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Orientation Estimation by Means of Extended
Kalman Filter, Quaternions, and Charts

P. Bernal-Polo and H. Martı́nez-Barberá

Abstract—An orientation estimation algorithm is presented.
This algorithm is based on the Extended Kalman Filter, and uses
quaternions as the orientation descriptor. For the filter update,
we use measurements from an Inertial Measurement Unit (IMU).
The IMU consists in a triaxial angular rate sensor, and an also
triaxial accelerometer.

Quaternions describing orientations live in the unit sphere
of R4 . Knowing that this space is a manifold, we can
apply some basic concepts regarding these mathematical
objects, and an algorithm that reminds the also called
“Multiplicative Extended Kalman Filter” arises in a natural way.

The algorithm is tested in a simulated experiment, and in a
real one.

Index Terms—Extended Kalman filter, quaternions, attitude,
pose, orientation, estimation, IMU, manifold, charts.

I. INTRODUCTION

KNOWLEDGE about the mechanical state of a system is
necessary in many engineering fields. The orientation of

the system is an important part of this mechanical state. Fields
like robotics, virtual reality, or vehicle navigation among
others, could require knowledge of the orientation of a system
for tasks like:

- Controlling an Unmanned Vehicle.
- Knowing the orientation of a camera in a scenario.
- Knowing the heading of a vehicle in a navigation system.
- Transforming measurements taken in the vehicle refer-

ence frame to an extern reference frame.
The problem presents two main issues that need to be ad-
dressed:
• We need to choose an orientation descriptor.
• We need to choose an estimation approach.
The orientation of a system is understood as the rotation

transformation that relates two reference frames: the one
whose orientation we are interested in, and the reference frame
of the system with respect to which we want to express such
orientation. It only makes sense to speak about one orientation
with respect to another system. Knowing that an orientation
is a rotation transformation, our issue is to choose the most
convenient parameterization for this rotation transformation.
The most used parameterizations are the Euler angles, and
their analogous, Tait-Bryan angles, rotation vectors, rotation
matrices, and unit quaternions. A fairly complete survey of
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orientation representations is given in [1]. Unit quaternions
have properties that make them preferable against the other
parameterizations. Namely:

1) There are no singularities (we avoid the “gimbal lock”,
that is present in Euler angles).

2) They describe the orientation in a continuous way (un-
like axis-angle representation).

3) Motion equations are linear with quaternions.
4) They are determined by 4 parameters (in contrast with

a rotation matrix, that needs 9 parameters).
Because of these properties, unit quaternions have been the
most widely used orientation representation since the early
1980s [2], and we also use them in this work.

The orientation estimation problem has been addressed
using several approaches. In [3] it is provided a survey of
methods for orientation estimation by far more complete than
could be given in this work, and it would not make sense to
repeat it here. The Kalman Filter with its nonlinear versions
is the protagonist. But there is a major issue: unit quaternion
do not live in the Euclidean space, where the Kalman Filter
is defined. This fact leads to a variety of approaches in
the application of this formalism. In particular, the known
as “Multiplicative Extended Kalman Filter” is the method
of choice because of its accuracy, its relative simplicity, its
computational efficiency, and for being flexible to incorporate
a great variety of measurements. However, there seem to be
some aspects of it that are still not well understood.

The objective of this paper is to explore a new view point
for the Extended Kalman Filter applied to the estimation of
orientations represented by unit quaternions. Its final form is
very similar to that of the “Multiplicative Extended Kalman
Filter”, but it gets rid of the probably tricky definition of the
“reset” operation, and it arises the introduction of a new update
called “chart update”. Not being that different the structure of
these two algorithms, it would not be unreasonable to rename
this MEKF as “Manifold Extended Kalman Filter”.

The algorithm developed here is designed to take mea-
surements from an Inertial Measurement Unit (IMU) which
returns acceleration, and angular velocity measurements. Yet,
this design is easily modifiable in order to adapt it to other
type of sensors.

The MEKF has been tested in a simulated experiment,
together with the known Madgwick algorithm [4]. It also
has been implemented in a real system, and tested with a
commercial IMU.

The remainder of the paper is organized as follows. In Sec-
tion II, we introduce the main properties of unit quaternions. In
Section III, we introduce the basic concepts of manifold theory
that will be used in the algorithm development. In Section IV,
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we review the motion equations and measurement equations.
In Section V, we present the developed equations for the
state prediction. In Section VI, we present the developed
equations for the measurement prediction. In Section VII, we
present the developed equations for the filter updates. Section
VIII displays the experimental results. Finally, we expose
the conclusions, and we picture the future work pathways in
Section IX.

II. QUATERNIONS

Quaternions are hypercomplex numbers with three different
imaginary units {i, j,k} , and can be expressed as

q = q0 + q1 i + q2 j + q3 k . (1)

They can also be expressed in a vectorial form as

q =


q0

q1

q2

q3

 =

(
q0

q

)
. (2)

Quaternion product is defined by the Hamilton axiom

i2 = j2 = k2 = i ∗ j ∗ k = −1 , (3)

which produces the multiplication rule

p ∗ q =

(
p0 q0 − p · q

p0 q + q0 p + p× q

)
. (4)

Quaternions describing rotations can be built with a
unit vector that defines the rotation axis, q̂ , and the
angle of rotation, θ , through

q =

(
cos(θ/2)

q̂ sin(θ/2)

)
. (5)

Having this form, they satisfy the restriction

q2
0 + q2

1 + q2
2 + q2

3 = 1 . (6)

This means that quaternions describing orientations live in the
unit sphere of R4 . This space has dimension 3, although its
elements are determined using 4 parameters.
We will use basic concepts of manifold theory to handle this
kind of space.

III. BASICS OF MANIFOLD THEORY

When dealing with the Kalman filter, the distribution of
a random variable, x , is encoded by its mean, x , and its
covariance matrix, P , defined as

P = E
[
(x− x) (x− x)

T
]

. (7)

This can be done when our random variables are elements of
an Euclidean space. But when a random variable is an element
of a manifold our covariance matrix definition could lose
sense. This is our case, where the random variable q − q ,
does not describe an orientation. Then we need to redefine our
covariance matrix in a different way, but we can not change
the form of the definition of the covariance matrix if we want
to use the Kalman filter, because this precise form is used
in its derivation. We will solve this problem by defining our
covariance matrix in a different space. But first we will review
some previous definitions:

a) Definition. Manifold: A n-manifold, Mn , is a topo-
logical space in which each point is locally homeomorphic
to the euclidean space, Rn . This is, each point x ∈ Mn

has a neighborhood N ⊂ Mn for which we can define a
homeomorphism f : N → Bn , with Bn the unit ball of
Rn .

b) Definition. Chart: A chart for a topological space,
M , is a homeomorphism, ϕ , from an open subset, U ⊂M ,
to an open subset of the Euclidean space, V ⊂ Rn . This is,
a chart is a function

ϕ : U ⊂M → V ⊂ Rn ,

with ϕ a homeomorphism.
Traditionally a chart is expressed as the pair (U,ϕ) .

A. The Set of Charts

Assume we know the expected value of our distribution
of quaternions, q . In such case, we can express any unit
quaternion as

q = q ∗ δ , (8)

with δ another unit quaternion (unit quaternions together with
their multiplication rule form a group). And then, we can
define the set of charts

ϕq(q) = 2

(
δ1
δ0
,
δ2
δ0
,
δ3
δ0

)
. (9)

The set of charts (9), is used in [5], but this work does not talk
about charts, and what we call “chart update” is not applied.

In each chart, ϕq , the quaternion q is mapped to
the origin. As the space deformation produced in the
neighborhood of the origin is small, being the variance small,
the distribution in each chart will be similar to the distribution
in the manifold.

The inverse transformations for these charts are given by

ϕ−1
q (eq) = q ∗ 1√

4 + ‖eq‖2

(
2
eq

)
. (10)

B. The Transition Map

a) Definition. Transition map: Given two charts
(Uα, ϕα) and (Uβ , ϕβ) describing a manifold, with
Uαβ = Uα∩Uβ 6= ∅ , a function ϕαβ : ϕα(Uαβ)→ ϕβ(Uαβ)
can be defined as

ϕαβ(x) = ϕβ
(
ϕ−1
α (x)

)
,

with x ∈ ϕα(Uαβ) .
Having the set of charts defined by (9), and having two

charts centered in quaternions p and q , and related by p =
q ∗ δ , then our transition map takes the form

ep = ϕq,p(eq) =

= 2
δ0 eq − 2 δ − δ × eq

2 δ0 + δ · eq
. (11)
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IV. MOTION EQUATIONS AND MEASUREMENT EQUATIONS

The state of the system is defined by an orientation, en-
coded by a unit quaternion q , and by an angular velocity
measured in the reference frame attached to our system,
given by a vector ω′ . The unit quaternion defines a rotation
transformation that determines the orientation of the system.
This transformation relates vectors (denoted as v′ ) expressed
in a reference frame attached to the solid whose state we
want to describe, with the same vectors (denoted as v )
expressed in an inertial reference frame in which the gravity
vector is expressed as g = (0, 0,−1) . Thus, our rotation
transformation will yield

v = TR (v′) . (12)

Using a rotation matrix,

v = R v′ . (13)

And using our unit quaternion,

v = q ∗ v′ ∗ q∗ . (14)

where this time v = ( 0
v ) , and q∗ is the complex conjugate

quaternion, that being q a unit quaternion, it is also its inverse.

A. Motion Equations

Knowing what our quaternion means, we can write the
motion equations for the random variables that we use to
describe the state of our system:

q̇(t) =
1

2
q(t) ∗

(
0

ω′(t)

)
, (15)

ω̇′(t) = τ̃ ′(t) , (16)

where τ̃ ′ is the process noise, associated with the torque
acting on the system, and its inertia tensor.

B. Measurement Equations

This work uses an IMU as information source. We can write
the measurement equations that relate the random variables
describing the state of our system, with the random variables
describing the measurements of our sensors as follows:

amt = RT
t (at − gt) + rat , (17)

ωmt = ω′t + rωt , (18)

where rat is the noise in the accelerometer measurement, rωt
is the noise in the gyroscope measurement, and at are non-
gravitational accelerations.

V. STATE PREDICTION

In this section we expose the evolution equations used to
perform the prediction of the expected value of the state, and
of its covariance matrix.

A. Evolution of the Expected Value of the State

Taking the expected value in equations (15) and (16), as-
suming the random variables q(t) and qωt (t) =

∫ t
t-∆t τ̃

′(τ) dτ
to be independent, and the expected value of the process noise,
qωt (τ) , to be constant when τ ∈ [t−∆t, t) , our differential
equations are transformed into other ones whose solutions are

ω′t|t-∆t = ω′t-∆t|t-∆t + qωt , (19)

qt|t-∆t = qt-∆t|t-∆t ∗ qω =

= qt-∆t|t-∆t ∗

 cos
(
ω′
t|t-∆t ∆t

2

)
ω′
t|t-∆t

ω′
t|t-∆t

sin
(
ω′
t|t-∆t ∆t

2

)
 . (20)

B. Evolution of the State Covariance Matrix

Since we need a covariance matrix with a form like (7),
we will define the covariance matrix of the state in the set of
charts defined by (9). In particular, for each filter update we
will have an expected value for the unit quaternion describing
the orientation, q , and a covariance matrix defined in the
Euclidean space, R3 , whose points are related with those of
the unit sphere of R4 through the chart ϕq . The origin of
R3 is mapped with the q quaternion, and points around the
origin represent quaternions in the neighborhood of q .

1) Differential Equations for our Charts: This result, and
its derivation, is totally inspired and is almost equal to that
which appears in [2]. Having the definition for our charts in
(8) and (9), we can find the differential equations for the δ
quaternion using the differential equations for q , (15), and for
q . And having the differential equations for the δ quaternion,
we can find the differential equations for a point e = 2 δ

δ0
on the charts:

ė = ∆ω′ − [ 2ω′ + ∆ω′ ]×
e

2
+

e

2

eT

2
∆ω′ .

(21)

Note that, by the definition of the charts, the vector of
random variables et is expressed in the chart centered in the
quaternion qt . For each instant, t , we have a quaternion qt
defining the chart for that time. Then the differential equation
(21) defines the evolution of the vector e that “travels”
between charts.

2) Differential Equations for the Covariance Matrix: We
define the covariance matrix for the state of our system by

Pt =

(
E
[
et eTt

]
E
[
et ∆ω′Tt

]
E
[

∆ω′t eTt
]

E
[

∆ω′t ∆ω′Tt
]) =

=

(
Pee
t Peω

t

Pωe
t Pωω

t

)
. (22)

Notice that we do not write “∆et” . By the new definition
of the covariance matrix, the term et can be interpreted as
a displacement from the qt quaternion, which is mapped to
the origin of R3 by the chart.
Note also that being the covariance matrix symmetric, we
do not need to find the evolution of all its terms. We just
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need to find the evolution of the terms Pee , Peω , and Pωω .

We are looking for an estimation of the covariance matrix
in t , using the information in t −∆t . This is, we want to
get Pt|t-∆t from Pt-∆t|t-∆t . For Pωω it is easy to find this
relation. Assuming the random variables ω′t-∆t and qωt to be
independents,

Pωω
t|t-∆t = Pωω

t-∆t|t-∆t + Qω
t . (23)

If we had a function et = f(et−∆t) , we could replace in
(22), and perhaps obtain a relation similar to (23). But we
are not able to find a closed solution for (21). However, we
can find a differential equation for Pt using this differential
equation for et . Starting from (22),

dP

dt
=

(
Ṗee Ṗeω

Ṗωe Ṗωω

)
, (24)

with

Ṗee = E
[
ė eT

]
+ E

[
e ėT

]
, (25)

Ṗeω = E
[
ė ∆ω′T

]
+ E

[
e ˙∆ω′T

]
. (26)

After replacing (21), assuming that higher moments are neg-
ligible compared to second-order moments, and remembering
our assumption of independence of the random variables q
and qωt , and therefore, of e and τ̃ ′ , (25) and (26) can be
approximated by

Ṗee ≈
(
Peω

)T − [ω′ ]× Pee +

+ Peω − Pee [ω′ ]
T
× . (27)

Ṗeω ≈ Pωω − [ω′ ]× Peω . (28)

3) Evolution Equations for the Covariance Matrix: We
are dealing with a system of inhomogeneous linear matrix
differential equations. Generally, a system of this type is
untreatable, but in our case the equations are sufficiently
decoupled to be able to find a solution.

Given a solution for Pωω , we can find an approximate
solution for Peω . And with this solution, we can find an
approximate solution for Pee . Denoting Ω = [ω′t ]× we
can write

Peω
t|t-∆t ≈ e−Ω ∆t

[
Peω
t-∆t|t-∆t +

+ ∆t Pωω
t-∆t|t-∆t +

(∆t)2

2
Qω

0

]
, (29)

Pee
t|t-∆t ≈ e−Ω ∆t

[
Pee
t-∆t|t-∆t +

+ (∆t)2 Pωω
t-∆t|t-∆t +

(∆t)3

3
Qω

0 +

+ Peω
t-∆t|t-∆t ∆t +

+
(
Peω
t-∆t|t-∆t

)T
∆t

]
e−ΩT ∆t . (30)

with Qω
t = Qω

0 t , being Qω
0 a constant matrix representing

the process noise covariance per time unit.

VI. MEASUREMENT PREDICTION

In this section we expose the measurement equations used
to perform the prediction of the expected value of the mea-
surement, and of its covariance matrix.

A. Expected Value of the Measurement

1) Expected Value of the Gyroscope Measurement: Taking
the expected value on (18),

ωmt = ω′t + rωt . (31)

2) Expected Value of the Accelerometer Measurement:
Taking the expected value on (17), knowing that the gt vector
does not change, and assuming that the non-gravitational
accelerations affecting our system, at , does not depend on
its orientation,

amt = E
[
RT
t

] (
at − gt

)
+ rat . (32)

Using the unit quaternion describing the orientation of our
system, this relation takes the form

amt = q∗t ∗
(
at − gt

)
∗ qt + rat . (33)

And if we use the rotation matrix constructed from this unit
quaternion,

amt = R
T

t

(
at − gt

)
+ rat . (34)

B. Covariance Matrix of the Measurement

The measurement is related to the state by means of the
measurement equations:

zt = h(xt, rt) .

We can approximate linearly the relationship around the ex-
pected values, xt , and rt , using a Taylor series

zt ≈ h(xt, rt) + Ht (xt − xt) + Mt (rt − rt) ,

being

Ht =
∂ h(xt, rt)

∂xt

∣∣∣∣xt
rt

, Mt =
∂ h(xt, rt)

∂rt

∣∣∣∣xt
rt

, (35)

the Jacobian matrices evaluated on the expected value of
the random variables. Then, our prediction equation of the
measurement covariance matrix takes the form

St = Ht Pt HT
t + MtRtM

T
t . (36)

1) Gyroscope Block: The measurement equation for the
gyroscope is linear. Using (18) and (35) we obtain

Hω
t =

(
0 1

)
. (37)
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2) Accelerometer Block: In order of being consistent with
the Kalman filter formulation, the acceleration term, at ,
should be part of the noise in the measurement, since if it
were not so, it should be part of the state. Then, measurement
noise in our Kalman filter has two components:

• rt : the main measurement noise. This noise comes from
the sensor.

• at : non-gravitational accelerations acting on the system.
These accelerations obstruct the measurement of the g
vector.

Recalling that we express the covariance matrix of the state
in R3 , and knowing that doing qt = qt in the manifold, is
equivalent to do et = 0 in this space, we will have for the
accelerometer measurement equation:

amt ≈ amt +
∂ ha(et,at)

∂et

∣∣∣∣ et=0
at=at

et +

+
∂ ha(et,at)

∂at

∣∣∣∣ et=0
at=at

(at − at) + rat − rat .

Denoting gR
t = R

T

t (at − gt) , and after some calculus,

∂ ha
∂at

∣∣∣∣ et=0
at=at

= R
T

t ,

∂ ha(et)

∂et

∣∣∣∣ et=0
at=at

=

 0 −
(
gR
t

)
3

(
gR
t

)
2(

gR
t

)
3

0 −
(
gR
t

)
1

−
(
gR
t

)
2

(
gR
t

)
1

0

 .

3) Measurement Covariance Matrix: Assuming indepen-
dence of all random variables involved in the measure, our
prediction equation for the measurement is

St =

([
gR
t

]
× 0

0 1

)
Pt

([
gR
t

]
× 0

0 1

)T
+

+

(
R
T

t Qa
t Rt + Ra

t 0

0 Rω
t

)
, (38)

where

• Qa
t is the covariance matrix of the random variable at .

• Ra
t is the covariance matrix that describes the noise in

the accelerometer measurement, which is modeled by the
random variable rat .

• Rω
t is the covariance matrix describing the noise in the

gyroscope measurement, which is modeled by the random
variable rωt .

VII. UPDATE

Although the original Kalman filter algorithm just requires
the Kalman update, the fact that our covariance matrix is
expressed in a chart makes necessary the computation of a
second update.

A. Kalman Update

The Kalman update is performed in the space where the
covariance matrix is defined. This is, we do not perform the
Kalman update in the manifold, but in the chart. Given the
estimate of the covariance matrix of the state, Pt|t-∆t , and
the estimate of the measurement covariance matrix, St|t-∆t ,
the optimal Kalman gain is computed as

Kt = Pt|t-∆t HT
t S−1

t|t-∆t . (39)

Given the gain, we can update the state distribution in the
usual way:

xt|t = xt|t-∆t + Kt

(
zt − zt|t-∆t

)
, (40)

Pt|t = ( 1 − Kt Ht ) Pt|t-∆t . (41)

The new state distribution will be expressed in the chart
centered on xt|t−∆t . In this chart, et|t-∆t = 0 , but et|t 6= 0 .

B. Manifold Update

In order to find the quaternion corresponding to the updated
vector et|t expressed in the chart, we must reverse the
function ϕqt|t-∆t

(et|t) making use of the equation (10):

qt|t = qt|t-∆t ∗ δ(et|t) =

= qt|t-∆t ∗
1√

4 + ‖et|t‖2

(
2

et|t

)
. (42)

C. Chart Update

After the Kalman update, the new state distribution is
expressed in the chart centered on xt|t-∆t . We must update
the covariance matrix expressing it in the chart centered on
the updated state, xt|t , so that our information is expressed
as at the beginning of the iteration. In order of achieve this
objective, we must use the concept of transition maps, that for
our charts take the form of (11). Being non-linear this relation,
we need to find a linear approximation:

ep(eq) ≈ ep(eq) +
∂ ep
∂eq

∣∣∣∣
eq=eq

( eq − eq ) . (43)

After differentiating our transition map and evaluating in et|t ,
having identified the charts ϕp = ϕqt|t and ϕq = ϕqt|t-∆t

,
we find out

ep(eq) ≈ δ0

(
δ0 1 −

[
δ
]
×

) (
eq − et|t

)
=

= Gt

(
eq − et|t

)
. (44)

Then, our update equations for the charts are

Pee
qt|t

= Gt Pee
qt|t-∆t

GT
t , (45)

Peω
qt|t

= Gt Peω
qt|t-∆t

, (46)

Pωω
qt|t

= Pωω
qt|t-∆t

. (47)

VIII. EXPERIMENTAL VALIDATION

In this section we present results obtained from a simulated
experiment, and a real one.
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A. Simulated Experiment
Our simulated experiment consists on the definition of a

path, the extraction of simulated measurements, the processing
of this measurements, and the evaluation of the algorithm
performance. Only knowing the real state, we are able to define
some metrics to measure the performance of our algorithm.
Finally, we display a comparison of the algorithm developed
in this paper, which will be called Manifold Extended Kalman
Filter (MEKF), and the currently popular algorithm developed
by Madgwick [4], whose code can be found in [6].

1) Experiment Setup: For testing our algorithm, we can
think in a simple and intuitive simulation. Let us imagine that
we can freely roam the surface of a torus, which is a manifold
whose space can be described in R3 by

x(θ, φ) = (R + r cos θ ) cosφ , (48)
y(θ, φ) = (R + r cos θ ) sinφ , (49)
z(θ, φ) = r sin θ . (50)

The torus of our simulation will have R = 0.2m , and
r = 0.05m . We can define a path in the torus using a third
parameter to set the other two:

θ = vθ t , (51)
φ = vφ t . (52)

We will use the path defined by vφ = 1 rad/s and
vθ = 3 rad/s , and we will travel the path around the torus
3 times. This path can be seen in Figure 1.

Fig. 1. Path followed on the torus in our simulation. Reference frames that
define the orientation of the IMU can be observed.

Accelerations occurring in the IMU can be calculated by
differentiating twice in (48)-(50) with respect to the t param-
eter, resulting

ẍ(θ, φ) = −(R + r cos θ ) cosφ v2
φ +

+ 2 r sin θ vθ sinφ vφ +

− r cos θ v2
θ cosφ , (53)

ÿ(θ, φ) = −(R + r cos θ ) sinφ v2
φ +

− 2 r sin θ vθ cosφ vφ +

− r cos θ v2
θ sinφ , (54)

z̈(θ, φ) = − r sin θ v2
θ . (55)

Now, we can define a reference frame for each point of the
path. The axis of the reference frame will have the directions
of the vectors{

∂ x

∂θ
,

∂ x

∂φ
,

∂ x

∂θ
× ∂ x

∂φ

}
. (56)

After making the derivatives in (56), and choosing the direc-
tion of the vectors so that ẑ points outward the torus surface,
our rotation matrix relating a vector measured in the IMU
reference frame, with the same vector measured in the external
reference frame will be

R =

(
| | |
x̂ ŷ ẑ
| | |

)
=

(
− sin θ cosφ sinφ cos θ cosφ
− sin θ sinφ − cosφ cos θ sinφ

cos θ 0 sin θ

)
. (57)

Matrix (57) can be expressed as the product of 3 known
rotation matrices:

R =
( cosφ − sinφ 0

sinφ cosφ 0
0 0 1

)(
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

)(
0 0 1
0 −1 0
1 0 0

)
. (58)

Recognizing these matrices in (58), and using (5), we can find
out the quaternion describing the orientation of our reference
frame:

q =

(
cos(φ/2)

0
0

sin(φ/2)

)
∗

(
cos(θ/2)

0
− sin(θ/2)

0

)
∗

(
0

1/
√

2
0

1/
√

2

)
. (59)

Having (59) we can obtain the q̇ quaternion:

q̇ =
(
q̇φ ∗ qθ + qφ ∗ q̇θ

)
∗ q0 , (60)

where

q̇φ =

(
− sin(φ/2)

0
0

cos(φ/2)

)
vφ
2

, (61)

q̇θ =

(
− sin(θ/2)

0
− cos(θ/2)

0

)
vθ
2

. (62)

And with the q̇ quaternion we can use (15) to get the angular
velocity:

ω = 2 q∗ ∗ q̇ . (63)

With all, we can generate a succession of states
(
qr

ωr

)
, and

for each state simulate a measurement
(

amt
ωmt

)
. After that,

taking only the succession of measurements, we can make
a succession of estimations about the state

(
qe

ωe

)
using the

orientation algorithms, and then compare our estimation with
the known real state

(
qr

ωr

)
.

2) Error Definition: We will evaluate the performance of
the algorithm through the definition of two errors:

First, defining g′r = (R
r
)T (0, 0,−1)T as the gravity vector

measured in the real reference frame attached to our system,
and g′e = (R

e
)T (0, 0,−1)T as the gravity vector measured

in the estimated reference frame, we define

eg = arccos

(
g′r · g′e
‖g′r‖ ‖g′e‖

)
. (64)

The eg error in (64) is defined as the angle between the
vectors g′r and g′e . Being the lowest error the better, this
gives us a measure of how well the algorithm estimates
the direction of a vector for which we have directly related
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measurements.

Second, we define qri , and qrf as the initial and final
quaternions describing the real orientation of the system in
our simulation; and qei , and qef as the initial and final
quaternions describing the estimated orientation of the system.
Then, defining ∆r , and ∆e as the quaternions describing
the rotation transformations that relates the initials and finals
orientations by qrf = qri ∗∆

r , and qef = qei ∗∆
e , we define

eθ = 2 arccos
([

(∆r)
∗ ∗∆e

]
0

)
. (65)

The eθ error in (65) is defined as the angle of the rotation
defined by the δθ quaternion, which satisfies ∆e = ∆r ∗
δθ . Being the lowest error the better, this gives us a measure
of how well the algorithm estimates the whole orientation,
including heading, for which we do not have directly related
measurements.

This second error definition seems unnecessarily
complicated. We could think in something like
e′θ = 2 arccos

(
(qrf )∗ ∗ qef

)
, but if we start the simulation

with an unknown orientation for the algorithm, this definition
would lead to a different quaternion from the starting one.
The e′θ error would have a bias because of the ignorance of
the initial heading. Our eθ error definition is independent of
this initial heading ignorance.

3) Setting the Algorithm Values:
a) Initialization: The simulation starts with a known

orientation state defined by

q0|0 =
(

0 , 1/
√

2 , 0 , 1/
√

2
)T

, (66)

ω0|0 = ( 1 , 3 , 0 )
T

, (67)

P0|0 = 10−2 1 . (68)

b) Characterization of Process Noise: The following
values have been established:

qωt = 0 , Qω
t = 101 1 , (69)

at = 0 , Qa
t = 101 1 . (70)

Still, after some testing, we found that the algorithm behaves
similarly with other configurations, provided that they are
not disproportionate. A more worked up algorithm would
introduce dynamical values for this variables.

c) Characterization of Measurement Noise: The Kalman
filter requires

rat = 0 , rωt = 0 , (71)

in order to produce an unbiased estimation.
For the covariance matrices we will set

Ra
t = Rω

t = σ2 1 , (72)

and we will compare how the error behaves as a function of
the magnitude of the noise in the measurement.

Test Sampling time (s) σ2

1 Ranging in (10−3, 10−1) Fixed to 10−3

2 Fixed to 10−1 Ranging in (10−7, 10−3)

3 Ranging in (10−3, 10−1) Fixed to 10−7

4 Fixed to 10−3 Ranging in (10−7, 10−3)

TABLE I
TESTS CONDUCTED IN OUR SIMULATION.

4) Simulation Results: We will place our simulation in 4
different scenarios, whose details are displayed in table I, and
that have been chosen according to the current possibilities.

Results of Test 1 and 2 are not shown since the errors pro-
duced are too large. This suggests that both a good processor
(small sampling time) as a good sensor (small variance) are
required.

For Test 3 and 4 the time evolution of error measurements
are plotted in Figures 2 - 5. In Figures 3 and 5 we observe how
the error becomes smaller as we improve our IMU (decreasing
σ2), while having a good processor (small ∆t). In Figures
2 and 4 we observe how the error becomes smaller as we
improve our processor (decreasing ∆t), while having a good
IMU (small σ2).
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Fig. 2. Evolution of the eg error. Test 3.

In Figure 2 we observe that the MEKF increases its accuracy
in time, due to it adds information about the state in each
update. The faster it updates (less ∆t) the faster it reaches
convergence.
On the other hand the Madgwick algorithm does not adds
information, which implies that it can not “learn” about the
past, and it does not increases its accuracy in time. We also
observe that after reaching a certain ∆t no improvement in
accuracy is seen.

In Figure 3 we can confirm the same observation made in
the paragraph above. But we also note that it seems to be a
limit in the algorithms accuracy as a function of the sensor
noise. It could be an interesting appreciation because it could
mean that beyond a certain sensor quality, there would not be
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an appreciable improvement in the estimation.
In Figure 4 we can notice that the errors tends to increase

over time. It is best appreciated for the Madgwick algorithm,
and for low update frequencies with the MEKF. Probably it
is not appreciated for higher update frequencies because we
have not waited enough.
This happens because we have no reference for orientation
in the plane perpendicular to the gravity vector. If we want
to have a complete non-biased estimation of the orientation
we should add measurements from additional sensors as a
magnetometer, or a camera.

In Figure 5 we again see the same behavior noticed in the
previous paragraph. We also repeat our observation about the
limit of the estimation accuracy as a function of the sensor
noise made two paragraphs above.

B. Real Experiment

Our real experiment consists on the visual inspection of the
returned information by our algorithm, and the one returned
by the algorithm implemented in a commercial IMU.
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Fig. 5. Evolution of the eθ error. Test 4.

1) Test Bed: The algorithm has been implemented in a
real system. It has been used a board containing a MPU6050
sensor. The processing is performed in the ATmega328P chip
contained in an Arduino board. In this system the sampling
time turns out to be about

∆t ≈ 0.04 s ,

what means that the algorithm runs about 25 times per second.
The sensor variance is approximately

σ2
a ≈ 10−4 (g)2 , (73)

σ2
ω ≈ 10−4 (rad/s)2 . (74)

Figure 6 shows the assembled system, consisting in the
MPU6050 sensor, the Arduino UNO, and a MTi sensor of
Xsens.

Fig. 6. Real system composed of an Arduino Uno, a MPU6050 chip, and a
MTi sensor of Xsens.

2) Experiment Results: We have described a series of
movements with the system. The movements have been carried
out in four phases. The dynamics of each phase has been
more aggressive than that of the previous phase. We have
tried to finish with the same orientation with which the system
began. Both have been saved the sensors measurements and
the estimated states which are returned by the algorithms. In
Figures 7 - 9 these data are shown.
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Fig. 7. Acceleration measurement during the real experiment.
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Fig. 8. Estimated quaternion describing orientation during the real experi-
ment. The real initial and final orientations are tried to match.

In Figure 7 we can see that both sensor acceleration
measurements are very similar. This makes us think that the
misalignment between the two sensors is small.

In Figure 8 we note that both systems return a similar
estimation of the orientation when the dynamics is not too
aggressive. However, after some aggressive moves, the algo-
rithm presented in this paper has a fast convergence. We also
note the bias in the heading estimation of both algorithms
when we look at q2 quaternion component. The initial and
final orientation should be the same, but we have no reference
for orientation in the plane perpendicular to the gravity vector.

In Figure 9 we note that the measured angular velocity
is very similar to the estimated angular velocity. Perhaps we
could accept the gyroscope measurement as the real angular
velocity of our system. Maybe then we could get some
advantage in processing speed, and therefore greater accuracy
of our algorithm. But this is left for future research.

Measured and estimated
angular velocity (MPU6050)
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Fig. 9. Estimated and measured angular velocity during the real experiment.

IX. CONCLUSIONS AND FUTURE WORK

We have successfully used basic concepts of manifold
theory for estimating orientations using quaternions as de-
scriptors. A similar algorithm to the known as “Multiplicative
Extended Kalman Filter” naturally arises in applying these
concepts without having to redefine any aspect of the Extended
Kalman Filter.

The orientation has been estimated using measurements
from an IMU, but the basic idea introduced in this work is
applicable to any other type of sensor intended to estimate the
orientation.

We have tested the algorithm in a real experiment and
we have compared our estimation with the one given by a
commercial IMU, finding that both orientation estimations are
similar. This tell us that our algorithm works as expected.

We also have tested the algorithm in a simulation. We
have compared the performance of our algorithm with the
algorithm developed by Madgwick. The results suggest that
the algorithm developed in this paper could achieve a better
accuracy than the one achieved by the Madgwick algorithm.
However we dare not say so, as there may be various sources
of error that we have not considered:

- The update frequency depends on the processor. In the
ATmega328P chip, contained in an Arduino board, the
Madgwick algorithm is 16 times faster than the MEKF.

- The chosen path could lead to pathological behaviors
because of its symmetry.

- We have seen the result of just a path.
These considerations lead us to the following issues that

will be addressed in future work:
• We will design a simulation with results based on the

averaging of multiple trajectories, and free of pathological
behaviors.

• We will test the algorithm for various chart definitions.
• We will test its Unscented Kalman Filter version with the

various chart definitions.
• We will compare the MEKF with the MUKF, and with

the Madgwick algorithm.
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• We will study our sighting about the limit in the algorithm
accuracy as a function of the sensor noise.
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APPENDIX A
STATE PREDICTION

In this appendix we present in greater detail the develop-
ments concerning the state prediction.

A. Evolution of the Expected Value of the State

1) Evolution in the Expected Value of the Angular Velocity:
Taking the expected value in equation (16),

ω̇′(τ) = τ̃ ′(τ) =⇒

=⇒ ω′t|t-∆t = ω′t-∆t|t-∆t + qωt ,

with qωt =
∫ t
t-∆t τ̃

′(τ) dτ .

2) Evolution in the Expected Value of the Orientation:
Taking the expected value in equation (15),

E

[
d q(τ)

dτ

]
=

1

2
E [q(τ) ∗ ω′(τ)] =

=
1

2
E
[
q(τ) ∗

(
ω′t-∆t|t-∆t + qωt (τ)

)]
.

(75)

Assuming the random variables q(τ) and qωt (τ) to be
independent,1

d q(τ)

dτ
=

1

2
q(τ) ∗ ω′t-∆t|t-∆t +

1

2
q(τ) ∗ qωt (τ) =

=
1

2
q(τ) ∗ ω′τ |t-∆t . (76)

This differential equation has no general closed solution. But
if we assume that the expected value of the process noise,
qωt (τ) , is constant when τ ∈ [t−∆t, t) , then we will have
the matrix differential equation

q̇(τ) = Ω̌ q(τ) ,

with

Ω̌ =
1

2


0 −ω′

1 −ω′
2 −ω′

3

ω′
1 0 ω′

3 −ω′
2

ω′
2 −ω′

3 0 ω′
1

ω′
3 ω′

2 −ω′
1 0


t|t-∆t

.

This differential equation has the solution

q(t) = eΩ̌ ∆t q(t−∆t) .

We can express this solution using the quaternion product, as

qt|t-∆t = qt-∆t|t-∆t ∗ qω =

= qt-∆t|t-∆t ∗

 cos
(
ω′
t|t-∆t ∆t

2

)
ω′
t|t-∆t

ω′
t|t-∆t

sin
(
ω′
t|t-∆t ∆t

2

)
 . (77)

1This is, torques acting on the system does not depend on its orientation.

https://github.com/arduino-libraries/MadgwickAHRS
https://github.com/arduino-libraries/MadgwickAHRS
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B. Evolution of the State Covariance Matrix

1) Differential Equations for our Chart:
a) Differential Equation for δ: Using (8), (15), and

(76),

q = q ∗ δ =⇒

=⇒ q̇ = q̇ ∗ δ + q ∗ δ̇ ≡

≡ 1

2
q ∗ ω′ =

1

2
q ∗ ω′ ∗ δ + q ∗ δ̇ =⇒

Isolating the δ̇ quaternion,

δ̇ =
1

2
q∗ ∗ q
δ

∗ ω′ − 1

2
q∗ ∗ q

1

∗ ω′ ∗ δ =

=
1

2
[ δ ∗ ω′ − ω′ ∗ δ ] =

=
1

2

[ (
δ0
δ

)
∗
(

0
ω′

)
−
(

0
ω′

)
∗
(
δ0
δ

) ]
=

=
1

2

(
− (ω′ − ω′ ) · δ

δ0 (ω′ − ω′ ) − (ω′ + ω′ )× δ

)
=

=
1

2

(
−∆ω′ · δ

δ0 ∆ω′ − ( 2ω′ + ∆ω′ )× δ

)
. (78)

b) Differential Equations for e on the Chart: Using (9)
and (78),

ė = 2
δ̇ δ0 − δ̇0 δ

δ2
0

=

= ∆ω′ − ( 2ω′ + ∆ω′ )× e

2
+
[
∆ω′ · e

2

] e

2
,

or in matrix form,

ė = ∆ω′ − [ 2ω′ + ∆ω′ ]×
e

2
+

e

2

eT

2
∆ω′ .

(79)

2) Differential Equations for the Covariance Matrix:
a) Evolution Equation for Pωω:

Pωω
t = E

[
∆ω′t ∆ω′Tt

]
=

= E
[

(ω′t − ω′t) (ω′t − ω′t)T
]

=

= E
[

(∆ω′t-∆t + ∆qωt ) (∆ω′t-∆t + ∆qωt )T
]

=

= E
[

∆ω′t-∆t ∆ω′Tt-∆t
]

Pωωt-∆t

+ E
[

∆ω′t-∆t ∆qωt
T
]

+

+ E
[

∆qωt ∆ω′Tt-∆t
]

+ E
[

∆qωt ∆qωt
T
]Qω

t

.

Assuming the random variables ω′t-∆t and qωt to be inde-
pendents, their covariance is null. In such case,

Pωω
t = Pωω

t-∆t + Qω
t . (80)

b) Differential Equation for Pee: Replacing (21) in (25)
we obtain,

Ṗee = E
[

∆ω′ eT
]

+
1

4
E
[

e eT∆ω′ eT
]

+

− [ω′ ]× E
[

e eT
]
− 1

2
E
[

[∆ω′]× e eT
]

+

+ E
[

e ∆ω′T
]

+
1

4
E
[

e ∆ω′T e eT
]

+

− E
[

e eT
]

[ω′ ]
T
× −

1

2
E
[

e eT [∆ω′]
T
×

]
.

Here we can see the consequences of treating a nonlinear
system. The evolution in the covariance matrix Pee , which
is composed by moments of second order, is affected by
the higher moments of the distribution. To find the evolution
equations of the covariance matrix we would need information
about the moments of order 3 and 4. These may depend
of moments of order higher than them. Knowing all the
moments of a distribution would mean to know all statistical
information. What we can assume and expect is that higher
moments to be negligible compared to second-order moments.
In that case we can write,

Ṗee ≈ E
[

∆ω′ eT
]
− [ω′ ]× E

[
e eT

]
+

+ E
[

e ∆ω′T
]
− E

[
e eT

]
[ω′ ]

T
× =

=
(
Peω

)T − [ω′ ]× Pee +

+ Peω − Pee [ω′ ]
T
× . (81)

c) Differential Equation for Peω: Replacing (21) in (26)
we obtain,

Ṗeω = E
[

∆ω′∆ω′T
]

+
1

4
E
[

e eT ∆ω′∆ω′T
]

+

− [ω′ ]× E
[

e ∆ω′T
]

+

− 1

2
E
[

[∆ω′]× e ∆ω′T
]

+ E
[

e ∆τ̃ ′ T
]

.

Having assumed the independence of q and qωt , then e and
∆τ̃ ′ , are also independent. With that in mind, and neglecting
higher order moments,

Ṗeω ≈ E
[

∆ω′∆ω′T
]
− [ω′ ]× E

[
e ∆ω′T

]
=

= Pωω − [ω′ ]× Peω . (82)

3) Evolution Equations for the Covariance Matrix: Denot-
ing Ω = [ω′t ]× our differential equations take the form:

Pωω
t = Pωω

t-∆t + Qω
t , (83)

Ṗeω(τ) ≈ Pωω(τ) − Ω Peω(τ) , (84)

Ṗee(τ) ≈
(
Peω(τ)

)T − Ω Pee(τ) + (85)

+ Peω(τ) − Pee(τ) ΩT . (86)
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a) Evolution Equation for Peω:
First of all, let us consider the homogeneous equation of (84),

Ṗeω(τ) = − Ω Peω(τ) . (87)

The solution for (87) is

Peω(τ) = e−Ω τ Peω(0) .

To find the solution to the inhomogeneous differential equa-
tion, we use the variation of constants method:

Peω(τ) = e−Ω τ C(τ) =⇒

Ṗeω(τ) = −Ω e−Ω τ C(τ) + e−Ω τ Ċ(τ) =

= −Ω Peω(τ) + e−Ω τ Ċ(τ) .

Identifying the terms in the differential equation we obtain the
following relation:

e−Ω τ Ċ(τ) = Pωω(τ) =⇒

=⇒ Ċ(τ) = eΩ τ Pωω(τ) . (88)

To solve this last differential equation, it is necessary to pro-
pose a continuous evolution equation for Pωω . The simplest
option is the linear function

Pωω(τ) = Pωω(0) + Qω
0 τ , (89)

with Qω
t = Qω

0 t , being Qω
0 a constant matrix representing

the process noise covariance per unit of time.
Having defined this continuous evolution equation, (88) is

transformed into

Ċ(τ) = eΩ τ [ Pωω(0) + Qω
0 τ ] =

=

( ∞∑
n=0

Ωn τn

n!

)
[ Pωω(0) + Qω

0 τ ] . (90)

Integrating (90),

C(τ) =

( ∞∑
n=0

Ωn τn+1

(n+ 1)!

)
Pωω(0) +

+

( ∞∑
n=0

Ωn τn+2

n! (n+ 2)

)
Qω

0 + C′ .

The constant C′ is determined by the initial conditions
Peω(0) = C(0) . With this in mind,

Peω(τ) = e−Ω τ

[ ( ∞∑
n=0

Ωn τn+1

(n+ 1)!

)
Pωω(0) +

+

( ∞∑
n=0

Ωn τn+2

n! (n+ 2)

)
Qω

0 + Peω(0)

]
. (91)

Knowing that we have the information at t − ∆t , and we
want to update the information at t , our equation becomes

Peω
t|t-∆t = e−Ω ∆t

[ ( ∞∑
n=0

Ωn (∆t)
n+1

(n+ 1)!

)
Pωω
t-∆t|t-∆t +

+

( ∞∑
n=0

Ωn (∆t)
n+2

n! (n+ 2)

)
Qω

0 + Peω
t-∆t|tdt

]
.

(92)

Finally, knowing that calculating infinite sums would take a
lot, we can truncate in the first term, and write

Peω
t|t-∆t ≈ e−Ω ∆t

[
Peω
t-∆t|t-∆t +

+ ∆t Pωω
t-∆t|t-∆t +

(∆t)2

2
Qω

0

]
. (93)

b) Evolution Equation for Pee:
In this case we have the homogeneous equation

Ṗee(τ) ≈ − Ω Pee(τ) − Pee(τ) ΩT ,

whose solution is

Pee(τ) = e−Ω τ Pee(0) e−ΩT τ .

Using the variation of constants method,

Pee(τ) = e−Ω τ C(τ) e−ΩT τ =⇒

=⇒ Ṗee(τ) = −Ω Pee(τ) +

+ e−Ω τ Ċ(τ) e−ΩT τ +

− Pee(τ) ΩT .

Identifying terms, we deduce the relation

Ċ(τ) = eΩ τ
[

Peω(τ) +
(
Peω(τ)

)T ]
eΩ

T τ .

After substituting the expression for Peω , integrate with
respect to time, and truncating in the first term of the infinite
sums, the solution we want is given by

Pee
t|t-∆t = e−Ω ∆t

[
Pee
t-∆t|t-∆t +

+ (∆t)2 Pωω
t-∆t|t-∆t +

(∆t)3

3
Qω

0 +

+ Peω
t-∆t|t-∆t ∆t +

+
(
Peω
t-∆t|t-∆t

)T
∆t

]
e−ΩT ∆t .

APPENDIX B
MEASUREMENT PREDICTION

In this appendix we present in greater detail the develop-
ments concerning the measurement prediction.
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A. Expected Value of the Measurement

1) Expected Value of the Accelerometer Measurement:
Taking the expected value on (17),

amt = E
[
RT
t

(
at − gt

) ]
+ rat .

The gt vector does not change. If we also assume that the
accelerations affecting our system, at , does not depend on
its orientation,

amt = E
[
RT
t

] (
at − gt

)
+ rat .

One might be tempted to try to find the expected value of the
matrix Rt written as a function of the qt quaternion, but
then we would run into the problem of the computation of
expected values such as E[q2

1 ] or E[q1 q2] . These expected
values are defined in the manifold, and are what we try to
avoid defining covariance matrices in the charts.

What we seek is not the expected value of the rotation
matrix, but something like the “expected transformation”.
Then, using the quaternion describing the orientation of our
system, this expression must be equivalent to

amt = q∗t ∗
(
at − gt

)
∗ qt + rat .

B. Covariance Matrix of the Measurement

1) Accelerometer Block: Knowing that

ha(et,at) = q∗t ∗ (at − gt) ∗ qt =

= δ∗t ∗ q∗t ∗ (at − gt) ∗ qt ∗ δt =

=
(
Rδ
t

)T
R
T

t (at − gt) ,

we will have,

∂ ha
∂at

∣∣∣∣ et=0
at=at

= R
T

t ,

∂ ha
∂et

∣∣∣∣ et=0
at=at

=
∂
(
Rδ
t

)T
∂δt

∣∣∣∣∣
δ=1

∂ δt
∂et

∣∣∣∣
et=0

R
T

t (at − gt) .

Let us note that ∂ δt
∂et
∈ R4×3 . However, the term

∂
(
Rδ
t

)T
∂δt

is a 1×4 matrix, whose elements are again 3×3 matrices.
a) First term:

Given the expression for the rotation matrix corresponding to
quaternion δ ,

(
Rδ
)T

=

 1 − 2δ22 − 2δ23 2(δ1δ2 + δ3δ0) 2(δ1δ3 − δ2δ0)

2(δ1δ2 − δ3δ0) 1 − 2δ21 − 2δ23 2(δ2δ3 + δ1δ0)

2(δ1δ3 + δ2δ0) 2(δ2δ3 − δ1δ0) 1 − 2δ21 − 2δ22

 ,

we can derive and evaluate at δ = 1 = (1, 0, 0, 0) , resulting

∂
(
Rδ
)T

∂δ0

∣∣∣∣∣
δ=1

=

(
0 0 0
0 0 0
0 0 0

)
,

∂
(
Rδ
)T

∂δ1

∣∣∣∣∣
δ=1

=

(
0 0 0
0 0 2
0 −2 0

)
,

∂
(
Rδ
)T

∂δ2

∣∣∣∣∣
δ=1

=

(
0 0 −2

0 0 0
2 0 0

)
,

∂
(
Rδ
)T

∂δ3

∣∣∣∣∣
δ=1

=

(
0 2 0
−2 0 0

0 0 0

)
.

b) Second term:
For the charts defined by (9), we can recover the quaternion
by (10). Then,

∂ δ

∂e
=

1

(4 + ‖e‖2)3/2


−2 e1 −2 e2 −2 e3

4+e22+e23 −e1 e2 −e1 e3
−e2 e1 4+e21+e23 −e2 e3
−e3 e1 −e3 e2 4+e21+e2

 .

And evaluating at e = 0 ,

∂ δ

∂e

∣∣∣∣
e=0

=
1

2

(
0 0 0
1 0 0
0 1 0
0 0 1

)
.

c) The matrix:
Denoting gR

t = R
T

t (a− g) , and computing the matrix
products,

∂ ha(et)

∂et

∣∣∣∣ et=0
at=at

=

 0 −
(
gR
t

)
3

(
gR
t

)
2(

gR
t

)
3

0 −
(
gR
t

)
1

−
(
gR
t

)
2

(
gR
t

)
1

0

 .

APPENDIX C
UPDATE

In this appendix we present in greater detail the develop-
ments concerning the filter update.

A. Chart Update
Differentiating our transition map,

∂ ep
∂eq

= 2
δ0 1 −

[
δ
]
×

2 δ0 + δ · eq
+

− 2
δ0 eq − 2 δ − δ × eq(

2 δ0 + δ · eq
)2 δ

T
.

Now, if ϕp = ϕqt|t , and if ϕq = ϕqt|t-∆t
, and we are

interested in expressing the covariance matrix in the chart
ϕqt|t , from the covariance matrix expressed in the chart
ϕqt|t-∆t

, where eq = et|t , then we must keep in mind that

ep(et|t) = 2
δ0 et|t − 2 δ − δ × et|t

2 δ0 + δ · et|t
=

= ϕ1

(
δ
∗ ∗ δ(et|t)

δ

)
= 0 .
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Then replacing in (43),

ep(eq) ≈ 2
δ0 1 −

[
δ
]
×

2 δ0 + δ · et|t

(
eq − et|t

)
.

Finally, knowing that

2 δ0 + δ · et|t =
(
δ
∗ ∗ δ(et|t)

)
0

1

√
4 + ‖et|t‖2 ,

we have

ep(eq) ≈
2√

4 + ‖et|t‖2
(
δ0 1−

[
δ
]
×

) (
eq − et|t

)
=

= δ0

(
δ0 1 −

[
δ
]
×

) (
eq − et|t

)
.
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