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Abstract
The problem (LFP ) of finding a feasible solution to a given linear

semi-infinite system arises in different contexts. This paper provides
an empirical comparative study of relaxation algorithms for (LFP ).
In this study we consider, together with the classical algorithm, imple-
mented with different values of the fixed parameter (the step size), a
new relaxation algorithm with random parameter which outperforms
the classical one in most test problems whatever fixed parameter is
taken. This new algorithm converges geometrically to a feasible so-
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parison have been implemented using the Extended Cutting Angle
Method (ECAM) for solving the global optimization subproblems.
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E-Mail: alberto.ferrer@upc.edu

‡Dep. of Statistics and Operations Research, Alicante University, 03071 Alicante,
Spain. E-Mail: mgoberna@ua.es.

§School of Engineering, Polytechnic University of Tulancingo, Tulancingo, Hidalgo,
MX. E-Mail: enrique.gonzalez@upt.edu.mx

¶Dep. of Physics and Mathematics, UDLAP, Puebla, MX. On leave from IMI-BAS,
Sofia, BG. E-Mail: maxim.todorov@udlap.mx

1

Usuario
Texto escrito a máquina
This is a previous version of the article published in Annals of Operations Research. 2017. doi:10.1007/s10479-016-2135-2

http://dx.doi.org/10.1007/s10479-016-2135-2


1 Introduction

This paper deals with linear feasibility problems of the form

(LFP ) Find x ∈ Rn such that a (t)⊤ x ≥ b (t) , ∀t ∈ T, (1)

where T is an infinite index set, a (t) := (a1 (t) , ..., an (t)) ∈ Rn and b (t) ∈ R
for all t ∈ T. We say that (LFP ) is semi-infinite as the number of unknowns
is finite while the number of constraints is infinite. We denote by

F =
{
x ∈ Rn : a (t)⊤ x ≥ b (t) , ∀t ∈ T

}
the set of solutions to (LFP ) .

Let us mention some fields where linear feasibility problems arise in a
natural way. A problem like (LFP ) has to be solved to get a starting point
when one applies a feasible direction method to some linear semi-infinite
program (an updated list of documented applications of linear semi-infinite
programming can be found in [26, Remark 1.3.3]). Some interesting applica-
tions of (LFP ) also include the image recovery problem [18] and the robust
optimization problem [12]. In particular, the feasibility of a robust linear
optimization problem can be reformulated as an example of (LFP ) [13]. For
more recent development for robust linear multi-objective optimization prob-
lem see [23] and [24]. Observe also that any convex (possibly semi-infinite)
feasibility problem

Find x ∈ Rn such that gs (x) ≤ 0, ∀s ∈ S,

can be linearized in different ways (e.g., as in [25, (7.10)] or [19, pp. 117-118])
giving rise to a problem like (LFP ). Thus, numerical methods for (LFP )
could be used to get a starting point when solving convex programs through
feasible direction methods (there exists a wide literature on the applications
of convex programming). Still in the framework of convex programming, a
particular instance of (LFP ) arises at each step of the subgradient methods
(which are slower than the Newton-like methods but allow to solve non-
differentiable convex programs). Indeed, given a convex non-differentiable
function f : Rn → R, such methods require the computation at step r of a
subgradient at the current iterate xr, i.e., they require to solve (LFP ) with T
being the domain of f, a (t) := xr − t, and b (t) := f(xr)− f(t). Analogously,
the computation of ε−subgradients and certain variational inequalities can
be reformulated in terms of (LFP ).
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It is well-known that the linear finite feasibility problem can be solved
by means of any linear programming method. Unfortunately, the same is
not true when T is infinite. The ellipsoid algorithm for finding a feasible
point in a convex set could potentially be adapted to solve (LFP ) , but no
implementation is known up to know (even though the ingredients for the
complexity analysis of such an implementation are already available [16]).
The adaptation of numerical methods conceived for different problems seems
also possible but not without difficulties. So, a natural way to tackle (LFP )
consists of reformulating it as convex finite feasibility problems by replacing
the infinitely many constraints a (t)⊤ x ≥ b (t) , t ∈ T, by a single convex

inequality φ(x) ≤ 0, where φ(x) := maxt∈T

(
b (t)− a (t)⊤ x

)
. Applying any

convex programming method to minimize φ, one could either find the aimed
solution of (LFP ) or conclude that no such solution exists. The drawback
with this approach is that minimizing φ is usually intractable as its Lipschitz
constant cannot be estimated or, even worst, it is not Lipschitz continuous
(unless one can replace Rn with some polytope). Another potential approach
consists of extending to infinitely many sets (in this case the half-spaces{
x ∈ Rn : a (t)⊤ x ≥ b (t)

}
, t ∈ T ) the Douglas-Rachford method for finite

families of closed convex sets [15], but proving the convergence could be a
hard task.

For all the reasons above, the unique available algorithms for solving
(LFP ) are semi-infinite variants of the classical relaxation method introduced
in 1954, independently, by Agmon and by Motzkin and Schoenberg, for the
linear finite feasibility problem. It is well-known that this method either
generates a finite sequence whose last elemement is a feasible solution or
generates an infinite sequence which comverges geometrically to some feasible
solution. Variants of the relaxation algorithm have strongly polynomial time
for special classes of the linear finite feasibility problems (see [6], [14] and
references therein). The semi-infinite fixed step relaxation algorithm can be
briefly described as follows: select a (relaxation) parameter λ ∈ (0, 2] and, if
the current iterate at step r ∈ N is xr /∈ F, compute the next iterate as

xr+1 := xr + λεr
a (tr)

∥a (tr) ∥
, (2)

where εr approximates the supremum µr of the distance from xr to the hy-

perplane Hr =
{
x ∈ Rn : a (tr)

⊤ x = b (tr)
}

determined by some constraint
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a (tr)
⊤ x ≥ b (tr) , tr ∈ T, violated by xr : λ = 1 in [33] and [34], while

λ ∈ (0, 2] in [27], [28], [29], and [30]. If εr = µr, x
r+1 is the projection of

xr onto Hr when λ = 1 and the symmetric of xr with respect to Hr when
λ = 2. All the mentioned works are focused on the convergence analysis and
provide few numerical examples (if any).

In this paper we propose a new relaxation algorithm where the user could
select a parameter ν ∈ (0, 2) and replace the fixed parameter λ in (2) by some
λr ∈ [ν, 2] depending on r. The sequence {λr} ⊂ [ν, 2] can be either predeter-
mined by the user or generated at random. In all our implementations of the
latter algorithm λr is a random variable uniformly distributed on [ν, 2]. This
is also the first work comparing the numerical efficiency of the relaxation
algorithms for (LFP ), with different values of the relevant parameters from
the efficiency point of view: λ in the case of relaxation with fixed step length
and ν in the case of relaxation with random step length.

Section 2 contains the necessary notation, the expression of the assump-
tions of the convergence theorems in terms of the data. We also mention some
features of the Extended Cutting Angle Method (ECAM) used to check the
feasibility of the current iterate xr and to construct the new iterate xr+1 (two
global optimization subproblems). Section 3 shows the convergence of the
new algorithm under some mild conditions while Section 4 shows its geomet-
ric convergence. Section 5 describes the numerical experiments to compare
the computational efficiency of several implementations of the classical and
the new relaxation algorithm, Finally, Section 6 provides the conclusions of
this comparative study. For the sake of completeness we include a first ap-
pendix providing complementary information on ECAM and a second one
containing a brief introduction to the performance profiles used to interpret
the numerical experiments.

2 Preliminaries

We start this section by introducing the necessary notation. The Euclidean
norm of x ∈ Rn is represented by ∥x∥ , the corresponding open ball centered
at x and radius ε > 0 by Bε (x) , and the zero vector by 0n. The Euclidean
distance in Rn is denoted by d. The L1 norm of x ∈ Rn is represented by
∥x∥1 . Given X ⊂ Rn, clX and bdX denote the closure and the boundary of
X, spanX the linear span of X, affX the affine hull of X, convX the convex
hull of X, and coneX := R+ convX the convex conical hull of X∪{0n}. If X
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is convex, dimX, riX, and extrX denote the dimension, the relative interior,
and the set of extreme points of X, respectively. We also denote by R(T ) the
space of mappings ξ : T → R with finite support {t ∈ T : ξ (t) ̸= 0} , and by

R(T )
+ its positive cone.
The graph of a real-valued function f is denoted by gph f and its do-

main by dom f ; moreover, given x ∈ dom f, the gradient and the convex
subdifferential of f at x are denoted by ∇f (x) and ∂f (x) , when they exist.

We associate with (LFP ), corresponding to the linear system
{
a (t)⊤ x ≥ b (t) , t ∈ T

}
,

the so-called reference cone

K (a, b) := cl cone {(a (t) , b (t)) , t ∈ T ; (0n,−1)} ,

where a ∈ (Rn)T and b ∈ RT are the functions t 7→ a (t) and t 7→ b (t) , re-
spectively. The existence theorem for linear semi-infinite systems establishes
that F ̸= ∅ if and only if (0n, 1) /∈ K (a, b) while the Farkas lemma asserts
that, given F ̸= ∅ and (c, d) ∈ Rn+1, c⊤x ≥ d holds for all x ∈ F if and only
the coefficient’s vector (c, d) ∈ K (a, b) [25, Chapter 3]. Consequently,

aff F =
∩

(c,d)∈H

{
x ∈ Rn : c⊤x = d

}
,

where H := {(c, d) ∈ Rn+1 : span {(c, d)} ⊂ K (a, b)} . Then, dimF = n if
and only if H = {0n+1} if and only if K (a, b) contains no line [25, Corollary
3.1.1 and Theorem 5.8]. Thus, the condition for the convergence of the
relaxation algorithm with arbitrary starting point x0, dimF = n (or the
weakest one that x0 ∈ aff F ) can be expressed in terms of the data, but
unfortunately, it can hardy be verified in practice.

We solve the global optimization subproblems in the implementations of
the relaxation algorithms by means of the Extended Cutting Angle Method
(ECAM in short). ECAM solves optimization problems of the form

inf {f(x) : x ∈ X} , (3)

where f is Lipschitz continuous with known Lipschitz constant andX ⊂ Rn is
a polytope (i.e., a bounded convex polyhedral set). We denote by infX f ∈ R
the optimal value of (3). ECAM is briefly described in Appendix 1. We shall
use the following two lemmas to get the Lipschitz constants for the functions
involved in the subproblems to be solved by the relaxation algorithms in this
paper. The first lemma deals with the generation of Lipschitz continuous
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functions from functions of the same class while the second lemma exploits
the smoothness of the functions and the convexity of their domains. The
proofs can be found in the standard literature on the subject (see, e.g., [21,
Chapter 12] and [32, Proposition 5.1]).

Lemma 1 Let f1, f2 : T → R be Lipschitz continuous on T with constants
L1, L2. Then the following statements hold:
(i) If supT |fi| ≤ Mi < +∞, i = 1, 2, then the product f1f2 is Lipschitz
continuous on T with Lipschitz modulus (the smallest Lipschitz constant) at
most M1L2 +M2L1.
(ii) If 0 < m1 ≤ infT |f1| and supT |f2| ≤ M2 < +∞, then, f2

f1
is Lipschitz

continuous on T with Lipschitz modulus at most L2

m1
+ M2L1

m2
1
.

With f ∈ C1 (T ) we mean that f is continuously differentiable on an open
set containing T ⊂ Rm, m ∈ N.

Lemma 2 Let T ⊂ Rm be a non-singleton compact convex set and f ∈
C1 (T ) . Then, f is Lipschitz continuous on T with Lipschitz modulus at most
maxT ∥∇f∥ .

3 Convergence of the extended relaxation al-

gorithm

From now on we assume that a (t) ̸= 0n for all t ∈ T, so that the function
g(·, x) := a(·)⊤x−b(·) is well-defined for all x ∈ Rn. Moreover, g(·, x) satisfies
infT

g(·,x)
∥a(·)∥ ̸= −∞ as, in the contrary, there exists a sequence {tk} ⊂ T such

that g(tk,x)
∥a(tk)∥

→ −∞ as k → ∞ and, taking into account that
∥∥∥a(tk)

⊤x
∥a(tk)∥

∥∥∥ ≤ ∥x∥ ,

we have b(tk)
∥a(tk)∥

→ +∞, which in turn implies that a(tk)
b(tk)

→ 0n as k → ∞.

So, (0n, 1) ∈ K (a, b) (contradiction). Consequently, the extended relaxation
algorithm (ERA in short) described in Table 1, where the step length is not
necessarily predetermined, is well-defined too.
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Table 1: Extended relaxation algorithm, ERA

Procedure: ERA

Initialization:
Select M > 1, β0 > 0, τ > 0 (precision), ν ∈]0, 2];
Choose x0 ∈ Rn;
r := 0 (set to zero initial iteration),
β := β0 (value for the initial β-global optimal solution),
non stop:=true (binary variable);

begin
while (non stop) do

Obtain (via ECAM) εr, a β-global optimal solution by solving the problem:

µr − β < εr :=
b(tr)−a(tr)⊤xr

∥a(tr)∥ ≤ µr := − inf
{

a(t)⊤xr−b(t)
∥a(t)∥ : t ∈ T

}
; (4)

if(εr ≥ τ) then
if(β < εr(M − 1)) then

Choose λr ∈ [ν, 2] (in some way);

xr+1 := xr + λrεr
a(tr)

∥a(tr)∥ ;

r := r + 1;
else

β := β/2;
endif

else
non stop:=false;

endif
endwhile
return xr, a feasible solution;

end
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Before to proceed further, we shall make some comments. The parameter
β represents the accuracy level required for the subproblem (4) to be solved
at step r, whose exact optimal value is denoted by µr, while tr and εr are a β-
global optimal solution. If β < εr (M − 1) one can compute directly the new
iterate; if not, β is replaced by a smaller positive scalar of the form β

2k
, k ∈ N,

until the previous inequality holds. The necessity of enforcing β < εr (M − 1)
at each step comes from the fact that this inequality guarantees that µr → 0,
which is the main ingredient of the convergence proof of Theorem 6 below

Obviously, ERA can be implemented in different ways, e.g., by taking
λr = λ (a fixed parameter in [ν, 2]) for each r = 0, 1, 2, . . . (the classical fixed
step relaxation algorithm FISRA), by choosing a predetermined sequence
{λr} ⊂ [ν, 2] , or by picking up the parameter λr at random in some subinter-
val of [ν, 2] (the new random step relaxation algorithm RASRA). Iteration r

of ERA requires a β−global optimal solution of − inf
{

g(·,xr)
∥a(·)∥ : t ∈ T

}
, where

xr is the current iterate. This can be done via ECAM provided that these
functions are Lipschitz continuous with known Lipschitz constants on a poly-
tope T contained in some Euclidean space (in most practical applications the
index set T is a low dimensional box, usually with dimT ∈ {1, 2}).

The next two results can be useful in order to apply ECAM to the sub-
problems of ERA. The first one involves the constants

B := inf
t∈T

∥a (t) ∥, N := sup
t∈T

∥a (t) ∥, and P := sup
t∈T

|b (t)| . (5)

The first two constants, B and N, play an important role in the proof of the
convergence Theorem 11, where we shall assume that B > 0 and N < +∞.
Observe that B > 0 and N,P < +∞ whenever T is a compact set, a : T →
Rn and b : T → R are continuous.

Proposition 3 Let b, a1, ..., an be Lipschitz continuous on T ⊂ Rm, with
Lipschitz constants L0, L1,..., Ln, and assume that B > 0 and N,P < +∞.

Denote L := (L1, ..., Ln) ∈ Rn and let xr = (xr
1, ..., x

r
n) ∈ Rn. Then g(·,xr)

∥a(·)∥ is
Lipschitz continuous on T with Lipschitz modulus at most

1

B
(L0 + ∥L∥ ∥xr∥) + N

B3
(P +N ∥xr∥) ∥L∥1 . (6)

Proof. Since g(·, xr) =
n∑

i=1

xr
iai (·) − b (·) is a linear combination of n + 1

Lipschitz continuous functions with Lipschitz constants L1, ..., Ln and L0, we
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get that g(·, xr) is Lipschitz continuous on T with Lipschitz modulus at most
L0 + ∥L∥ ∥xr∥ .
By Lemma 1(i), for each i = 1, ..., n, ai (·)2 is Lipschitz continuous on T

with Lipschitz modulus at most 2NLi. So, ∥a (·) ∥2 =
n∑

i=1

ai (·)2 is Lipschitz

continuous on T with Lipschitz modulus at most 2N ∥L∥1 . Thus, if t, s ∈ T,
we have

|∥a (t) ∥ − ∥a (s) ∥| =
∣∣∣∣∥a (t) ∥2 − ∥a (s) ∥2

∥a (t) ∥+ ∥a (s) ∥

∣∣∣∣ ≤ (
N ∥L∥1

B

)
∥t− s∥ ,

which shows that ∥a (·) ∥ is Lipschitz continuous on T with Lipschitz modulus

at most
N∥L∥1

B
.

Observe also that, given t ∈ T,

|g(t, xr)| ≤ |b (t)|+ ∥xr∥ ∥a (t) ∥ ≤ P +N ∥xr∥ . (7)

Now we apply Lemma 1(ii) to the functions f1 = ∥a (·) ∥ and f2 = g(·, xr),
with 0 < B ≤ infT |f1| and

sup
T

|f2| = sup
T

|g(·, xr)| ≤ P +N ∥xr∥ < +∞

by (7). Then we get (6).
Let us introduce two additional constants when b, a1, ..., an ∈ C1 (T ) and

T is compact:

Q := max
i=1,...,n;t∈T

∥∇ai (t)∥ and R := max
t∈T

∥∇b (t)∥ .

Proposition 4 Let T ⊂ Rm be a non-singleton compact convex set, b, a1, ..., an ∈
C1 (T ) , and assume that B > 0. Then, given xr ∈ Rn, g(·,xr)

∥a(·)∥ is Lipschitz con-
tinuous on T with Lipschitz modulus at most(

N

B3

)
[B (∥xr∥1 Q+R) + (P +N ∥xr∥)nQ] . (8)

Proof. Observe that

∇t
g(t, xr)

∥a (t) ∥
=

∥a (t) ∥∇tg(t, x
r)− g(t, xr)∇ (∥a (t) ∥)
∥a (t) ∥2

.
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Since maxt∈T ∥a (t) ∥ ≤ N, then

max
t∈T

∥∇tg(t, x
r)∥ ≤ ∥xr∥1 Q+R,

and
max
t∈T

as |g(t, xr)| ≤ P +N ∥xr∥ .

Since

∥∇ (∥a (t) ∥)∥ = ∥a (t) ∥−1
∥∥∥∑

i=1,...,n
ai (t)∇ai (t)

∥∥∥ ≤ nB−1NQ, ∀t ∈ T,

one has maxt∈T ∥∇ (∥a (t) ∥)∥ ≤ nB−1NQ, which together with mint∈T ∥a (t) ∥2 ≥
B2 shows that maxt∈T

∥∥∥∇t

(
g(t,xr)
∥a(t)∥

)∥∥∥ is not greater than the real number in

(8). Lemma 2 yields the aimed conclusion.

Example 5 In robust linear programming with uncertain constraints (see,
e.g., [24, Section 3]), one assumes that the objective function x 7→ c⊤x is
deterministic while the coefficient vectors of the p given constraints take val-
ues on given (generally infinite) uncertainty sets Uj, j = 1, . . . , p. The robust
feasible solutions are the feasible solutions of the so-called robust counterpart
problem

min
{
c⊤x : a⊤j x ≥ bj, ∀(aj, bj) ∈ Uj, j = 1, . . . , p

}
.

So, computing a robust feasible solution is the linear feasibility problem

(LFP ) Find x ∈ Rn such that a⊤x ≥ b, ∀(a, b) ∈ T, (9)

where T =
∪

j=1,...,p

Uj, which can be written as (LFP ) in (1), with a : T → Rn

such that a (t1, ..., tn+1) = (t1, ..., tn) and b : T → R such that b (t1, ..., tn+1) =
tn+1. Observe that T is compact whenever Uj is compact for all j = 1, . . . , p.

Obviously, the projection functions ai (·) and b (·) are Lipschitz contin-
uous with Lipschitz moduli equal to 1. Most robust decision makers choose
uncertainty sets of the form

Uj := (aj, bj) + αjU , j = 1, . . . , p, (10)

where (aj, bj) ∈ Rn+1 are deterministic vectors and αj ≥ 0, j = 1, . . . , p,
while U denotes the closed unit ball for some norm on Rn+1. For simplicity
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we consider here the affine constraint data perturbations model (9)-(10) with
U =B1 (0n+1) . ERA is well defined provided that a (t) ̸= 0n for all t ∈ T, i.e.,

∥aj∥ > αj, j = 1, . . . , p,

or, equivalently, B := infj=1,...,p (∥aj∥ − αj) > 0. If xr ∈ Rn is the present

iterate, by Proposition 3, g(·,xr)
∥a(·)∥ is Lipschitz continuous on T with Lipschitz

modulus at most

1

B

(
1 +

√
n ∥xr∥

)
+

nN

B3
(P +N ∥xr∥) ,

where

N = sup
j=1,...,p

(∥aj∥+ αj) and P = sup
j=1,...,p

max
{∣∣bj − αj

∣∣ , ∣∣bj + αj

∣∣} .

Other Lipschitz constants can be obtained for other norms in a similar way.
When the unit ball U is a polytope (e.g. for the L1 and the L∞ norms),

one can reformulate (LFP ) in (9)-(10) as

(LFP ) Find x ∈ Rn such that t⊤ (x,−1) ≥ 0, t ∈ T,

where T = conv

[ ∪
j=1,...,p

(
(aj, bj) + αj extrU

)]
is a polytope in Rn+1. Observe

that Q = R = 1, but Proposition 4 does not applies as T is the union of p
closed balls and, so, generally non-convex for p ≥ 2.
According to [24, Theorem 4], (LFP ) has solutions, i.e. F ̸= ∅, whenever
maxj=1,...,p αj is less than the distance from the so-called hypographical set

conv
{
(aj, bj), j = 1, . . . , p

}
+ R+ {(0n,−1)}

to the origin 0n+1. This distance can be computed by solving a quadratic
programming problem. Unfortunately, the assumption that dimF = n in the
convergence theorems below, which can be expressed in terms of the data as
the requirement that the convex cone

cl
(∑

i=1,..,pR+ cone
{
(aj, bj) + αjU

}
+ R+ {(0n,−1)}

)
contains no line , is not checkable. In other words, the user must apply ERA
assuming that dimF = n and conclude that dimF < n for those feasibility
problems for which the generated sequence {xr} does not converge to some
feasible solution.
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Now, we shall modify the proof of the convergence of FISRA, [29, Theo-
rem 3], in order to get the new proof of the convergence of ERA.

Theorem 6 (Convergence) Assume that dimF = n. Let x0 ∈ Rn and
ν ∈ ]0, 2[ . If for each r = 0, 1, 2, . . . we chose an arbitrary λr ∈ [ν, 2], ERA
either ends after a finite number of steps, or generates an infinite sequence
{xr} converging to some element of F .

Proof. Observe that, if ERA generates a finite sequence, the last point is
an approximate solution to (LFP ) . So, we can assume w.l.o.g. that {xr} is
an infinite sequence of infeasible points.

For each t ∈ T we denote Ht = {x ∈ Rn : a (t)⊤ x = b (t)}. Given r ∈ N,
we have µr > 0, i.e., xr /∈ Htr for some tr ∈ T. Thus, xr+1 belongs to the
half-line emanating from xr in the direction of a (tr) , with d (xr+1, xr) = λrεr.

By hypothesis, there exist z ∈ Rn and δ > 0 such that

Bδ(z) ⊂ F ⊂ {x ∈ Rn : a (tr)
⊤ x ≥ b (tr)}, r = 1, 2, . . .

and ρtr :=d(z,Htr) ≥ δ.
By construction, the line determined by xr and xr+1, aff {xr, xr+1} , is

orthogonal to Htr . Let hr = d (z, aff {xr, xr+1}) . We select a coordinate
system in the hyperplane aff{xr, xr+1, z} such that the abscissa axis is the line
aff {xr, xr+1} , oriented in the direction from xr to xr+1, the axis of ordinates is
the line orthogonal to aff {xr, xr+1} , oriented in such a way that z belongs to
the first quadrant, and the origin is located at Htr ∩aff {xr, xr+1} . With this
oriented system, the coordinates of the xr are (−εr, 0), the coordinates of x

r+1

are ((λr−1)εr, 0) = (ξrεr, 0), with λr−1 = ξr ∈ ]−1, 1] , and the coordinates
of z are (ρtr , hr), with hr ≥ 0 (the case when dim aff{xr, xr+1, z} = 1 and
hr = 0 is trivial). Figure 1 illustrates the notations, which are the same as
in [29, Theorem 3].
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Figure 1: Coordinate system involving aff{xr, xr+1} and the hyperplane Htr .

Following exactly the same steps as in the beginning of the proof of [29,
Theorem 3], we obtain the following inequality

r−1∑
k=0

(1 + ξk)εk ≤
1

2δ
∥x0 − z∥2.

Since ξk = λk − 1 and ν ≤ λk for all k = 0, . . . , r − 1, one gets

r−1∑
k=0

νεk ≤
r−1∑
k=0

λkεk ≤
1

2δ
∥x0 − z∥2, (11)

which gives
r−1∑
k=0

εk ≤
1

2δν
∥x0 − z∥2. (12)

Defining ηr−1 :=
∑r−1

k=0 εk, and K := 1
2νδ

∥x0 − z∥2, from (12) we get 0 ≤
ηr−1 ≤ K for all r ∈ N. As the sequence {ηr} is bounded and increasing, it
is convergent, with 0 ≤ limr ηr ≤ K. Hence,

∑∞
r=0 εr converges as well (and

limr εr = 0).
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We have that |µr − εr| < β, for every r = 1, 2, ..., and require at each
step that β < εr(M − 1), which is equivalent to β + εr < εrM. But, we have
that β + εr > µr, whereby

µr

M
< εr ≤ µr,

i.e., 0 < µr < εrM , so, we get limr µr = 0.
From (11) we have

r−1∑
k=0

λkεk ≤
1

2δ
∥x0 − z∥2,

but, from the definition of ERA, we have

λkεk = ∥xr − xr+1∥.

So,
r−1∑
k=0

∥xr − xr+1∥ ≤ 1

2δ
∥x0 − z∥2

and then the series
∑∞

r=0 ∥xr − xr+1∥ converges. Therefore,
∑∞

r=0(x
r − xr+1)

is absolutely convergent (see, e.g., [5, Theorem 26.7]), and we conclude the
existence of some x̂ ∈ Rn such that limr x

r = x̂.
It remains to show that x̂ ∈ F . For any t ∈ T , and for all r ∈ N we have

−g(t, xr)

∥a (t) ∥
=

b (t)− a (t)⊤ xr

∥a (t) ∥
≤

{
µr, if g(t, xr) < 0,
0, otherwise.

(13)

Passing to the limit in (13) as r →∞ we get b(t)−a(t)⊤x̂
∥a(t)∥ ≤ 0, for all t ∈ T , and

this proves that x̂ ∈ F .
Observe that when dimF = n and ERA generates an infinite sequence

{xr}, its limit x̂ ∈ bdF as xr ∈ Rn⧹F for all r ∈ N.
The next example shows that the non-degeneracy assumption that dimF =

n in Theorem 6 is not superfluous. Even more, the computational experience
in Section 4 shows that the convergence is quite slow whenever the condition
number of F (assumed to be bounded), say cond (F ) , defined as the quo-
tient of the smallest width of F by the greatest one, is small. Obviously, for
a compact convex set set F, dimF < n if and only if cond (F ) = 0.
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Example 7 The simple feasibility problem

(LFP ) Find x ∈ R2 s.t. − d (cos t) x1 − c (sin t)x2 ≥ −cd, ∀t ∈ [0, 2π],

where c and d are two given positive numbers, illustrates the difficulties en-
countered by ERA when solving feasibility problems when dimF = n but

cond (F ) is very small. It is easy to see that F =
{
x ∈ R2 :

x2
1

c2
+

x2
2

d2
≤ 1

}
,

with cond (F ) = min
{

c
d
, d
c

}
. Assuming that ERA generates an infinite se-

quence {xr} whose limit x̂ ̸= (±c, 0) , and that 0 < d < c, xr
2 ̸= 0 for

sufficiently large r because xr
2 → x̂2 ̸= 0 (as the unique points x ∈ bdF such

that x2 = 0 are (±c, 0)), d
dt

(
g(xr,t)
∥a(t)∥

)
t=0

= − c
d
xr
2, and∣∣∣∣ ddt

(
g (xr, t)

∥a (t)∥

)
t=0

∣∣∣∣ = |xr
2|

cond (F )
→ +∞ as cond (F ) → 0.

Hence the Lipschitz modulus of g(xr,t)
∥a(t)∥ tends to +∞ too as cond (F ) tends

to zero, making ECAM to become inefficient to solve the global optimiza-
tion subproblems. This theoretical observation is coherent with the empirical
results shown in Table 2 (see Subsection 5.2).

Consider now the limit case that d = 0 while c > 0. Obviously, F =
R×{0} with dimF < n = 2. Recall that ERA selects at step r a parameter
λr ∈ (0, 2] and, if the current iterate is xr /∈ F, computes the next iterate
by (2), with εr approximating the supremum µr = d (xr, Hr) , where Hr ={
x ∈ Rn : a (tr)

⊤ x = b (tr)
}
is the hyperplane determined by some constraint

violated by xr. Consider (LFP ) with d = 0 and take εr = µr for all r. Given
xr /∈ F (i.e., xr

2 ̸= 0), Hr = F (the x axis), and gph g (·, xr) is the curve in
red (in blue) in Figure 2 whenever xr

2 > 0 (xr
2 < 0, respectively), so that

argmin g (t, xr) =

{ {
3π
2

}
, if xr

2 > 0,{
π
2

}
, if xr

2 < 0.
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Figure 2: Graphs of the functions g(·, xr) and g(·,xr)
∥a(·)∥ .

Figure 2 shows the graph of the piecewise linear function g (·, xr) (repre-
sented with dashed points) and the graph of the smooth function to be mini-

mized at step r, g(·,xr)
∥a(·)∥ , in both cases in red (blue) whenever xr

2 > 0 (xr
2 < 0,

respectively). We now apply FISRA with different choices of the step size λ
and the initial point x0. As Figure 3 shows, the results are as follows:

i) If λ = 0.5 and x0 = (−7, 4), then FISRA generates an infinite sequence
{xr} → x∗ ∈ F contained in the open half-plane x2 > 0.

ii) If λ = 1.0 and x0 = (−3, 4), then FISRA provides a point of x∗ ∈ F in
just one iteration.

iii) If λ = 1.5 and x0 = (3, 4), then FISRA generates again an infinite
sequence {xr} → x∗ ∈ F, whose even (odd) terms are contained in the
open half-plane x2 > 0 (x2 < 0, respectively).

iv) If λ = 2.0 and x0 = (7, 4), then FISRA fails (the oscillating sequence
xr =

(
7, (−1)r+1 4

)
does not converge).
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Figure 3: Different choices of the step size λ and the initial point x0

Remark 8 ERA can be conceptually adapted to the unrealistic situation in
which dim F = m < n and the affine hull of F is known, i.e., aff F = p+V ,
for a given p ∈ Rn and a given linear subspace V of dimension m. We thus
have:

• The translation x = z + p allows us to replace F with a closed convex
set

F :=
{
z ∈ Rn : a (t)⊤ z − b (t) ≥ 0, ∀t ∈ T

}
,

with b (·) = b (·)− a (·)⊤ p, so that F = F + p and aff F = V.

• We can complete an arbitrary basis {v1, . . . , vm} of V with n−m lin-
early independent vectors {wm+1, . . . , wn} to get a basis of Rn. Thus,
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Rn = V ⊕W.

• We can find a n×n non-singular matrix B = [B1 | B2] , with B1 (n×m)

and B2 (n× (n−m)) , such that z = B

(
y1

y2

)
, where y = (y1, y2) ∈

Rm×Rn−m is the vector formed by the coordinates of z ∈ Rn in the basis
{v1, . . . , vm;wm+1, . . . , wn}. Observe that y2 = 0 for all y ∈ V = aff F .

• The result of replacing z = B

(
y1

0n−m

)
in the linear system{

a (t)⊤ z − b (t) ≥ 0, ∀t ∈ T
}

is the system
{
ã (t)⊤ y1 − b (t) ≥ 0, ∀t ∈ T

}
, with ã (·) = B⊤

1 a (·) .

• Then ERA allows to compute an element ŷ1 of

F̃ :=
{
y1 ∈ Rm : ã (t)⊤ z − b (t) ≥ 0, ∀t ∈ T

}
as dim F̃ = dimF = m (i.e. F̃ has full dimension in Rm). So, x̂ :=

p+B

(
ŷ1

0n−m

)
∈ F.

4 Rate of convergence of ERA

The objective of this section is to show that, taking λr ∈ [ν, µ] ⊂ (0, 2) for
all r ∈ N, the rate of convergence of ERA is geometric. To prove it we need
two lemmas.

Lemma 9 [1, Lemma 2.1]Let λ ∈ [0, 2] and x, y ∈ Rn be separated by the
hyperplane H = {x ∈ Rn : a⊤x = b}, that is a⊤x < b and a⊤y ≥ b. Then

∥x+ λ (xH − x)− y∥2 ≤ ∥x− y∥2 − λ (2− λ) ∥xH − x∥2 , (14)

where xH is the orthogonal projection of x on H. The equality holds if λ = 0,
or λ = 2 and y ∈ H.

We also need the following extension of [33, Lemma 1], whose assumptions
involve the smallest and greatest distances from 0n to the set {a (t) : t ∈ T}
introduced in (5): B := inft∈T ∥a (t) ∥ ∈ R+ and N := supt∈T ∥a (t) ∥ ∈
R+ ∪ {+∞} , respectively.
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Lemma 10 [27, Lemma 5] Assume that ERA generates an infinite sequence
{xr}. If dimF = n, B > 0 and N < +∞, then there exists a constant
0 < γ < 1 such that µr ≥ γd(xr, F ) for all r = 0, 1, 2, ... .

Now, we are ready to prove the following theorem on the rate of conver-
gence of ERA.

Theorem 11 (Geometric convergence) Let λr ∈ [ν, µ] ⊂ (0, 2) for all
r = 0, 1, 2, . . ., with ν < µ, and assume that ERA generates an infinite
sequence {xr}. If dimF = n, B > 0 and N < +∞, then there exist M > 1,
0 < θ < 1, and x̄ ∈ F such that x̄ = limr x

r and

∥xr − x̄∥ ≤ θr∥x0 − x̄∥ (15)

for all r big enough.

Proof. From the definition of εr, we have εr = ∥xr − xHtr
∥, where xHtr

is
the orthogonal projection of xr on the hyperplane Htr . We know that

εr >
µr

M
, r = 0, 1, .... (16)

Let us replace x by xr, y by yr and λ by λr in the inequality (14), where yr

be the point in F such that ∥xr − yr∥ = d(xr, F ), that is, yr is the projection
of xr on F. From Lemma 9, Lemma 10 and the fact that ∥xr+1 − yr+1∥2 ≤
∥xr+1 − yr∥2, we get

∥xr+1 − yr+1∥2 ≤ ∥xr+1 − yr∥2 ≤ ∥xr − yr∥2 − λr (2− λr) ∥xr − xHtr
∥2

= ∥xr − yr∥2 − λr (2− λr) ε
2
r

≤ ∥xr − yr∥2 − λr (2− λr)µ
2
r

M2

≤ ∥xr − yr∥2 − λr (2− λr) γ
2

M2
∥xr − yr∥2

= ∥xr − yr∥2(1− λr (2− λr) γ
2M−2). (17)

Let us define ζ := min [ν (2− ν) , µ (2− µ)] . Then 0 < ζ ≤ λr (2− λr) ≤
1, r = 0, 1, ....Thus, for a sufficiently large M we have 0 < σ = (1 −
ζγ2M−2)

1
2 < 1 and, making use of (17) repeatedly, we get

∥xr+1 − yr+1∥ ≤ σr+1∥x0 − y0∥.
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Since x̄ and xr are in the ball B∥xr−yr∥(y
r) for each r = 0, 1, 2, ..., we finally

obtain

1

2
∥xr+1 − x̄∥ ≤ ∥xr+1 − yr+1∥ ≤ σr+1∥x0 − y0∥ ≤ σr+1∥x0 − x̄∥, (18)

which proves the theorem for any θ such that σ < θ < 1.

Remark 12 From (18), it would be convenient estimating the smallest σ
such that (15) holds for any θ such that σ < θ < 1, for sufficiently large

values of r. Assuming M > 1, we can chose M > max
{
1, ζ

1
2γ

}
= 1, because

ζ ∈ (0, 1) and γ ∈ (0, 1) . This means that (1− ζγ2)
1
2 < σ < 1.

5 Numerical results

In this section we present the results of numerical experiments to compare
different implementations of FISRA (depending on the fixed value of λ ∈
(0, 2]) and RASRA (depending on the chosen distribution for λr). In the
latter case, we have chosen uniform distributions on intervals of the form
[ν, 2] , with 0 < ν < 2, but other distributions on subintervals of (0, 2] could
be used. Observe that, for the chosen distribution of λr, RASRA converges,
but the convergence could be slow as we may have λr = 2.

5.1 Test problems

A total of 27 linear feasibility test problems have been selected satisfying
the assumption guaranteeing the convergence of the relaxation algorithms
(dimF = n) and the conditions allowing to check the feasibility of the cur-
rent iterate though ECAM (T polyhedral and Lipschitzian data functions).
From the test problems, and by considering several distances from the ran-
domly generated initial point to the origin, we have obtained 41 different
test instances (see Tables 2 and 3). These distances are significative in this
study because they increase the computational time. Nevertheless, in prac-
tice we don’t know how far the initial point is from F . So, we do not consider
necessary to work with initial points far from the origin since this fact in-
creases the complexity of the functions to be optimized. In our experiments
we have selected distances 10, 20 and 50, just to illustrate the difficulties
associated with high distances. Instances from No. 1 to No. 12 have been
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generated from ellipses with decreasing condition number (cond (F )), which
is indicated between parenthesis. Instances from No. 13 to No. 21 come
from [31, Examples 8, 9 and 10]. Finally, instances from No. 22 to No. 41
have been generated by using the procedure described in [22]. In this latter
case we can generate test problems without limitations on the number, n, of
variables and the dimension, m := dimT , of the index set.

5.2 Computational results

The numerical experiments, which are summarized in four tables, were car-
ried out on a PC with Processor Intel(R) Core(TM) i5-4200U CPU 1.60−2.30
GHz and 8 GB of RAM (MS Windows7 enterprise). In Tables 2 and 3, Num
denotes the number assigned to the instance, Name indicates the name of
the instance, and Iter and Time represent the number of iterations and the
CPUTime required for obtaining a feasible solution, respectively. Table 2
describes instances with λr = λ for all r ∈ N (constant sequences) while Ta-
ble 3 describes instances with random values of λr. The maximum number
of iterations was limited to 400 for all instances. When the algorithm needs
more than 400 iterations to attain a solution of (LFP ), then we consider
that the solver has failed in solving the problem. The failure of a solver is
indicated with a star (∗), in the column indicating the number of iterations.
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Table 2: Fixed value of λr ∈]0, 2]
λr = 0.1 λr = 0.4 λr = 0.7 λr = 1.0 λr = 1.2 λr = 1.5 λr = 1.8 λr = 2.0

Num Name (cond (F )) n m Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time

1 elps.5.4.10 (0.8) 2 1 324 16.084 68 2.387 30 1.045 1 0.047 1 0.047 1 0.046 1 0.047 1 0.031
2 elps.5.4.20 2 1 334 16.240 70 2.433 31 1.092 3 0.109 1 0.047 1 0.031 2 0.063 2 0.078
3 elps.5.4.50 2 1 344 16.848 72 3.510 32 1.592 3 0.156 2 0.093 2 0.094 4 0.171 6 0.266
4 elps.5.3.10 (0.6) 2 1 325 15.921 68 2.964 30 1.326 3 0.140 1 0.062 1 0.047 1 0.047 2 0.062
5 elps.5.3.20 2 1 332 15.943 70 3.105 31 1.419 3 0.156 1 0.063 2 0.078 2 0.093 3 0.125
6 elps.5.3.50 2 1 345 16.676 72 3.464 31 1.513 3 0.156 2 0.093 3 0.125 5 0.219 8 0.327
7 elps.5.1.10 (0.2) 2 1 326 19.936 69 3.027 30 1.326 1 0.047 2 0.093 2 0.063 3 0.093 4 0.094
8 elps.5.1.20 2 1 334 20.546 70 4.305 31 1.903 2 0.125 2 0.109 3 0.110 5 0.187 9 0.312
9 elps.5.1.50 2 1 344 20.780 72 3.510 31 1.528 2 0.110 2 0.078 4 0.124 8 0.219 22 0.639
10 elps.5.01.10 (0.002) 2 1 328 18.798 69 2.886 30 1.264 2 0.093 3 0.125 6 0.203 12 0.296 401* 72.915
11 elps.5.01.20 2 1 335 19.235 66 2.777 31 1.310 1 0.047 4 0.172 7 0.234 17 0.421 401* 74.459
12 elps.5.01.50 2 1 345 20.545 67 2.823 32 1.389 2 0.109 4 0.125 7 0.171 20 0.406 401* 68.359
13 GT14.ex8.10 2 1 334 8.666 70 1.607 31 0.702 1 0.031 1 0.031 2 0.063 2 0.047 3 0.078
14 GT14.ex8.20 2 1 336 10.327 70 1.607 31 0.733 6 0.125 2 0.047 2 0.062 14 0.109 4 0.109
15 GT14.ex8.50 2 1 344 8.830 72 1.872 32 0.795 3 0.063 3 0.078 3 0.078 5 0.109 8 0.203
16 GT14.ex9.10 2 1 335 3.994 70 0.702 31 0.296 1 0.032 3 0.062 7 0.172 23 0.343 401* 72.540
17 GT14.ex9.20 2 1 341 3.963 71 0.795 31 0.359 1 0.016 5 0.156 11 0.234 159 1.825 401* 83.132
18 GT14.ex9.50 2 1 346 4.025 72 0.671 31 0.281 1 0.015 3 0.047 53 0.437 25 0.374 401* 61.527
19 GT14.ex10.10 2 2 591 12.776 141 3.074 61 1.279 2 0.062 1 0.047 1 0.047 1 0.047 1 0.046
20 GT14.ex10.20 2 2 571 12.620 144 2.715 63 1.138 2 0.063 1 0.031 1 0.031 1 0.031 1 0.032
21 GT14.ex10.50 2 2 514 10.218 149 2.403 54 0.904 3 0.063 2 0.031 2 0.031 2 0.031 2 0.032
22 FPftpea.20 3 1 335 19.547 70 4.337 31 1.950 3 0.218 2 0.156 7 0.437 7 0.437 12 0.764
23 FPftpea.20 5 1 336 20.468 70 4.290 31 1.981 2 0.171 2 0.156 9 0.593 7 0.453 13 0.826
24 FPftpea.20 10 1 335 24.149 70 4.695 31 2.278 2 0.187 2 0.156 13 0.842 8 0.531 12 0.795
25 FPftpea.20 15 1 335 26.364 70 5.102 31 2.527 1 0.125 2 0.156 26 1.731 9 0.624 12 0.827
26 FPftpea.20 25 1 335 27.441 70 6.770 31 2.512 3 0.374 1 0.125 178 13.541 12 0.967 13 1.061
27 FPftpea.20 50 1 335 44.563 70 10.358 31 4.836 3 0.687 1 0.312 3 0.515 17 2.012 15 1.825
28 FPftpea.20 75 1 333 77.113 71 14.149 31 5.632 2 0.530 1 0.312 3 0.593 13 2.137 14 2.262
29 FPftpea.20 100 1 336 74.319 70 14.118 31 6.021 1 0.281 2 0.468 3 0.609 6 1.216 10 1.919
30 FPftpea.20 500 1 335 350.712 69 157.716 29 27.487 3 3.214 2 2.231 3 3.198 5 5.195 10 10.155
31 FPftpea.20 1000 1 334 761.235 149 2.403 30 68.609 2 4.914 2 5.226 3 7.489 5 12.058 10 23.634
32 FPftpeaT2.20 3 2 297 39.047 66 8.128 34 4.118 4 0.577 2 0.266 3 0.374 5 0.577 10 1.092
33 FPftpeaT2.20 5 2 297 43.368 60 8.424 29 6.771 3 0.483 2 0.359 3 0.718 5 0.920 10 2.059
34 FPftpeaT2.20 10 2 243 45.053 72 10.858 31 8.829 3 0.749 2 0.577 3 0.812 5 1.482 10 2.636
35 FPftpeaT2.20 15 2 344 54.729 73 16.552 30 7.394 2 0.655 2 0.577 3 0.936 5 1.514 9 2.511
36 FPftpeaT2.20 25 2 291 73.051 73 21.856 26 6.302 3 0.920 2 0.733 3 1.061 5 1.622 9 2.964
37 FPftpeaT2.20 50 2 270 87.807 64 25.007 30 9.782 3 1.107 2 1.077 3 1.170 5 2.215 9 3.744
38 FPftpeaT2.20 75 2 254 114.344 61 28.361 25 12.277 2 1.186 2 1.092 3 1.607 5 2.589 9 4.353
39 FPftpeaT2.20 100 2 283 160.884 61 33.384 26 14.398 1 0.780 2 1.326 1 0.047 5 2.871 9 5.070
40 FPftpeaT2.20 500 2 262 641.210 61 133.295 26 55.443 1 3.198 2 5.148 1 0.031 5 11.435 10 22.199
41 FPftpeaT2.20 1000 2 282 1324.955 54 2374.227 27 125.783 3 16.723 2 11.279 3 15.584 5 25.818 10 49.437
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Table 3: Random values of λr ∈ [ν, 2] for fixed ν

ν = 0.01 ν = 0.4 ν = 1.0 ν = 1.5 ν = 1.9
Num Name (cond (F )) n m Iter Time Iter Time Iter Time Iter Time Iter Time

1 elps.5.4.10 (0.8) 2 1 2 0.094 1 0.031 1 0.047 1 0.031 1 0.031
2 elps.5.4.20 2 1 1 0.078 2 0.094 2 0.078 2 0.093 2 0.094
3 elps.5.4.50 2 1 3 0.156 4 0.172 1 0.047 3 0.125 5 0.202
4 elps.5.3.10 (0.6) 2 1 1 0.046 1 0.047 1 0.047 1 0.047 1 0.047
5 elps.5.3.20 2 1 1 0.062 3 0.063 2 0.078 3 0.109 3 0.094
6 elps.5.3.50 2 1 2 0.094 2 0.078 3 0.109 4 0.156 6 0.203
7 elps.5.1.10 (0.2) 2 1 2 0.156 2 0.125 3 0.141 3 0.124 4 0.141
8 elps.5.1.20 2 1 3 0.125 2 0.125 3 0.125 5 0.187 7 0.265
9 elps.5.1.50 2 1 5 0.266 4 0.171 5 0.172 8 0.234 12 0.359
10 elps.5.01.10 (0.002) 2 1 6 0.515 6 0.468 4 0.281 9 0.452 23 0.843
11 elps.5.01.20 2 1 5 0.373 7 0.233 6 0.233 13 0.414 57 1.282
12 elps.5.01.50 2 1 5 0.482 7 0.289 2 0.115 13 0.378 42 1.038
13 GT14.ex8.10 2 1 2 0.094 2 0.047 1 0.031 1 0.031 1 0.031
14 GT14.ex8.20 2 1 4 0.171 2 0.063 1 0.031 2 0.062 3 0.094
15 GT14.ex8.50 2 1 5 0.172 4 0.109 1 0.031 3 0.078 6 0.156
16 GT14.ex9.10 2 1 5 0.219 5 0.078 4 0.109 12 0.187 76 0.936
17 GT14.ex9.20 2 1 6 0.266 8 0.187 10 0.218 16 0.281 68 1.014
18 GT14.ex9.50 2 1 30 0.390 4 0.125 10 0.265 14 0.359 82 1.435
19 GT14.ex10.10 2 2 1 0.016 2 0.047 2 0.046 2 0.063 2 0.031
20 GT14.ex10.20 2 2 4 0.140 3 0.094 2 0.046 2 0.047 2 0.063
21 GT14.ex10.50 2 2 32 0.437 30 0.390 4 0.094 4 0.078 10 0.265
22 FPftpea.20 3 1 6 0.374 3 0.156 5 0.219 7 0.296 9 0.359
23 FPftpea.20 5 1 9 0.582 7 0.390 5 0.374 6 0.328 10 0.530
24 FPftpea.20 10 1 4 0.344 4 0.249 5 0.328 4 0.312 8 0.468
25 FPftpea.20 15 1 4 0.359 1 0.093 3 0.219 5 0.327 8 0.593
26 FPftpea.20 25 1 6 0.437 3 0.265 3 0.281 5 0.421 8 0.655
27 FPftpea.20 50 1 7 0.999 4 0.515 1 0.156 3 0.358 8 0.952
28 FPftpea.20 75 1 3 0.570 3 0.581 3 0.560 5 0.893 8 1.313
29 FPftpea.20 100 1 1 0.297 3 0.639 4 0.796 5 1.045 8 1.545
30 FPftpea.20 500 1 2 2.652 3 3.104 5 5.148 4 4.259 8 7.972
31 FPftpea.20 1000 1 1 3.136 5 13.088 2 5.476 6 15.693 8 20.436
32 FPftpeaT2.20 3 2 3 0.515 3 0.437 4 0.546 4 0.499 8 1.014
33 FPftpeaT2.20 5 2 17 2.949 15 2.231 3 0.452 5 0.858 8 1.544
34 FPftpeaT2.20 10 2 8 2.144 2 0.586 3 1.023 5 1.347 8 2.266
35 FPftpeaT2.20 15 2 3 1.264 4 1.030 3 0.936 6 1.825 8 2.527
36 FPftpeaT2.20 25 2 3 1.342 4 1.435 1 0.437 4 1.357 7 3.089
37 FPftpeaT2.20 50 2 4 2.932 3 2.138 4 2.979 4 2.715 8 5.288
38 FPftpeaT2.20 75 2 4 3.636 1 1.077 3 3.011 4 3.853 7 7.191
39 FPftpeaT2.20 100 2 2 3.276 4 4.836 5 5.336 5 5.756 9 10.655
40 FPftpeaT2.20 500 2 2 10.421 3 15.943 23 15.023 5 24.819 8 46.442
41 FPftpeaT2.20 1000 2 3 29.421 2 24.570 2 34.648 5 59.717 8 66.471
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The results shown in Tables 2 and 3 are compared in Tables 4 and 5. The
precise meaning of the entries in the latter tables, ρs(1) (probability of success
in solving a problem) and ρ∗s (probability of win over the rest) is explained
in the Appendix. For the sake of brevity and clarity, we have just included
two figures, Figures 4 and 5 (with different scales in the axis of abscissas,
corresponding to the No. of iterations), which plot the performance profile
of the results, for the number of iterations, for FISRA and for RASRA.

Table 4: Results for fixed value of λr

Time Iter
λr ρs(1) ρ∗s ρs(1) ρ∗s
0.1 0.0% 100.0% 0.0% 100.0%
0.4 2.4% 100.0% 0.0% 100.0%
0.7 0.0% 100.0% 0.0% 100.0%
1.0 26.2% 100.0% 21.4% 100.0%
1.2 57.14% 100.0% 71.43% 100.0%
1.5 14.3% 100.0% 51.2% 100.0%
1.8 7.1% 100.0% 0.0% 100.0%
2.0 9.5% 85.7% 0.0% 85.7%

Table 5: Results for random values of λr

Time Iter
ν ρs(1) ρ∗s ρs(1) ρ∗s

0.01 23.8% 100.0% 40.5% 100.0%
0.4 40.5% 100.0% 40.5% 100.0%
1.0 35.7% 100.0% 45.2% 100.0%
1.5 11.9% 100.0% 14.3% 100.0%
1.9 0.0% 100.0% 0.0% 100.0%
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Figure 4: Iterations for fixed values of λr.

Figure 5: Iterations for random values of λr.
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6 Conclusions

This paper reports on the implementation of the relaxation algorithm ERA
for solving (LFP ) which combines different step size iterations with ECAM.
It is clear that the main computational difficulty to solve semi-infinite feasi-
bility problems comes from the non-convex optimization problems that must
be solved efficiently at each iteration. An innovation of this paper consists
of tackling these hard global optimization subproblems with the so-called
Cutting Angle Method, an efficient global optimization procedure for solv-
ing Lipschitz programming problems. Two variants of ERA with fixed and
random step sizes, FISRA and RASRA, have been implemented in C++ and
run on Visual Studio 2013.

The preliminary numerical considerations are as follows. From the sum-
mary results of Tables 2 and 3, we can conclude that, in general, the number
of iterations needed to attain a solution of (LFP ) is lower for RASRA than
for FISRA. Tables 4 and 5 (and Figures 4 and 5) show the probability of win
of each implementation over the rest and the probability of success in solving
a problem. As we can see in Table 2, FISRA with constant λr = 2.0 fails in
solving six of the instances (i.e., it only solves the 85.7% of the instances).
So, we can deduce that the random election of λr is a more stable procedure
in the sense that it solves the 100% of the instances. Nevertheless, when we
consider the best case for RASRA, i.e. ν = 0.4, and the best case for FISRA,
i.e., λr = 1.2, then FISRA uses less iterations than RASRA (observe that
the best fixed step size for FISRA, λr = 1.2, is the middle point of the best
interval [0.4, 2] for the random variable λr in RASRA). Indeed, by using the
corresponding performance profiles to compare the best cases, FISRA with
λr = 1.2 and RASRA with ν = 0.4 we obtain that the probability of win
for fixed value of λr = 1.2 is 95.1% and the probability of win for ν = 0.4 is
24.4%.

The results obtained in the reported experiments are promising enough
to suggest that suitable implementations of RASRA, which combines a re-
laxation method that uses random election of λr together ECAM, could out-
perform FISRA for solving semi-infinite feasibility problems. In particular,
the above empirical observations suggest to replace the uniform distribution
of RASRA used in this paper with unimodal symmetric distributions on in-
tervals of the form [1.2− ε, 1.2 + ε] , for small values of ε > 0. This could be
object of further empirical studies.
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Appendix: Extended Cutting Angle Method

The Extended Cutting Angle Method (ECAM in short) due to Beliakov
solves very hard optimization problems of the form

inf {f(x) : x ∈ X} , (19)

where f is Lipschitz continuous and X is a polytope. For simplicity, we as-
sume that dimX = n. Since any full dimensional polytope can be expressed
as the finite union of non-overlapping simplices, X will be a simplex in this
appendix.

In ECAM the objective function is optimized by building a sequence of
piecewise linear underestimates. ECAM is inspired in the classical Cutting
Plane method by Kelley [35] and Cheney and Golstein [17] to solve linearly
constrained convex programs of the form (3), where X is the solution set
of a given linear system and f : Rn → R is convex. Since f is lower semi-
continuous, it is the upper envelope of the set of all its affine minorants, i.e.

f = sup {h : h affine function, h ≤ f}. (20)

Indeed, it is enough to consider in (20) the affine functions of the form h(x) =
f(z)+ ⟨u, x− z⟩ , where u ∈ ∂f (z), the graph of h being a hyperplane which
supports the epigraph of f at (z, f(z)) . Let x1, ..., xk ∈ X be given and
consider the affine functions hj(x) = f(xj) + ⟨uj, x− xj⟩ , for some uj ∈
∂f (xj) , j = 1, ..., k. The function

fk := max
j=1,...,k

hj (21)

is a convex piecewise affine underestimate of the objective function f, in
other words, a polyhedral convex minorant of f. The k-th iteration of the
Cutting Plane method consists of computing an optimal solution xk+1 of the
approximating problem inf {fk(x) : x ∈ X} which results of replacing f with
fk in (3) or, equivalently, solving the linear programming problem in Rn+1

inf
{
xn+1 : x ∈ X, xn+1 ≥ hj(x), j = 1, ..., k

}
, (22)

where x = (x1, ..., xn) . Then the next underestimate of f,

fk+1 := max
{
fk, h

k+1
}
, (23)

27



is a more accurate approximation to f, and the method iterates.
The Generalized Cutting Plane method for (3), where f : Rn → R is

now a non-convex function while X =
{
x ∈ Rn

+ :
∑n

i=1 xi = 1
}

is the unit
simplex, follows the same script, except that the underestimate fk is built
using the so-calledH-subgradients (see [36]) instead of ordinary subgradients,
so that minimizing fk on S is no longer a convex problem. The Cutting
Angle method ([3],[4]), of which ECAM is a variant, is an efficient numerical
method for minimizing the underestimates when f belongs to certain class
of abstract convex functions. Assume that f is Lipschitz continuous with
Lipschitz constant M > 0 and take a scalar γ ≥ M. Let x1, ..., xk ∈ S be
given. For j = 1, ..., k, we define the support vector lj ∈ Rn by

lji :=
f(xj)

γ
− xj

i , i = 1, . . . , n, (24)

and the support function hj by

hj(x) := min
i=1,...,n

(f(xj)− γ(xj
i − xi)) = min

i=1,...,n
γ(lji + xi). (25)

Since the functions hj are concave piecewise affine underestimates of f (i.e.
polyhedral concave minorants of f), the underestimate fk defined in (21) is
now a saw-tooth underestimate of f and its minimization becomes a hard
problem as (22) is no longer a linear program. ECAM locates the set V k of all
local minima of the function fk which, after sorting, yields the set of global
minima of fk (see [9] and [10] for additional information). A global minimum
xk+1 of fk is aggregated to the set

{
x1, ..., xk

}
and the method iterates with

fk+1 := max
{
fk, h

k+1
}
.

As shown in [9, 10], a necessary and sufficient condition for a point x∗ ∈
ri X to be a local minimizer of fk given by (25),(21) is that there exist an
index set J = {k1, k2, . . . , kn+1}, such that

d = fk(x
∗) = γ(lk11 + x∗

1) = γ(lk22 + x∗
2) = . . . = γ(lkn+1

n + x∗
n+1),

and ∀i ∈ {1, . . . , n+ 1},

(lkii + x∗
i ) < (lkij + x∗

j), j ̸= i.

Let x∗ be a local minimizer of fk, which corresponds to some index set
J satisfying the above conditions. Form the ordered combination of the
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support vectors L = {lk1 , lk2 , . . . , lkn+1} that corresponds to J . It is helpful
to represent this combination with a matrix L whose rows are the support
vectors lki :

L :=


lk11 lk12 . . . lk1n+1

lk21 lk22 . . . lk2n+1
...

...
. . .

...

l
kn+1

1 l
kn+1

2 . . . l
kn+1

n+1

 , (26)

so that its components are given by Lij =
f(xki)

γ
− xki

j .

Let the support vectors lk, k = 1, . . . , K be defined as in (24). Let x∗

denote a local minimizer of fk and d = fk(x
∗). Then the matrix (26) corre-

sponding to x∗ enjoys the following properties (see [10]):

1) ∀i, j ∈ {1, . . . , n+ 1}, i ̸= j : l
kj
i > lkii ,

2) ∀r ̸∈ {k1, k2, . . . , kn+1} ∃i ∈ {1, . . . , n+ 1} : Lii = lkii ≥ lri ,

3) d = γ
n+1

(Trace(L) + 1), and

4) x∗
i =

d
γ
− lkii , i = 1, . . . , n+ 1.

Property 1 reads that the diagonal elements of the matrix L are dominated
by their respective columns, and Property 2 reads that no support vector lr

(which is not part of L) strictly dominates the diagonal of L. The approach
taken in [8, 9] is to enumerate all combinations L with the Properties 1-2,
which will give the positions of local minima x∗ and their values d by using
Properties 3-4.

From (23), combinations of L-matrices can be built incrementally, by
taking initially the first n+ 1 support vectors (which yields the unique com-
bination L = {l1, l2, . . . , ln+1}), and then adding one new support vector at a
time. Suppose, we have already identified the local minima of fk, i.e., all the
required combinations. When we add another support vector lk+1, we can
inherit most of the local minima of fk+1 (a few will be lost since Property 2
may fail with lk+1 playing the role of lr), and we only need to add a few new
local minima, that are new combinations necessarily involving lk+1. These
new combinations are simple modifications of those combinations because
Property 2 fails with lr = lk+1.

When ECAM is applied for solving the global optimization subproblem
(4) at step r of ERA, the procedure finishes when fbest−d∗ > β so, a β-global
optimal solution is obtained.
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Remark 13 Notice that the transformation of variables

1) x̄i = xi−ai, i = 1, . . . , n, d =
∑n

i=1(bi−ai) with x̄i ≥ 0 and
∑n

i=1 x̄i ≤ d

2) zi =
x̄i

d
, i = 1, . . . , n, zn+1 =

∑n
i=1 zi,

allows us to replace the program

min{f(x) : x ∈ [a, b]}

by the following one:

min{g(z1, . . . , zn+1) : (z1, . . . , zn+1) ∈ X},

where S denotes the unit simplex in Rn+1.

Appendix: Performance profiles

In this paper we compare, on the one hand, 8 implementations of the classical
fixed step relaxation algorithm corresponding to 8 choices of λ on a battery of
27 feasibility problems and, on the other hand, 5 implementations of the new
relaxation algorithm with variable step size corresponding to 5 choices of υ
on the same set of test problems. Denote by S the set of implementations to
be compared, so that the cardinality of S, denoted by sizeS is 8 and 5 for the
classic and for the new relaxation algorithms, respectively. Denote also by
P the set of test feasibility problems, with sizeP = 27 for both algorithms.

The notion of performance profile [20] allows us to compare the perfor-
mance of the implementations from S on P . For each pair (p, s) ∈ P × S we
define

fp,s := number of function evaluations required to solve problem p by solver s.

Consider a fixed problem p ∈ P . The performance of a solver s ∈ S able to
solve p is compared with the best performance of any solver of S on the same
problem through the performance ratio

rp,s :=
fp,s

min{fp,s : s ∈ S}
≥ 1.
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Obviously, rp,s = 1 means that s is a winner for p, as it is at least as good, for
solving p, as any other solver of S. For any solver s unable to solve problem
p we define rp,s = rM , where rM denotes an arbitrary scalar such that

rM > max {rp,s : s solves p, (p, s) ∈ P × S} .

The evaluation of the overall performance of s ∈ S is based on the stepwise
non-decreasing function ρs : R+ → [0, 1], called performance profile of s,
defined as follows:

ρs(t) =
size{p ∈ P : rp,s ≤ t}

sizeP
, t ≥ 0.

Obviously, ρs (t) = 0 for all t ∈ [0, 1[ and ρs(1) is the relative frequency
(which could be interpreted as a probability when p is taken at random from
P) of wins of solver s over the rest of the solvers. We say in brief that ρs(1)
is the probability of win for s.

Analogously, for t > 1, ρs(t) represents the probability for solver s ∈ S
that a performance ratio rp,s is within a factor t ∈ R of the best possible ratio,
so that ρs can be interpreted as a distribution function and the number

ρ∗s := lim
t↘rM

ρs(t)

as the probability of solving a problem of P with s ∈ S.
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[27] González-Gutiérrez, E., Rebollar, L.A. & Todorov M.I. (2011). Rate of
convergence of a class of numerical methods solving linear inequality
systems. Optimization 60, 947-957.
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[30] González-Gutiérrez, E. & Todorov, M.I. (2012). A relaxation method
for solving systems with infinitely many linear inequalities. Optimization
Letters 6, 291-298.
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