, violate Condition V.30

5.0.2 Condition T

A violation of Condition T occurs in 49% of subjects’ look-ups, on average.31 To put this violation

rate into perspective, searching alternatives at random would yield an average violation rate of

71%, thus subjects’ 49% violation rate is substantial.32 All violations occur in the form of either

over-search within an alternative, or an incorrect (“biased”) switch from one alternative to another.

Because these two forms of violation are behaviorally distinct, I explore each separately.

Within Alternative Transitions

A violation of Condition T occurs on a within alternative transition if the currently searched

alternative is explored more deeply when the subject would have been better off switching to

explore a (weakly) less searched alternative instead. Table 3 reports that this type of violation

occurs on 47% of all within alternative transitions.33

An additional test of the degree of sensitivity to acquired information, i.e. contingency, in

within alternative search is whether subjects manage to switch out of an alternative when their

current look-up is not a violation of Condition T, but their next look-up would be.34 Subjects fail

to switch out of the alternative at an alarming rate of 94% of these look-ups, further indicating

30The fact that most subjects are used to reading left to right, which is consistent with complying with Condition V,
may contribute to the low violation rates.

31All averages are taken first across tasks within subject, then across subjects.
32The 71% violation rate is obtained by simulated search that randomly selects an alternative/attribute without ad-

hering to Condition T, but adhering to Conditions V and R, and with the number of simulated look-ups yoked to
the number actually performed by each subject in each task (see Section 6).

33This constitutes 79% of all violations of Condition T.
34In particular, this occurs when the current attribute realization has made its alternative both weakly more searched

than, and have an expected value that is weakly less than, with one of these inequalities strict, another alternative.

19



their lack of optimal responsiveness to obtained information.

Alternative Switching

Table 3 reports that subjects’ average violation rate of Condition T, on alternative switches, is 55%.

As mentioned in Section 2, switching violations are of special interest because once an alternative

is switched to subjects tend to search several of its attributes in sequence, which exacerbates the

cost of having switched to a sub-optimal alternative.

The remaining analysis of alternative switches will limit consideration to those that occur to

previously unsearched alternatives. By doing so, I avoid comparing these switches, which allow

the searcher a completely transparent view of the alternative’s expected value, with switches to

alternatives whose (revealed) expected value is not currently observable, thus not transparent.

Violations on this type of switch are particularly revealing, given how straightforward it is to

avoid them in GLMW’s design. In particular, the subject need only switch to the alternative with

the “largest number in front of it”—its fully observable attribute value (see Figure 1 in Section 4).

Empirically, this is a weak restriction, as the selected sub-sample accounts for 92% of all alternative

switching violations of Condition T.35

Despite the relative ease, and importance, of not violating Condition T when switching between

alternatives, 53% of subjects’ alternative switches are violations, on average. Moreover, as the ex

post number of alternatives searched within a problem increases, the average relative frequency of

violations increases dramatically. This pattern can be seen in Table 4, where the (ex post) number

of alternatives searched in a problem are listed as rows, and the switch numbers (first, second, . . . ,

eighth) within the problem, are listed as columns. The average violation rate of Condition T for

each switch number and ex post number of alternatives searched is reported in columns labeled

1-8, while the final two columns give the number of subjects (N) with at least one problem in

which the corresponding (ex post) number of alternatives is searched, and the number (# Opt.)

of subjects that in these problems perfectly comply with Condition T when switching alternatives.

The probability of violating the condition by chance, for each switch number, is shown in the

bottom row of the table.

The average violation rate for each pairing of alternative switch number and ex-post number of

alternatives searched in Table 4 is significantly larger than zero (< .001, Wilcoxon signed rank test),

except for the eighth switch, which has to be equal to zero. Furthermore, the average violation

35In general, 82% of all alternative switches occur to previously unsearched alternatives; subjects do not seem to like
switching back to alternatives that they have partially searched previously.
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Table 4: Average relative frequencies of violations of Condition T on alternative switches, as a function of
the ex post number of alternatives searched in a task, and whether it is the first, second,. . . , eighth switch

Switch Number
Alternatives Searched 1 2 3 4 5 6 7 8 N #Opt.

1 0.32 286 104
2 0.44 0.35 333 31
3 0.49 0.51 0.38 344 8
4 0.50 0.55 0.52 0.41 351 1
5 0.52 0.58 0.58 0.56 0.41 359 3
6 0.56 0.63 0.59 0.60 0.55 0.42 348 3
7 0.54 0.62 0.65 0.65 0.58 0.57 0.33 339 3
8 0.66 0.72 0.72 0.72 0.65 0.62 0.41 0.00 329 1

Chance 0.87 0.86 0.83 0.80 0.75 0.67 0.50 0.00

rate increases consistently as the ex post number of alternatives searched in a task increases.

While tasks with only one searched alternative yield a 32% violation rate, when eight alternatives

are searched the first alternative switch violates Condition T 66% of the time. The first average

violation rate in each column is significantly different from the last (< .01, Wilcoxon signed rank

test), whenever there are at least two rates to compare.36 In addition, very few subjects maintain

compliance to Condition T throughout all alternative switches, for search problems with any number

of alternatives searched. In particular, only 36% of subjects do so for all search problems in which

they search only one alternative, whereas when three or more alternatives are searched the rate of

compliant subjects drops to close to zero.

That compliance rates decrease systematically with the ex post number of alternatives searched

indicates that search behavior becomes increasingly non-contingent as more alternatives are searched.

In order to discern whether these violations of optimal sequential search contain any systematic

patterns, I next conduct an econometric analysis.

Econometric analysis of alternative switching

An analysis performed in Appendix C using conditional logit regressions strongly suggests that

violations of Condition T on alternative switches occur because subjects are influenced by (“irra-

tional”) spatial preferences roughly as much as by (rational) value preferences. In particular, when

choosing which alternative to search first, searchers respond roughly as much to the spatial height of

an alternative as to its expected value. Then, in subsequent alternative switches, searchers respond

36In general, within-column differences in average violation rates of around .05 and up are statistically significant at
the 5% confidence level (two-sided test).
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roughly as much to the degree of spatial adjacency (i.e. “closeness”) of a candidate alternative as to

its expected value.37 Thus, subjects exhibit a strong spatial bias when choosing which alternative

to search. Section 7 contains a discussion of how such a spatial bias may be due primarily to

subjects adapting in order to reduce memory load. See Section 6 for an analysis of the costs of

these systematic deviations from optimality.

5.0.3 Condition R

Due to the scarcity of time in both experimental treatments, a subject should never repeat an

attribute look-up within a problem. Nevertheless, 12% of all look-ups, on average, are repeats.

5.0.4 Condition C

When done searching subjects should always choose the alternative with the highest expected value,

but fail to do so in 31% of problems.38

6 The Costliness of Violations

I perform an analysis of the effects of violations of necessary conditions on the (1) value of informa-

tion obtained in search, and (2) economic performance of experimental subjects. Results suggest

that despite the high violation rates reported in Section 5, subjects do search relatively valuable

information, just often not in the order prescribed by optimal sequential search. Further, the costs

of failing to choose the highest-valued observed alternative at the completion of search (i.e. viola-

tions of Condition C) are large relative to the costs associated with violations of Conditions T, V,

and R.

6.1 Effect of Violations on Value of Information

The more valuable the information that one searches, the greater the tendency to observe more

promising alternatives, and visa versa. Thus, a natural way to measure the value of information

37The GLMW dataset is sufficiently rich to run regressions on the individual subject level. Effects on spatial independent
variables (height, distance) are significant for around 290/390 subjects. The effect of value is significant for roughly
the same number of subjects. Average effect sizes reflect considerable trade-offs between spatial variables and value,
e.g. for the first alternative searched, a subject is willing to search an alternative one position lower in the display if
its observable attribute 1 value is at least $.07 higher.

38It is reasonable to assume GLMW’s subjects are risk neutral given that GLMW encourage risk neutrality by reminding
subjects in each problem to “Choose the row you think has the highest sum,” as seen in Figure 1, above the choice
boxes.
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obtained in search is with the highest revealed (expected) payoff across alternatives. Table 5 reports

the results of an ordinary least squares regression in which the dependent variable is the average

highest-valued alternative (in expected $-cents) observed by the subject, and the independent

variables are the subject’s average number of violations of Condition T (over-search or biased

switching), Condition V (Variance), Condition R (repeats), and number of look-ups, respectively,

where the averages are taken across all of a subject’s tasks. The natural predictions are that

violations of any of the necessary conditions will lead the value of the highest-valued observed

alternative to decrease, while performing additional look-ups will have the opposite effect.

Table 5: OLS regression results for the effect of necessary condition violation rates (and the number of
look-ups) on the highest-valued alternative observed (in $-cents)

Coefficient Standard Error p-value

Constant 51.424*** 1.347 0.000
Look-ups 1.091*** 0.122 0.000
Condition T -1.131*** 0.178 0.000
Condition V 0.044 0.124 0.722
Condition R -1.341*** 0.214 0.000

∗ p < 0.10, ∗∗ p < 0.05, ∗ ∗ ∗ p < 0.01

n = 390, R̄2 = 0.23

Consistent with predictions, the results indicate that the larger the number of look-ups, the

higher the highest-valued alternative, and the larger the number of look-ups that violate Condition

T, or Condition R, the lower the highest-valued alternative. These effects are highly significant, with

considerable magnitudes: in the average task, subjects perform roughly 14 violations of Condition

T, and each violation is associated with a decrease in the highest-valued observed alternative of

more than a cent.39 The magnitude of the effect of repeating a look-up is similar, but subjects

only do this around 3.6 times per task, on average. The coefficient on violations of Condition V,

which subjects perform around 1.6 times per task, on the other hand, is insignificant. Finally, each

additional look-up is associated with an increase in the highest-valued alternative of a bit more

than a cent.40

39One might be concerned about multicollinearity, especially between the violation frequencies for each necessary
condition, and the total number of look-ups. By converting the frequencies to relative frequencies, the degree of
multicollinearity is greatly reduced. This yields no qualitative difference in regression results, other than perhaps the
sign on the effect of Condition V switching to negative (though still insignificant), as initially predicted. Thus, the
independent variables are left as frequencies in order to facilitate interpretation.

40An alternative specification in which the total number of search problems the subject faced is also included as a
regressor yields virtually identical results, with the coefficient on number of games roughly zero and insignificant,
whether pooling the data across treatments or only including data from the Endogenous treatment.
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While the regression results reported in Table 5 indicate that subjects who violate Conditions

T and R obtain less valuable information from search, there is reason to caution against a causal

interpretation. In particular, each subject’s violation rates of each condition depend on the unob-

servable search rule(s) that she employs, as does the highest-valued alternative that is observed.41

Also, for a brief discussion on multicollinearity see footnote 39.

In light of the possible endogeneity issues just described, I use a simulation approach in order to

allow for causal interpretations of the effects of violations of necessary conditions (and additional

look-ups) on the value of information obtained by search. First I simulate search for each subject

in each task, according to how much the subject searched in that task, but varying the search rule

used from completely random, to random but without violating: Condition R, Conditions R or V,

Conditions R, V, or T (along with a variant), respectively. This reveals the effect of violating each

condition on the value of information obtained, subject to the same general conditions of search

faced by the experiment’s subjects in each task. 100 complete simulated search patterns are run for

each subject/task pairing, with the highest-valued observed alternative first being averaged across

simulations within task, then across tasks for each subject, and finally across subjects, creating one

measure of each variable of interest, and allowing direct comparison with the averages reported in

Table 3.42

Table 6: The highest-valued observed alternative (in $-cents) as a result of various random search rules
that incrementally (and increasingly) obey necessary conditions for optimal sequential search, along with
corresponding values for an idealized omnipotent searcher and experimental subjects.

Search Rule Highest-Valued Observed Alternative

No Conditions 49.0
Condition R 52.3
Condition R&V 58.3
True Search 65.5
Condition R&V&T 66.1
Condition R&V&T* 68.3
Omnipotent 75.2

The results for each of these simulated search behaviors can be seen in Table 6, where the

(average) highest-valued observed alternative is reported. For each search rule, this value can then

be compared to the extreme of the true highest-valued alternative if all information in each task

41This may be related to the estimated effect of violating Condition V being found to be insignificant.
42Because simulated search patterns are highly contingent (i.e. depend on search history), and I generate 100 for each

of the nearly 16,000 search tasks in the dataset, results for a particular search rule can take up to around 20 days of
computation time.
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were to be observed, which I call Omnipotent. Given that roughly 31 of 72 possible look-ups are

performed in the average task, one can see that completely random search (No Conditions) yields a

highest-valued observed alternative of 49.0, as compared to the 75.2 of Omnipotent search. Between

these two extremes, as random search becomes incrementally more restricted to obey necessary

conditions for optimal sequential search, the highest observed alternative value can be seen to

increase incrementally. In addition, the True Search of experimental subjects yields only slightly

lower highest-valued observed alternatives than random search restricted to obey Conditions R, V,

and T (Condition R &V &T).43

That subjects observe information that is almost as valuable as that observed by the simulated

search rule that complies with Conditions R, V, and T may at first glance seem surprising, given:

(1) the high violation rates of necessary conditions in search behavior reported in Table 3, (2)

the regression results reported in Table 5 indicating that these violations are costly, and (3) the

simulation results of Table 6 now reporting the same. How might we reconcile these seemingly con-

tradictory results? First, we can recall that the necessary conditions for optimal sequential search

fall short of sufficiency, meaning that fully optimal search would result in more valuable information

being obtained than that by random search restricted to obey Conditions R,V, and T. To illustrate

this point, one can consider, for example, a minor tweak to random search obeying Conditions R,V,

and T, in which it must also obey the following restriction: the searcher continues in the presently

searched alternative until this is no longer possible. This search rule, Condition R&V&T* in Table

6, results in an average relative increase in the highest-valued observed alternative of around 2 cents

per task.44

A second reason why the difference between the highest-valued alternative observed by true

searchers, and simulated random search obeying Conditions R,V, and T is perhaps not as large

as expected, is that when search is completed in each task subjects’ ex post search patterns, i.e.

“footprints,” overlap with simulated footprints more than what is suggested by the violation rates

reported in Table 3. For example, when simulating random search in each task of each subject, in

the absence of violations of Conditions R,V, and T, the relative overlap with true search is roughly

77%, though the fact that around half of look-ups violate Condition T alone—as compared to the

roughly 71% chance violation rate—may appear to suggest otherwise. By contrast, the relative

43I use the Mann-Whitney Signed Rank test (5%) to test for equality of means. All pairwise differences are significant.
44The intuition behind why this tweak results in more valuable information being obtained is that there are instances in

which Condition T allows search to continue in the current alternative, but also allows a switch to an alternative with
relatively (very) low observed expected value, but that is relatively less searched. The random search rule (unless
otherwise restricted) chooses between these two options with equal probabilities.
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overlap with fully random search is roughly 44%.45 What this suggests is that while subjects do

severely violate the order of optimal sequential search, the search footprint that they leave is more

similar to violation-free search than what it initially appears.

So far in the simulation analysis I have compared the value of information obtained by different

search rules when they each perform precisely the number of look-ups made by experimental sub-

jects. However, one may also wonder how the value of information for each simulated search rule

evolves with the number of look-ups. Accordingly, I run another battery of simulations in which

I take each of the 160 different search tasks used in GLMW’s experiment, and simulate search in

each 1000 times, allowing zero look-ups, then one, then two, . . . , all the way up to 72 look-ups,

i.e. exhaustive search.46 I do this for each search rule, which allows for a comparison of the value

of information revealed, all else equal, when necessary conditions are violated or not, as a function

of the extent of search performed. In Figure 2 one can see that, as in Table 6, the costs due to

violating each of the necessary conditions for optimal sequential search are considerable for a large

range of number of look-ups.47

6.2 Effect of Violations on Economic Performance

The highest valued alternative observed in a search problem is equal to the searcher’s expected

payoff so long as she successfully chooses this alternative. However, as reported in Section 5,

subjects fail to choose this alternative in approximately one out of every three tasks, on average.

These violations of Condition C are costly; whereas Table 6 shows that subjects’ search, on average

(across all tasks), reveals a highest valued alternative of $0.66, the average score obtained by

45The way that I calculate these relative overlap percentages starts with a measure of absolute overlap between two
search “footprints”: overlap = #(a∩b)

min{#a,#b} , where i ∈ {a, b} is the set of look-ups in a task according to search rule
i, and #i the number of look-ups in the set. Notice that this measure equals zero if there is no overlap, and 1 if
the set with (weakly) fewer look-ups is entirely contained in the other. Then, I use each search rule of interest to
simulate a pattern of search for each of the nearly 16,000 tasks searched by experimental subjects. For each task,
I compute the overlap between the true subject search pattern and the simulated search pattern (with the number
of simulated look-ups equal to those of the corresponding subject/task), and then average this overlap across tasks
within subject, and finally across subjects. I find the average absolute overlap between completely random search
and true search to be 0.38, and when random search is restricted to obey Conditions T,V, and R the overlap goes to
0.67. Finally, to obtain the relative overlaps I use the absolute overlap between simulated random search restricted
to obey Conditions T,V, and R, and itself—roughly 0.87— as the divisor, which yields the relative overlaps of 44%,
and 77%, respectively.

46In order to vastly reduce computation time, rather than conducting simulations independently for each number of
look-ups, an approximation is used in which each of the 160 different tasks is first searched exhaustively in 1000
random orders, then the last look-up is removed from each, then another, etc., until all simulated search patterns
perform just one look-up, then zero. Clearly, as the number of simulated orders grows arbitrarily large, the output
of the approximation converges to that of the alternative method. Estimates for 100 and 1000 simulated orders are
nearly identical.

47The results of Table 6 and Figure 2 corroborate the costliness of violations of Condition T, with the theoretical results
of Section 2 as well as with the numerical computations performed in the Appendix A.
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Figure 2: Highest-valued alternative observed as search rule and amount searched vary

Average highest-valued alternative observed as a consequence of simulated search 1000 times on each of the

160 different search tasks in GLMW, as random search incrementally and increasingly obeys the necessary

conditions for optimal sequential search presented in Section 2, and as the total number of look-ups vary from

0 to 72.

subjects is shown in Table 3 to be considerably less: $0.53.

Table 7: OLS regression results for the effect of necessary condition violation rates (and the number of
look-ups) on subjects’ average payoffs per task (in $-cents)

Coefficient Standard Error p-value

Constant 57.715 1.811 0.000
Look-ups 0.889*** 0.145 0.000
Condition T -0.699*** 0.217 0.001
Condition V 0.046 0.147 0.755
Condition R -1.154*** 0.254 0.000
Condition C -60.437*** 3.954 0.000

∗ p < 0.10, ∗∗ p < 0.05, ∗ ∗ ∗ p < 0.01

n = 390, R̄2 = 0.44

Table 7 reports the results of an OLS regression that is similar to that presented in Table 5,

but with a dependent variable of average payoffs per task, rather than highest-valued observed

alternative, and with the addition of an independent variable indicating whether a violation of

Condition C, i.e. an incorrect choice, has occurred. One can see that the size and significance of

the effects on look-ups and violations of Conditions T and R are similar to those presented in Table
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5, while the effect of incorrect choice is also significant, but substantially larger. In particular,

failing to choose the highest-valued observed alternative is associated with a loss of $0.60, which is

larger than the average payoffs per task.48

7 Discussion

At first glance, subjects’ high rates of within alternative over-search, and their tendency to switch

too adjacently between alternatives, suggests that they deviate substantially from searching the

most valuable information. However, the analysis performed in Section 6.1 suggests that subjects’

search “footprints” are actually quite similar to the footprints left by violation-free search. This in

turn suggests the possibility of some form of boundedly rational search behavior.

In order to investigate what might be causing the observed deviations it is useful to begin by

considering the standard candidate explanations: myopia and costly-reoptimization. In particular,

because the GLMW search space is so large, the option value calculations necessary to search

optimally are intractable, even for modern computers.49 Myopia makes for an intriguing candidate

explanation because myopically optimal sequential search is computationally much less demanding

than its non-myopic counterpart, due to its complete disregard of option values. In addition, it yields

a sharp prediction of search behavior. Nevertheless, it does not predict the alternative switching

violations, which occur on 55% of alternative switches, and in general seems more consistent with

within alternative under-search than the high rates of over-search observed in behavior, as (1)

myopia leads to less search in general, as it sets to zero the option value of search, which is usually

positive and never negative, and (2) myopic searchers are more often indifferent about which of

multiple alternatives to search (because they use less information to discriminate between different

possibilities), so they should be expected to switch more often between alternatives. In addition,

myopia would not predict repeat look-ups, incorrect alternative choice, or violation of the variance

condition.

On the other hand, optimal sequential searchers must re-optimize after each attribute is searched,

which may be quite cognitively taxing. Thus, searchers may choose to instead re-optimize less fre-

48In principle, it may be better to use as the dependent variable average highest observed payoff divided by the average
highest possible payoff, in order to adjust for the fact that some subjects face tasks with more promising alternatives
than other subjects. Nevertheless, because regression results with this dependent variable are similar, the dependent
variable of average payoffs is used instead, in order to facilitate interpretation of regression coefficients.

49Of course, it is conceivable that there is an equivalently optimal reservation rule (as in many single attribute search
contexts), but none have been found in any problem with multiple searchable attributes and alternatives, let alone
in this rich of one.
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quently, preferring to do so only after searching chunks of several attributes at a time. This

conjecture is generally consistent with the results reported in Table 4 of Section 5, that as the

ex post number of alternatives searched increases, subjects increasingly violate optimal alternative

switching. That is, they appear, to some extent, to pre-commit to searching multiple alternatives at

a time, which would make search order less relevant. As mentioned in the introduction, this type of

behavior would be consistent with an optimal sequential searcher who sometimes lapses into “clas-

sic” search (Stigler 1961), which is generally consistent with the proposed occasional re-optimizing

of the Directed Cognition model, the model of Morgan and Manning (1985), and field evidence

in De los Santos, Hortaçsu, and Wildenbeest (2012). Nevertheless, the fact that the frequency of

re-optimization is not observable makes it difficult to use this approach to predict search behav-

ior. In particular, with a sufficiently high frequency of re-optimization, the occasional re-optimizer

would not perform the observed within alternative over-search or alternative-switching violations,

and with a sufficiently low frequency of re-optimization there are no restrictions placed on search

order whatsoever, so “anything goes,” which does not make for a useful descriptive model of search

behavior.

An alternative conjecture is memory considerations, which is suggested by the fact that subjects

repeat look-ups 12% of the time, and fail to choose the highest expected value alternative at the

completion of search in 31% of tasks. Accordingly, in Sanjurjo (2017) I build a simple model of

working memory load, as a function of search behavior, and find that both within alternative over-

search and adjacency bias in alternative switching greatly reduce experienced memory load. These

results demonstrate that cognitive load is not only a function of what attributes are searched, or

how many, but what order said attributes are searched in.50 Intuitively, the more smooth and

systematic is search, the less the experienced load. Further, in an experiment designed to test this

model of memory load in search (Sanjurjo 2015) I find that high memory load search orders lead

to substantially higher rates of choice error than low memory load orders, holding the information

searched constant. Given that Section 6 shows the costs of choice error violations to be substantially

larger than those of Conditions T,V, and R, it makes sense that subjects could be willing to violate

optimal order of search in order to smooth and systematize search behavior, which in turn reduces

the probability of memory failure, and thus costly choice error.

50By contrast, the information overload literature typically focuses on the number of alternatives or the number of
attributes searched. See, e.g. Iyengar, Huberman, and Jiang (2004); Jacoby (1984); Malhotra (1982); Reutskaja,
Nagel, Camerer, and Rangel (2011)
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8 Conclusion

I study rich multiple attribute search problems, similar to those ubiquitous in modern economic life.

I introduce a partial characterization of optimal sequential search, in the form of several necessary

conditions. When taking the partial rational benchmark to the data from a rich search experiment,

I find that subjects systematically violate optimal sequential search by searching too deeply within

alternatives, and switching too adjacently between alternatives. While, in principle, these violations

are costly, subjects seem to mitigate the costs by searching in a way that nonetheless leads the ex

post observed information to be valuable. The order of search that they opt for reduces experienced

memory load, which has been found in recent research to make it less likely to commit a very costly

error at the completion of search, when choosing between alternatives.
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A Proofs

In Subsection A.1 I prove Condition V and Corollary V2, and in Subsection A.2 Results T.1, T.2,

and T.3, all under the assumptions described in Section 2.1.

For simplicity, in the proofs all attributes x̃ij are assumed to satisfy the minimal condition

that
∫∞

0 x̃ijdFij > c, which ensures that there exists a unique reservation distance ri, such that

vi+ri = −c+
∫ ri
−∞(vi+ri)dFij+

∫∞
ri

(vi+x̃ij)dFij , which can be re-expressed as c =
∫∞
ri

(x̃ij−ri)dFij .
51

Call [vi − ri, vi + ri] the reservation interval of alternative i.

In order to keep the length of the section down, and minimize the repetition of arguments, later

proofs to some extent build on earlier proofs.

A.1 Condition V

Condition V (Variance) Let there be m ≥ 2 alternatives with expected values E(Ṽ1), . . . , E(Ṽm),

and at least one alternative i ∈ I with at least two unsearched attributes, i.e. |Si| ≥ 2. For any

such alternative, if Fia ≺s.s.o Fib then Φia > Φib.

Proof. Consider a search policy that follows any given history of search by searching the lower

variance attribute x̃ib of alternative i instead of x̃ia, where Fia ≺s.s.o Fib, then proceeds optimally

thereafter. Call the search policy Ψb and its expected payoffs Φb, setting i = 1, then suppressing

the 1 in notation, without loss of generality.

Now consider a search policy ∆a, with expected payoffs Λa, that instead begins by searching the

higher variance attribute x̃a. ∆a strictly follows the decision rules of Ψb, but uses h(xa) in place of

xb, until it reaches x̃b in search (if it does). Recall from Section 2.1 that h effectively “compresses”

attribute x̃a so that h(x̃a) has the same distribution as x̃b. In the case that x̃b is reached, ∆a

switches to perfectly mimicking the decision rule of Ψb for the remainder of search. Notice that, in

principle, ∆a is not an optimal policy, i.e. Λa ≤ Φa.

The remainder of the proof consists of showing that when integrating over the joint probability

density function f(h(xa), xb), Λa is at least as large as Φb. This will be done by comparing Λa

and Φb across regions that are formed by exploiting the symmetry of the joint density function, i.e.

f(h(xa), xb) = f(xb, h(xa)).

In order to build these symmetric regions of integration, begin by considering policy Ψb, which

51The concept of a reservation distance is well-known and widely used in the search literature; see, e.g. Weitzman
(1979).
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Figure 3

searches xb first. By Lemma 1 (below) there exists some Nb such that if xb ≥ Nb then search ends

immediately and alternative 1 is chosen. Recall that the current revealed value of alternative 1 is

E(V1). Then for realizations of xb such that xb ≥ Nb − E(V1) alternative 1 is chosen immediately.

Figure 3 depicts the (h(xa), xb) plane with critical distance Nb − E(V1) bounding regions 1, 2,

3, and 4 from below. By construction, the respective critical distance when first searching xa,

under policy ∆a, is identical, and shown in Figure 3 to bound regions 4, 8, 12, and 16 from the

left. On the other hand, while in some search problems there exists an Lb such that if xb ≤ Lb

then search ends immediately and the alternative with highest revealed sum is chosen (i.e. any

j ∈ arg maxi∈I E(Ṽi)), in other search problems there does not exist such an Lb. The proof for the

latter case, in which there are relatively fewer regions to consider, follows directly from the proof

of the former. Thus, consider the critical distance Lb−E(V1) for negative realizations of xb, which

is shown in Figure 3 to bound regions 13, 14, 15, and 16 from above. It then follows that the same

critical distance bounds regions 1, 5, 9, and 13 from the right. Given the horizontal and vertical

axes, this makes 16 regions in total. Finally, in Figure 3 a dotted line corresponding to xb = h(xa)

reflects symmetric equiprobable regions on either side. What follows is to compare the expected
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payoffs of ∆a and Ψb across these regions.

For pairs of attribute realizations in Regions 4 and 13 both policies Ψ22 and ∆12 choose the

same alternative after the first attribute is searched, yielding the same expected payoffs.

On the other hand, in the remaining regions search decisions differ across ∆a and Ψb, and

comparing Λa and Φb is tedious.

For Regions 6 and 11, call a pair of attribute realizations (h(xa), xb) from Region 6 (h(x6
a), x6

b),

and the equiprobable pair of realizations from Region 11 (h(x11
a ), x11

b ) := (x6
b , h(x6

a)). Notice that

h(x6
a) < x6

b . Either policy Ψb or ∆a can observe either h(x6
a) or x6

b first, with equal probabilities.

Given that each policy continues with search after observing the first attribute realization, there

are two possibilities: either alternative 1 is (eventually) chosen, or another alternative is chosen.

Clearly, the probability that policy Ψb chooses alternative 1 is higher with x6
b than with x11

b , as

x6
b > h(x6

a) = x11
b . Let ph be the probability that Ψb chooses alternative 1 after observing x6

b , so

that with probability (1 − ph) an alternative other than 1 is chosen. Call the expected payoffs

of this other alternative voh. Similarly, let pl be the probability that Ψb chooses alternative 1

after observing x11
b , so that with probability (1 − pl) an alternative other than 1 is chosen. Call

the expected payoffs of this other alternative vol. As mentioned, ph > pl. Now consider the

expected payoffs of Ψb for each pair of attribute realizations in Regions 6, and 11, respectively:

Φ6
b = ph(v1 +h(x6

a)+x6
b)+(1−ph)(voh), and Φ11

b = pl(v1 +h(x11
a )+x11

b )+(1−pl)(vol). The expected

payoffs for ∆a are similar, but notice that whereas Ψb chooses alternative 1 with ph in Region 6, and

with pl in Region 11, ∆a does just the opposite. In particular: Λ6
a = pl(v1+h(x6

a)+x6
b)+(1−pl)(vol),

and Λ11
a = ph(v1 +h(x11

a ) + x11
b ) + (1− ph)(voh). Thus, Λ6

a + Λ11
a − (Φ6

b + Φ11
b ) = (ph− pl)[(h(x11

a )−

x6
b)− (h(x6

a)− x11
b )] > 0. The inequality results from ph > pl, and h(xa)11 = x6

b > h(x6
a) combined

with the stretching property.

For Regions 7 and 10, consider the pair of Region 7 attribute realizations (h(x7.1
a ), x7.1

b ), along

with the equiprobable pair of realizations (h(x7.2
a ), x7.2

b ) := (x7.1
b , h(x7.1

a )), also from Region 7. To

begin with, assume that h(x7.1
a ) < x7.1

b . Now, the same argument used for the equiprobable pairs of

attribute realizations in Regions 6 and 11 can be applied to the two equiprobable pairs in Region

7, resulting in Λ7.1
a + Λ7.2

a − (Φ7.1
b + Φ7.2

b ) > 0. If h(x7.1
a ) = x7.1

b then Λ7.1
a + Λ7.2

a − (Φ7.1
b + Φ7.2

b ) = 0.

The same line of argument establishes the same results for Region 10.

For the remaining Regions 1,2,3,5,8,9,12,14,15, and 16, the same argument used for the equiprob-

able pairs of attribute realizations across Regions 6 and 11 can be used to show that Λi
a + Λj

a −

(Φi
b + Φj

b) > 0 for (i, j) pairs (3,8), (2,12), (1,16), (5,15), and (9,14). In particular, for pairs (3,8)
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and (2,12) 1 = ph > pl > 0. For (5,15) and (9,14) 1 > ph > pl = 0. For (1,16) and 1 = ph > pl = 0.

Thus, for all pairs of regions considered other than 4 and 13, the expected payoffs associated

with policy ∆a are strictly larger than those associated with Ψb. On the other hand, in Regions

4 and 13, the expected payoffs are the same. Therefore, integrating across the joint probability

density function f(h(xa), xb) results in Λa > Φb. Thus, Φa > Φb.

The following lemma makes explicit that any attribute can yield a realization that results in

search terminating, and its alternative being chosen immediately.

Lemma 1 Let there be m ≥ 2 alternatives I = {1, . . . ,m}, and at least one alternative with at least

one searchable attribute, i.e. ∃i ∈ I such that |Si| ≥ 1. Then for any alternative i with searchable

attribute x̃ij there exists a unique Nij ∈ R such that under policy Ψij (which searches x̃ij first, then

proceeds optimally thereafter) if vi + xij > Nij then search stops immediately and alternative i is

chosen.

Proof. Call the current revealed value E(Vi), vi for short, and assume that v1 > v2 > . . . > vm,

without loss of generality. First consider the problem with just one searchable attribute x̃ij among

all of the alternatives. Clearly, there exists a unique Nij ∈ R such that if vi +xij > Nij then search

ends (trivially) immediately after x̃ij is searched, and alternative i is chosen. If i = 1 then Nij = v2.

If i > 1 then Nij = v1.

Now consider the problem with at least two unsearched attributes among the m alternatives.

There are two cases to consider. In the first case policy Ψij begins by searching x̃ij , and there

is at least one other unsearched attributute x̃ik, where j 6= k, in alternative i. If i = 1 then the

probability that v1 + x1j falls in the interval of [v2, v2 + r22] is greater than zero. Call Φ(x1j) the

expected value of the policy that proceeds optimally after searching x̃1j . If v1 +x1j does fall in the

interval [v2, v2 + r22], then Φ(x1j)− v2 > c > 0, by definition of the reservation distance. However,

as x1j grows larger the expected benefit of continuing search continuously decreases in x1j , and

as x1j gets arbitrarily large the expected benefit of searching an additional attribute converges

to −c < 0. Thus, by the intermediate value theorem there exists a unique N1j ∈ R such that

if v1 + x1j > N1j then it is optimal to end search immediately after x̃1j is searched, and choose

alternative 1. If i > 1 then the same argument applies, with the only difference being that instead

of considering the reservation interval associated with v2, one considers the positive probability

that vi + x̃ij ∈ [v1, v1 + r12], assuring that ∃xij such that Φ(xij)− v1 > c > 0.
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In the second case there is just one unsearched attribute x̃ij in alternative i, which is searched

first under policy Ψij . Consider the set of other alternatives, j 6= i that contain at least one

unsearched attribute, and call vh the highest current revealed value among them. The probability

that vij + xij falls in the reservation interval [vh, vh + rhk], where rhk is the reservation distance

associated with x̃hk, is greater than zero. Thus for values of xij that fall in this interval Φ(xij)−vh >

c > 0. Following the same steps as above, ∃N ′ij such that if vi + xij > N
′
ij then search ends

immediately after x̃ij is searched, and alternative i is chosen. However, so far this argument has

ignored the vj for j ∈ I corresponding to alternatives with no unsearched attributes. Call the

maximum value among these va. If va < N
′
ij then the Nij = N

′
ij . If va ≥ N

′
ij then Nij = va.

The following corollary is sufficient to characterize the complete order of optimal sequential

search when there are exactly two alternatives, each with any number of searchable attributes.

Corollary V2 Let there be exactly two alternatives I = {1, 2}, with expected values E(Ṽ1) ≥ E(Ṽ2),

w.l.o.g., and at least two attributes total across the alternatives, i.e. |S1|+ |S2| ≥ 2. If Fia ≺s.s.o Fjb

for i, j ∈ I then Φia > Φjb. If Fia and Fjb are the same then Φia = Φjb.

Proof. Assume that alternatives 1 and 2 have n1 and n2 unsearched attributes respectively,

i.e. x̃11, x̃12, . . . , x̃1n1 and x̃21, x̃22, ..., . . . x̃2n2 . To ease notation refer to E(V1) as v1 and E(V2)

as v2. Start with the simplest case, in which the value of alternative 1 is v1 + x̃11, and that of

alternative 2 is v2 + x̃21. Consider the expected value of the policy that first searches x̃11, then

proceeds optimally thereafter:

Φ11 = Ex̃11 [max{v1 + x̃11 − c, v2 − c, Ex̃21 [max{v1 + x̃11 − 2c, v2 + x̃21 − 2c}]}]

= Ex̃11 [max{v1 + x̃11 − c, v2 − c, Ex̃21 [max{v1 + x̃11 − x̃21 − 2c, v2 − 2c}]}] (by translation)

= Ex̃11 [max{v1 + x̃11 − c, v2 − c, Ex̃21 [max{v1 + x̃11 + x̃21 − 2c, v2 − 2c}]}] (by symmetry)

But the final expression corresponds precisely to the expected value of the policy that first

searches x̃11, then proceeds optimally, for the search problem in which the (ex ante) value of

alternative 1 is v1 + x̃11 + x̃21, and that of alternative 2 is v2.

More generally, in the search problem in which the value of alternative 1 is v1 + x̃11 + x̃12 + . . .+

x̃1n1 , and that of alternative 2 is v2 + x̃21 + x̃22 + . . .+ x̃2n2 , the same two-step procedure of transla-

tion and symmetry can be applied repeatedly until the expected value of starting by searching any

attribute and then proceeding in any order is the same as it would be if the search problem were
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instead one in which the value of alternative 1 were v1 + x̃11 + x̃12 + . . .+ x̃1n1 + x̃21 + x̃22 + . . .+ x̃2n2 ,

and that of alternative 2 were v2. Thus, choosing any order, for example, x11, x21, x22, x12, . . . , x1n1 :

Φ11 = Ex̃11 [max{v1 + x̃11 − c, v2 − c, Ex̃21 [max{v1 + x̃11 − 2c, v2 + x̃21 − 2c, Ex̃22 [max{v1 + x̃11 −

3c, v2 + x̃21 + x̃22−3c, Ex̃12 [max{. . . , Ex̃1n1
[max{v1 + x̃11 + x̃12 + . . .+ x̃1n1− (n1 +n2)c, v2 +

x̃21 + x̃22 + . . .+ x̃2n2 − (n1 + n2)c}] . . .}]}]}]

= Ex̃11 [max{v1 + x̃11 − c, v2 − c, Ex̃21 [max{v1 + x̃11 − x̃21 − 2c, v2 − 2c, Ex̃22 [max{v1 + x̃11 −

x̃21 − 3c, v2 + x̃22 − 3c, Ex̃12 [max{. . . , Ex̃1n1
[max{v1 + x̃11 + x̃12 + . . .+ x̃1n1 − x̃21 − (n1 +

n2)c, v2 + x̃22 + x̃23 + . . .+ x̃2n2 − (n1 + n2)c}] . . .}]}]}] (by translation)

= Ex̃11 [max{v1 + x̃11 − c, v2 − c, Ex̃21 [max{v1 + x̃11 + x̃21 − 2c, v2 − 2c, Ex̃22 [max{v1 + x̃11 +

x̃21 − 3c, v2 + x̃22 − 3c, Ex̃12 [max{. . . , Ex̃1n1
[max{v1 + x̃11 + x̃12 + . . .+ x̃1n1 + x̃21 − (n1 +

n2)c, v2 + x̃22 + x̃23 + . . .+ x̃2n2 − (n1 + n2)c}] . . .}]}]}] (by symmetry)

= Ex̃11 [max{v1 + x̃11 − c, v2 − c, Ex̃21 [max{v1 + x̃11 + x̃21 − 2c, v2 − 2c, Ex̃22 [max{v1 + x̃11 +

x̃21 − x̃22 − 3c, v2 − 3c, Ex̃12 [max{. . . , Ex̃1n1
[max{v1 + x̃11 + x̃12 + . . . + x̃1n1 + x̃21 − x̃22 −

(n1 + n2)c, v2 + x̃23 + x̃24 + . . .+ x̃2n2 − (n1 + n2)c}] . . .}]}]}] (by translation)

= Ex̃11 [max{v1 + x̃11 − c, v2 − c, Ex̃21 [max{v1 + x̃11 + x̃21 − 2c, v2 − 2c, Ex̃22 [max{v1 + x̃11 +

x̃21 + x̃22 − 3c, v2 − 3c, Ex̃12 [max{. . . , Ex̃1n1
[max{v1 + x̃11 + x̃12 + . . . + x̃1n1 + x̃21 + x̃22 −

(n1 + n2)c, v2 + x̃23 + x̃24 + . . .+ x̃2n2 − (n1 + n2)c}] . . .}]}]}] (by symmetry)

= . . .

= Ex̃11 [max{v1 + x̃11 − c, v2 − c, Ex̃21 [max{v1 + x̃11 + x̃21 − 2c, v2 − 2c, Ex̃22 [max{v1 + x̃11 +

x̃21 + x̃22 − 3c, v2 − 3c, Ex̃12 [max{. . . , Ex̃1n1
[max{v1 + x̃11 + x̃12 + . . . + x̃1n1 + x̃21 + x̃22 +

. . .+ x̃2n2 − (n1 + n2)c, v2 − (n1 + n2)c}] . . .}]}]}]

Thus, the complete optimal order to search attributes in, given any number of attributes in

each of the two alternatives, is characterized by Condition V.52

A.2 Condition T

Result T.1 Let there be three alternatives, the first two of which are ordered from highest to lowest

expected value, w.l.o.g., i.e. E(Ṽ1) ≥ E(Ṽ2). Assume that alternatives 1 and 2 each have exactly

one unsearched attribute, i.e. |Si| = 1 for i = 1, 2, and alternative 3 has none, i.e. S3 = {∅}. If

52Thus, in the case of two attributes with the same distribution, it is clear (by symmetry) that the expected value of
the policy that starts by searching either first, then proceeds optimally thereafter, is the same for both attributes.
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F1a �s.s.o F2b, then Φ1a ≥ Φib.

Proof. I first prove the result assuming identical attribute distributions, i.e. F12 and F22, then

extend to F1a ≺s.s.o F2b.

Call the current revealed values of alternatives 1 and 2, that is E(Ṽ1) and E(Ṽ2), v1 and v2

for short. Because the cumulative distribution functions of alternatives 1 and 2 are identical, the

reservation distances for both alternatives must be the same, i.e. r1 = r2 = r > 0. Notice also that

by symmetry there exists an upper and lower reservation level for each alternative. If y falls within

the reservation interval of vj , i.e. [vj − r, vj + r], where j 6= i, then the policy Ψi2 will proceed

optimally by searching alternative j. Otherwise, search will end immediately, with Ψi2 choosing

the alternative with the highest current revealed value, i.e. k ∈ arg max{vi + xi2, vj , v3}.

Figure 4

If v1 = v2 then clearly Φ12 = Φ22, by symmetry. Otherwise, assume that v1 > v2, without

loss of generality. Given this, in principal, the relative positioning of v1,v2, and v3, along with the

degree of overlapping with the reservation intervals of v1 and v2, creates many different cases that

must be considered separately (see Figure 4), as across cases expressions for the expected value(s)

of one or both of the search policies change. For the purposes of the proof, it is sufficient to reduce

these to the following four exclusive and exhaustive cases:

1. v3 ≤ v2 − r

2. v2 − r < v3 ≤ v1 − r

3. v1 − r < v3 ≤ v1 + r

4. v1 + r < v3
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For Case 1, consider Φ12 and Φ22:

Φ12 = −c+

∫ −(v1−v2)−r

−∞
v2dF12 +

∫ −(v1−v2)+r

−(v1−v2)−r

∫ ∞
−∞

(−c+ max{v1 + x̃12, v2 + x̃22})dF22dF12

+

∫ ∞
−(v1−v2)+r

(v1 + x̃12)dF12

Φ22 = −c+

∫ (v1−v2)−r

−∞
v1dF22 +

∫ (v1−v2)+r

(v1−v2)−r

∫ ∞
−∞

(−c+ max{v1 + x̃12, v2 + x̃22})dF12dF22

+

∫ ∞
(v1−v2)+r

(v2 + x̃22)dF22

But these are precisely the expressions for Φ12 and Φ22 in the absence of v3. As a result, it

follows immediately, by Corollary V2, that Φ12 = Φ22. This is the unique case in which Φ12 ≯ Φ22,

and corresponds to the somewhat uninteresting situation in which v3 is so relatively low that there

is no chance it will ever be chosen by either policy.

In Case 2 Φ22 remains the same as in Case 1, while v3 leads to an increase in Φ12 that is

positive (and monotonically increasing in v3). As a result, Φ12 > Φ22. To see this, first consider

v3 = v2 − r + ε, where ε > 0 is sufficiently small so that v3 falls in the reservation interval of

v2. Under Ψ12, in the case that v1 + x12 < v2 − r + ε, search will proceed with x̃22. This event

occurs with positive probability, so, by construction of the reservation interval, leads to a gain in

Φ12 relative to the counterfactual case in which v3 is not available. Clearly, Φ12 is monotonically

increasing in v3.

In Case 3 the expected value of search policy Ψ22 changes to the following:

Φ22 = −c+

∫ (v1−v2)+r

−∞

∫ ∞
−∞

(−c+ max{v1 + x̃12, v2 + x̃22, v3})dF12dF22 +

∫ ∞
(v1−v2)+r

(v2 + x̃22)dF22

Now, consider a sub-optimal search policy ∆12, with expected value Λ12, that searches x̃12 first,

but otherwise mimics the decision rule of Ψ22 until it reaches x̃22 in search (if it does), at which

point it behaves optimally thereafter. In particular, for realizations of x̃22 that lead Ψ22 to stop

after searching the first attribute, and choose alternative 2, if ∆12 observes an x12 taking the same

value, it stops search and chooses alternative 1 instead. The expected value of this policy is the
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following:

Λ12 = −c+

∫ (v1−v2)+r

−∞

∫ ∞
−∞

(−c+ max{v1 + x̃12, v2 + x̃22, v3})dF22dF12 +

∫ ∞
(v1−v2)+r

(v1 + x̃12)dF12

Taking the difference in expected values of the two policies yields:

Λ12 − Φ22 =

∫ (v1−v2)+r

−∞

∫ ∞
(v1−v2)+r

(max{v1 + x̃12, v2 + x̃22, v3})dF22dF12

+

∫ (v1−v2)+r

−∞

∫ (v1−v2)+r

−∞
(max{v1 + x̃12, v2 + x̃22, v3})dF22dF12

− (

∫ (v1−v2)+r

−∞

∫ ∞
(v1−v2)+r

(max{v1 + x̃12, v2 + x̃22, v3})dF12dF22

+

∫ (v1−v2)+r

−∞

∫ (v1−v2)+r

−∞
(max{v1 + x̃12, v2 + x̃22, v3})dF12dF22) +

∫ ∞
(v1−v2)+r

(v1 − v2)dF22

=

∫ (v1−v2)+r

−∞

∫ ∞
(v1−v2)+r

(max{v1 + x̃12, v2 + x̃22, v3})dF22dF12

−
∫ (v1−v2)+r

−∞

∫ ∞
(v1−v2)+r

(max{v1 + x̃12, v2 + x̃22, v3})dF12dF22 +

∫ ∞
(v1−v2)+r

(v1 − v2)dF22

=

∫ (v1−v2)+r

−∞

∫ ∞
(v1−v2)+r

(max{2v1 − v2 + x̃12, v1 + x̃22, v1 − v2 + v3})dF22dF12

−
∫ (v1−v2)+r

−∞

∫ ∞
(v1−v2)+r

(max{v1 + x̃12, v2 + x̃22, v3})dF12dF22

+

∫ ∞
(v1−v2)+r

∫ ∞
(v1−v2)+r

(v1 − v2)dF22dF12

=

∫ (v1−v2)+r

−∞

∫ ∞
(v1−v2)+r

(max{2v1 − v2 + x̃12, v1 + x̃22})dF22dF12

−
∫ (v1−v2)+r

−∞

∫ ∞
(v1−v2)+r

(v1 + x̃12)dF12dF22 +

∫ ∞
(v1−v2)+r

∫ ∞
(v1−v2)+r

(v1 − v2)dF22dF12

> 0

The first term in the last expression follows from plugging in the lower bound of the inner

integral, which yields 2v1 − v2 = v1 − v2 + v1 > v1 − v2 + v3. The second term follows from

plugging in the upper and lower bounds of the outer and inner integrals, respectively, which yields

2v1 − v2 + r > v1 + r > v3, meaning that v1 + x̃12 is the maximum over the entire region of

integration. Clearly, the first term is larger than the second, and the third term is positive.
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In Case 4:

Φ22 =

∫ v3−v2

−∞
v3dF22 +

∫ ∞
v3−v2

(v2 + x̃22)dF22

<

∫ v3−v2

−∞
v3dF22 +

∫ ∞
v3−v2

(v1 + x̃22)dF22

<

∫ v3−v1

−∞
v3dF22 +

∫ ∞
v3−v1

(v1 + x̃22)dF22

=

∫ v3−v1

−∞
v3dF12 +

∫ ∞
v3−v1

(v1 + x̃12)dF12

= Φ12

This completes the proof under the assumption of identical attribute distributions. Now, for

F1a ≺s.s.o F2b the arguments given for Cases 1-4 immediately extend. This is easiest to see by

abusing notation to assume now that F12 ≺s.s.o F22. In Case 3, the positive final term in the last

expression gets larger. In Case 4 Φ22 clearly falls while Φ12 remains unchanged, because it is not

affected by alternative 2 or the distribution of x̃22.

As discussed in Section 2, the special case in which v3 > v1, v2 satisfies the requirements of

Weitzman (1979)’s elegant reservation value rule, making that an alternative way of proving the

result for Case 4 above, and half of Case 3.

Result T.2 Let there be three alternatives, the first two of which are ordered from highest to

lowest expected value, w.l.o.g., i.e. E(Ṽ1) ≥ E(Ṽ2). Assume that alternative 1 has any number of

unsearched attributes S1 ⊆ A, alternative 2 has exactly one unsearched attribute, i.e. |S2| = 1, and

alternative 3 has none, i.e. S3 = {∅}. If F1a �s.s.o Fib for all b ∈ Si and i ∈ {1, 2}, then Φ1a ≥ Φib

for any b and i.

Proof. As in the proof of Result T.1, begin with the assumption that the highest variance attribute

of alternatives 1 and 2 is identically distributed, i.e. F12 and F22 are the same.

The first step is to confirm that the reservation distance of an alternative increases in its number

of unsearched attributes. Start with the case of a single searchable attribute in alternative 1. As

explained at the beginning of this section, there exists a unique reservation distance, call it r1

(abusing notation), so long as the minimal condition
∫∞

0 x̃12dF12 > c is satisfied. In the case of

two searchable attributes, each satisfying the minimal condition, call the reservation distance r2
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(abusing notation again). Clearly, r2 > r1, as, with positive probability, upon x̃12 being searched

(it must be searched before x̃13, by Condition V), it is optimal to then search x̃13, meaning that

the expected value of searching x̃12 to begin with is higher in the presence than absence of x̃13. By

induction it follows that ri > rj for i > j.

Figure 5

Now consider the case that alternative 1 has n > 1 unsearched attributes, with reservation

distance rn. Figure 5 shows how v2 and v3 can be rearranged to, in principle, require many

different cases to be considered, as in Figure 4. As in the proof of Result T.1, the many possible

rearrangements can be reduced to the following 4 cases:

1. v3 ≤ v2 − rn

2. v2 − rn < v3 ≤ v1 − rn

3. v1 − rn < v3 ≤ v1 + rn

4. v1 + rn < v3

Figure 5 looks similar to the problem treated at the end of the proof of Result T.1, in which

F12 ≺s.s.o F22. In particular, though in that problem there is only one unsearched attribute in each

alternative, the reservation distance there is also greater for alternative 1 than it is for alternative 2.

Consistent with this similarity, Cases 1,2, and 4 from the proof of Result T.1 extend immediately.

For Case 3, consider the search policy Ψ22 that begins by searching x̃22, then proceeds optimally

thereafter. Crucially, by Condition V, if a second attribute is searched, then it must be x̃12. Now,

consider a different search policy, ∆12, that instead begins by searching x̃12, then mimics the

decisions made by Ψ22 until it reaches x̃22 in search (if it does), proceeding optimally thereafter.

In particular, for values of x22 that lead Ψ22 to stop after the first search and choose alternative

2, for the same values of x12 policy ∆12 will stop search and choose alternative 1. On the other

hand, for the same values of x22 that lead Ψ22 to continue on and search x̃12, ∆12 continues on and

searches x̃22. Clearly, ∆12 is a sub-optimal search policy.
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Given that in Case 3 v3 lies in the reservation interval of v1, i.e. v3 ∈ (v1 − rn, v1 + rn), the

only way that Ψ22 will immediately stop after searching x̃22 is if x22 > v1 − v2 + rn. Otherwise,

the policy proceeds to search x̃12. Similarly, ∆12 continues searching unless x12 > v1 − v2 + rn.

Both of these thresholds are illustrated in the (x12, x22) plane of Figure 6, creating Regions 1-4. A

dotted line corresponding to x22 = x11 reflects symmetric equiprobable regions and sub-regions on

either side. Crucially, for any pair of realizations (x12, x22) lying in Region 3, both attributes will

be searched, with both policies proceeding identically thereafter, thus the same alternative will be

chosen (eventually) under both Ψ22 and ∆12, yielding identical payoffs. Thus, the only way that

the expected payoffs of the two policies can differ is if at least one of them ends search immediately

after the first attribute is searched, which occurs for the pairs of attribute realizations (x12, x22)

contained in Regions 1,2, and 4 in Figure 6.

Figure 6

In Region 2 both ∆12 and Ψ22 choose the alternative that they begin searching immediately

after the first attribute is searched. For any pair of realizations (x12, x22) there is a symmetric

equiprobable pair (x22, x12) lying in the same region. Across these two equiprobable pairs the

difference in (expected) payoffs favors policy ∆12 over Ψ22, by the following amount: (v1 + x12 +

v1 + x22)− (v2 + x22 + v2 + x12) = 2(v1 − v2) > 0.

In Region 4 v1 + x12 is chosen after the first attribute is searched under ∆12, and after the

second attribute is searched under Ψ22. Thus, for each pair of realizations (x12, x22) the (expected)
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payoff under ∆12 is higher than that under Ψ22, by c > 0.

In Region 1 there are two sub-regions, 1a and 1b. Policy Ψ22 chooses alternative v2 + x22 after

the first attribute is searched in both Regions 1a and 1b. Policy ∆12 always searches two attributes

before choosing an alternative, and chooses v2+x22 so long as x22 ≥ v1−v2+x12, which corresponds

to Region 1a. In this case policy ∆12 earns −c < 0 relative to policy Ψ22. On the other hand, if

x22 < v1− v2 + x12 then ∆12 instead chooses v1 + x12, resulting in a relatively smaller difference in

payoffs between the two policies of v1 + x12 − c− (v2 + x22) = v1 − v2 + (x12 − x22)− c > −c.

Now, when computing Λ12−Φ22 by integrating across all 4 regions, Region 2 is positive, Regions

1 and 4 are positive, on balance (by symmetry), and Region 2 is zero. Thus, Λ12 > Φ22. Then,

necessarily, Φ12 > Φ22.

This completes the proof under the assumption that the highest variance attribute in alterna-

tives 1 and 2 are identically distributed. Now, for F1a ≺s.s.o F2b, where a is the highest variance

attribute in alternative 1, and b is the highest variance attribute in alternative 2, it is easiest to

see how the result extends by abusing notation to now simply say that F12 ≺s.s.o F22. With this,

the arguments given for Cases 1,2, and 4 immediately extend. For Case 3, it is straightforward

to extend the argument from above, using an approach similar to that in the proof of Condition

V. In particular, consider a search policy ∆
′
12, with expected payoffs Λ

′
12, that begins by search-

ing the higher variance attribute x̃12, rather than x̃22. For each realization x22 of x̃22 there is a

unique realization x12 of x̃12 such that F22 = F12. The correspondence x12 to x22 can be rep-

resented by the function h : R → R, and because h is invertible, h−1(x22) = x12. If x22 > 0

then h−1(x22) = x12 > 0 and h−1(x22) − x22 > 0 (by definition of h). Likewise, if x22 < 0 then

h−1(x22) = x12 < 0 and h−1(x22) − x22 < 0. These differences in payoffs are symmetric around

x22 = 0, so h−1(x22)− x22 = −(h−1(−x22)− (−x22)).

∆
′
12 strictly follows the decision rules of Ψ22, but uses h(x12) in place of x22, until it reaches

x̃22 in search (if it does). In the case that x̃22 is reached, ∆
′
12 switches to perfectly mimicking the

decision rule of Ψ22 for the remainder of search. Notice that in principle ∆
′
12 is not an optimal

policy, i.e. Λ
′
12 ≤ Φ12.

Now consider Figure 6 with just one change: replace x12, on the horizontal axis, with h(x12).

That is, the figure now represents an (h(x12), x22) plane. For any pair of attribute realizations

(x12, x22) payoff differences between the two search policies ∆
′
12 and Φ22 remain the same as when

F12 and F22 were identically distributed in Regions 3, because both policies choose the same alter-

native, and in 4, where both policies choose the first alternative, which has (expected) payoffs of
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v1 + x12. By contrast, in Region 2 ∆
′
12 chooses the first alternative, with payoffs v1 + x12, while

Φ22 chooses the second, with payoffs v2 + x22. Thus, because x12 − h(x12) > 0 the difference in

payoffs between ∆
′
12 and Φ22 increases. Finally, in Region 1 when x22 ≥ v1 − v2 + x12 both poli-

cies choose the second alternative, so there is no change in the difference of payoffs. However, for

x22 < v1−v2 +x12 policy Λ
′
12 instead chooses alternative one, with payoffs v1 +x12, so the difference

between policies increases by x12−h(x12) > 0. Therefore, because for all possible pairs of attribute

realizations (x12, x22) differences in payoffs under ∆12 and Φ22 either increase or remain the same

relative to the case in which F12 and F22 are identically distributed, it immediately follows that

∆
′
12 > Φ22. Thus Φ12 > Φ22.

Result T.3 Let there be m ≥ 3 alternatives, the first m − 1 of which are ordered from highest

to lowest expected value, w.l.o.g., i.e. E(Ṽi) ≥ E(Ṽj) if 1 ≤ i < j ≤ m − 1. Assume that the first

alternative has any number of unsearched attributes, i.e. S1 ⊆ A, while alternatives 2 through m−1

each have exactly one unsearched attribute, i.e. |Si| = 1 for 2 ≤ i ≤ m− 1, and alternative m has

none, i.e. Sm = {∅}. If F1a �s.s.o Fib for all b ∈ Si and i ∈ {1, 2, . . . ,m − 1}, then Φ1a ≥ Φib for

any b and i . Further, if Fjc �s.s.o Fib for 2 ≤ j < i then Φjc ≥ Φib.

Proof. The proof proceeds in the following order: (1) the case in which there are just three al-

ternatives, one unsearched attribute in each, (2) add an alternative with no unsearched attributes,

(3) extend to any number of attributes in alternative 1, (4) extend to any number of alternatives

with an unsearched attribute.

(1) Consider three alternatives I = {1, 2, 3}, one unsearched attribute in each, and to begin

with, identical attribute distributions, i.e. Si = {2} and Fi2 independent of i.

First consider the search policy Ψ22 that starts by searching x̃22, then proceeds optimally

thereafter. By Lemma A.1 there exists a unique N22 ∈ R such that if v2 + x22 ≥ N22 then search

ends immediately, and alternative 2 is chosen. Crucially, by Result T.1, immediately after x̃22 is

searched, if another attribute is to be searched, then it must be x̃12. Now if v2 + x22 < N22 then

there are two cases to consider. In Case 1 there exists L22 ∈ R such that if v2 + x22 < L22 then

search ends immediately, and alternative 1 is chosen. In this case, if L22 < v2 + x22 < R22 then

search proceeds with x̃12. In Case 2, no such L22 exists, so search proceeds with x12.

In Case 1, by construction, x̃32 will never be searched, and alternative v3 will never be chosen,

so it is as if the third alternative does not exist. On the other hand, in this case policy Ψ12 may
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or may not choose v3 with positive probability (depending on the proximity of v2 to v3). Thus,

because Φ12 = Φ22 in the absence of a third alternative by Corollary V2, Φ12 is at least as large as

Φ22. An analogous argument can be applied to demonstrate that Φ12 and Φ22 are at least as large

as Φ32.

Case 2 here is analogous to Case 3 in the proof of Result T.2, so I refrain from repeating

the lengthy argument. As in Case 1, an analogous argument can be applied to demonstrate that

Φ12,Φ22 > Φ32.

This completes the proof for step (1), when Fi2 is independent of i. On the other hand, when

F1a is the highest variance attribute of alternative i, and we perform a symmetric mean preserving

spread on either F22, F32, or both, then an analogous argument to that used in the last part of

the proof of Result T.1 can be applied here to prove that Φ12 > Φ22,Φ32, where for expositional

simplicity we abuse notation by calling F1a simply F12 (allowing F22 and/or F32 now to s.s.o

dominate F12).

(2) Now add v4 ∈ R, a fixed value (with no associated unsearched attribute), to the problem

with alternatives 1,2, and 3, from step (1). Once again, begin by assuming that Fi2 is independent

of i.

Reconsider the two cases from step (1) with the introduction of v4. In Case 1, if v4 < L2 then

v4 has no effect on policy Ψ22, and is never chosen. Therefore, it follows immediately from step (1)

that Φ12 > Φ22. If L2 ≤ v4 < N2 then alternative 3 and x̃32 have no effect on Φ22, so it is as if

alternative 3 does not exist. Then, by Result T.1, it follows immediately that Φ12 > Φ22. Finally,

if v4 ≥ N2 then by an argument analogous to that provided in Case 4 of Result T.1 Φ12 > Φ22.

In Case 2 v4 is never chosen when either policy Ψ22 or ∆12 ends search immediately after the

first attribute is searched. Therefore, when it is chosen, it is chosen by both policies. As a result, in

the Regions of the (x12, x22) plane over which the payoffs of Φ22 and ∆12 can differ, the differences

remain unchanged from those considered in Case 2 of Step (1). Thus, it immediately follows that

Φ12 > Φ22.

Throughout step (2), analogous arguments can be used to prove that Φ12,Φ22 > Φ32.

(3) Now, consider any number of n attributes in alternative 1, and continue with the assumption

that Fi2 is independent of i. By Condition V, it is impossible that any s.s.o-dominated attribute

within an alternative is searched first in an optimal policy. Thus, in the optimal policy, either x̃12,

x̃22, or x̃32, must be searched first. Consider the policy Ψ22 that searches x̃22 first, then proceeds

optimally thereafter. Crucially, by Result T.2, if it continues search then it must next search
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x̃12. But then the argument provided in step (2) immediately extends, as the comparison between

Φ22 and Λ12 can be made solely on the basis of (up to) the first two attributes searched by each

policy, which are the x̃12 and x̃22 in both cases. An analogous argument can be used to show that

Φ12,Φ22 > Φ32.

(4) An induction argument will be used to show that the result from step (3) extends when

any number of alternatives, each with at most one searchable attribute, are added to the problem.

Consider the search problem in which any number of alternatives m− 4, where m > 4 are added to

the problem in (3), and that each of these alternatives has exactly one unsearched attribute with

identical distribution, i.e. Si = {2} for 1 < i < m and Fi2 is independent of i. In addition, any

number of alternatives, each without a single unsearched attributes, can be added to the problem

as well, but only the maximum value between these and v4 need be considered. This maximum

value will be represented by vmax. Now, step (3) shows that the result holds for the case of m = 4.

Next, assume that the result holds for m = b, where b > 4 and show that it also holds for the

case of m = b + 1. Given that the result holds for m = b, in the case that m = b + 1, consider

the policy Ψi2 that starts by searching the attribute of any alternative i ∈ {2, 3, . . . ,m − 1}, then

proceeds optimally thereafter. By the inductive assumption the second attribute searched, if one

is to be searched, must be x̃12. Thus, an argument analogous to that used in steps (2) and (3)

can be applied, as the comparison of Φi2 and Λ12 will only depend on search of (up to) the first

two attributes, x̃12 and x̃22. An analogous argument can be used to show that Φi2 > Φj2, where

i ∈ {1, 2, . . . ,m− 2}, j ∈ {2, . . . ,m− 1}, and i > j.

Finally, consider the case that Fi2 ≺s.s.o Fj2 for any i, j ∈ I, and i > j. Because the relative

expected values of Φi2 and ∆j2 can be reduced to a comparison of the expected payoffs over the

first two attributes searched, xi2 and xj2, it immediately follows from an argument analogous to

that used at the end of Result T.2 that Φi2 > Φj2.

Finally, consider the case that Fia ≺s.s.o Fjb with the convenient abuse of notation Fi2 ≺s.s.o Fj2

for i, j ∈ I, and i > j. Because the relative expected values of Φi2 and ∆j2 can be reduced to a

comparison of the expected payoffs over the first two attributes searched, xi2 and xj2, it immediately

follows from an argument analogous to that used at the end of Result T.2 that Φi2 > Φj2.

48



B Numerical Computations

In order to confirm that Condition T holds more generally than in the search problems considered in

Results T1-T3 of Section 2, I run numerical computations for search problems with up to multiple

searchable attributes (two) in each of multiple alternatives (three). These dimensions allows the

searcher, after searching an attribute, to (1) search another attribute in the same alternative, (2)

switch to search an attribute in one of multiple other alternatives, or (3) immediately end search

and choose the highest valued alternative. Notice that these are the same qualitative features

present in versions of the problem with arbitrarily large dimensions.

The sequential search problems that I consider each have multiple alternatives/attributes, full

recall, no order restrictions, a constant cost of search per attribute, and normally distributed

attribute distributions with a full second-order stochastic dominance ordering in each alternative.

The normal distribution is used in order to match this feature in the GLMW experimental design.

Because of limits to numerical tractability, bounded discrete, rather than unbounded continuous

distributions will be used, as described below. In order to test Condition T on dimensionally

larger versions of the search problems, that match the exact dimensions of GLMW’s design, I run

simulations in Section C.

In the explicit computations performed for each search problem reported below, the separation

between the current revealed values of each alternative, the variance of the attributes, and the cost

of searching are determined at random, ex ante. Current revealed values for the first through third

alternatives are assigned values x11 = 10, x̃21 = 10−ỹ, and x̃31 = x21−z̃, respectively, where ỹ and z̃

are uniformily distributed i.i.d. random variables with support [0, 10].53 All searchable attributes’

values are drawn from a discretized normal distribution yielding integer values. The standard

deviation of the left-most searchable attribute is drawn from a continuous uniform distribution

with support [0, 30]. As in GLMW, there is a decaying variance structure from left to right; here

a searchable attribute one column to the right has 0.81 the variance of the attribute immediately

to its left. The search cost is drawn from a uniform distribution with support [0, 1]. Due to

the induced computational burden by these Reimann sums with many layers of nesting it is not

possible to give infinite supports to the searchable attributes. For the results reported here the

53There is no loss in generality in fixing x11 because what matters, when determining which is the optimal attribute
to search first, are the differences x11− x21 and x21− x31. Likewise, notice that the values of attributes x11, x21, and
x31 are realized “before” the search problem starts. The uniform distribution is used here to increase the robustness
of results, by generating a more even distribution of relative distances between alternatives than what would result
if the distribution were instead normal.
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integer support for every discretized normal distribution is {-10,-9,-8,. . . ,0,. . . ,8,9,10}, resulting in

21 mass points.54

Given the random variation in (1) observable xi1 values, for i ∈ {1, 2, 3}, (2) the variance of

searchable attributes’ values, and (3) search costs, the analysis of each considered search problem

is fairly robust—search can be virtually costless relative to the variance of searchable attributes,

in which case all attributes should be searched almost always, while on the other extreme, search

can be arbitrarily expensive relative to the variance of searchable attributes, in which case no

attributes should be searched. Also, randomly drawn searchable attribute variances can on one

extreme (high variance) be such that the distribution is essentially uniform over the truncated

support, and on the other extreme (low variance) roughly all of the normal distribution’s mass

is contained within the support {-10,. . . , 10}. For versions of the search problem smaller than

the three alternative, three attribute problem, it is relatively easier to stretch the supports, which

results in larger separation between the expected values of different search policies. On the other

hand, the three by three search problem took 17 days of computation time with support {-10,. . . ,

10}, to do 100 computations, so the number of computations presented below are 250 for the three

by three search problem, but 1000 for all of the others.

Table 8 presents results from the computations. Row labels indicate the search problem being

analyzed. Table 8’s first column header indicates how many computations were run (N) for each

type of search problem. The remaining columns, from left to right, separately report the average

(across computations) expected values of starting sequential search with attribute x̃12, x̃22, or x̃32,

respectively. Not shown in the table is that for every computation it is confirmed that Φi2 ≥ Φj2,

when i > j, as predicted by Condition T.

While differences in the average expected payoffs of different search policies, when averaging

across many iterations, presented in Table 8 may seem small, these average differences are atten-

uated here by a number of factors. For one, v3 can take relatively very low values, ensuring that

in the problems presented in rows one and two, for example, Φ12 = Φ22, by Results T.1 and T.2.

To illustrate further, in the simplest search problem, presented in row 1 of Table 8, if v3 is simply

drawn from v1 + ε̃, where ε̃ is uniformly distributed on support [−5, 5] (rather than from v2−5+ ε̃),

then the average expected payoffs become Φ12 = 12.49 and Φ22 = 12.24, increasing the separation

54In order to increase the tractability of computations, I prune expressions when going from smaller nested versions of
the problem to larger ones, by assuming that Conditions V and T hold in the smaller versions once numerical results
there corroborate this. When I repeat the analysis for each problem, without assuming anything, or pruning, I get
similar results, but can only confirm (15 days of computation time) with up to 7 mass points, rather than 21.

50



Table 8: Results from testing necessary Condition T

Search N Φ12 Φ22 Φ32

Problem

x11 + x̃12 1000 10.69 10.67 -
x21 + x̃22

x31

x11 + x̃12 + x̃13 1000 10.96 10.94 -
x21 + x̃22

x31

x11 + x̃12 + x̃13 1000 11.25 11.23 -
x21 + x̃22 + x̃23

x31

x11 + x̃12 + x̃13 1000 11.16 11.10 10.88
x21 + x̃22

x31 + x̃32

x11 + x̃12 + x̃13 1000 11.32 11.28 11.02
x21 + x̃22 + x̃23

x31 + x̃32

x11 + x̃12 + x̃13 250 11.46 11.41 11.22
x21 + x̃22 + x̃23

x31 + x̃32 + x̃33

considerably. A second reason the the seperations are attenuated are the bounded supports of

attribute distributions. A third reason is that, given the great variation allowed in parameterizing

each search problem, the ratio of variance to search costs can be made very high, or very low.

The consequence of either is that it does not really matter where search starts, either because it

will certainly continue (the former case) or certainly end (latter case) once the first attribute is

searched. In order to get an idea of the costliness of violating Condition T in GLMW’s rich search

experiment, I run simulations in Section C that show the costs are considerable.

C Econometric Analysis of Alternative Switching

The GLMW dataset is sufficiently rich to allow regressions to be run on the individual subject

level. As a result, I run a separate conditional logit regression for each subject and sequential

alternative switch pairing, for the first three alternative switches performed by each subjects across

their search problems. The results of these regressions suggest that “irrational” spatial preferences

and rational value preferences are roughly equally strong in subjects’ search behavior.
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When a subject is deciding which of the eight alternatives to search first there are two main

dimensions on which the alternatives differ. The first dimension, which contains the only infor-

mation of importance to the rational searcher, is the always observable attribute 1 value of each

alternative.55 The second dimension on which alternatives differ is the spatial location of each

alternative, which is irrelevant to the rational searcher. Thus the two independent variables in the

conditional logit model are the value of attribute 1, drawn from a mean-zero normal distribution

(integer-rounded), and the height of the alternative, which can take any value between 1(top) and

8(bottom). This simple model is used in order to count the number of subjects for which the effect

of either independent variable is statistically distinguishable from zero. Rational subjects would

only consider the value of attribute 1 for each alternative, so only its corresponding estimated

coefficient would be statistically distinguishable from zero.56

First Alternative Searched

Results from the first alternative searched regression in Table 9 report that the effect of attribute

1 value is statistically distinguishable from zero for 290 of the 390 experimental subjects. However,

the spatial, or height effect, is also distinguishable from zero for 275 of the 390 subjects.

Aside from the 373 subjects for whom the regression coefficients are estimated successfully,

there are 17 subjects with perfectly identified alternative switches for one of the two independent

variables. 16 of these subjects always choose the spatially highest alternative (top), while one

always searches the alternative with highest attribute 1 value. These respective subjects are added

into Table 9 in order to report the combination of subjects for which each independent variable

is either statistically distinguishable from zero or perfectly identified. Also reported in the table

are the number of subjects with both independent variable coefficients statistically distinguishable

from zero, and the number of subjects with strictly one coefficient statistically distinguishable from

zero, along with their respective average coefficient values.57

55This statement would not generally be true if searching one alternative rather than another conferred significant time
gains, but it seems fair to assume that time gains of this type are relatively small enough to ignore.

56Please see Appendix C for formal specifications of the systems of equations used to estimate conditional logit coeffi-
cients, here and later in this section.

57The interpretation of estimated coefficients in the conditional logit model is not entirely straightforward. Perhaps
the easiest way of interpreting the coefficients is by using an equivalence easily derived from the original likelihood
expressions for each alternative: log(Pm

Ps
) = βV (Vtm−Vts) +βH(Htm−Hts) where m and s are different alternatives,

e.g. m, s ∈ {1, 2, . . . , 8}, V is for value and H for height, and t is the index identifying the search problem. All else
equal, a change in the log ratio of the relative probabilities of searching any pair of given alternatives corresponds to
an equal change in the product of either of the coefficients and the relative difference in its corresponding independent
variable across the two alternatives. Thus, a natural way of comparing coefficients is to determine how much of a
change in one independent variable is necessary to offset the effect of a one unit increase in the other. For example, the
results in Table 9 suggest that a subject for whom both value and height are significant would search one alternative
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By simply counting the number of subjects for which each coefficient is statistically distinguish-

able from zero the results suggest that alternatives’ attribute 1 values and spatial locations are of

roughly equal importance to subjects.

Table 9: First alternative searched: results

# of significant βV βH
subjects + (PI)

βV sig. 290+(1)=291 0.112 -0.378
βH sig. 275+(16)=291 0.061 -0.795
βV & βH sig. 202 0.079 -0.516
βV sig., βH not 88+(1)=89 0.187 -0.063
βH sig., βV not 73+(16)=89 0.010 -1.568

Second Alternative Searched

When the searcher finishes search in the first alternative explored, and considers which alternative

to search next, she can now consider two additional dimensions on which remaining alternatives

differ. The first is the absolute distance (in rows) of each of the remaining 7 alternatives to the first

alternative searched. The second is whether the considered alternative is above or below the previ-

ously searched one. Thus the model for second alternative switch uses as its independent variables,

for each of the remaining 7 unsearched alternatives, attribute 1 value (V ), height of the alternative

(H), absolute distance of the candidate alternative from the first alternative searched (D), and

an indicator variable indicating whether the candidate alternative is below the first alternative

searched (I).

As in the case of the regression for the first alternative searched, I report the number of subjects

for which each variable yields a coefficient estimate statistically distinguishable from zero, along with

average coefficient values for these subjects (Table 10). The effect of attribute 1 value is statistically

distinguishable from zero for 287 of the 390 subjects. Distance is statistically distinguishable from

zero for 247 subjects, while now height is for 127, and the down dummy for 43. However, in this

regression there are subjects who are perfectly identified in the down indicator. Many subjects, for

example, always search alternative 1 first and alternative 2 second, thus they are always perfect

height types, perfect down types, and perfect distance types. Correspondingly, these coefficients are

either dropped or estimated incorrectly in the regressions. There are 99 subjects perfectly identified

spatially lower only if its attribute 1 value were at least 7 (cents) higher.
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in Height, Distance, or Down.58 Of the 99 cases, 83 always switch downward, 51 always switch to an

adjacent alternative, and 25 always switch to the (spatially) highest remaining alternative. Table

10 reports the combination of subjects for which each independent variable is either statistically

distinguishable from zero or perfectly identified.

Table 10: Second alternative searched: results

# of significant βV βD βH βI
subjects + (PI)

βV sig. 287 0.173 -1.423 0.672 -0.017
βD sig. 247+(51)=298 0.074 -2.679 1.384 -1.471
βH sig. 127+(25)=152 0.226 -4.903 2.125 -0.488
βI sig. 43+(83)=126 0.068 -1.268 0.216 0.760
βV & βD sig. 204 0.087 -1.941 1.087 -1.096
βV sig., βD not 83 0.386 -0.150 -0.348 2.636
βD sig., βV not 43+(16)=59 0.013 -6.182 2.794 -3.253

Third Alternative Searched

The specification of the regression for the third alternative switch is identical to that used for the

second. The results are also similar. The effect of attribute 1 values are statistically distinguishable

from zero for 250 subjects, as is distance for 238, height for 96, and the down dummy for 44. For the

third alternative switch there are 80 subjects with regression coefficients dropped or inestimable.

Of these 80 subjects 52 always switch downward, 52 always switch to an adjacent alternative, and

30 always choose the (spatially) highest remaining alternative. I add these perfectly identified types

into Table 11 to report the combination of subjects for which each independent variable is either

statistically distinguishable from zero or perfectly identified.

Despite rationality dictating that subjects only consider attribute 1 values when deciding which

unsearched alternative to switch search to, results of the conditional logit analysis indicate that sub-

jects systematically incorporate specific non-optimal considerations into their alternative switching

behavior. The first alternative switch analysis suggests that the spatial location (non-optimal con-

sideration) of the alternative and its attribute 1 value (optimal consideration) are of roughly equal

importance to subjects. This finding corresponds to a general proclivity of subjects in the GLMW

data to start with the spatially highest alternatives, then switch downward. 78% of all alternative

switches, in fact, are downward. Regressions for the second and third alternative switches reveal

58As long as at least 90% of transitions comply with perfectly identified behavior the subject is considered perfectly
identified
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Table 11: Third alternative searched: results

# of significant βV βD βH βI
subjects + (PI)

βV sig. 250 0.100 -0.895 0.140 0.967
βD sig. 238+(52)=290 0.053 -2.175 0.792 0.338
βH sig. 95+(30)=125 0.034 -6.504 3.236 1.122
βI sig. 44+(52)=96 0.050 -0.741 -0.561 1.808
βV & βD sig. 165 0.070 -1.251 0.223 1.070
βV sig., βD not 85 0.160 -0.203 -0.022 0.769
βD sig., βV not 73+(52)=125 0.015 -4.261 2.079 -1.315

that attribute 1 value and adjacency (non-optimal consideration) are the most prevalent switching

considerations, and are roughly equally represented in subjects’ search. The regressions also sug-

gest that consideration of alternative height, as well as tendency of switching downward, are less

prominent, but also present. I provide an interpretation of these results in Section 7.

D Econometric Specification

I report the systems of equations used to estimate conditional logit coefficients in Section 5.

Three different sets of coefficients are estimated for each subject: one for each of the first three

alternative switches. For regressions, by individual subject, on the first alternative searched:

ln(Pit1
Pit8

) = βV iVit1 + βHiHit1+ ∈it1,

...,

ln(Pit7
Pit8

) = βV iVit7 + βHiHit7+ ∈it7

where i ∈ {1, 2, 3, ..., 390} is an individual subject, t ∈ {1, 2, 3, ...} is the task,

P ≡ 1 if alternative is searched, 0 otherwise

V ≡ Value of attribute 1 for given alternative, V ∼ N(0, σ2)

H ≡ Spatial height of Alternative, H ∈ {1, 2, 3, . . . , 8} where 1 is top and 8 is bottom.

The same specified system of equations is used for regressions, by individual subject, for switches

from the first alternative searched to the second, and for switches from the second to the third.

ln(Pit1
Pit8

) = βV iVit1 + βHiHit1 + βDiDit1 + βIiIit1+ ∈it1,

...,

ln(Pit7
Pit8

) = βV iVit7 + βHiHit7 + βDiDit1 + βIiIit1+ ∈it7
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where i ∈ {1, 2, 3, ..., 390} is an individual subject, t ∈ {1, 2, 3, ...} is the task,

P ≡ 1 if alternative is searched, 0 otherwise

V ≡ Value of attribute 1 for given alternative, V ∼ N(0, σ2)

H ≡ Spatial height of Alternative, H ∈ {1, 2, 3, . . . , 8}

where 1 is top and 8 is bottom.

D ≡ Absolute distance of searched alternative from just searched alternative, D ∈ {1, 2, 3, ..., 7}

I ≡ 1 if alternative is below just searched alternative, 0 otherwise
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