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Abstract 

Unveiling virus-host interactions are relevant for understanding the biology and 

evolution of microbes globally, but in particular, it has also a paramount impact on the 

manufacture of fermented dairy products. In this study, we aim at characterizing phages 

infecting the commonly used heterofermentative Leuconostoc spp. on the basis of host 

range patterns and genome analysis. Host range of six Leuconostoc phages was 

investigated using three methods (efficiency of plaquing, spot and turbidity tests) against 

Ln. mesenteroides and Ln. pseudomesenteroides strains. Complete genome sequencing 

from four out of the six studied Leuconostoc phages were obtained in this work, while the 

remaining two have been sequenced previously. According to our results, cross-species 

host specificity was demonstrated, as all phages tested were capable of infecting both Ln. 

pseudomesenteroides and Ln. mesenteroides strains, although with different efficiency of 

plaquing (EOP). Phage adsorption rates and ability of low-EOP host strains to propagate 

phages by crossing the Leuconostoc species' barrier confirm results. At the genome level, 

phages CHA, CHB, Ln-7, Ln-8 and Ln-9 revealed high similarity with previously 

characterized phages infecting mostly Ln. mesenteroides strains, while phage LDG was 

highly similar to phages infecting Ln. pseudomesenteroides. Additionally, correlation 

between receptor binding protein (RBP) and host range patterns allowed us to unveil a 

finer clustering of Leuconostoc phages studied into four groups. This is the first report of 

overlapped phage host ranges between Leuconostoc species. 

   

Keywords: Leuconostoc; Phage infection; Host range; Phage genomic 
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1. Introduction 

Strains belonging to the Leuconostoc genus are heterofermentative lactic acid 

bacteria (LAB) frequently used in dairy industry, where they can play various important 

roles, such as production of flavor compounds, dextran and gas (CO2) in cheeses when 

curd openness is needed (Hemme and Foucaud-Scheunemann, 2004). Leuconostoc strains 

are usually used in mesophilic mixed (DL-type) dairy starters together with acid-producing 

Lactococcus; this association helps with aroma generation by the former (Server-Busson et 

al., 1999). Leuconostoc species/subspecies of relevance for dairy industry comprise 

Leuconostoc mesenteroides (subsp. mesenteroides, dextranicum and cremoris), 

Leuconostoc pseudomesenteroides and Leuconostoc lactis, mostly used as aroma-

producing cultures in dairy fermentations (Farrow et al., 1989; Frantzen et al., 2017).  

Dairy fermentative processes are susceptible to bacteriophage infections, causing 

deficiencies in product quality which can lead to dramatic economic consequences. 

Despite the relevance of Leuconostoc in the dairy industry, phages attacking strains of this 

genus were overlooked in the past and few incidents were reported, probably because 

Leuconostoc failure affects some flavor and texture characteristics of the product but it 

does not affect acid production (Ali et al., 2013).  

In the last years, Leuconostoc phages have been receiving growing attention. A variety 

of virulent Leuconostoc phages has recently been isolated from blue-veined cheese 

manufactures (Pujato et al., 2014), where the lack of curd openness was the most 

outstanding failure. These viruses have been characterized regarding their resistance to 

diverse physicochemical treatments and factors influencing adsorption to their host cells 
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(Pujato et al., 2014, 2015). To date, fourteen complete genome sequences of Leuconostoc 

phages have been deposited in public databases, including two lytic Leuconostoc 

mesenteroides phages sequenced by our group (Pujato et al., 2015). All the analyzed 

sequences of Leuconostoc phages (which includes a temperate phage) present linear, 

double-stranded DNA genomes, ranging from 26 to 39 kb in length, with GC content of 36 

to 39 %, and are composed of between 38 and 50 predicted open reading frames (ORFs) 

(Jang et al., 2010; Kleppen et al., 2012; Kot et al., 2014; Lu et al., 2010; Pujato et al., 2015).  

It is known that for most phages investigated in the laboratory, host species specificity 

is the rule, since phages attach to very particular receptors placed on the surface of host 

cells (Chibani-Chennoufi et al., 2004; Legrand et al., 2016). In agreement, most phages 

attacking lactic acid bacteria have a quite narrow individual host range limited to a 

variable number of strains within a particular species (Guglielmotti et al., 2009; Rousseau 

and Moineau, 2009), and phage sensitivity depends on the presence of specific binding 

sites (called receptors) on the cell wall ( Briggiler Marcó et al., 2011). A recent study 

demonstrated that the the baseplate structure of phage Tuc2009 contains, in contrast to 

other characterized lactococcal phages, two different carbohydrate binding modules that 

may bind different motifs of the host’s surface polysaccharide (Legrand et al., 2016). 

Unusually, a broad host range was observed for particular phages that were able to infect 

two strains belonging to different lactobacilli species (Lu et al., 2003). Regarding 

Leuconostoc, phages infecting Ln. mesenteroides strains have been reported to be unable 

to infect Ln. pseudomesenteroides strains and vice versa (Ali et al., 2013; Kot et al., 2014). 

Accordingly, comparison of the complete sequence of nine phages lytic of Ln. 
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mesenteroides or Ln. pseudomesenteroides allowed grouping them into two classes, which 

correlated with host species. Moreover, similarity at nucleotide and protein level within 

each class was very high and significantly different from the other one (Kot et al., 2014). 

In the present work, host range of six Leuconostoc phages was studied by three 

methods: spot and turbidity tests and efficiency of plaquing. This allowed us to 

demonstrate cross-species host specificity, as phages were capable of infecting both Ln. 

pseudomesenteroides and Ln. mesenteroides strains. Additionally, complete genome 

sequences from four out of the six studied Leuconostoc phages were obtained in this 

work, while the other two had been previously sequenced. Genome organization of the 

studied phages was analyzed, and comparison with previously sequenced genomes was 

carried out. A direct relationship between the amino acid sequence deduced from the 

gene coding for the receptor binding protein (RBP) and host range pattern was found. 

According to our knowledge, this is the first report of overlapped phage host ranges 

between Leuconostoc species.   

 

2. Materials and Methods  

2.1. Bacterial strains, phages and culture conditions 

Six Siphoviridae phages named LDG, CHA, CHB, Ln-7, Ln-8 and Ln-9, as well as their 

respective indicator strains, Leuconostoc pseudomesenteroides R707 and Leuconostoc 

mesenteroides C19A, C19B, D4b, D6a and L79-1, were used (Pujato et al., 2014, 2015) 

(Table 1). These Leuconostoc phages were previously isolated during faulty industrial 

manufactures of blue-veined cheeses (Pujato et al., 2014). Each strain used for the initial 
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isolation of the respective phage was defined as its indicator strain. Ten Ln. mesenteroides 

and three Ln. pseudomesenteroides strains (Table 1) were additionally used in the host 

range analysis. Identification of strains was verified by sequencing of the 16S rRNA gene 

(1500 bp fragment) according to Edwards et al. (1989). It is worth noting that strain R707 

(indicator for phage LDG), previously identified as Ln. mesenteroides (Pujato et al., 2014) 

was reclassified as Ln. pseudomesenteroides. Phages were propagated on the 

corresponding indicator strain and stocks prepared as described by Neviani et al. (1992) in 

de Man, Rogosa and Sharpe (MRS) broth (Biokar, Beauvais, France), supplemented with 

10 mM CaCl2 (MRS-Ca). Phage enumerations were performed by the double-layer plaque 

titration method (Svensson and Christiansson, 1991), using MRS-Ca agar (1.2 % w/v) 

supplemented with 100 mM glycine (Lillehaug, 1997). Working phage stocks were stored 

at 8 °C. Bacterial strains and phages are maintained at the INLAIN Collection (Argentina) 

and at the Department of Physiology, Genetics and Microbiology (Alicante, Spain) as 

frozen (-80 °C) stocks in MRS broth using 15 % (v/v) glycerol as cryoprotectant. Bacterial 

strains were routinely reactivated overnight (16 – 18 h) at 32 °C in MRS broth.  

 

2.2. Host range, efficiency of plaquing and adsorption rates 

Strain cross-sensitivity was investigated using the spot and turbidity tests as described 

by Svensson and Christiansson (1991) and efficiency of plaquing (EOP) assay. EOP was 

defined as the ratio between pfu/mL for a given phage on a sensitive strain and pfu/mL on 

its indicator strain. The three methods were carried out for the six phages on all the 

strains listed in Table 1. 
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Briefly, to carry out the spot test, log-phase bacterial cultures were mixed with MRS 

soft agar (0.6 % w/v) and plated as thin top layer on MRS-Ca agar plates. Aliquots of 10 μL 

of high titer stock phages (between 5x109 and 5x1010 pfu/mL) were spotted onto the 

plates. After incubation at 32 °C for 18 h, the presence or absence of lysis zones was 

observed and recorded (Svensson and Christiansson, 1991). Turbidity test was performed 

by inoculation of tubes containing 5 mL of MRS-Ca broth with 0.2 mL of an overnight 

culture of indicator strains and 0.2 mL of stock phages (between 5x109 and 5x1010 

pfu/mL). Tubes containing only the bacterial cultures were used as controls. A total of five 

subcultures were made (32 °C), and a decrease in turbidity in test tubes compared with 

that of the control, was considered as positive (Svensson and Christiansson, 1991). The 

EOP was calculated for the six phages on all the strains listed in Table 1. The three 

methods were performed by triplicate in independent trials. 

Adsorption rates were determined for all phages on all the indicator Leuconostoc 

strains listed in Table 2, as previously described (Pujato et al., 2015). Briefly, each strain 

was grown in MRS broth until OD560 reached 0.5 (early exponential growth phase), 

centrifuged (5000 ×g, 5 min, 4 °C) and resuspended in MRS broth (final cell concentration 

between 3 × 108 and 5×108 cfu/mL). Phages were added to bacterial suspensions and 

incubated 20 min at 32 °C for adsorption to take place. After adsorption, aliquots of 

mixtures were centrifuged (10,000 ×g, 5 min, 4 °C) to sediment phage-adsorbed bacteria. 

Then, the phage titer was determined in the supernatant (non-adsorbed phages); the 

number of adsorbed phages was calculated as the percentage of the difference respect to 

the initial phage count. The assays were performed by triplicate in independent trials. 
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In the case of low EOP values (Table 1), phages from these plaques were verified for 

their ability to propagate on the low-EOP hosts. Briefly, after the EOP was obtained (first 

assay), one or two lysis plaques obtained from the titration on the low-EOP host strain, 

were picked up and suspended in 5 mL of MRS-Ca broth. Phage suspensions were kept 16 

h at 4 °C and then inoculated with an overnight culture of the same strain (low-EOP host) 

and incubated at 32 °C until lysis. The lysate obtained was filtered and titrated on the 

same low-EOP host strain. All assays were performed in triplicate. 

 

2.3. Viral DNA purification 

DNA to be sequenced was purified from phages LDG, CHA, CHB and Ln-7. Aliquots of 

15 mL of phage stocks were centrifuged (10000 ×g, 10 min, 4 °C) and the supernatants 

filtered (0.2 µm filters, GV Durapore, Millipore). Viruses were then ultracentrifuged at 

186,000 ×g for 4 h at 20 °C (Optima MAX-XP Ultracentrifuge, TLA-S5 rotor Beckman 

Coulter) and finally re-suspended in 0.5 mL of ultrapure water. Virus concentrates were 

mixed with equal volumes of 1.6 % (w/v) low-melting-point agarose (Pronadisa), 

dispensed into 100 µL moulds, and allowed to solidify at 4 °C. Agarose plugs were then 

incubated for 90 min with 5 µL of Turbo DNA-free kit (Ambion) to digest the dissolved 

DNA (according to the manufacturer’s protocol, 2–3 µL of Turbo DNase digest up to 500 

µg/mL of DNA in 30 min). The plugs were then incubated overnight at 50 °C in ESP (0.5 M 

EDTA, pH 9.0; 1 % N-laurylsarcosine; 1 mg/mL proteinase K) for digestion of DNase and 

viral capsids. For DNA extraction, plugs were washed with TE-Pefabloc (10 mM Tris-HCl, 

pH 8.0; 1 mM EDTA, pH 8.0; 3 mM Pefabloc, Roche) to inactivate the proteinase K and 
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incubated at 65 °C for 15 min. The mixture of viral DNA and melted agarose was treated 

with β-agarase (New England BioLabs) for 1.5 h at 42 °C (1 enzyme unit per 0.1 g of melted 

mixture) and DNA was finally purified using Microcon YM-100 centrifugal filter devices 

(Millipore). DNA quality was checked by electrophoresis and its concentration determined 

by Nanodrop (Thermo Fisher Scientific Inc.) (Martínez-García et al., 2014).  

 

2.4. Phage DNA sequencing 

Phage DNAs were sequenced at the Fundación para el Fomento de la Investigación 

Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Valencia, Spain. The 

sequencing libraries were prepared with the Nextera XT DNA Sample Prep Kit (Illumina) 

according to the manufacturer’s instructions. The library was sequenced using a MiSeq 

Reagent Kit v2 (Illumina – 500 cycles) on a MiSeq system. De novo assembly was 

performed with Ray assembler versions 2.1.1-devel and 2.2.0-devel using a kmer size of 31 

(Dzunková et al., 2014). Complete genome sequences were obtained after assembling of 

multiple individual reads into one single contig. Correct genome assembly was confirmed 

by PCR. Genome extremities were amplified using converging primers, and nucleotide 

sequences of purified amplicons were determined at the DNA Sequencing Service of 

Macrogen (Seoul, Korea). DNA sequences were then assembled with Staden software 

(Staden, 1996). 

 

2.5. Bioinformatics analysis  
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Complete genomes were edited and analyzed with BioEdit 

(http://www.mbio.ncsu.edu/BioEdit/bioedit.html) (Hall, 1999). Open reading frames 

(ORFs) were identically predicted using either GeneMark 

(http://opal.biology.gatech.edu/GeneMark/) (Lukashin and Borodovsky, 1998) or ORF 

Finder (http://www.ncbi.nlm.nih.gov/projects/gorf/). ORFs that encoded 25 or more 

amino acids (aa) and possessed both a conserved Shine-Dalgarno (SD) sequence (5’-

TAGGAGGT-3’) and an AUG, UUG or GUG start codon, were considered functional. In 

those cases where a potential SD sequence was not identified, the initiation codon could 

be located near to the putative stop codon of the preceding gene, allowing a potential 

translational coupling (Brøndsted et al., 2001). Putative functions were assigned to those 

selected ORFs using Blastp (NCBI, http://blast.ncbi.nlm.nih.gov/Blast.cgi). Conserved 

domains in protein sequences were identified with the NCBI CD-search interface to search 

the Conserved Domain Database (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). 

Physicochemical parameters of predicted proteins were estimated using the ProtParam 

Tool at ExPASy proteomics server (http://web.expasy.org/protparam/). The presence of 

tRNA genes was investigated employing tRNAscan-SE 1.21 

(http://lowelab.ucsc.edu/tRNAscan-SE/) and ARAGORN (Laslett and Canback, 2004). 

The phylogenetic analysis was performed on 28 LAB phages using Gegenees (version 

2.2.1), which employs a fragmented 'all against - all comparison' of the genomes and 

builds a distance matrix file suitable to construct a phylogenetic tree. The phylogenetic 

tree was built by NJ (Neighbor-joining) method using SplitsTree software (version 4.14.4). 

The elements of the matrix correspond to ANI (Average Nucleotide Identity) values.  
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2.6. Nucleotide sequence accession numbers 

The complete genome sequences of phages LDG, CHA, CHB and Ln-7 were deposited 

in GenBank under accession numbers KX555527, KX578044, KX578043 and KX578042, 

respectively. 

 

3. Results and discussion 

3.1. Host range, efficiency of plaquing and adsorption rates  

Host range of Leuconostoc phages LDG, CHA, CHB, Ln-7, Ln-8 and Ln-9 was 

investigated by applying three methods: spot and turbidity tests, and efficiency of 

plaquing (EOP). With this aim, fifteen strains of Ln. mesenteroides and four of Ln. 

pseudomesenteroides were used (Table 1). 

Analysis of EOP values for the studied phages evidenced four different host range 

patterns, as defined by the list of strains infected by a particular phage with either high or 

low efficiency. Specifically, similar patterns were revealed for phages CHA and CHB and for 

Ln-7 and Ln-8; while patterns were distinctive for phages Ln-9 and LDG (Table 1).  

According to turbidity and spot tests, phage LDG was able to infect both Ln. 

mesenteroides and Ln. pseudomesenteroides strains. Regarding EOP, low values (EOP 

<8x10-7) were obtained when this phage infected Ln. mesenteroides strains. Likewise, 

phages CHA, CHB, Ln-7, Ln-8 and Ln-9 were also able to infect both Ln. mesenteroides and 

Ln. pseudomesenteroides strains, even if different efficiency of plaquing were obtained 

(Table 1). These results showed an unexpected ability of infecting both Ln. mesenteroides 
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and Ln. pseudomesenteroides strains by all the phages assayed. This interspecies cross-

infection by Leuconostoc phages has not been described in the literature before. However, 

data concerning the virulence of Leuconostoc phages are scarce and only a few studies are 

documented (Atamer et al., 2011; Kot et al., 2014). In general, most phages attacking 

lactic acid bacteria have a quite narrow host range (Chibani-Chennoufi et al., 2004). The 

literature only documented a few cases of cross-species phage sensitivity, as two phages 

isolated from sauerkraut fermentations that were able to infect equally two ecologically 

related Lactobacillus species, namely Lb. brevis and Lb. plantarum (Lu et al., 2003).  

Most studies about host range are usually carried out by applying only spot test. 

However, the low sensitivity of the method may lead to some false negative results. In the 

present study, when infection occurred (lysis plaques observed on EOP assays), turbidity 

test was mostly positive (90 % of assays), while a high number of negative results was 

evidenced in spot test (61 % of assays) (Table 1). The use of three methods (spot and 

turbidity tests, and EOP) undoubtedly increased the accuracy of results. In consequence, it 

should be recommended the use of at least one more assay, besides spot test, in order to 

avoid mistaken results. 

Regarding adsorption assays, all phages were able to adsorb on all the strains tested, 

both Ln. mesenteroides and Ln. pseudomesenteroides, though with different adsorption 

rates (Table 2). As expected, each phage was able to adsorb at high rate (> 98.2%) both on 

its indicator strain or on those highly related (Pujato et al., 2014). Also, moderate or high 

adsorption rates were obtained when phages were assayed on the low-EOP host strains, 

i.e. 81.0-95.5 % (phage CHA), 79.2-90.0 % (phage CHB), 76.1-95.1 % (phage Ln-7), 42.8-
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90.2 % (phage Ln-8), 63.8-82.9 % (phage Ln-9) and 41.1-70.0 % (phage LDG) (Table 2). 

Therefore, no clear correlation between low EOP values and adsorption rates could be 

established. Besides, in order to verify the ability of low-EOP host strains to propagate 

phages by crossing the Leuconostoc species' barrier, some host/phage systems were 

selected and investigated (Table 3). According to the results obtained, all phages assayed 

were able to propagate, achieving high titres (> 1.2x109 pfu/mL),  on the selected low-EOP 

host strains (Table 3). These results confirm, once more, the ability of the assayed phages 

to infect and cross the barrier of the two Leuconostoc species assayed, namely Ln. 

mesenteroides and Ln. pseudomesenteroides.  

 

3.2. Comparative genomics of Leuconostoc phages 

Phages LDG, CHA, CHB and Ln-7 all revealed dsDNA, with genome sizes ranging from 

26.5 to 28.9 kb, in accordance to those previously reported for other Leuconostoc phages 

(Kot et al., 2014; Pujato et al., 2015). The genomic G+C content ranged from 35.9   % 

(phage CHB) to 36.3 % (phage LDG), which is also similar to that reported for Ln. 

mesenteroides subsp. mesenteroides strains (37 %) and the Leuconostoc phages in general 

(Kot et al., 2014; Makarova et al., 2006; Pujato et al., 2015). Regarding the genome 

extremities, all phages studied are cos-type. The presence of a cos-site suggests the phage 

DNA circularization upon entry into the host. The cos sequence of phages CHA, CHB and 

Ln-7 (5’-GGTTAATAGTAGTCTTTTTGAA-3’) was identical to the 22 nucleotide (nt) cos-site 

previously reported for other phages infecting Leuconostoc strains, namely Ln-8 (Pujato et 

al., 2015) and 1-A4 (Lu et al., 2010). Additionally, this cos sequence was very similar, 
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though longer than the 12 nt cos-site (5’-CGGTTAGTAGTA-3’) reported for phages ΦLN25, 

ΦLN34, ΦLNTR2 and ΦLNTR3 (Kot et al., 2014), all specific to Ln. mesenteroides strains. 

Besides, the 23 nt cos-site of phage LDG (5’-TCGTGCAATAGTAGGCGTTTTAA-3’) was also 

conserved and identical to the 23 nt of phage Lmd1 (Kleppen et al., 2012), specific to Ln. 

mesenteroides subsp. dextranicum A1.  

Bioinformatic analysis of LDG, CHA, CHB and Ln-7 phage genomes revealed 40, 43, 45 

and 47 possible ORFs, respectively. Each ORF was preceded by a region sharing similarities 

with the Shine–Dalgarno sequence, complementary to the 3′ end of the 16S rRNA of Ln. 

mesenteroides (5´-TAGGAGGT-3´).  

Deduced ORFs were located on either DNA strand at equivalent proportions. The 

putative functions of the genes, based on the similarities to already known sequences, are 

listed in Tables 4 and 5.  

A phylogenetic tree was generated comparing whole genomes of a total of 28 phages 

infecting different lactic acid bacteria (Fig. 1). The bacterial hosts for the 28 phages include 

Leuconostoc, Lactobacillus, Lactococcus and Streptococcus. This analysis revealed that 

phages infecting Ln. mesenteroides and Ln. pseudomesenteroides form separate clusters. 

Within Cluster I, two separate subclusters could be observed. Phage Ln-7 belonged to 

subcluster IA, and it was similar to Ln. mesenteroides phages such as Ln-8 (Pujato et al., 

2015) (>92 % ANI) and ΦLN25 (Kot et al., 2014) (>84 % ANI). In addition, phages CHA and 

CHB, belonging to subcluster IB, were highly similar to phages previously reported as 

specific to Ln. mesenteroides, namely ΦLNTR3, ΦLNTR2 and ΦLN34 (Kot et al., 2014) (>91 

% ANI). On the other side, phage LDG was included in Cluster II, and it was highly similar to 
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phages infecting Ln. pseudomesenteroides strains, e.g. ΦLN04 (>72 % ANI) and ΦLN12 

(>68 % ANI) (Kot et al., 2014).  

 

3.3. Function assignment and genomic organization of Leuconostoc phages 

As for many siphophages, the genome of Leuconostoc phages is organized into five 

functional modules (Lu et al., 2010): DNA packaging, morphogenesis (capsid and tail), cell 

lysis, DNA replication and regulation/modification. Based on their nucleotide sequence, 

the four analyzed phages can be divided into two groups. The first one (group I) was 

constituted by phages CHA, CHB and Ln-7, while phage LDG was included into the second 

group (II) (Figure 2). Phages included in the first group revealed high similarity with phages 

infecting mostly Ln. mesenteroides strains, while phage LDG (from the second group) was 

highly similar to a phage infecting Ln. pseudomesenteroides.   

In general, Leuconostoc phages analyzed presented five genes encoding proteins 

which may be involved in phage DNA replication (Fig. 2). However, the analysis of phage 

CHB revealed an additional gene (ORF9) predicted to encode for the HNH endonuclease. 

Furthermore, ORF10 and ORF11 of phage CHB may code for one hydrolase, being strongly 

similar (99 % identity) to the hydrolase encoded by phage LNTR3 (Kot et al., 2014) (Table 

4). Experimental data are needed to confirm if these two ORFs produce a functional 

protein. 

The terminase enzymes participate in phage DNA packaging into the procapsids. They 

are heteromultimers composed of a large subunit and small subunits (Duffy et al., 2002). 

The genes encoding terminase small subunits are located upstream the terminase large 
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subunit gene. Phages CHA, CHB and Ln-7 revealed two ORFs upstream the terminase large 

subunit gene, while products derived from these two ORFs are likely to be the small 

terminase subunits (Fig. 2 and Table 4). Similar results were previously reported for Ln. 

mesenteroides phage Φ1A-4 (Lu et al., 2010). For phage CHB, merging of ORF15 and 

ORF16 yields to a sequence similar to the large terminase subunit of Ln. mesenteroides 

phage ΦLNTR2 (Kot et al., 2014). In phage LDG, the deduced proteins of ORF8 and ORF9 

share high similarity with the putative small and large terminase subunits from various Ln. 

pseudomesenteroides phages, such as ΦLN6B (Kleppen et al., 2012; Kot et al., 2014) (Table 

5). 

The gene encoding the tail tape measure protein is located within the morphogenesis 

module. The name of this protein derives from the length of the corresponding gene, 

which is proportional to the length of the phage’s tail (Katsura and Hendrix, 1984). ORF22 

and ORF25 of phages CHA and CHB, respectively, showed several characteristics in 

common and identical sizes (914 aa) with the tail tape measure protein from phage 

ΦLNTR3 of Ln. mesenteroides (Kot et al., 2014). Moreover, for phage Ln-7, the product 

derived of merging those of ORF23 (298 aa) and ORF24 (597 aa), shows great similarity (99 

% identity) to the putative tail tape measure protein encoded by phage Ln-8 (855 aa) 

(Pujato et al., 2015) (Table 4). For phage LDG, the merged product obtained from ORF18 

and ORF19 showed some similarity to the putative tail tape measure protein of Ln. 

pseudomesenteroides phage P793 (Kot et al., 2014) (Table 5). The tail tape measure 

protein frequently includes a variable number of tandem repeats containing tryptophan 

and phenylalanine amino acids, which are located at fixed positions. They are used as 
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anchors by small auxiliary proteins to stretch the tape and the actual tail construction. The 

regular spacing between these anchors seems to be a key structural property of the tail 

tape measure protein and acts as a marking on the tape (Belcaid et al., 2011). Amino acid 

sequence of tail tape measure proteins of phages CHA, CHB, Ln-7, Ln-8 and LDG, showed a 

preserved amount of phenylalanine (44 aa) and tryptophan (5 aa) units, but these proteins 

did not present tandem repeats. Similar results were observed for other Ln. 

mesenteroides and Ln. pseudomesenteroides phages (Kot et al., 2014; Lu et al., 2010; 

Pujato et al., 2015).  

The cell lysis module consists of a putative endolysin and two holins (Daniel et al., 

2007). Two different versions of the putative lysin were detected in Ln. mesenteroides 

phages, which showed no significant nucleotide similarities between each other. The 

putative lysin (ORF39) of phage Ln-7 showed 98 % similarity to the amidase from phage 

Φ1-A4 (Lu et al., 2010). In phages CHA and CHB, lysin (ORF35 and ORF37, respectively) 

exhibited high similarity to those from phage ΦLNTR3 (Kot et al., 2014). Moreover, 

putative methyltransferase genes were detected in the genome sequence of the 

Leuconostoc phages. One of them was encoded by ORF31 in phage Ln-7 and the other one 

by ORF28 of phage LDG (Table 4 and 5). In prokaryotes, the major role of DNA methylation 

is to protect host DNA against degradation by restriction enzymes (Cheng, 1995). 

 

3.4. Correlation between receptor binding protein and host range patterns 

The first interaction of a phage particle and a bacterium is mediated through the 

specific recognition between host receptors distributed over the cell surface and the 
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phage receptor binding protein (RBP), located at the tip of the tail. Regarding receptors, 

and as Mahony et al. (2014) stated, phages interact with their hosts involving various 

different host and phage structures, being possible to establish a simplified classification 

based on the nature of the receptor material: protein or carbohydrate (including 

lipoteichoic acid). The lactococcal 936 and P335 phages are believed to recognize 

carbohydrate moieties located at the cell surface (Tremblay et al., 2006; Legrand et al., 

2016). For many phages, this binding step is reversible, and phages of the c2 species, for 

example, require a second irreversible binding step to a predicted membrane-attached 

protein (PIP). Regarding Lactobacillus, the lipoteichoic acids (LTAs) from the cell surface 

were the responsible of the interaction between phage LL-H and its host Lactobacillus 

delbrueckii ssp. lactis ATCC15808 (Raisanen et al., 2004; Munsch-Alatossava et al., 2013). 

Even this phage-host interaction has been extensively investigated, scarce knowledge is 

still available regarding specific receptor compounds in Lactobacillus strains. Concerning 

RBPs in phages infecting Gram-positive bacteria, information is sparse compared to that 

available for phages infecting Gram-negative bacteria, and only a small number of RBPs in 

phages of lactic acid bacteria has been identified (Kot et al., 2013; Mahony et al., 2013, 

2014). The isolation of chimeric phages containing a "swapped" receptor binding domain 

allowed the identification of the gene responsible for host recognition in Streptococcus 

thermophilus phages DT1 and MD4 (Duplessis and Moineau, 2001). The RBPs of the 

lactococcal P335 species phages, TP901-1 and Tuc2009 have also been identified (Vegge 

et al., 2006) as were those of the lactococcal 936 phages, sk1 and bIL170 (Dupont et al., 

2004). Furthermore, immunogold labelling electron microscopy allows the identification 
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of the genetic determinants of c2 phages responsible for the interaction with their protein 

receptor, PIP, i.e. l10 and orf31 of phages c2 and bIL67, respectively (Lubbers et al., 1994). 

More recently, the complete genome sequences of four novel phages capable of infecting 

the industrial strain S. thermophilus ST64987 were reported (McDonnell et al., 2016). 

These phages were categorized as the novel 987 group, based on their notable differences 

with those of previously described groups of S. thermophilus phages. In this study, the N-

terminal end of RBP of phage 9871 shares a high level of amino acid identity 

(approximately 85%) with the N-terminal portion of the upper baseplate protein (BppU) of 

TP901-1, Tuc2009, P335, and ORF322 of ul36 and then appears to be extended (relative to 

BppU) at the C-terminal end. The authors suggest that RBP of phage 9871 has a 

carbohydrate binding function, hypothesizing that this protein incorporates the receptor 

binding activities of the upper and lower baseplate proteins (BppU and BppL, respectively) 

of TP901-1, where BppL is known to be responsible for host interaction and specificity 

(Vegge et al., 2006). 

Previous studies carried out on the RPB genes of two Ln. pseudomesenteroides 

phages, ɸLN04 (ORF23) and P793 (ORF21), which present nonoverlapping host ranges, 

demonstrated that the deduced putative proteins from these ORFs could be divided into 

two fragments (Kot et al., 2013). Only the first amino acid portion (N-terminal) shows 

similarity (75 % nucleotide identity), while the C-terminal part did not show any significant 

similarity between each other. The authors also verified that the construction of chimeric 

phages with exchanged RPB genes, led to the expected switch in their host ranges (Kot et 

al., 2013). In the present study, Blastp analysis of ORF22 (phage LDG), ORF27 (CHA), 
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ORF29 (CHB and Ln-7) and ORF28 (Ln-8 and Ln-9) (Pujato et al., 2015) from Leuconostoc 

phages , revealed similarities to the putative RBP of previously sequenced Leuconostoc 

phages. The deduced RBPs from these ORFs were used to perform a comparative analysis, 

which also included RBP sequences from previously reported Leuconostoc phages (Kot et 

al., 2014; Lu et al., 2010). In coincidence with previous studies (Kot et al., 2013), RBP 

sequence could be divided into two fragments. The first amino acid portion (N-terminal) is 

highly conserved within phages isolated on indicator strains belonging to the same 

Leuconostoc species (80–100 % aa identity) and moderately conserved between phages 

isolated on different species of Leuconostoc indicator strains (44 % aa identity) (Fig. 3A). 

The second fragment corresponds to the C-terminal part of the protein, which is the most 

divergent region within the deduced RBP gene. Similarly, phages of Streptococcus 

thermophilus DT1 and MD4 exhibited a variable region at the C-terminal fraction of the 

protein, which was encoded by ORF18 and could be responsible for host recognition 

(Duplessis and Moineau, 2001). Further analysis of RBP sequences from phages of 

lactococcal 936 species revealed that the N-terminal region of the RBPs were very 

conserved, while the C-terminal portion varied, suggesting also that the latter could play a 

role in binding and receptor recognition (Dupont et al., 2004). Moreover, Stuer-Lauridsen 

et al. (2003), demonstrated that ORF35 and ORF115 from phages bIL67 and c2, 

respectively, were responsible for host range determination. The N-terminal part of the 

ORF35 protein shows a high level of conservation between the two phages, while the C-

terminal end of the deduced amino acid sequence is less conserved. Interestingly, a low 

level of homology was observed in the middle part of the ORF35 protein. As suggested by 
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the authors, this variable region plays also a relevant role for host range determination. 

These findings agree with those previously reported by Duplessis and Moineau (2001), 

who had speculated that the variable middle region of ORF18 from two S. thermophilus 

phages could also be involved in host recognition.  

A second comparison considering only the variable RBP region (C-terminal) is shown 

in Fig. 3B. According to this analysis, five groups could be identified; three for phages 

infecting Ln. mesenteroides and two for phages specific to Ln. pseudomesenteroides. 

Phages CHA, CHB, Φ1-A4 (Lu et al., 2010), ΦLNTR2, ΦLNTR3 and ΦLN34 (Kot et al., 2014), 

were included in Group 1; Group 2 included phages Ln-7, Ln-8 (Pujato et al., 2015) and 

ΦLN25 (Kot et al., 2014); Group 3 was formed only by phage Ln-9 (Pujato et al., 2015), 

while Group 4 comprised four phages infecting Ln. pseudomesenteroides (Kot et al., 2014). 

Finally, phages LDG and P793 infecting Ln. pseudomesenteroides constituted Group 5. 

Thus, Leuconostoc phages studied by us were included in four different groups according 

to the variable region of RBPs, this grouping being coincident with that resulting from the 

four different host range patterns.   

This study evidenced wide host ranges for all phages assessed, as they were able to 

infect both Ln. pseudomesenteroides and Ln. mesenteroides strains. On the contrary, 

previous studies reported narrow host ranges when nine Leuconostoc phages were 

analyzed (Kot et al., 2014). Those phages revealed four different host range patterns and 

four RBP variable regions; two of them were exclusively found in phages specific to Ln. 

mesenteroides, while the other two were exclusive for those specific to Ln. 

pseudomesenteroides. The attachment of phages to their sensitive strains is accomplished 
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by RBP proteins present in baseplate structures of the viral particles. Previous studies on 

phage morphology have established that the differences in their baseplate structures 

were perfectly correlated with the diverse and non-overlapping host range profiles of Ln. 

mesenteroides and Ln. pseudomesenteroides strains (Ali et al., 2013). However, unlike our 

results, none of those patterns were overlapping. Moreover, interspecies cross-infection 

of the phages studied when tested on Ln. mesenteroides and Ln. pseudomesenteroides 

strains was not evidenced (Kot et al., 2014). A limited number of hosts and high 

conservation of host range patterns in Leuconostoc phages have been observed before 

when considering Ln. mesenteroides and Ln. pseudomesenteroides strains (Atamer et al., 

2011).  

 

4. Conclusions 

In the present study, six dairy Leuconostoc phages were characterized on the basis of 

host range patterns and genome analysis. Host range studies, carried out by applying 

three methods, demonstrated cross-species sensitivity, as phages were capable of 

infecting both Ln. mesenteroides and Ln. pseudomesenteroides strains, although with 

diverse efficiency. Phage adsorption rates and ability of low-EOP host strains to propagate 

phages by crossing the Leuconostoc species' barrier, allow us to confirm results from host 

range studies. The analysis and further comparison of complete genomes of Leuconostoc 

phages, allowed dividing them into Ln. mesenteroides and Ln. pseudomesenteroides 

phages, related to the corresponding indicator strains used for their isolation. Comparison 

of the variable fraction from the deduced amino acid sequence of the receptor binding 
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protein (RBP), let us classify Leuconostoc phages studied into four groups, which were 

coincident with the four different host range patterns. In general, phages containing 

similar RBP variable region showed equivalent host range patterns. However, some of the 

studied phages presenting distinct RBP variable regions were able of infecting the same 

Ln. mesenteroides and Ln. pseudomesenteroides strains.  

Our results show that phages presenting similar RBP region were able of infecting the 

same Leuconostoc strains with high efficiency. However, other phages with dissimilar RBPs 

were also capable of infecting the same strains but with much lower efficiency. All these 

data emphasize principally the overlapped host ranges of Leuconostoc phages on both Ln. 

mesenteroides and Ln. pseudomesenteroides strains.   
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Figure legends 

Fig. 1. Phylogenetic tree of 28 LAB infecting phages. The whole genome information was 

used to build the distance matrix using Gegenees (version 2.2.1). The phylogenetic tree 

was developed using SplitsTree (version 4.14.4) by Neighbor-Joining method. For 

Leuconostoc phages (in bold-face letters), the species of indicator strains is shown 

Numbers (%) indicate minimum Average Nucleotide Identity (ANI) values within each 

cluster or subcluster.    

 

Fig. 2. Schematic overview of eight Leuconostoc phage genomes. ORFs are indicated by 

numbered-colored arrows. Arrows represent putative ORFs and their color indicates the 

corresponding gene module. ORFs connected by a grey box show homologies at the amino 

acid level; the grey tone indicates percentage of identity. Uncharacterized ORFs encoding 

hypothetical proteins are displayed as grey arrows.  

 

Fig. 3. Genetic overview of the RBP region of Leuconostoc phages. A) The figure illustrates 

the nucleotide similarities of ORF regions from the 16 analyzed phages as calculated by 

the BLASTN algorithm. Arrows are divided into two fragments; the first one corresponds 

to the N-terminal portion and the second fragment corresponds to the C-terminal portion 

of the protein. B) Phylogenetic tree of the RBP variable C-terminal fragment of 16 phages, 

including the four sequenced phages in this study. The distance matrix and visualization 

was performed in Geneious 9.0.2 (alignment algorithm with BLOSUM55 substitution 

matrix) by Neighbor-Joining method. 
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Table 1. Host range of Leuconostoc phages of dairy origin.  
 

Strain 

Phage 

CHA CHB Ln-7 Ln-8 Ln-9 LDG 

TT ST EOP TT ST EOP TT ST EOP TT ST EOP TT ST EOP TT ST EOP 

C19Aa, A + + 1 + + 1 + - 6.0x10-9 + - 5.0x10-9 + - 9.0x10-9 + + 2.0x10-7 

C19Ba, A + + 0.2 + + 1 + - 2.0x10-8 + - 9.0x10-9 + - 9.0x10-9 + + 3.0x10-7 
D4ba, A + + 2.0x10-8 + - 9.0x10-6 + + 1 + + 1 + + 3.0x10-7 + + 1.0x10-7 
D6aa, A + + 4.0x10-10 + + 4.0x10-6 + + 1 + + 1 + + 2.0x10-7 + + 8.0x10-7 
L79-1a, A + - 6.6x10-10 + - 4.0x10-7 + - 1.0x10-8 + - 1.0x10-8 + + 1 + + 1.0x10-7 
L72a, B - - < 2x10-10 - - < 7.1x10-10 - - < 9.1x10-11 - - < 7.1x10-11 + + 1 -  - < 3.6x10-10 
L74a, C - - < 2x10-10 - - < 7.1x10-10 - - < 9.1x10-11 - - < 7.1x10-11 + + 1 -  - 3.6x10-9 
DG5Aa, B - - < 2x10-10 - - < 7.1x10-10 - - < 9.1x10-11 - - < 7.1x10-11 + + 1 -  - 4.7x10-9 
DM5Ba, C - - < 2x10-10 - - < 7.1x10-10 - - < 9.1x10-11 - - < 7.1x10-11 + + 1 -  - 3.6x10-9 
DG6Ba + - 2.0x10-9 + - 7.1x10-9 + - 2.5x10-7 + - 1.9x10-9 + - 6.7x10-9 + - 3.6x10-9 
L1612a, B - - < 2x10-10 - - < 7.1x10-10 + + 1 + + 1 + - 7.0 x10-8 - - 7.1x10-9 
LR3a, B + + 1 + + 1 + - 9.1x10-9 + - 3.6x10-9 + + 3.1 x10-7 - - 4.7x10-9 
LC4a, C + + 1 + + 1 + - 4.5x10-7 + - 3.5x10-7 + + 2.0x10-6 - - 1.2x10-8 
LN3a, C + + 1 + + 1 + - 1.1x10-7 + - 2.6x10-9 - - < 1.0x10-9 - - < 3.6x10-10 
LMG 6893T, a - - < 2x10-10 - - < 7.1x10-10 - - < 9.1x10-11 - - < 7.1x10-11 - - < 1.0x10-9 - - < 3.6x10-10 
R707b, A + - 1.0x10-8 + - 2.0x10-5 + - 3.0x10-8 + - 2.0x10-7 - - 3.0x10-10 + + 1 
LD-6b, A - - < 2x10-10 - - < 7.1x10-10 - - < 9.1x10-11 - - < 7.1x10-11 - - < 1.0x10-9 - - < 3.6x10-10 
LM3b, B - - < 2x10-10 - - < 7.1x10-10 - - < 9.1x10-11 - - < 7.1x10-11 - - < 1.0x10-9 - - < 3.6x10-10 
LMG 11482T, b - - < 2x10-10 - - < 7.1x10-10 - - < 9.1x10-11 - - < 7.1x10-11 - - < 1.0x10-9 - - < 3.6x10-10 
a 

Ln. mesenteroides; 
b
 Ln. pseudomesenteroides;  

A, B, C
 Strain from commercial mesophilic mixed starters used in plant A, B or C, respectively. 

T
 Type strains from the LMG Bacteria Collection (Belgian Coordinated Collections of 

Microorganisms). 
TT: Turbidity test;  ST: Spot test;  EOP: Efficiency of Plaquing.  
Grey shading corresponds to indicator strain for each phage. 

  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

35 
 

Table 2. Phage adsorption rates on Leuconostoc strains. 
 

Strain 

Adsorption rate (%)
c 

Phage 

CHA CHB Ln-7 Ln-8 Ln-9 LDG 

C19A
a
 99.5 ± 1.8 99.1 ± 2.0 87.8 ± 1.3 52.1 ± 1.3 80.8 ± 1.6 50.1 ± 1.9 

C19B
a
 99.7 ± 1.6 99.2 ± 1.7 79.3 ± 1.6 50.0 ± 1.9 82.9 ± 1.7 52.2 ± 2.1 

D4b
a
 95.5 ± 1.7 80.1 ± 1.4 99.5 ± 2.0 98.2 ± 1.4 74.4 ± 2.3 41.1 ± 1.3 

D6a
a
 90.0 ± 1.2 80.1 ± 1.5 99.6 ± 2.1 99.3 ± 2.3 70.2 ± 2.1 46.3 ± 1.4 

L79-1
a
 81.0 ± 2.0 90.0 ± 2.0 95.1 ± 1.4 90.2 ± 1.9 99.9 ± 1.8 70.0 ± 2.1 

R707
b 

87.7 ± 2.1 79.2 ± 2.0 76.1 ± 1.7 42.8 ± 2.0 63.8 ± 1.6 99.6 ± 1.5 
a 

Ln. mesenteroides; 
b
 Ln. pseudomesenteroides;  

c
 Values are the mean and standard deviation of three determinations.  

Grey shading corresponds to indicator strain for each phage. 
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Table 3. Propagation of Leuconostoc phages on selected low-EOP host strains. 
 

Strain Phage Assay stage 
Titre 
(pfu/mL) 

C19B
a 

CHB 
1st 

1.4x10
9 

R707
b
 4.0x10

3 

R707
b
 2nd 1.9x10

9 

D4b
a 

Ln-7 
1st 

1.1x10
10 

R707
b
 2.7x10

1 

R707
b
 2nd 1.8x10

9 

D6a
a 

Ln-8 
1st 

1.4x10
10 

R707
b
 3.0x10

2 

R707
b
 2nd 1.9x10

9 

R707
b
 

LDG 
1st 

2.8x10
9 

C19A
a 

5.0x10
2 

C19A
a 

2nd 1.2x10
9 

R707
b
 

LDG 
1st 

2.8x10
9 

D4b
a 

5.3x10
1 

D4b
a 

2nd 1.3x10
9 

a 
Ln. mesenteroides; 

b
 Ln. pseudomesenteroides.  

Grey shading corresponds to indicator strain for each phage.
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Table 4. Open reading frames (ORFs) deduced from the genome of Leuconostoc phage CHA and homologues 
ORFs in Leuconostoc phages CHB and Ln-7. 

 

Strand ORF Start  Stop  
Size

a
 

(aa) 

MM 

(kDa) 
pI 

SD sequence 

(5'-TAGGAGGT-3')
b
  

ORF 

Predicted function Phage 

CHB 

Phage 

Ln-7 

- 1 683 381 101 11.6 7.7 ACAAGGataattaatATG 1 1 phage HNH endonuclease 

            

 

  2 hypothetical protein 

- 2 1122 685 146 16.7 7.0 AAGAGGtactaaaaaATG  2 3 phage-related protein 

- 3 1265 1119 49 6.1 11.3 AGGAGCGaagaagaaATG  3 4 hypothetical protein 

- 4 1636 1262 125 14.8 7.8 AGGAGGgtaacatATG 4 5 endodeoxyribonuclease 

+ 5 2018 3331 438 50.5 5.5 AGGAGGaaaacagatATG  5 6 DNA helicase 

+ 6 3328 4083 252 29.1 6.1 none  6 7 DNA primase/polymerase 

+ 7 4162 5997 612 69.7 7.1 AGGAGAaaaaagattATG 7 8 DNA polymerase 

+ 8 6187 6759 191 21.7 5.6 AGGAGAacatatATG  8 9 hypothetical protein 

 
          

 

9   HNH endonuclease 

+ 9 6812 7444 211 24.1 5.9 GGGAGGaattaaagtATG 10 10 hydrolase 

            

 

11   hydrolase 

            

 

  11 terminase small subunit 

+ 10 7456 7638 61 7.2 5.2 AGGAGGattgactATG  12 12 hypothetical protein 

+ 11 7647 7973 109 12.4 5.0 ATGAGGtaatatATG 13   terminase small subunit 

+ 12 8035 8193 53 5.9 11.3 none 14 13 terminase small subunit 

+ 13 8177 9823 549 62.9 5.1 AGGAGGgtaatagATG  15 14 terminase large subunit 

            
 

16   terminase large subunit 

+ 14 9836 10957 374 43.0 5.0 AGGAGAaaactatATG 17 15 portal protein 

+ 15 10917 11642 242 26.2 4.5 AGGAGAcactacgaATG  18 16 phage prohead protease 

+ 16 11694 12647 318 34.8 5.2 AGGAGAcctataatATG  19 17 major capsid protein 

+ 17 12777 13064 96 10.8 4.3 AGGAGGtgacacaATG  20 18 hypothetical protein 

+ 18 13051 13317 89 10.2 10.0 AGGAGGcgatcagatATG  21 19 phage tail protein 

+ 19 13317 13634 106 12.3 4.6 GGGAGGtagtcatttaATG  22 20 hypothetical protein 

+ 20 13631 13960 110 12.4 11.1 AGGTGTtaatattATG  23 21 hypothetical protein 

+ 21 14009 14590 194 21.2 4.7 AGGAGAattaatcaattATG  24 22 major tail protein 

+ 22 14657 17398 914 93.2 9.2 AGAAAGGaaatgtattatATG  25 23 tail tape measure protein 

                24 tail tape measure protein 

+ 23 17462 18163 234 27.2 4.8 AGAATGGaggaaattatATG 26 25 hypothetical protein 

+ 24 18168 18785 206 23.0 5.1 none     hypothetical protein 

+ 25 18788 19786 333 36.7 5.1 AGGAGAttaatcATG  27 26 structural protein  

- 26 20394 19993 134 15.6 4.7 AGGAGAattaaagacATG  28 27 hypothetical protein 

            

 

  28 hypothetical protein 

+ 27 20474 21241 256 27.9 5.9 GAGGAGAtttaaaatATG  29 29 receptor-binding tail protein 

- 28 21274 21645 124 14.0 6.4 AGGAGAccccgcattATG 30 30 holin I 

    
  

      

 

  31 
phage-related 

methyltransferase 

- 29 21920 21756 55 6.4 8.1 AGGAGAagtaATG  31 32 hypothetical protein 

- 30 22150 21920 77 9.0 6.8 TGGAGGTtctataGTG  32 33 hypothetical protein 

- 31 22383 22150 78 9.1 5.5 AGGAACGAgaaaATG  33 34 hypothetical protein 

- 32 22504 22373 44 5.4 5.0 none 34 35 hypothetical protein 

- 33 22709 22491 73 9.0 8.0 GAGAGGttcgcaagtaATG  35 36 hypothetical protein 

- 34 23209 22709 167 18.7 9.5 AGGAGAtttaaaATG  36 37 phage-related hydrogenase 

            AAGAGGaacaaacGTG    38 hypothetical protein 

- 35 24449 23577 291 31.0 4.9 AGGAGGacaagtaacATG 37 39 lysin 

- 36 24771 24424 116 12.8 9.3 AGGAGGaaacaataaATG  38 40 holin II 

- 37 26299 24788 504 55.9 5.4 AGGAGGaaattacATG 39 41 hypothetical protein 

- 38 26507 26361 49 5.6 5.1 AGGGGTattgtaATG  40 42 hypothetical protein 

- 39 26815 26507 103 11.6 9.5 AGGAGAtataacATG 41 43 hypothetical protein 

- 40 27017 26817 67 7.8 4.9 none 42 44 hypothetical protein 

- 41 27298 27020 93 10.7 4.5 TGAGGaagtgagcaaATG  43 45 hypothetical protein 

- 42 27546 27295 84 9.8 5.1 ACGAGGagataacaaATG 44 46 hypothetical protein 

- 43 27862 27692 57 6.5 6.1 AGGAATaatatatgacATG 45 47 repressor 

a
 Number of amino acids (aa) of the predicted protein; 

b
 Uppercase letters indicate nucleotides identical to the consensus 

SD sequence; boldfaced indicate start codon.
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Table 5. Open reading frames (ORFs) deduced from the genome of Leuconostoc phage LDG and their 
predicted functions. 
 

Strand ORF Start Stop 
Size

a
  

(aa) 

MM  

(kDa) 
pI 

SD sequence 

(5'-TAGGAGGT-3')
b
 

Predicted function 

- 1 746 435 104 12.4 9.0 none phage HNH endonuclease 

- 2 1140 718 141 15.2 9.4 none endodeoxyribonuclease 

+ 3 1723 3117 465 52.8 5.4 AGGAGGcctacaaacATG DNA helicase 

+ 4 3107 3877 257 30.0 5.8 GGGGGTgctttttATG DNA primase/polymerase 

+ 5 3937 5754 606 68.5 5.8 AGGAGGacagaaaATG DNA polymerase 

+ 6 5812 6369 186 21.1 8.9 AGGAAGTgtaacaATG hypothetical protein 

+ 7 6439 7062 208 24.3 6.5 AAGAGAagataatcATG hydrolase 

+ 8 7081 7431 117 13.5 5.1 TTGAGGtaataaccaatATG terminase small subunit 

+ 9 7434 9074 547 63.1 5.5 CGGAGAattgagtATG terminase large subunit 

+ 10 9065 10306 414 46.5 5.3 none portal protein 

+ 11 10257 10982 242 26.1 4.8 AGGGAGcacggctaATG phage prohead protease 

+ 12 11040 12008 323 34.7 6.1 GTGAGGaaaatattataATG major capsid protein 

+ 13 12083 12361 93 11.1 4.6 AGGAAAccgactattATG hypothetical protein 

+ 14 12358 12639 94 10.6 10.0 AGGTGGtggcaagaATG phage tail protein 

+ 15 12639 12950 104 11.8 5.3 GGGTGGtaatcgctaATG hypothetical protein 

+ 16 12950 13306 119 13.6 11.0 ATGTGGtggttctctaATG hypothetical protein 

+ 17 13357 13941 195 21.6 5.2 GTGAGGataataaaaacATG major tail protein 

+ 18 14091 15935 615 63.1 9.6 AGGAGCttttaaATG tail tape measure protein 

+ 19 15913 16674 254 25.6 11.0 TGGTCAattgATG tail tape measure protein 

+ 20 16716 17831 372 41.8 5.0 ATGTGAtataatcgtagtATG hypothetical protein 

+ 21 17834 18703 290 32.4 5.4 TGGAGActagagATG structural protein 

+ 22 18717 19697 327 34.8 7.9 AGAAAGGtaataacATG receptor-binding tail protein 

- 23 19968 19717 84 9.5 9.5 AGGATAatagcctttctCATG hypothetical protein 

- 24 20323 19943 127 14.7 4.9 AGGACGaaccaacATG hypothetical protein 

- 25 20771 20388 128 14.3 6.6 CGAATGGAaacataataATG holin I 

- 26 21040 20852 63 14.6 4.5 CGGAGAtaaaaatcATG hypothetical protein 

- 27 21485 21033 151 16.3 4.6 TGGTGAaaggataaaacATG lysin 

- 28 22433 21489 315 6.8 5.7 none phage-related methyltransferase 

- 29 22708 22433 92 10.8 9.6 AAAAGGaaaataactaATG hypothetical protein 

- 30 22977 22708 90 10.2 7.8 AGGAGCcagatagATG hypothetical protein 

- 31 23192 22974 73 8.2 5.3 AGGAGAtaacacattGTG hypothetical protein 

- 32 23493 23245 83 9.8 4.8 TGGAGTgagtgATG hypothetical protein 

- 33 23702 23493 70 8.3 9.6 AGAGGattttcaaaaaATG transcriptional regulator 

- 34 23845 23699 49 6.2 12.0 AAGGGGtaaattggtATG hypothetical protein 

- 35 24111 23842 90 10.8 10.0 AGGAGCaattataATG response regulator 

- 36 24627 24274 118 13.3 4.6 AGGAGCaattataATG hypothetical protein 

- 37 24878 24627 84 9.9 9.6 AGGAGGtcacaaaagATG hypothetical protein 

- 38 25769 24987 261 29.4 11.0 AGGAGGtaattATG lysin 

- 39 26217 25780 146 15.6 9.1 AAGAGGattaacatATG holin II 

- 40 26367 26221 49 5.7 7.2 AGGAACGataagactATG repressor 

a
 Number of amino acids (aa) of the predicted protein; 

b
 Uppercase letters indicate nucleotides identical to the consensus 

SD sequence; boldfaced indicate start codon. 
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Figure 1 
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Figure 2 
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Figure 3 
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Highlights 

- We characterized Leuconostoc phages on the basis of host range and genome analysis. 

- Host range of Leuconostoc phages was studied using three different methodologies.  

- Phages infected both Ln. pseudomesenteroides and Ln. mesenteroides strains. 

- Direct relationship between deduced RBP sequence and host range pattern was found. 

- This is the first report of overlapped phage host ranges between Leuconostoc species. 
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