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Abstract 

A series of transition metals LaBO3 perovskites   (B= Mn, Fe, Co, Ni, Cu and Zn) has been 

synthesized and tested as catalysts for simultaneous removal of CO and NO in a fixed bed 

reactor. To improve the catalytic activity of LaFeO3, as the most active formulation, it has been 

modified by using other active metals (Mn, Co and Cu) for partial substitution of Fe in the 

perovskite formulation (LaFe0.7M0.3O3). The results revealed that Mn substitution improves 

significantly the catalytic activity because increases the Mn (IV) to Mn (III) ratio leading to the 

generation of a large amount of structural defects and, also, because increases the amount of 

reducible active sites. 

Keywords. Perovskite, NOx reduction, NO+CO reaction, Catalytic reduction, Air 
pollution.  

 

Introduction 

The removal of CO and NO has attracted a great attention because of their presence in mobile 

and static exhaust sources. Photochemical smog and acid rain formation are the main problems 

caused by NOx emissions. For the removal of NOx, different strategies including selective 

catalytic reduction (SCR) using CO, NH3 and thermal degradation have been used. Because of 

the toxic nature of CO and its presence in most of NOx containing streams, simultaneous 

removal of CO and NO using catalytic reduction seems to be an ideal strategy for the removal of 

these two pollutants. Noble metal and perovskite type oxides are catalysts which used for NO + 

CO reaction 1, 2, being noble metals more active than perovskites but also much more expensive.  

Perovskite type oxides are mixed oxides with nominal formulation of ABO3 or A2BO4 where A 

is a larger cation than B. When perovskite are used as catalysts, B usually designates a transition 

metal cation surrounded by six oxygen in octahedral coordination, and A is a cation of rare-earth 

metal coordinated by 12 oxygens 3. Many metals are stable through the perovskite structure 

which provides that the A and B cations have dimension (rA> 0.90 Å, rB> 0.51 Å) in agreement 

with the limits of the so-called “tolerance factor” t (0.8 < t <1.0), defined by Goldschimdt as 
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t = (r� + r�) √2(r� + r�)⁄ , and where rA, rB and rO are the ionic radii for A, B and O, 

respectively 4. Properties of perovskite type oxides are mainly depend on nature of A and B 

cations. In fact, A cations are responsible  of the structure stability of perovskite, and B cation 

determines the catalytic activity 5. Potentially, A and /or B cation could be replaced by other A' 

and B' foreign cations without destruction of matrix structure. According to the findings, such a 

modification leads to structural defects and oxygen excess or oxygen deficiency that are 

favorable for catalytic activity. 

The perovskite type oxides were used in many catalytic processes including catalytic combustion 

or deep oxidation of volatile organic compounds (VOC’s) 6-8, CO oxidation 9-11, syngas 

production 12, 13, among other catalytic reactions. As for other catalytic reactions, nature of 

catalyst plays the main role in the success of CO + NO reaction. Many researchers studied NO 

removal by using perovskites as catalyst. Substitution of A and B site for Fe 14-16 and Cu 17 

perovskites by other transition metals, and their catalytic performance for NO reduction by CO 

was tested. He et al. studied the substitution of Mn by Cu and Ag in  a La0.8Ce0.2B0.4Mn0.6O3 

(B: Cu and Ag) perovskite catalyst for CO + NO reaction and concluded that Cu is more 

effective than Ag 18. The study of the use of  various metals in A site, including La, Nd, Sm 

carried out by Ciambelli et al. 19, showed the following sequence of catalyst activity: 

La>Nd>Sm. The impacts and effects of the modification of the perovskite formulations by Pd 

were  also studied 20, concluding that it is  an effective element for improving the of catalytic 

activity of perovskites . Thus, the aim of this work is to compare the catalytic performance of 

perovskites with various transition metals in B site and to analyze the effect of modification of 

the best formulation to increase the catalytic activity. Therefore,  catalysts with various 

formulation of LaBO3 or La2BO4 (B: Mn, Fe, Co, Ni, Cu, Zn) were synthesized by citric acid 

method and tested for simultaneous removing of the NO + CO, while the most active catalyst has 

been selected and modified by using other transition metals in order to improve the catalytic 

performance. Synthesized catalysts have been characterized by using X ray diffraction (XRD), 

Brunauer–Emmett–Teller (BET), Temperature Programed Reduction with hydrogen  (H2-TPR), 

X ray Photoelectron Spectroscopy (XPS) and Scanning electron microscopy (SEM) to determine 

the physical-chemical properties affecting the catalytic performance.  
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Experimental  

Catalyst preparation 

The sol-gel method, as described elsewhere 6
,  was used to obtain the catalysts. Briefly, 

stoichiometric amounts of metal nitrates precursor (La(NO3)3.6H2O, Mn(NO3)2.4H2O, 

Fe(NO3)3.9H2O, Co(NO3)2.6H2O, Ni(NO3)2.6H2O, Cu(NO3)2.3H2O, Zn(NO3)2.6H2O)  were 

dissolved using the minimum amount of distilled water to get a clear solution (Sol). The solution 

was heated till 70º C on a hot plate and then an appropriate amount of the citric acid 

monohydrate was added (As proposed in our previous work 6, the molar ratio of citric acid to the 

total nitrates in the solution mixture was kept at 0.525.) The mentioned solution was stirred 

vigorously and heated to 80°C for dehydration and, finally, a sticky gel was obtained which was 

burned by heating at 200 °C on a hot plate and turned into a dark powder. The powder was 

calcined in two steps: at 500°C for 1 hour, and, then, at 700°C for 5 hours.  

Catalyst characterization  

The determination  of crystalline phases was carried out using X-ray diffraction on a 

SIEMENS D500 diffractometer and Cu Kα radiation (λ = 1.54 ̊A). Diffractograms were 

recorded with a step of 4˚ per minute for 2θ between 20 and 80˚. The ICSD standards 

were utilized as patterns for the identification of phases in the diffractograms. The 

particle sizes (D) were evaluated by means of the Scherrer equation (D = Kλ/(β cos θ), 

where K is a constant equal to 0.89, λ is the wavelength of the X-ray and β is the 

effective line width of the X-ray reflexion).  

A Chembet-3000 apparatus was used for the H2-TPR experiments, and that were carried out 

under a 10 mL.min−1 flow of 5% H2 in Ar, using a heating 10 °C.min−1 up to 1000 °C.  

The BET surface area (m2/g) was analyzed and determined by N2 adsorption at 77 K by using an 

F-Sorb 3400 volumetric adsorption/desorption apparatus. Prior to measurement, the samples 

were degassed at 150 °C under vacuum for 3 hours. 

The surface composition and elemental chemical state of the samples were examined by XPS, 

using a Model VG ESCALAB apparatus with AlKa X-ray source. The binding energies were 

calibrated with respect to the signal for adventitious carbon (binding energy = 284.6 eV).  
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Finally, the surface morphology was determined by SEM using a Hitachi S3000N electron 

microscope (JEOL, Japan). 

Catalytic studies 

Figure 1 shows a simple scheme of catalytic set-up used. The CO + NO reaction was 

carried out in a straight quartz reactor (l = 2 cm, i.d. = 0.8 cm, where the 200 mg 

catalyst was inserted between two quartz wool plugs) at different temperatures under 

atmospheric pressure. Before reaction tests, the catalysts should be pretreated with air 

(40 cm3min-1) at 300°C for 2 hours. The total flow rate was 200 cm3min-1 and the gas 

composition was 3000 ppm NO and 3000 ppm CO balanced with Ar. Gas hourly space 

velocity (GHSV) was fixed about 12000 h-1 and the reaction temperature was 

controlled by using K-type thermocouple. 

A Shimadzu 2010 gas chromatograph (GC), equipped with a TCD detector and a HP-

Molesieve (Agilent, USA) column (l = 30 m, i.d. = 0.53 mm) with helium as carrier 

gas, was used to analyze the feed and product gases.  

 

Figure 1: Simple scheme of catalytic test set up for CO+NO reaction. 
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Results 

Catalysts characterization  

The XRD results of LaBO3 (B: Mn, Fe, Co, Ni) and La2CuO4 catalysts were presented in Figure 

2 and, as it is possible to be seen, the XRD pattern of LaMnO3, LaFeO3, LaCoO3, LaNiO3 and 

La2CuO4 catalysts are in agreement with standard patterns ICSD 082315, ICSD 084941, ICSD 

201763, ICSD 067717 and ICSD 019003, respectively. La2CuO4 XRD pattern shows the 

presence of some CuO (at 2Ɵ about 39 and 35).   

 

Figure 2: XRD results of LaBO3 B (Mn, Fe, Co, Ni) and La2CuO4 catalysts 

The Figure 3 shows XRD patterns of modified LaFeO3 catalysts compared with that of the pure 

LaFeO3 to feature the effect of the incorporation of the modifier metals in the structure of 
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7 

 

LaFeO3. Thus, the structure of LaFe0.7M0.3O3 (M: Mn, Co and Cu) is similar to LaFeO3 itself 

and, consequently, it can be concluded that there is not any second metal oxide phase in the 

catalyst structure. Figure 3b, where a comparison of the catalysts main peak is shown, reveals a 

shift due to the metals insertion in the LaFeO3 structure. The change of the unit cell size shown 

in table 1 proves that the metals were inserted into the LaFeO3 crystalline structure and did not 

form a second crystalline phase.  
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8 

 

Figure 3: XRD patterns of modified LaFeO3 catalysts compared with pure LaFeO3 (a) and 2Ɵ 
shift for different metals as modifier (b) 

Table 1: Unit cell parameters and cell volume for LaFeO3 catalyst before and after modification 
by other transition metals. 

Catalyst a (Å) b (Å) c (Å) Volume 

LaFeO3 5.56 5.56 7.89 243.90 

LaFe0.7Cu0.3O3 5.54 5.54 7.86 241.66 

LaFe0.7Mn0.3O3 5.52 5.53 7.83 238.92 

LaFe0.7Co0.3O3 5.51 5.52 7.81 237.81 

 

XPS studies 

The surface composition of LaFeO3, LaMnO3 and LaFe0.7Mn0.3O3 catalysts was determined. In 

Figure 4, XPS spectra of 2p3/2 area for Fe in LaFeO3 (a), Mn in LaMnO3 (b), Fe in 

LaFe0.7Mn0.3O3 (c) and Mn in LaFe0.7Mn0.3O3 can be seen. In Figure 4, peaks on about 710 ev, 

713 ev, 641 ev and 644 ev are assigned to Fe(III), Fe(IV), Mn(III) and Mn(IV), respectively.   
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c 

 

d 

Figure 4: XPS spectra of 2p3/2 area for Fe in LaFeO3 (a), Mn in LaMnO3 (b), Fe in 
LaFe0.7Mn0.3O3 (c) and Mn in LaFe0.7Mn0.3O3. 

In Figure 5, the XPS spectra of 1s area for oxygen in LaFeO3, LaMnO3 and LaFe0.7Mn0.3O3 are 

presented. In the three spectra, the first peak around the 529 ev corresponds to lattice oxygen, the 

second peak around the 531.5 ev is assigned to surface oxygen and the third peak at about 533.5 

ev belongs to adsorbed water.  
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Figure 5: XPS spectra of O 1s area for oxygen in LaFeO3, LaMnO3 and LaFe0.7Mn0.3O3 

BET results 

Surface area of catalysts were shown in table 2. LaMnO3 shows the highest surface area and 

LaFe0.7Mn0.3O3 the lowest one. The LaFe0.7Mn0.3O3 presents a surface area in between the two 

raw peovskite. 

Table 2: Surface area of LaFeO3, LaMnO3 and LaFe0.7Mn0.3O3 

Catalyst Number Catalyst Formulation BET (m2/gr) 

1 LaFeO3 7.8 

2 LaMnO3 40.5 

3 LaCoO3 25.7 

4 LaFe0.7Co0.3O3 18.9 

5 LaFe0.7Cu0.3O3 17.71 

6 LaFe0.7Mn0.3O3 32.3 

 

SEM analysis 

Figure 6 presents the SEM images of the catalysts where a defined morphology is not observed.  
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c 

Figure 6: SEM graph of a: LaFeO3, b: LaFe0.7Mn0.3O3 and c: LaMnO3 

 

H2- TPR results 

The reducible active sites of each catalyst were analyzed by using H2- TPR method, and the 

results are shown in Figure 7. The TPR profile for LaFeO3 shows two significant peaks starting 

from 410°C which can be assigned to the reduction of Fe(IV) and Fe(III), respectively 21. In 

addition, two significant peaks were revealed for LaMnO3 related to the reduction of Mn(IV) and 

Mn(III) starting from about 200°C and 700°C 22, 23.    
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Figure 7: TPR results for LaFeO3, LaMnO3 and LaFe0.7Mn0.3O3. 

 

For LaFe0.7Mn0.3O3, the H2-TPR profile change significantly and two significant peaks were 

observed; first peak starting from about 330°C can be assigned to the reduction of Mn(IV) and 

the second peak was a possible mixture of peaks related to the reduction of Fe(IV), Fe(III) and 

Mn(III). Additionally, it is clear from Figure 7 that the amount of reducible active sites for 

LaFe0.7Mn0.3O3 was significantly increased respect to LaFeO3 catalyst.  

Catalytic activity for CO + NO removal 

The catalytic performance of catalysts is shown in Figure 8, where it is observed that, as 

expected 3, 24, the NO and CO conversion increased with the reaction temperature for all 

catalysts. The difference between catalytic activities increased with the reaction temperature, 

being the largest at 400°C. At this temperature, the sequence of activity was LaFeO3> LaCoO3> 

La2CuO4> LaNiO3> LaMnO3> LaZnO3, so, LaFeO3 is the most active catalyst. 
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Figure 8: Catalytic activity of LaBO3 (B: Mn, Fe, Co, Ni and Zn) and La2CuO4 for NO reduction 
by CO. 
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For CO + NO reaction, the N2 is the desired product being N2O an intermediate and undesired 

product due its greenhouse effect (10 times larger than that of the CO). In Figure 9, N2O and N2 

yield of catalysts versus reaction temperature is shown.  

 

 

 

Figure 9: N2O and N2 of yield LaBO3 (B: Mn, Fe, Co, Ni and Zn) and La2CuO4 catalysts. 
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The N2O yield shows a volcano type behavior and the maximum in the N2O yield is reached for 

each catalyst at different reaction temperatures. The yield of N2O is higher for the more active 

catalysts including LaFeO3 and LaCoO3 because of the higher NO conversion. The maximum 

N2O yield is about 5% at 300ºC for the most active catalyst (LaFeO3) and decreased by 

increasing reaction temperature reaching zero at 500ºC approximately. Based on results of Figure 

8 and 9, the LaFeO3 is the most active catalyst with 100% N2 yield at high reaction temperatures 

and, therefore, this formulation has been selected to be modified (LaFe0.7M0.3O3 , being M: Mn, 

Co and Cu) using other active transition metals 6- 8. 

In Figure 10, the NO, CO conversion, N2O yield and N2 yield for the LaFe0.7M0.3O3 catalyst is 

shown. It is observed that the addition of Mn increased catalyst activity significantly, while 

addition of Cu and Co has not a significant effect at low temperatures and even resulted in a 

decrease of the activity at high reaction temperatures. Besides, from Figure 10.b it is deduced 

that addition of Mn, increases the N2O selectivity at low temperature, however, the N2O 

selectivity is acceptable and reaches zero at high temperatures.  
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b 
 

c 

Figure 10: NO conversion (a) and N2O yield (b) for LaFe0.7M0.3O3 (M: Mn, Cu and Co) catalysts. 

 

Discussion 

The modification of LaFeO3 by Mn resulted in an enhancement in catalytic activity for NO + CO 

reaction. Based on results which were presented in Figure 3, The LaFe0.7Mn0.3O3 catalyst has the 

similar crystal structure to LaFeO3 which means that the modifier metal (Mn) were not 

incorporated in any other metal oxide phase except the LaFe0.7Mn0.3O3. Also, slight shifts on 

XRD peaks of LaFe0.7Mn0.3O3 in comparison to LaFeO3, is a result of unit cell size change (table 

2) which happened because of Mn insertion into the LaFeO3 crystal structure. From  Figure 4 

and based on XPS analysis, it is deduced that the surface amount of Mn(IV) was increased for 

LaFe0.7Mn0.3O3 respect  to LaMnO3, this is because after incorporation of Mn in LaFeO3 

structure, the ratio of Mn(IV) to Mn(III) increased  from 0.373 to 0.694 for LaFe0.7Mn0.3O3. In 

fact, the simultaneous use of Mn with other transition metals as B ion leads to an increase in 

Mn(IV) to Mn(III) ratio 3. From the stoichiometric point of view, the Mn should be in Mn(III) 

state to achieve the  neutral compound. As consequence of the change from Mn (III) to Mn (IV), 
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structural defects should be created to maintain the compound neutrality.  Thus, the structural 

defects can be seen as an increase of surface oxygen vacancies as a result of the high Mn(IV) 

concentration in composition. On the other hand, the ratio of Fe(IV) to Fe(III) is 0.665 and 0.644 

for LaFeO3 and LaFe0.7Mn0.3O3, respectively, so, it is almost constant. In addition, based on the 

peaks area on Figure 5, the surface oxygen to lattice oxygen ratio is 0.301, 0.673 and 0.408 for 

LaFe0.7Mn0.3O3, LaFeO3 and LaMnO3, respectively. Thus, the lower surface oxygen to lattice 

oxygen ratio of LaFe0.7Mn0.3O3 confirms the larger amount of vacancies structural defects 

created. According to the mechanism established for CO + NO reaction 20, 24 by increasing the 

vacancies, the surface adsorption of the NO and CO reactants  was facilitated and, as a result, the 

catalytic activity was improved 24, 25. Besides, it is clear from H2-TPR results (Figure 7) that the 

amount of reducible active sites for LaFe0.7Mn0.3O3 catalyst was significantly increased respect 

to LaFeO3 catalyst. This is because the area of reduction peak about 600°C of LaFe0.7Mn0.3O3 is 

significantly larger respect to the same peak for LaFeO3. Since NO + CO is an 

oxidation/reduction reaction; the number of reducible active sites plays an important role. Thus, 

H2-TPR results are also in agreement with XPS analysis. 

On the other hand, the LaFe0.7Mn0.3O3 presents a surface area in between the two raw peovskites. 

This indicates that surface area cannot be the determining parameter for activity of synthesized 

catalysts. Also, there is not any significant change in the surface area of the synthesized catalysts 

before and after the modification. Moreover, SEM results are also in agreement with BET results 

as any specific surface morphology was not observed for synthesized catalysts.   

Therefore, the enhancement in Mn(IV) to Mn(III) ratio, an increase in amount of surface 

vacancies and on the reducible sites, are the key parameters determining the catalytic activity. 

 

Conclusion 

In the present study, different perovskite formulations, including La and a series of transition 

metals Mn, Fe, Co, Ni, Cu and Zn, were synthesized by using citrate method and tested in 

CO+NO reaction. LaFeO3 was selected for modification by using Mn, Co and Cu because its 

superior activity in comparison to other formulations. The catalytic activity of LaFeO3 which 

was modified by Mn (LaFe0.7M0.3O3) was increased significantly. The XRD analysis proved the 
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perovskite structure for catalysts and the insertion of modifier metals into the crystal structure of 

LaFeO3. The XPS analysis revealed that the increase of Mn (IV) to Mn (III) ratio, resulting in the 

enhancement of the structural defects. The mentioned defects increased the reducible active sites 

of LaFe0.7M0.3O3 catalyst and, as a consequence, the catalytic activity for NO+CO reaction, 

which is a oxidation/reduction reaction, is improved. 
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List of Figure captions 

 

Figure 1: Simple scheme of catalytic test set up for CO+NO reaction. 

Figure 2: XRD results of LaBO3 B (Mn, Fe, Co, Ni) and La2CuO4 catalysts 
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Figure 3: XRD patterns of modified LaFeO3 catalysts compared with pure LaFeO3 (a) and 2Ɵ 

shift for different metals as modifier (b) 

Figure 4: XPS spectra of 2p3/2 area for Fe in LaFeO3 (a), Mn in LaMnO3 (b), Fe in 

LaFe0.7Mn0.3O3 (c) and Mn in LaFe0.7Mn0.3O3. 

Figure 5: XPS spectra of O 1s area for oxygen in LaFeO3, LaMnO3 and LaFe0.7Mn0.3O3 

Figure 6: SEM graph of a: LaFeO3, b: LaFe0.7Mn0.3O3 and c: LaMnO3 

Figure 7: TPR results for LaFeO3, LaMnO3 and LaFe0.7Mn0.3O3. 

Figure 8: Catalytic activity of LaBO3 (B: Mn, Fe, Co, Ni and Zn) and La2CuO4 for NO reduction 

by CO. 

Figure 9: N2O and N2 of yield LaBO3 (B: Mn, Fe, Co, Ni and Zn) and La2CuO4 catalysts. 

Figure 10: NO conversion (a) and N2O yield (b) for LaFe0.7M0.3O3 (M: Mn, Cu and Co) catalysts. 
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