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ABSTRACT: Diastereoselective multicomponent reaction of enantioenriched 4-

nitroprolinates, obtained by enantiocatalyzed 1,3-dipolar cycloaddition (1,3-DC) of 

imino esters and nitroalkenes, with α,β-unsaturated aldehydes and electrophilic alkenes 

proceed with total periselectivity depending on the structure of the aldehyde employed. 

This process evolves through a [3+2] 1,3-DC when cinnamaldehyde is used in the 

presence of an azomethine ylide giving the corresponding highly substituted 

pyrrolizidines with endo-selectivity. However, in the case of the α,β-unsaturated 

aldehyde, which contains a hydrogen atom at the γ-position an amine-aldehyde-

dienophile (AAD) [4+2] cycloaddition takes place by formation of an intermediate 1-

amino-1,3-diene affording highly functionalized cyclohexenes with high endo-

diastereoselectivity. This AAD process only occurred when a nitro group is bonded to 

the 4-position of the initial enantiomerically enriched pyrrolidine ring. DFT calculations 

have been done with the aim to explain this different behavior between pyrrolidines 

bearing or not a nitro group demonstrating the strongly nitro group-dependent 
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periselectivity. The results of these computational studies also support the 

experimentally obtained absolute configuration of the final adducts. 

 

 

 

 

 

 

INTRODUCTION 

Diversity-oriented synthesis (DOS) concept described by Schreiber 1  has been 

interestingly applied in many methodologies for the synthesis of complex molecules. 

The formation of molecular frameworks, just by modifying functional group 

arrangements, reaction parameters, etc., are key features of divergent synthesis. In this 

concept, the addition of operational simplicity and atom (and step) economy provided 

by multicomponent reactions (MCRs) 2  constitutes a very important strategy. 

Particularly, 1,3-dipolar cycloadditions (1,3-DC) 3 , 4  and amide-aldehyde-dienophile 

(AAD)5 are attractive and versatile multicomponent processes that can generate organic 

molecules with very different skeletons.  

We and other groups have recently described that 1,3-DC of in situ generated 

cyclic azomethine ylides could be used for the generation of highly substituted 
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pyrrolizidines,6  and indolizidines.7,8 Namely, pyrrolizidine alkaloids are currently of 

special interest because they have wide and interesting biological properties. These 

heterocycles 2 can be obtained by multicomponent reaction of proline derived esters 1 

with aromatic, aliphatic, and α,β-unsaturated aldehydes, and the corresponding 

dipolarophiles.6,9 Mild reaction conditions were required for all type of electrophilic 

alkenes affording diastereoselectively bicyclic alkaloids 2 in good yields (Scheme 1, eq 

a).  

On the other hand, the MCR known as AAD has been widely studied for the 

synthesis of 3-aminocyclohexenes and other interesting structures. 10  Amides, 

carbamates and sulfonamides reacted with aldehydes and dienophiles in the presence of 

TsOH through a [4+2] process, to yield the corresponding cycloadducts 3 (Scheme 1, eq 

b). These AAD reactions have provided the access to several hetero- and carbocycles as 

well as key structural cores of the natural product pumiliotoxin C.11 

 

 

Scheme 1. a) General multicomponent 1,3-DC of prolinates, aldehydes and 

dipolarophiles affording pyrrolizidines 2. b) General multicomponent [4+2] 
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cycloaddition of amides-aldehydes-dienophiles (AAD processes) providing 3-

aminocyclohexenes 3. 

 

 

Concerning the presence of a nitro group in cyclic structures12 not only allows a 

series of synthetic transformations but also enhances/modifies the biological properties 

of such molecules. Thus, optically active polysubstituted nitroprolinates have emerged 

as promising therapeutic agents. For example, molecules 4 (Figure 1) are important 

inhibitors of α4,β1-integrin-mediated hepatic melanoma and in a murine model of colon 

carcinoma metastasis, as well as potent antiadhesive properties in several cancer cell 

lines.13,14 Bicyclic heterocycles 5, containing an atropane scaffold have been found as 

novel inhibitors of skin cancer.15 Spiroxindoles 6 increased the mortality of zebrafish 

embryos,16 whilst molecules 7 with benzopyran skeleton were successfully tested as 

antimycobacterials against M. tuberculosis H37Rv strain. 4-Nitroprolines exo-8, and 

endo-8 have been recently used as chiral organocatalysts in aldol reactions.17 Michael-

type addition of ketones to nitroalkenes was successfully organocatalyzed by exo-8b 

(X=H),18 providing good to excellent diastereoselections and high enantiomeric ratios. 

A series of enantiopure tetrasubstituted nitroprolinate surrogates has been designed as 

scaffolds for proteasome inhibitors with high medicinal prospects.19 In addition, the 

NH-D-EhuPhos ligand 9 has been efficiently employed in the 1,3-dipolar cycloadditions 

(1,3-DC) to yield nitroprolines and structurally rigid spirocompounds from chiral γ-

lactams.17, 20 , 21  A family of enantiomerically enriched spironitroprolinates 10 were 

obtained by our group from imino lactones and nitroalkenes which are currently tested 

as anticancer agents.22 
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Figure 1. Interesting nitroprolinates with biological properties and with useful synthetic 

applications. 

 

Continuing with our interest in the enantioselective synthesis of nitroprolinates 

and their synthetic applications, we described here the periselectivity exihibited by 

enantiopure nitroprolinates towards 1,3-DC or AAD processes in the reaction with α,β-

unsaturated aldehydes and electrophilic alkenes. 

 

RESULTS AND DISCUSSION 

During initial studies of the multicomponent 1,3-DC involving enantioenriched 

nitroprolinates exo-1a, prepared from methyl benzylideneglycinate and β-nitrostyrene, 

in the presence of a chiral phosphoramidite·AgOBz complex (5 mol%) in >99:1 er 

(>99:1 exo:endo dr),23,24 with α,β-unsaturated aldehydes and dipolarophiles, using a 

conventional iminium route, we detected the formation of different final products 

depending on the structure of the α,β-unsaturated aldehyde. Thus, in the absence of 

hydrogens at the γ-position of the aldehyde (e.g. cinnamaldehyde) the expected 

pyrrolizidine 2a was formed (as a 73:27 endo:exo mixture of diastereoisomers in 96% 

Page 5 of 50

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6 

 

yield) employing N-methylmaleimide (NMM) as dipolarophile and silver acetate (5 

mol%) as catalyst (Scheme 2, eq a, and Table 1, entry 1). However, crotonaldehyde, 

which incorporates hydrogen atoms at the γ-position, afforded product 3a (>99:1 dr in 

94% yield) acting NMM as dienophile (Scheme 2, eq b). In this last case, an amine 

(instead of amide)-aldehyde-dienophile (AAD) multicomponent process took place 

through the intermediate 1-pyrrolidine-1,3-diene formed by a previous isomerization of 

the iminium ion.25  Apart from amides, a few examples of AAD using pyrrolidine, 

morpholine, proline derivatives26,27 or diallylamine27 have been reported. In the last case 

only nitrostyrenes were used as dienophiles.27 

 

Scheme 2. Divergent multicomponent synthesis of pyrrolizidines endo- and exo-2a via 

1,3-DC or polysubstituted cyclohexenes 3a via AAD process from prolinate exo-1a, 

aldehydes and NMM. 

 

To study the scope of the 1,3-DC, cinnamaldehyde was selected as aldehyde, for 

the reaction with prolinate exo-1a and different dipolarophiles at 70 ºC in the presence 

of AgOAc (5 mol%) generating enantiomerically enriched pyrrolizidines 2a-h in good 

chemical yields (up to 96%, Scheme 3 and Table 1, entries 1-8). Apart from NMM, 

maleimide was a suitable dipolarophile in this reaction affording a 68:32 endo-2b:exo-
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2b mixture in combined excellent yield (95%) (Table 1, entry 2). A very high 

regioselectivity and endo-diastereoselectivity were observed in the case of the 1,3-DC 

performed with methyl acrylate obtaining endo-2d in 88% yield (Table 1, entry 4). 

Methyl fumarate furnished a 65:35 mixture of endo/exo adducts in 74% yield, the 

corresponding endo-cycloadducts 2e being the major diastereoisomer (Table 1, entry 5). 

In the specific reaction with dialkyl acetylenedicarboxylates large quantities of 1,4-

addition products of the nitroprolinate onto the electron-deficient alkyne were observed 

furnishing the desired 2f or 2g products as unique diastereoisomers in modest yields 

(Table 1, entries 6 and 7).  

β-Phenylcinnamaldehyde was also tested as generator of the iminium salt in the 

presence of N-phenylmaleimide (NPM). endo-Cycloadduct 2h was isolated in moderate 

yield as 74:26 dr (Table 1, entry 8). This result contrasted with the major exo-selectivity 

(26:74 or 32:68) detected for the reaction of the same NPM with cinnamaldehyde and 

both nitroprolinate exo-1a or exo-1b, respectively (Table 1, entries 3 and 9). This 

unexpected and exceptional behavior of NPM will be discussed later. 

Relative configurations of these molecules were determined in the basis of 1H 

NMR data and from nOe experiments and also by comparison with similar 

enantioenriched cycloadducts previously reported.6 The diastereomeric ratios observed 

in the crude mixtures (determined by 1H NMR analysis) were very similar to those 

obtained after separation of both diastereoisomers, which could be separated by flash 

chromatography (see, experimental section). Besides, these assignments are in perfect 

agreement with the absolute configuration revealed by X-ray diffraction analysis of 

molecule endo-2a
28
 (see, supporting information and Scheme 3). 

The reactions performed with aliphatic or aromatic aldehydes instead of using 

α,β-unsaturated aldehydes, gave poor conversions of the expected pyrrolizidines. The 
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8 

 

employment of dipolarophiles such as nitroalkenes, vinyl sulfones, and chalcones under 

these conditions was not satisfactory. 

 

 

 

 

Scheme 3. Synthesis of pyrrolizidines 2 via 1,3-DC from prolinate exo-1a, 

cinnamaldehyde derivatives with different dipolarophiles and X-ray diffraction analysis 

of compound endo-2a. 
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9 

 

 

Table 1. Synthesis of pyrrolizidines 2 via multicomponent 1,3-DC from enantiopure exo-1a and 1b. 

 

 Aldehyde  Product 
Entry R1 Dipolarophile Structure and number Conv. (%)a dra Yield (%)b drc 

1 H NMM 

 

>95 62:38 70, 26 73:27 

2 H Maleimide 

 

>95 66:34 65, 30 68:32 

3 H NPM 

 

>95 25:75 23, 67  26:74 
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4 H Methyl acrylate 

 

>95 96:4 88 >99:1 

5 H Dimethyl fumarate 

 

>95 61:39 48, 26 65:35 

6 H DMADd 

 

90 >99:1 31 >99:1 

7 H DEADe 

 

90 >99:1 35 >99:1 
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8 Ph NPM 

 

90 71:29 59, 21 74:26 

9f H NPM 

 

>95 32:68 60, 28 32:68 

a Determined by 1H NMR analysis of the crude material. b Isolated overall yield after purification by column chromatography (silica gel, endo, 
exo). c Determined according to the individual yield obtained after purification. d Dimethyl acetylenedicarboxylate. e Diethyl 
acetylenedicarboxylate. f Reaction performed with nitroprolinate exo-1b.
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Enantiomerically enriched endo-1a (85:15 er and >99:1 dr), obtained from the 

starting materials employed for the preparation of compound exo-1a but using a catalyst 

formed by NH-D-EhuPhos 9 and Cu(MeCN)4PF6,
17,20 was not so useful precursor to run 

this multicomponent process giving 2j as 50/50 endo/exo dr, in very low yield (<20% 

from crude 1H NMR spectra, Scheme 4). However, racemic endo-prolinate 1c, obtained 

according to the procedure described for exo-1a and from the corresponding 

nitroalkene, afforded 2k as pure racemic endo-stereoisomer, in 72% yield (Scheme 4). 

Yields represented in Scheme 4 obey to the overall yields obtained after purification as 

well as their corresponding dr. In the reaction of nitroprolinate endo-1a, both 

diastereoisomers endo- and exo-2j could not be separated by flash chromatography (see, 

experimental section). 

In these examples, as well as in the described in entries 3 and 9 of Table 1, NPM 

approached to the dipole with an exo-orientation. The driving force that causes exo 

preference can be attributed to a lower destabilizing stereoelectronic interaction, mainly 

consisted of electrostatic repulsion between the nitro group of the dipole and the phenyl 

group of the dipolarophile, compared with the endo approach (see below in Figure 2, in 

the explanation of the periselectivity of these reactions). In contrast, the presence of an 

additional phenyl moiety of β-phenylcinnamaldehyde implies a higher Pauli repulsion 

in the exo-approach, which makes this approximation less favorable. In consequence, in 

this case endo-2h adduct was the major diastereoisomer obtained.  
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NPh

Cy
CO2MeO2N

Ph

NPh

Ph
CO2MeO2N

Ph

N Ph

O

O

N Ph

O

O

72%, 2k

endo/exo 1:99

<20%, 2j

endo/exo 1/1

N
HPh

Cy

CO2Me

O2N

N
HPh

Ph

CO2Me

O2N

rac-endo 1c

endo/exo >99/1

endo-1a, 85:15 er

endo/exo >99/1

Ph
CHO

, 70 ºC, NPM
toluene, AgOAc (5 mol%) 17-24 h

 

 

Scheme 4. Pyrrolizidines 2j and 2k obtained from endo-nitroprolinates 1 with 

cinnamaldehyde and NPM. 

 

 

AAD reactions of compound exo-1a (>99:1 er, >99:1 dr) with crotonaldehyde 

and maleimides were carried out at room temperature. The reaction with NMM (2 

equiv) gave compound 3a in a very high yield (94%) and also NPM, N-

benzylmaleimide, maleimide and maleic anhydride gave satisfactory yields (86%, 89%, 

80%, and 71% respectively) of products 3b-3e (Scheme 5). 1,4-Benzoquinone afforded 

compound 3f in 65% yield (determined by 1H NMR spectra of the crude product) at 

room temperature. Higher temperature (70 ºC) was needed to accomplish the reaction 

with 1,2-bis-(phenylsulfonyl)ethylene (BPSE) giving compound 3g in 78% yield. 

Diisopropyl azodicarboxylate also promoted the multicomponent AAD reaction giving 
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3h in a lower yield (57%, also determined by 1H NMR spectra of the crude product). 

Diastereomeric compounds 3f and 3h could not be neither purified by column 

chromatography due to partial decomposition nor recrystallized in order to obtain pure 

samples to accomplish the full characterization. Next, α,β-unsaturated aldehydes with 

hydrogen atoms at the γ-position such as 3-methyl-2-butenal, 2-pentenal and 2-hexenal 

were appropriate aldehydes for the success of the name AAD multicomponent reaction 

furnishing with NPM adducts 3i, 3j and 3k in 62%, 89%, and 72%, respectively 

(Scheme 5). In all these examples, aminocyclohexenes 3 were isolated as unique 

diastereoisomers. However, the reaction with geranial, NPM and nitroprolinate exo-1a 

gave a complex crude mixture containing the major adduct 3l and various unidentified 

compounds. After purification, only a 53% yield of the product 3l could be isolated.  

Compounds 3 were obtained in excellent dr affording enantiomerically pure 

cycloadducts after flash chromatography, except compounds 3f and 3h as mentioned 

above. In the case of the cycloadduct 3e, derived from maleic anhydride, it was obtained 

after chromatographic  purification as a 63:37 mixture of diastereoisomers, the structure 

of the major compound being drawn in Scheme 5. The absolute configuration of new 

compound 3b was unambiguously established by X-ray diffraction analysis 29  (see, 

Supporting Information and Scheme 5). For other molecules 3 complementary 1H NMR 

analysis also confirmed the drawn structures depicted in Scheme 5.  
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   X-Ray crystal structure of 3b 

 

Scheme 5. Polyfunctionalized cyclohexenes 3 obtained from AAD employing 

nitropolinate exo-1a, α,β-unsaturated aldehydes with hydrogen atoms at the γ-position 

and dienophiles and X-ray diffraction analysis of compound 3b. 
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Two nitroprolinates, exo-1b and rac-endo-1c were tested as precursors in this 

AAD domino reaction with NPM and crotonaldehyde. The reaction of the exo-1b gave 

3m in 81% yield, whereas rac-endo-1c afforded compound 3n as a 1:1 mixture of two 

inseparable diastereoisomers in 79% overall yield (Scheme 6). 

 

N

O2N Cy

Ph CO2Me

NPh

O

O

3n, 79%, 1:1 dr

N
H

O2N Cy

Ph CO2Me

rac-endo-1c

H

H

N
H

O2N C6H4(4-OMe)

Ph CO2Me

exo-1b

N

O2N C6H4(4-OMe)

Ph CO2Me

NPh

H

H

O

O

3m, 81%

>99:1 er, >99:1 dr

CHO
, rt, NPM

toluene, 17-24 h

 

 

Scheme 6. Products 3m and 3n obtained from AAD sequence employing different exo 

and endo-nitroprolinates with crotonaldehyde and NPM. 

 

Noteworthy, no AAD multicomponent reaction was observed during the reaction 

of L-proline methyl ester 11 or proline ester derivatives 12, 13 and 14. In these cases, 
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the 1,3-DC occurred instead and the corresponding endo-pyrrolizidines 15-18 were 

formed in 61%, 69%, 67% and 68% yield, respectively (Scheme 7).  

 

 

Scheme 7. Products endo-15-18 obtained from 1,3-DC employing different methyl 

prolinates with crotonaldehyde and NPM.  

 

 

According to these described results, the presence of the nitro group is crucial in 

the origin of the periselectivity in these multicomponent reactions. Thus, the effect of 

the presence and absence of the nitro group in the starting prolinate derivatives exo-1a, 

11, endo-13 and endo-14 (derived from dimethyl fumarate) in the reaction outcome was 

next analyzed by means of DFT calculations. We selected the reactions of NMM, 

crotonaldehyde and proline derived esters with different substitution patterns in order to 

shed light on the observed periselectivity of each reactive system between the [4+2] 

AAD multicomponent reaction or the pyrrolizidine synthesis via 1,3-DC. 
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The initial step in the proposed mechanism consists in the formation of the 

iminium cation A, derived from the condensation between the proline derivative and 

crotonaldehyde (Scheme 8). This intermediate has two acidic protons. Therefore, in 

presence of a base, A can evolve into the azomethine ylide B by abstraction of the 

hydrogen atom located in α-position of the methoxycarbonyl group, that leads to 

pyrrolizidines 2, 15-18 or to a dienamine intermediate C by abstraction of the hydrogen 

atom in γ-position of crotonaldehyde, thus forming cyclohexenylpyrrolidines 3. 
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Scheme 8. General scheme of the reaction of prolinates, aldehydes and dipolarophiles 

affording pyrrolizidines 2 or cyclohexenylpyrrolidines 3. Acidic positions are 

highlighted. 

 

According to the Fukui frontier molecular orbital (FMO) theory, 30  π4s+ π2s 

cycloaddition reactions are mainly governed by symmetry allowed HOMOdipole/diene-

LUMOdipolarophile/dienophile interactions. Within this framework, small energy gap ∆EHOMO-

LUMO is related to a high reactivity. Inspection of the reagent FMOs shown that the less 

stable azomethine ylides B seem to be more reactive than dienamines C, regardless the 

proline derivative 1 used (see, Supporting Information). As a consequence of this 

reactivity-stability dichotomy, in which unstable reagents are the most reactive ones,31 

exploration of all the possible transition states associated with the formation of 

pyrrolizidines 2, 15-18 and cyclohexenyl pyrrolidines 3 was carried out. Nevertheless, if 

we assume a pre-equilibrium between all the possible reactive species, Curtin-Hammet 

kinetics32  show that the product ratio depends on the free Gibbs activation energy 

difference of the corresponding transition structures. The relative Gibbs free energies 

and main geometrical features of the less energetic computed transition states are shown 

in Figures 2-4. As far as nitroproline exo-1a is considered, our calculations show that 

the transition structure associated with the AAD multicomponent reaction (TSAAD-exo-

1a) is 1.2 kcal mol-1 more stable than its 1,3-DC analog TS1,3-DC-exo-1a (Figure 2). 

Therefore, cyclohexenylpyrrolidines 3 will be preferentially formed in this case, despite 

the higher reactivity of dipole B. The computed energetic difference between all the 

possible transition structures TSAAD associated with formation of 

cyclohexenylpyrrolidines 3 (especially those comparing the endo- and the exo-
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approach) show a theoretical dr of c.a. 99:1, in perfect agreement with the experimental 

results (see, Supporting Information).  

Analysis of the geometries depicted in Figure 2 also supports a diastereofacial 

bias in highly substituted nitroproline exo-1a derived transition state, where substituents 

in position 2, 3 and 5 effectively block one face of the azomethine ylide or the 

aminodiene intermediate. Therefore, in TS1,3-DC-exo-1a the dipolarophile has to 

approach towards the dipole by the nitro group face. Within this approach, high Pauli 

repulsions between the dipolarophile and the nitro group are expected (Figure 2). These 

stereoelectronic effects are reflected in the high energy required to deform the 

azomethine ylide B from its relaxed geometry to the one that adopts in the transition 

state structure, making the 1,3-DC energetically inaccessible, and thus converting the 

low-distorted AAD reaction the preferred one (see the distortion/interaction analysis33 in 

the Supporting Information). Regarding these Pauli repulsions, is it plausible to assume 

that they are the responsible of the favorable exo-approach of NPM in the course of 1,3-

DCs.  
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Figure 2. Relative Energies, Gibbs free energy (between parenthesis) and main 

geometrical features of the most stable transition structures associated with the 1,3-DC 

(TS1,3-DC-exo-1a) or multicomponent AAD (TSADD-exo-1a) associated with the reaction 

of crotonaldehyde, NMM and exo-1a (A) computed at B3LYP/6-31G* level of theory 

and M06-2X/6-31G*//B3LYP/6-31G* level of theory (in italics and between brackets, 

respectively) at 298K. Distances and energies are in Å and in kcal mol-1, respectively.  

 

 

On the other hand, the employment of proline derivatives 11 (Scheme 7) implies 

a change in the periselectivity of the reaction. In this example, preferential formation of 

pyrrolizidine 15 was observed, being TS1,3-DC (associated with the 1,3-DC) c.a. 3 kcal 

mol-1 more stable than their TSAAD counterpart, in good agreement with the 
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periselectivity observed experimentally (Figure 3). A detailed inspection of the 

geometries shows that generation of reactive azomethine ylides B (Scheme 8) forces the 

pyrrolidine ring (and in consequence the iminium ion A) into a planar conformation in 

which all substituents are placed in an isoclinal position. Within this fixed 

conformation, the substituents can effectively block one or both faces of the azomethine 

ylide. Therefore, it was observed that an small additional energy is required for the 

deformation of the azomethine ylide during an endo-approach, increasing the activation 

barrier associated with the 1,3-DC. But never this increment generates a TS1,3-DC with 

higher energy than the corresponding TSAAD one (14.4 kcal mol-1 and 18.7 kcal mol-1, 

respectively). Thus, a strong preference for the 1,3-DC is observed.  
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Figure 3. Relative Gibbs free energy and main geometrical features of the most stable 

transition structures associated with the 1,3-DC (TS1,3-DC-11) or multicomponent AAD 

(TSAAD-11) associated with the reaction of crotonaldehyde, NMM and (B)  proline 11. 

See caption of Figure 2 for further details.  

 

However, in dienamine intermediates (Figure 4, A and B) the pyrrolidine ring 

has a twist conformation where most of the substituents are placed in an equatorial 

position. In these both examples, the steric hindrance is considerably lower than in the 

former TSAAD-11, and therefore, the activation barrier is less influenced by the 

substituents (Figure 4).  

For the maleimide derivative endo-13, the cis-substitution pattern in the 

pyrrolidine ring leads to the effective blockage of only one of the prochiral faces, and 

low distortion of the initial reagent is required for the attack to the less hindered face. 

Therefore, in this case, 1,3-DC was preferred over multicomponent AAD process such 

as it was observed for L-proline methyl ester 11. In consequence, formation of 

pyrrolizidine 17 is theoretically expected. In the case of fumaric ester derivative 14, 

despite having a trans-substitution pattern that should block both prochiral faces of 

azomethine ylide in a similar way to exo-1a, the steric requirements of the 

methoxycarbonyl groups are smaller than phenyl or nitro substituents, and the energy 

required to distort the initial azomethine ylide is lower. In fact, the transition structure 

associated with the 1,3-DC (TS1,3-DC-endo-14) was found to be 3.6 kcal mol-1 more 

stable than that of its AAD counterpart (TSAAD-endo-14). Preferential formation of 

pyrrolizidines 15-18 are theoretically assessed when 11-14 are used as starting 

materials. 
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Figure 4. Relative Gibbs free energy and main geometrical features of the most stable 

transition structures associated with the 1,3-DC (TS1,3-DC-endo-13 and TS1,3-DC-endo-

14) or multicomponent AAD (TSAAD-endo-13 and TSAAD-endo-14) associated with the 

reaction of crotonaldehyde, NMM and (A) endo-13, or (B) endo-14. See caption of 

Figure 2 for further details. 

  

 

 

CONCLUSION 

An example of total periselectivity has been demonstrated in the multicomponent 1,3-

DC or AAD of enantiopure methyl exo- or endo-4-nitroprolinates in the presence of a 

dipolarophile and an α,β-unsaturated aldehyde. The crucial presence of a nitro group in 

the heterocycle and the existence or not of hydrogen atoms at the γ-position of the 

aldehyde determines the periselectivity towards AAD or 1,3-DC, respectively. The 

diastereomeric control was notable in the [3+2] process and excellent in [4+2] 

cycloadditions affording in this last case enantiopure polysubstituted 3-

aminocyclohexenes. On the basis of the DFT calculations here presented, it was 

supported that azomethine ylides derived from proline derivatives and crotonaldehyde 

are in general more reactive than its dienamine counterparts, being the 1,3-DC preferred 

over the AAD reaction. Only in the case of highly hindered azomethine ylides, such as 

the one derived from exo-1a, 1,3-DC is hindered due to the huge energy required to 

distort the reagents into the transition structure geometry. Therefore, the less reactive 

dienamine takes importance, being the AAD pathway the only one energetically 
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accessible. The evaluation of all these series of molecules as anticancer agents are 

currently underway.  

 

 

EXPERIMENTAL SECTION  

General Experimental Methods: All commercially available reagents and 

solvents were used without further purification, only aldehydes were also distilled prior 

to use. Analytical TLC was performed on Schleicher & Schuell F1400/LS 254 silica gel 

plates, and the spots were visualised under UV light (λ = 254 nm). Flash 

chromatography was carried out on handpacked columns of Merck silica gel 60 (0.040-

0.063 mm). Melting points were determined with a Reichert Thermovar hot plate 

apparatus and are uncorrected. Optical rotations were measured on a Perkin Elmer 341 

polarimeter with a thermally jacketted 5 cm cell at approximately 25 ºC and 

concentrations (c) are given in g/100 mL. The structurally most important peaks of the 

IR spectra (recorded using a Nicolet 510 P-FT) are listed and wavenumbers are given in 

cm-1. NMR spectra were obtained using a Bruker AC-300 or AC-400 and were recorded 

at 300 or 400 MHz for 1H NMR and 75 or 100 MHz for 13C NMR, using CDCl3 as 

solvent and TMS as internal standard (0.00 ppm). The following abbreviations are used 

to describe peak patterns where appropriate: s = singlet, d = doublet, t = triplet, q = 

quartet, m = multiplet or unresolved and br s = broad signal. All coupling constants (J) 

are given in Hz and chemical shifts in ppm. 13C NMR spectra were referenced to CDCl3 

at 77.16 ppm. DEPT-135 experiments were performed to assign CH, CH2 and CH3. 

Low-resolution electron impact (EI) mass spectra were obtained at 70 eV using a 

Shimadzu QP-5000 by injection or DIP; fragment ions in m/z are given with relative 

intensities (%) in parentheses. High-resolution mass spectra (HRMS) were measured on 
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an instrument using a quadrupole time-of-flight mass spectrometer (QTOF) and also 

through the electron impact mode (EI) at 70 eV using a Finnigan VG Platform or a 

Finnigan MAT 95S. 

 

Computational methods: All the computational mechanistic studies were carried 

out with the Gaussian09 34  suite of programs. Density functional Theory (DFT) 

geometry optimizations and harmonic analysis were preformed with the B3LYP 35 

functional. Relative energies were computed by means of single-point calculations on 

the optimized geometries with the M06-2X36 functional.  

This latter functional was chosen because it is well suited for the treatment of 

nonbonding interactions and dispersion forces in densely substituted interacting 

systems37 and produce similar geometries to B3LYP, 38 although it tends to slightly 

overestimate the barriers of hetero Diels Alder reactions. 39 

The 6-31G* basis set was used. Solvent effects were computed with the PCM 

method using toluene as solvent. 40  All the stationary points were characterized by 

harmonic analysis. Reactants, intermediates and products showed positive definite 

Hessian values. Transition structures (TSs) showed one and only one imaginary 

frequency associated with nuclear motion along the chemical transformation. Activation 

and reaction (Gibbs) energies were calculated at 298.15 K. Figures including optimized 

structures were made with Maestro41 and CYL-view42 programs. Orbital diagrams were 

prepared by using the Gauss-view interface. 43 

 

General procedure for the synthesis of pyrrolizidines 2a-2k: To a stirred solution 

of the nitroprolinate 1 (0.1 mmol) in toluene (1 mL) the aldehyde (0.1 mmol) and the 

dipolarophile (0.1 mmol) were added. Then a 5 mol% of AgOAc (0.005 mmol, 0.84 
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mg) was added and the reaction was stirred overnight at 70 ºC in the dark. Then the 

reaction was filtered through a celite path and the solvent was evaporated under reduced 

pressure. The crude mixture was purified by flash column chromatography over silica 

gel (20% EtOAc in hexane as the eluent) to furnish the corresponding product 2. 

Methyl (3aS,4S,6S,7R,8R,8aR,8bR)-2-methyl-7-nitro-1,3-dioxo-6,8-diphenyl-4-

((E)-styryl)octahydropyrrolo[3,4-a]pyrrolizine-8a(6H)-carboxylate (endo-2a): The 

representative procedure was followed by using exo-nitroprolinate 1a (0.1 mmol, 32.6 

mg), cinnamaldehyde (0.1 mmol, 12.6 µL) and N-methylmaleimide (0.1 mmol, 11.1 

mg). The desired product was obtained as colorless prisms (38.6 mg, 70% yield), mp 

194-197 ºC (Et2O), ����
�� = +160.3 (c 1.0, CHCl3), IR (neat) �max: 1742, 1697, 1552, 

1208, 1037, 968 cm-1. 1H NMR δ: 3.19 (s, 3H), 3.30 (s, 3H), 3.53 (t, J = 8.0 Hz, 1H), 

4.20 (dd, J = 10.2, 8.0 Hz, 1H), 4.34 (d, J = 8.0 Hz, 1H), 4.69 (d, J = 8.4 Hz, 1H), 4.86 

(d, J = 9.9 Hz, 1H), 5.41 (dd, J = 9.9, 8.4 Hz, 1H), 5.89 (dd, J = 15.5, 10.2 Hz, 1H), 

6.31 (d, J = 15.5 Hz, 1H), 6.82-6.91 (m, 2H), 7.13-7.49 (m, 13H). 13C NMR δ: 25.6, 

52.0, 52.1, 52.7, 52.8, 64.9, 67.9, 82.7, 96.7, 122.6, 126.7, 126.9, 128.1, 128.3, 128.4, 

128.8, 128.9, 129.0, 134.8, 135.8, 136.0, 139.0, 171.4, 175.6, 176.8. MS (EI) m/z: 551 

(M+, <1%), 505 (41), 492 (59), 446 (32), 445 (100), 256 (29), 193 (61), 115 (58), 91 

(25). HRMS calculated for C32H29N3O6: 551.2056; found: 551.2057. 

Methyl (3aR,4S,6S,7R,8R,8aR,8bS)-2-methyl-7-nitro-1,3-dioxo-6,8-diphenyl-4-

[(E)-styryl]octahydropyrrolo[3,4-a]pyrrolizine-8a(6H)-carboxylate (exo-2a): This 

minor product was obtained as colorless plates (14 mg, 26% yield), mp 88-90 ºC (Et2O), 

����
�� = +76.1 (c 0.5, CHCl3), IR (neat) �max: 1737, 1700, 1551, 1434, 1372, 1279, 1131, 

1084, 968 cm-1. 1H NMR δ: 3.04 (s, 3H), 3.23 (s, 3H), 3.82 (dd, J = 9.9, 6.6 Hz, 1H), 

4.15 (d, J = 9.9 Hz, 1H), 4.48 (dd, J = 7.9, 6.6 Hz, 1H), 4.56 (d, J = 8.9 Hz, 1H), 4.83 

(d, J = 7.6 Hz, 1H), 5.44 (dd, J = 8.9, 7.6 Hz, 1H), 5.90 (dd, J = 15.7, 7.9 Hz, 1H), 6.53 
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(d, J = 15.7 Hz, 1H), 6.83-6.99 (m, 2H), 7.12-7.50 (m, 13H). 13C NMR δ: 25.3, 52.3, 

53.0, 56.0, 58.0, 65.7, 68.2, 82.9, 97.3, 125.4, 126.7, 127.2, 128.1, 128.2, 128.5, 128.8, 

129.0, 129.2, 134.8, 135.5, 135.8, 139.4, 169.2, 174.5, 175.8. MS (EI) m/z: 551 (M+, 

<1%), 506 (19), 505 (55), 492 (18), 446 (17), 445 (48), 256 (19), 194 (18), 193 (100), 

115 (57), 91 (21). HRMS calculated for C32H29N2O4 [M–NO2]: 505.2127; found: 

505.2129. 

Methyl (3aS,4S,6S,7R,8R,8aR,8bR)-7-nitro-1,3-dioxo-6,8-diphenyl-4-[(E)-

styryl]octahydropyrrolo[3,4-a]pyrrolizine-8a(6H)-carboxylate (endo-2b): The 

representative procedure was followed by using exo-nitroprolinate 1a (0.1 mmol, 32.6 

mg), cinnamaldehyde (0.1 mmol, 12.6 µL) and maleimide (0.1 mmol, 9.7 mg). The 

desired product was obtained as pale pink prisms (35.0 mg, 65% yield), mp 249-252 ºC 

(Et2O), ����
�	 = +179.2 (c 1.0, CHCl3), IR (neat) �max: 1711, 1554, 1356, 1192, 750 cm-

1. 1H NMR δ: 3.33 (s, 3H), 3.57 (t, J = 8.3 Hz, 1H), 4.21 (dd, J = 10.3, 8.5 Hz, 1H), 4.37 

(d, J = 8.2 Hz, 1H), 4.91 (d, J = 8.4 Hz, 1H), 5.01 (d, J = 10.2 Hz, 1H), 5.50 (dd, J = 

10.2, 8.4 Hz, 1H), 5.93 (dd, J = 15.4, 10.3 Hz, 1H), 6.28 (d, J = 15.4 Hz, 1H), 6.84-6.91 

(m, 2H), 7.10-7.50 (m, 13H), 8.67 (br s, 1H). 13C NMR δ: 51.7, 52.8, 52.9, 54.0, 64.4, 

67.6, 82.5, 96.3, 122.4, 126.7, 126.9, 128.1, 128.2, 128.3, 128.4, 128.8, 128.9, 129.0, 

134.3, 135.9, 136.1, 138.8, 171.4, 175.3, 176.9. MS (EI) m/z: 538 (M+, <1%), 491 (39), 

479 (19), 478 (58), 440 (15), 432 (34), 431 (100), 256 (31), 193 (65), 191 (19), 178 

(15), 157 (18), 141 (16), 128 (15), 115 (70), 91 (28). HRMS calculated for C31H27N2O4 

[M–NO2]: 491.1971; found: 491.1963. 

Methyl (3aR,4S,6S,7R,8R,8aR,8bS)-7-nitro-1,3-dioxo-6,8-diphenyl-4-[(E)-

styryl]octahydropyrrolo[3,4-a]pyrrolizine-8a(6H)-carboxylate (exo-2b): This minor 

product was obtained as yellow prisms (16.2 mg, 30% yield), mp 108-111 ºC (Et2O), 

����
�	 = +81.3 (c 1.0, CHCl3), IR (neat) �max: 1712, 1552, 1340, 1180, 737 cm-1. 1H 
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NMR δ: 3.27 (s, 3H), 3.83 (dd, J = 9.9, 7.6 Hz, 1H), 4.14 (d, J = 9.9 Hz, 1H), 4.51 (d, J 

= 8.6 Hz, 1H), 4.50-4.56 (m, 1H), 4.76 (d, J = 7.7 Hz, 1H), 5.37 (dd, J = 8.6, 7.7 Hz, 

1H), 5.84 (dd, J = 15.7, 7.7 Hz, 1H), 6.51 (d, J = 15.7 Hz, 1H), 6.81-6.92 (m, 2H), 7.11-

7.46 (m, 13H), 8.36 (br s, 1H). 13C NMR δ: 52.3, 53.5, 57.3, 57.8, 65.9, 68.4, 83.0, 97.2, 

125.1, 126.7, 126.8, 127.3, 128.1, 128.2, 128.3, 128.4, 128.5, 128.8, 129.0, 129.2, 

134.6, 135.8, 139.2, 169.1, 174.2, 175.9. MS (EI) m/z: 538 (M+, <1%), 492 (17), 491 

(49), 431 (34), 256 (15), 194 (18), 193 (100), 191 (12), 115 (52), 91 (18). HRMS 

calculated for C31H27N2O4 [M–NO2]: 491.1971; found: 491.1968. 

Methyl (3aS,4S,6S,7R,8R,8aR,8bR)-7-nitro-1,3-dioxo-2,6,8-triphenyl-4-[(E)-

styryl]octahydropyrrolo[3,4-a]pyrrolizine-8a(6H)-carboxylate (exo-2c): The 

representative procedure was followed by using exo-nitroprolinate 1a (0.1 mmol, 32.6 

mg), cinnamaldehyde (0.1 mmol, 12.6 µL) and N-phenylmaleimide (0.1 mmol, 17.3 

mg). The desired product was obtained as colorless prisms (40.9 mg, 67% yield), mp 

161-164 ºC (Et2O), ����
�
  = -31.5 (c 0.6, CHCl3), IR (neat) �max: 1707, 1552, 1387, 

1192, 742 cm-1. 1H NMR δ: 3.25 (s, 3H), 3.94 (dd, J = 10.1, 6.6 Hz, 1H), 4.22 (d, J = 

10.1 Hz, 1H), 4.51-4.70 (m, 2H), 4.88 (d, J = 7.7 Hz, 1H), 5.47 (dd, J = 9.0, 7.7 Hz, 

1H), 5.92 (dd, J = 15.7, 8.0 Hz, 1H), 6.54 (d, J = 15.7 Hz, 1H), 6.83-6.97 (m, 2H), 7.12-

7.51 (m, 18H). 13C NMR δ: 52.4, 53.1, 55.9, 57.9, 65.9, 68.3, 83.3, 97.1, 125.3, 126.5, 

126.7, 127.2, 128.1, 128.2, 128.5, 128.7, 128.8, 129.0, 129.2, 129.3, 132.1, 134.8, 

135.3, 135.9, 139.3, 169.3, 173.4, 174.9. MS (EI) m/z: 613 (M+, <1%), 568 (18), 567 

(44), 507 (23), 440 (10), 394 (11), 256 (15), 193 (100), 115 (48), 91 (19). HRMS 

calculated for C37H31N2O4 [M–NO2]: 567.2284; found: 567.2277. 

Methyl (3aS,4S,6S,7R,8R,8aR,8bR)-7-nitro-1,3-dioxo-2,6,8-triphenyl-4-[(E)-

styryl]octahydropyrrolo[3,4-a]pyrrolizine-8a(6H)-carboxylate (endo-2c): This minor 

product was obtained as colorless prisms (14.3 mg, 23% yield), mp 209-212 ºC (Et2O), 
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����
�	 = -131.2 (c 1.0, CHCl3), IR (neat) �max: 1707, 1549, 1379, 1184, 739 cm-1. 1H 

NMR δ: 3.36 (s, 3H), 3.72 (t, J = 8.1 Hz, 1H), 4.27 (dd, J = 10.3, 7.9 Hz, 1H), 4.58 (d, J 

= 8.2 Hz, 1H), 4.86 (d, J = 8.6 Hz, 1H), 5.01 (d, J = 10.6 Hz, 1H), 5.55 (dd, J = 10.6, 

8.6 Hz, 1H), 6.01 (dd, J = 15.4, 10.3 Hz, 1H), 6.35 (d, J = 15.4 Hz, 1H), 6.86-6.93 (m, 

2H), 7.11-7.58 (m, 18H). 13C NMR δ: 51.9, 52.2, 53.0, 53.1, 65.1, 68.3, 82.9, 96.2, 

122.5, 126.6, 126.7, 127.0, 128.2, 128.3, 128.4, 128.8, 128.9, 129.0, 129.3, 129.6, 

131.7, 134.0, 135.9, 138.5, 171.4, 174.4, 175.8. MS (EI) m/z: 613 (M+, <1%), 568 (16), 

567 (36), 555 (24), 554 (61), 508 (40), 507 (100), 440 (36), 394 (22), 256 (44), 219 

(18), 194 (20), 193 (97), 191 (26), 178 (20), 157 (19), 141 (25), 115 (94), 91 (40). 

HRMS calculated for C37H31N2O4 [M–NO2]: 567.2284; found: 567.2278. 

Dimethyl (2S,3S,5S,6R,7R,7aS)-6-nitro-5,7-diphenyl-3-[(E)-styryl]tetrahydro-

1H-pyrrolizine-2,7a(5H)-dicarboxylate (endo-2d): The representative procedure was 

followed by using exo-nitroprolinate 1a (0.1 mmol, 32.6 mg), cinnamaldehyde (0.1 

mmol, 12.6 µL) and methyl acrylate (0.1 mmol, 22.6 µL). The desired product was 

obtained as sticky yellow oil (46.4 mg, 88% yield), ����
�	 = +40.2 (c 1.5, CHCl3), IR 

(neat) �max: 1715, 1690, 1543, 1266 cm-1. 1H NMR δ: 2.68 (t, J = 12.8 Hz, 1H), 3.07 

(dd, J = 12.8, 6.0 Hz, 1H), 3.47 (s, 3H), 3.58 (s, 3H), 3.59-3.67 (m, 1H), 4.09 (dd, J = 

9.8, 7.2 Hz, 1H), 4.32 (d, J = 11.5 Hz, 1H), 5.00 (d, J = 8.5 Hz, 1H), 5.98 (dd, J = 11.5, 

8.5 Hz, 1H), 6.28 (dd, J = 15.5, 9.8 Hz, 1H), 6.38 (d, J = 15.5 Hz, 1H), 7.21-7.45 (m, 

15H). 13C NMR δ: 35.7, 51.2, 52.2, 60.0, 65.0, 66.5, 79.1, 96.0, 125.0, 126.9, 127.2, 

128.5, 128.9, 129.0, 132.7, 136.1, 137.3, 139.3, 171.1, 172.9. MS (EI) m/z: 526 (M+, 

<1%), 480 (25), 467 (38), 232 (89), 193 (100), 169 (18), 141 (28), 128 (15), 115 (50), 

91 (22). HRMS calculated for C31H30N2O6: 526.2104; found: 526.2104. 

Trimethyl (1S,2S,3S,5S,6R,7R,7aR)-6-nitro-5,7-diphenyl-3-[(E)-

styryl]tetrahydro-1H-pyrrolizine-1,2,7a(5H)-tricarboxylate (endo-2e): The 
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representative procedure was followed by using exo-nitroprolinate 1a (0.1 mmol, 32.6 

mg), cinnamaldehyde (0.1 mmol, 12.6 µL) and the dimethyl fumarate (0.1 mmol, 14.4 

mg). The desired product was obtained as sticky colorless oil (27.9 mg, 48% yield), 

����
�	 = +80.9 (c 0.8, CHCl3), IR (neat) �max: 1717, 1700, 1549, 1251 cm-1. 1H NMR δ: 

3.37 (s, 3H), 3.59 (s, 3H), 3.61 (s, 3H), 3.89-3.98 (m, 2H), 4.17 (ddd, J = 9.8, 5.5, 2.1 

Hz, 1H), 4.39 (d, J = 11.4 Hz, 1H), 4.99 (d, J = 8.3 Hz, 1H), 5.80 (dd, J = 11.4, 8.3 Hz, 

1H), 6.22 (dd, J = 15.4, 9.8 Hz, 1H), 6.31 (d, J = 15.4 Hz, 1H), 7.27-7.41 (m, 15H). 13C 

NMR δ: 51.7, 52.4, 52.5, 52.9, 53.7, 61.5, 63.0, 66.0, 79.6, 97.6, 124.6, 127.0, 128.2, 

128.6, 128.7, 128.9, 129.0, 129.5, 132.1, 137.4, 139.0, 169.6, 170.5, 171.0. MS (EI) 

m/z: 584 (M+, <1%), 538 (12), 440 (5), 394 (7), 290 (15), 193 (100), 193 (100), 115 

(25). HRMS calculated for C33H32N2O8: 584.2159; found: 584.2155. 

Trimethyl (1R,2R,3S,5S,6R,7R,7aR)-6-nitro-5,7-diphenyl-3-[(E)-

styryl]tetrahydro-1H-pyrrolizine-1,2,7a(5H)-tricarboxylate (exo-2e): This minor 

product was obtained as sticky colorless oil (15.1 mg, 26% yield), ����
�	 = +31.8 (c 0.5, 

CHCl3), IR (neat) �max: 1712, 1699, 1547, 1250 cm-1. 1H NMR δ: 3.60 (s, 3H), 3.68 (s, 

6H), 3.84 (dd, J = 11.0, 10.9 Hz, 1H), 4.07-4.13 (m, 1H), 4.14 (d, J = 11.0 Hz, 1H), 4.37 

(d, J = 11.6 Hz, 1H), 4.82 (d, J = 8.9 Hz, 1H), 5.42 (dd, J = 11.6, 8.9 Hz, 1H), 5.84 (dd, 

J = 15.9, 7.4 Hz, 1H), 6.46 (d, J = 15.9 Hz, 1H), 6.90-6.94 (m, 2H), 7.15-7.30 (m, 11H), 

7.43-7.48 (m, 2H). 13C NMR δ: 51.2, 52.5, 52.6, 52.8, 53.4, 54.5, 66.2, 67.7, 79.5, 95.6, 

123.5, 126.6, 127.3, 128.2, 128.5, 128.6, 128.7, 128.9, 132.4, 133.5, 134.8, 136.0, 

139.6, 171.4, 171.6, 172.4. MS (EI) m/z: 584 (M+, 4%), 538 (28), 525 (49), 314 (18), 

290 (72), 258 (19), 230 (25), 194 (19), 193 (100), 115 (62), 91 (22). HRMS calculated 

for C33H32N2O8: 584.2159; found: 584.2154. 

Trimethyl (1R,2R,3S,5S,7aR)-2-nitro-1,3-diphenyl-5-[(E)-styryl]-2,3-dihydro-

1H-pyrrolizine-6,7,7a(5H)-tricarboxylate (2f): The representative procedure was 

Page 32 of 50

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



33 

 

followed by using exo-nitroprolinate 1a (0.1 mmol, 32.6 mg), cinnamaldehyde (0.1 

mmol, 12.6 µL) and dimethyl acetylenedicarboxylate (0.1 mmol, 9.1 µL). The desired 

product was obtained as sticky yellow oil (17.8 mg, 31% yield), ����
�� = +131.2 (c 1.0, 

CHCl3), IR (neat) �max: 1734, 1555, 1435, 1265, 1227 cm-1. 1H NMR δ: 3.51 (s, 3H), 

3.60 (s, 3H), 3.76 (s, 3H), 4.59 (d, J = 11.5 Hz, 1H), 5.01 (d, J = 8.4 Hz, 1H), 5.08 (d, J 

= 9.3 Hz, 1H), 5.55 (dd, J = 11.5, 8.4 Hz, 1H), 6.05 (dd, J = 15.7, 9.3 Hz, 1H), 6.44 (d, J 

= 15.7 Hz, 1H), 7.14-7.45 (m, 15H). 13C NMR δ: 52.2, 52.6, 52.7, 59.1, 66.4, 69.6, 85.4, 

97.3, 126.3, 122.4, 126.9, 127.0, 128.4, 128.5, 128.6, 128.7, 128.8, 128.9, 129.5, 132.9, 

135.6, 137.2, 137.9, 139.4, 143.1, 163.2, 163.9, 170.6. MS (EI) m/z: 582 (M+, <1%), 

523 (14), 194 (17), 193 (100), 115 (23). HRMS calculated for C33H30N2O8: 582.2002; 

found: 582.2010. 

6,7-Diethyl 7a-methyl (1R,2R,3S,5S,7aR)-2-nitro-1,3-diphenyl-5-[(E)-styryl]-

2,3-dihydro-1H-pyrrolizine-6,7,7a(5H)-tricarboxylate (2g): The representative 

procedure was followed by using exo-nitroprolinate 1a (0.1 mmol, 32.6 mg), 

cinnamaldehyde (0.1 mmol, 12.6 µL) and diethyl acetylenedicarboxylate (0.1 mmol, 

16.0 µL). The desired product was obtained as colorless needles (21.9 mg, 35% yield), 

mp 87-90 ºC (Et2O), ����
�� = +141.9 (c 0.7, CHCl3), IR (neat) �max: 1744, 1722, 1555, 

1286, 1270, 1227 cm-1. 1H NMR δ: 1.04 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H), 

3.49 (s, 3H), 3.98-4.25 (m, 4H), 4.61 (d, J = 11.5 Hz, 1H), 5.02 (d, J = 8.4 Hz, 1H), 5.08 

(d, J = 9.4 Hz, 1H), 5.56 (dd, J = 11.5, 8.4 Hz, 1H), 6.07 (dd, J = 15.7, 9.4 Hz, 1H), 

6.45 (d, J = 15.7 Hz, 1H), 7.14-7.19 (m, 2H), 7.25-7.45 (m, 13H). 13C NMR δ: 13.8, 

14.2, 52.4, 59.2, 61.4, 61.8, 66.4, 69.7, 85.4, 97.3, 122.7, 126.9, 127.0, 128.4, 128.6, 

128.7, 128.8, 129.6, 133.0, 135.6, 137.0, 137.7, 139.5, 143.0, 162.8, 163.5, 170.6. MS 

(EI) m/z: 610 (M+, <1%), 551 (11), 194 (17), 193 (100), 115 (22). HRMS calculated for 

C35H34N2O8: 610.2315; found: 610.2323. 
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Methyl (3aS,4S,6S,7R,8R,8aR,8bR)-4-(2,2-diphenylvinyl)-7-nitro-1,3-dioxo-

2,6,8-triphenyloctahydropyrrolo[3,4-a]pyrrolizine-8a(6H)-carboxylate (endo-2h): The 

representative procedure was followed by using exo-nitroprolinate 1a (0.1 mmol, 32.6 

mg), β-phenylcinnamaldehyde (0.1 mmol, 20.8 mg) and N-phenylmaleimide (0.1 mmol, 

17.3 mg). The desired product was obtained as colorless prisms (40.5 mg, 59% yield), 

mp 239-242 ºC (Et2O), ����
�� = +25.1 (c 1.0, CHCl3), IR (neat) �max: 1710, 1552, 1497, 

1372, 1265, 1215 cm-1. 1H NMR δ: 3.31 (s, 3H), 3.55 (dd, J = 8.3, 8.2 Hz, 1H), 4.19 

(dd, J = 10.9, 8.3 Hz, 1H), 4.46 (d, J = 8.2 Hz, 1H), 4.94 (d, J = 8.6 Hz, 1H), 5.09 (d, J 

= 10.7 Hz, 1H), 5.60 (dd, J = 10.7, 8.6 Hz, 1H), 5.93 (d, J = 10.9 Hz, 1H), 6.74-6.78 (m, 

2H), 7.00-7.55 (m, 23H). 13C NMR δ: 51.8, 52.0, 52.7, 52.9, 60.5, 68.2, 82.8, 95.9, 

121.1, 126.6, 127.1, 127.7, 127.8, 127.9, 128.0, 128.2, 128.3, 128.5, 128.6, 128.8, 

129.0, 129.1, 129.3, 129.4, 129.7, 131.7, 133.8, 138.4, 138.5, 141.3, 146.6, 171.4, 

174.7, 175.9. MS (EI) m/z: 689 (M+, 1%), 630 (28), 583 (24), 517 (27), 516 (74), 471 

(16), 470 (43), 256 (18), 193 (61), 191 (100), 178 (19), 115 (41), 91 (20). HRMS 

calculated for C43H35N2O4 [M–NO2]: 643.2597; found: 643.2628. 

Methyl (3aR,4S,6S,7R,8R,8aR,8bS)-4-(2,2-diphenylvinyl)-7-nitro-1,3-dioxo-

2,6,8-triphenyloctahydropyrrolo[3,4-a]pyrrolizine-8a(6H)-carboxylate (exo-2h): This 

minor product was obtained as yellow prisms (14.7 mg, 21% yield), mp 111-113 ºC 

(Et2O), ����
�	 = +66.9 (c 0.5, CHCl3), IR (neat) �max: 1711, 1552, 1495, 1375, 1259, 

1182, 1028 cm-1. 1H NMR δ: 3.17 (s, 3H), 3.93 (dd, J = 10.2, 6.6 Hz, 1H), 4.25 (d, J = 

10.2 Hz, 1H), 4.55 (dd, J = 10.5, 6.6 Hz, 1H), 4.60 (d, J = 9.4 Hz, 1H), 5.07 (d, J = 7.7 

Hz, 1H), 5.47 (dd, J = 9.4, 7.9 Hz, 1H), 5.84 (d, J = 10.5 Hz, 1H), 6.69-6.80 (m, 2H), 

6.92-6.99 (m, 2H), 7.13-7.56 (m, 21H). 13C NMR δ: 52.3, 54.7, 56.4, 57.9, 61.3, 67.9, 

83.2, 96.9, 124.0, 126.6, 126.7, 127.1, 127.5, 127.6, 127.7, 128.0, 128.1, 128.2, 128.3, 

128.7, 128.8, 128.9, 129.0, 129.2, 129.3, 129.4, 129.6, 132.1, 134.7, 138.2, 139.3, 
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141.3, 147.5, 169.1, 173.2, 174.5. MS (EI) m/z: 689 (M+, <1%), 643 (14), 517 (13), 516 

(37), 471 (12), 470 (32), 256 (13), 194 (16), 193 (100), 192 (26), 191 (68), 178 (17), 

167 (17), 115 (42), 91 (16). HRMS calculated for C43H35N2O4 [M–NO2]: 643.2597; 

found: 643.2628. 

Methyl (3aS,4S,6S,7R,8R,8aR,8bR)-8-(4-methoxyphenyl)-7-nitro-1,3-dioxo-2,6-

diphenyl-4-((E)-styryl)octahydropyrrolo[3,4-a]pyrrolizine-8a(6H)-carboxylate (exo-2i): 

The representative procedure was followed by using exo-nitroprolinate 1b (0.1 mmol, 

35.6 mg), cinnamaldehyde (0.1 mmol, 12.6 µL) and N-phenylmaleimide (0.1 mmol, 

17.3 mg). The desired product was obtained as yellow prisms (38.5 mg, 60% yield), mp 

98-101 ºC (Et2O), ����
�� = -48.3 (c 1.0, CHCl3), IR (neat) �max: 1711, 1552, 1517, 1496, 

1373, 1254, 1180, 735 cm-1. 1H NMR δ: 3.31 (s, 3H), 3.75 (s, 3H), 3.93 (dd, J = 10.1, 

6.5 Hz, 1H), 4.19 (d, J = 10.1 Hz, 1H), 4.52-4.58 (m, 2H), 4.88 (d, J = 7.7 Hz, 1H), 5.45 

(dd, J = 9.3, 7.7 Hz, 1H), 5.93 (dd, J = 15.7, 8.0 Hz, 1H), 6.53 (d, J = 15.7, Hz, 1H), 

6.84-6.93 (m, 4H), 7.16-7.49 (m, 15H). 13C NMR δ: 52.5, 53.3, 55.3, 55.8, 57.6, 65.8, 

68.1, 83.3, 97.3, 114.3, 125.3, 126.2, 126.5, 126.7, 126.8, 128.2, 128.5, 128.6, 128.7, 

128.8, 129.1, 129.2, 132.1, 134.3, 134.8, 135.9, 139.3, 159.3, 169.4, 173.4, 175.0. MS 

(EI) m/z: 644 (M+, <1%), 224 (17), 223 (100). HRMS calculated for C38H34N3O7 

[M+H]: 644.2397; found: 644.2394. 

Methyl (3aR,4S,6S,7R,8R,8aR,8bS)-8-(4-methoxyphenyl)-7-nitro-1,3-dioxo-2,6-

diphenyl-4-[(E)-styryl]octahydropyrrolo[3,4-a]pyrrolizine-8a(6H)-carboxylate (endo-

2i): This minor product was obtained as yellow prisms (17.9 mg, 28% yield), mp 181-

184 ºC (Et2O), ����
�	 = -100.4 (c 0.9, CHCl3), IR (neat) �max: 1710, 1554, 1514, 1495, 

1377, 1252, 1178, 1032, 756 cm-1. 1H NMR δ: 3.43 (s, 3H), 3.71 (dd, J = 8.3, 7.9 Hz, 

1H), 3.78 (s, 3H), 4.25 (dd, J = 10.2, 7.9 Hz, 1H), 4.57 (d, J = 8.3 Hz, 1H), 4.84 (d, J = 

8.5 Hz, 1H), 4.92 (d, J = 10.7 Hz, 1H), 5.49 (dd, J = 10.7, 8.5 Hz, 1H), 6.01 (dd, J = 
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15.4, 10.3 Hz, 1H), 6.35 (d, J = 15.4, Hz, 1H), 6.81-6.91 (m, 4H), 7.09-7.24 (m, 3H), 

7.38-7.59 (m, 12H). 13C NMR δ: 51.9, 53.1, 53.2, 55.4, 65.1, 68.2, 82.9, 96.5, 114.2, 

114.4, 122.5, 125.5, 126.6, 126.7, 127.0, 128.2, 128.3, 129.0, 129.3, 129.6, 129.7, 

131.7, 135.9, 138.5, 159.6, 171.6, 174.5, 175.9. MS (EI) m/z: 644 (M+, <1%), 224 (17), 

223 (100), 115 (13). HRMS calculated for C38H33N2O5 [M–NO2]: 597.2389; found: 

597.2363. 

Methyl (3aS*,4S*,6S*,7S*,8S*,8aR*,8bR*)-8-cyclohexil-7-nitro-1,3-dioxo-2,6-

diphenyl-4-[(E)-styryl]octahydropyrrolo[3,4-a]pyrrolizine-8a(6H)-carboxylate (exo-

2k): The representative procedure was followed by using rac-endo-nitroprolinate 1c 

(0.1 mmol, 33.2 mg), cinnamaldehyde (0.1 mmol, 12.6 µL) and N-phenylmaleimide 

(0.1 mmol, 17.3 mg). The desired product was obtained as sticky yellow oil (45.0 mg, 

72% yield), IR (neat) �max: 1712, 1550, 1371, 1184, 908, 729 cm-1. 1H NMR δ: 1.10-

1.25 (m, 4H), 1.54-1.76 (m, 4H), 2.06-2.27 (m, 2H), 3.07 (t, J = 9.8 Hz, 1H), 3.54 (s, 

3H), 3.83 (dd, J = 9.9, 5.1 Hz, 1H), 3.92 (d, J = 9.9 Hz, 1H), 4.53 (ddd, J = 8.8, 5.1, 1.0 

Hz, 1H), 4.71 (d, J = 6.7 Hz, 1H), 5.11 (dd, J = 9.7, 6.7 Hz, 1H), 6.03 (dd, J = 15.6, 8.8 

Hz, 1H), 6.55 (d, J = 15.6 Hz, 1H), 7.08-7.13 (m, 2H), 7.20-7.53 (m, 13H). 13C NMR δ: 

25.9, 26.0, 26.2, 30.5, 32.4, 39.3, 52.6, 53.9, 54.9, 61.6, 66.1, 68.3, 81.8, 99.0, 125.9, 

126.5, 126.8, 128.2, 128.3, 128.6, 128.7, 128.9, 129.2, 132.2, 135.5, 135.7, 140.4, 

170.1, 173.9, 174.8. MS (EI) m/z: 619 (M+, 2%), 574 (40), 573 (100), 561 (18), 560 

(48), 514 (16), 513 (40), 446 (14), 432 (17), 431 (53), 317 (24), 284 (18), 258 (20), 180 

(43), 157 (20), 141 (27), 117 (44), 115 (44), 91 (35). HRMS calculated for C37H37N2O4 

[M–NO2]: 573.2753; found: 573.2753. 

General procedure for the synthesis of AAD products 3a-3n: To a stirred 

solution of the nitroprolinate 1 (0.1 mmol) in toluene (1 mL) the aldehyde (0.1 mmol) 

and the dienophile (0.1 mmol) were added. The reaction mixture was stirred overnight 
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at room temperature and the solvent was evaporated under reduced pressure. The crude 

mixture was purified by flash column chromatography over silica gel (20% EtOAc in 

hexane as the eluent) to furnish the corresponding product.  

Methyl (2S,3S,4R,5S)-1-[(3aS,4R,7aS)-2-methyl-1,3-dioxo-2,3,3a,4,7,7a-

hexahydro-1H-isoindol-4-yl]-4-nitro-3,5-diphenylpyrrolidine-2-carboxylate (3a): The 

representative procedure was followed by using exo-nitroprolinate 1a (0.1 mmol, 32.6 

mg), crotonaldehyde (0.1 mmol, 8.3 µL) and N-methylmaleimide (0.2 mmol, 22.2 mg). 

The desired product was obtained as colorless prisms (46.1 mg, 94% yield), mp 205-

209 ºC (Et2O), ����
�	 = 95.5 (c 1.0, CHCl3), IR (neat) �max: 1739, 1697, 1551, 1436, 

1200, 1155 cm-1. 1H NMR δ: 1.81-1.99 (m, 1H), 2.70 (ddd, J = 15.7, 7.1, 1.7 Hz, 1H), 

3.01 (td, J = 8.9, 7.1 Hz, 1H), 3.04 (s, 3H), 3.29 (s, 3H), 3.43 (dd, J = 8.9, 6.2 Hz, 1H), 

3.62 (dd, J = 6.1, 3.1 Hz, 1H), 4.39 (d, J = 9.4 Hz, 1H), 5.06 (dd, J = 12.1, 9.4 Hz, 1H), 

5.21 (d, J = 8.5 Hz, 1H), 5.61 (dd, J = 12.1, 8.5 Hz, 1H), 5.72 (dt, J = 9.7, 3.1 Hz, 1H), 

5.87 (ddt, J = 9.8, 7.1, 3.0 Hz, 1H), 7.28-7.32 (m, 5H), 7.40-7.44 (m, 3H), 7.63-7.68 (m, 

2H). 13C NMR δ: 23.5, 25.3, 38.9, 39.4, 51.0, 51.8, 53.1, 66.0, 68.3, 92.5, 127.7, 128.0, 

128.3, 128.6, 128.7, 129.4, 133.0, 137.8, 174.4, 178.0, 179.5. MS (EI) m/z: 489 (M+
, 

2%), 430 (13), 383 (22), 279 (22), 278 (100), 272 (24), 220 (57), 219 (36), 193 (19), 

115 (29), 91 (14), 79 (28). HRMS calculated for C27H27N2O4 [M–NO2]: 443.1971; 

found: 443.1965. 

Methyl (2S,3S,4R,5S)-1-[(3aS,4R,7aS)-1,3-dioxo-2-phenyl-2,3,3a,4,7,7a-

hexahydro-1H-isoindol-4-yl]-4-nitro-3,5-diphenylpyrrolidine-2-carboxylate (3b): The 

representative procedure was followed by using exo-nitroprolinate 1a (0.1 mmol, 32.6 

mg), crotonaldehyde (0.1 mmol, 8.3 µL) and N-phenylmaleimide (0.1 mmol, 17.3 mg). 

The desired product was obtained as colorless prisms (47.4 mg, 86% yield), mp 249-

251 ºC (Et2O), ����
�	= +40.2 (c 1.0, CHCl3), IR (neat) �max: 1700, 1555, 1387 cm-1. 1H 
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NMR δ: 1.89-2.06 (m, 1H), 2.79 (ddd, J = 15.7, 7.1, 1.7 Hz, 1H), 3.17 (ddd, J = 9.0, 7.4, 

1.7 Hz, 1H), 3.29 (s, 3H), 3.60 (dd, J = 9.0, 6.9 Hz, 1H), 3.71 (dd, J = 6.9, 3.0 Hz, 1H), 

4.44 (d, J = 9.3 Hz, 1H), 4.97 (dd, J = 12.1, 9.3 Hz, 1H), 5.24 (d, J = 8.5 Hz, 1H), 5.61 

(dd, J = 12.1, 8.5 Hz, 1H), 5.84 (dt, J = 9.7, 3.0 Hz, 1H), 5.98 (ddt, J = 9.7, 7.1, 3.0 Hz, 

1H), 7.18-7.32 (m, 6H), 7.39-7.57 (m, 7H), 7.65-7.71 (m, 2H). 13C NMR δ: 23.8, 39.0, 

39.6, 50.9, 51.8, 53.3, 66.0, 68.3, 92.5, 126.7, 127.7, 128.0, 128.3, 128.7, 128.9, 129.0, 

129.1, 129.4, 131.9, 132.8, 137.7, 174.3, 177.0, 178.5. MS (EI) m/z: 551 (M+
, <1%), 332 

(13), 279 (22), 278 (100), 272 (23), 220 (37), 219 (25), 193 (12), 115 (21), 91 (12). 

HRMS calculated for C32H29N2O4 [M–NO2]: 505.2127; found: 505.2121. 

Methyl (2S,3S,4R,5S)-1-[(3aS,4R,7aS)-2-benzyl-1,3-dioxo-2,3,3a,4,7,7a-

hexahydro-1H-isoindol-4-yl]-4-nitro-3,5-diphenylpyrrolidine-2-carboxylate (3c): The 

representative procedure was followed by using exo-nitroprolinate 1a (0.1 mmol, 32.6 

mg), crotonaldehyde (0.1 mmol, 8.3 µL) and N-benzylmaleimide (0.1 mmol, 18.7 mg). 

The desired product was obtained as colorless prisms (50.1 mg, 89% yield), mp 72-75 

ºC (Et2O), ����
��= +63.7 (c 1.0, CHCl3), IR (neat) �max: 1738, 1697, 1551, 1398, 1350, 

1201, 1159 cm-1. 1H NMR δ: 1.87 (ddd, J = 15.6, 6.7, 3.0 Hz, 1H), 2.75 (ddd, J = 15.6, 

7.2, 1.8 Hz, 1H), 2.97-3.09 (m, 1H), 3.23 (s, 3H), 3.41 (dd, J = 8.9, 6.9 Hz, 1H), 3.61 

(dd, J = 6.9, 3.0 Hz, 1H), 3.99 (d, J = 9.4 Hz, 1H), 4.63 (d, J = 14.2 Hz, 1H), 4.81 (d, J 

= 14.2 Hz, 1H), 4.94 (dd, J = 12.1, 9.4 Hz, 1H), 5.22 (d, J = 8.5 Hz, 1H), 5.66-5.51 (m, 

2H), 5.88 (ddt, J = 10.1, 6.7, 3.0 Hz, 1H), 7.07-7.15 (m, 2H), 7.20-7.47 (m, 11H), 7.58-

7.68 (m, 2H). 13C NMR δ: 23.3, 39.2, 39.8, 42.8, 50.7, 51.7, 53.2, 65.8, 68.2, 92.3, 

127.7, 127.9, 128.0, 128.2, 128.4, 128.6, 128.9, 129.0, 129.4, 132.9, 135.7, 137.9, 

174.3, 177.4, 179.0. MS (EI) m/z: 565 (M+
, <1%), 332 (9), 279 (21), 278 (100), 272 

(17), 220 (33), 219 (23), 115 (15), 91 (26), 79 (18). HRMS calculated for C33H31N2O4 

[M–NO2]: 519.2284; found: 519.2266. 
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Methyl (2S,3S,4R,5S)-1-[(3aS,4R,7aS)-1,3-dioxo-2,3,3a,4,7,7a-hexahydro-1H-

isoindol-4-yl]-4-nitro-3,5-diphenylpyrrolidine-2-carboxylate (3d): The representative 

procedure was followed by using exo-nitroprolinate 1a (0.1 mmol, 32.6 mg), 

crotonaldehyde (0.1 mmol, 8.3 µL) and maleimide (0.1 mmol, 9.7 mg). The desired 

product was obtained as colorless prisms (37.8 mg, 80% yield), mp 87-91 ºC (Et2O), 

����
�	= +90.5 (c 1.0, CHCl3), IR (neat) �max: 1699, 1551, 1353, 1199, 1162 cm-1. 1H 

NMR δ: 1.89 (ddd, J = 15.6, 7.2, 2.9 Hz, 1H), 2.68 (ddd, J = 15.6, 7.0, 1.7 Hz, 1H), 3.09 

(ddd, J = 9.0, 7.2, 1.7 Hz, 1H), 3.30 (s, 3H), 3.49 (dd, J = 9.0, 7.0 Hz, 1H), 3.63 (dd, J = 

7.0, 3.0 Hz, 1H), 4.46 (d, J = 9.3 Hz, 1H), 5.01 (dd, J = 12.1, 9.3 Hz, 1H), 5.19 (d, J = 

8.5 Hz, 1H), 5.62 (dd, J = 12.1, 8.5 Hz, 1H), 5.79 (dt, J = 9.8, 3.0 Hz, 1H), 5.94 (ddt, J 

= 9.8, 7.0, 2.9 Hz, 1H), 7.19-7.36 (m, 5H), 7.35-7.49 (m, 3H), 7.62-7.70 (m, 2H), 9.06 

(br s, 1H). 13C NMR δ: 23.3, 40.3, 40.6, 51.0, 51.9, 53.1, 66.0, 68.3, 92.5, 127.7, 127.8, 

128.1, 128.4, 128.6, 128.8, 129.4, 132.8, 137.8, 174.4, 178.5, 180.1. MS (EI) m/z: 475 

(M+
, <1%), 429 (11), 428 (16), 416 (17), 378 (19), 369 (44), 332 (28), 279 (24), 278 

(100), 272 (50), 221 (16), 220 (96), 219 (79), 193 (21), 115 (43), 91 (20), 79 (42), 77 

(19). HRMS calculated for C26H25N2O4 [M–NO2]: 429.1814; found: 429.1804. 

Methyl (2S,3S,4R,5S)-1-[(3aS,4R,7aS)-1,3-dioxo-1,3,3a,4,7,7a-

hexahydroisobenzofuran-4-yl]-4-nitro-3,5-diphenylpyrrolidine-2-carboxylate (3e, 

isolated as 63:27 mixture of diastereoisomers): The representative procedure was 

followed by using exo-nitroprolinate 1a (0.1 mmol, 32.6 mg), crotonaldehyde (0.1 

mmol, 8.3 µL) and maleic anhydride (0.1 mmol, 9.8 mg). The desired product was 

obtained as sticky yellow oil (33.9 mg, 71% yield). Data for the major isomer: IR (neat) 

�max: 1774, 1739, 1552, 1203, 910, 731 cm-1. 1H NMR δ: 1.93-2.04 (m, 1H), 2.71 (ddd, 

J = 16.1, 7.0, 2.0 Hz, 1H), 3.28 (s, 3H), 3.34-3.38 (m, 1H), 3.63-3.70 (m, 2H), 4.40 (d, J 

= 9.2 Hz, 1H), 4.89 (dd, J = 12.1, 9.2 Hz, 1H), 5.11 (d, J = 8.5 Hz, 1H), 5.62 (dd, J = 
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12.1, 8.5 Hz, 1H), 5.77-5.86 (m, 1H), 6.01 (ddt, J = 12.4, 6.8, 2.7 Hz, 1H), 7.04-7.51 

(m, 13H), 7.58-7.77 (m, 2H). 13C NMR δ: 23.4, 39.9, 40.3, 51.1, 52.0, 52.6, 65.6, 68.3, 

92.2, 127.2, 127.7, 127.8, 128.0, 128.5, 128.7, 128.8, 129.3, 129.5, 129.6, 130.1, 132.4, 

137.4, 172.1, 173.7, 174.1. MS (EI) m/z: 476 (M+, <1%), 378 (10), 280 (16), 279 (18), 

221 (19), 220 (100), 219 (19), 193 (56), 117 (20), 115 (43), 91 (16). HRMS calculated 

for C24H20NO3 [M–NO2, –HCO2Me]: 370.1443; found: 370.1451. 

(2S,3S,4R,5S)-1-((1R,5R,6R)-5,6-bis(phenylsulfonyl)cyclohex-2-en-1-yl)-2-

((methylperoxy)-λ
2
-methyl)-4-nitro-3,5-diphenylpyrrolidine (3g): The representative 

procedure was followed by using exo-nitroprolinate 1a (0.1 mmol, 32.6 mg), 

crotonaldehyde (0.1 mmol, 8.3 µL) and trans-1,2-bis(phenylsulfonyl)ethylene (0.1 

mmol, 30.8 mg). The desired product was obtained as yellow prisms as a 1:0.5 

endo/exo-mixture (53.5 mg, 78% yield), mp 94-97 ºC (Et2O), IR (neat) �max: 1737, 

1551, 1447, 1308, 1204, 1146, 1081, 756 cm-1. 1H NMR δ [mixture of endo/exo 

(1:0.5)]: 2.27-2.42 (m, 1H), 2.43-2.52 (m, 1.5H), 2.71-2.78 (m, 0.5H), 3.01-3.05 (m, 

0.5H), 3.24 (s, 1.5H), 3.25 (s, 3H), 3.72-3.77 (m, 0.5H), 3.80-3.85 (m, 1.5H), 4.15 (br s, 

1H), 4.24-4.27 (m, 0.5H), 4.61 (dd, J = 12.0, 9.2 Hz, 1H), 4.68-4.73 (m, 0.5H), 4.81 (d, 

J = 8.6 Hz, 0.5H), 4.89 (d, J = 9.3 Hz, 1H), 5.03 (d, J = 8.3 Hz, 1H), 5.10 (d, J = 8.4 Hz, 

0.5H), 5.59 (dd, J = 12.0, 8.4 Hz, 2H), 5.71-5.83 (m, 1.5H), 5.99 (ddq, J = 10.7, 5.4, 2.7 

Hz, 1H), 6.20 (d, J = 2.7 Hz, 0.5H), 6.93-6.97 (m, 0.5H), 7.20-7.86 (m, 35H). 13C NMR 

δ [mixture of endo/exo (1:0.5), data of the major endo-diastereoisomer]: 20.7, 48.3, 

51.7, 52.5, 55.9, 58.7, 64.7, 68.6, 92.6, 126.1, 126.6, 127.4, 127.8, 128.1, 128.4, 128.7, 

128.8, 129.0, 129.5, 129.8, 129.9, 130.1, 132.8, 134.5, 134.6, 136.3, 138.6, 138.7, 

174.0. MS (EI) m/z: 687 (M+, <1%), 404 (24), 403 (89), 296 (27), 221 (20), 220 (100), 

219 (41), 193 (31), 164 (21), 141 (43), 125 (57), 115 (46), 104 (19), 91 (20), 79 (33), 78 

(24), 77 (87). HRMS calculated for C36H35N2O8S2 [M+H]: 687.1835; found: 687.1837. 
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Methyl (2S,3S,4R,5S)-1-[(3aS,4R,7aS)-6-methyl-1,3-dioxo-2-phenyl-

2,3,3a,4,7,7a-hexahydro-1H-isoindol-4-yl]-4-nitro-3,5-diphenylpyrrolidine-2-

carboxylate (3i): The representative procedure was followed by using exo-nitroprolinate 

1a (0.1 mmol, 32.6 mg), 3-methylcrotonaldehyde (0.1 mmol, 9.7 µL) and N-

phenylmaleimide (0.1 mmol, 17.3 mg). The desired product was obtained as colorless 

prisms (35.2 mg, 62% yield), mp 228-232 ºC (Et2O), ����
��= +73.1 (c 1.0, CHCl3), IR 

(neat) �max: 1746, 1705, 1548, 1500, 1384 cm-1. 1H NMR δ: 1.75 (s, 3H), 2.02 (dd, J = 

15.2, 7.3 Hz, 1H), 2.62 (dd, J = 15.3, 2.1 Hz, 1H), 3.17 (ddd, J = 9.0, 7.0, 2.0 Hz, 1H), 

3.30 (s, 3H), 3.54 (dd, J = 9.0, 6.9 Hz, 1H), 3.68 (br s, 1H), 4.40 (d, J = 9.3 Hz, 1H), 

4.95 (dd, J = 12.0, 9.3 Hz, 1H), 5.24 (d, J = 8.5 Hz, 1H), 5.44 (br s, 1H), 5.60 (dd, J = 

12.0, 8.5 Hz, 1H), 7.12-7.35 (m, 7H), 7.37-7.58 (m, 6H), 7.64-7.71 (m, 2H). 13C NMR 

δ: 23.6, 28.8, 39.3, 39.7, 50.9, 51.8, 54.0, 66.0, 68.5, 92.5, 121.0, 126.6, 127.8, 128.1, 

128.3, 128.7, 129.0, 129.4, 132.0, 133.0, 138.0, 138.3, 174.5, 177.1, 178.4. MS (EI) 

m/z: 566 (M+
, <1%), 346 (33), 286 (14), 279 (25), 278 (100), 220 (45), 115 (16), 93 

(35), 91 (18). HRMS calculated for C33H31N3O6: 565.2213; found: 565.2199. 

Methyl (2S,3S,4R,5S)-1-[(3aS,4R,7S,7aS)-7-methyl-1,3-dioxo-2-phenyl-

2,3,3a,4,7,7a-hexahydro-1H-isoindol-4-yl]-4-nitro-3,5-diphenylpyrrolidine-2-

carboxylate (3j): The representative procedure was followed by using exo-nitroprolinate 

1a (0.1 mmol, 32.6 mg), trans-2-pentenal (0.1 mmol, 10.3 µL) and N-phenylmaleimide 

(0.1 mmol, 17.3 mg). The desired product was obtained as colorless plates (50.6 mg, 

89% yield), mp 244-247 ºC (Et2O), ����
�	 = +104.3 (c 1.0, CHCl3), IR (neat) �max: 1699, 

1552, 1385, 1192, 1032, 762 cm-1. 1H NMR δ: 1.44 (d, J = 7.3 Hz, 3H), 2.20-2.30 (m, 

1H), 3.06 (dd, J = 8.7, 6.5 Hz, 1H), 3.31 (s, 3H), 3.58 (dd, J = 8.7, 6.9 Hz, 1H), 3.67-

3.73 (m, 1H), 4.48 (d, J = 9.3 Hz, 1H), 4.97 (dd, J = 12.1, 9.3 Hz, 1H), 5.24 (d, J = 8.5 

Hz, 1H), 5.61 (dd, J = 12.1, 8.5 Hz, 1H), 5.73-5.87 (m, 2H), 7.19-7.28 (m, 7H), 7.41-
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7.56 (m, 6H), 7.62-7.71 (m, 2H). 13C NMR δ: 16.7, 30.6, 40.4, 44.0, 50.9, 51.9, 53.9, 

66.2, 68.3, 92.6, 126.8, 127.4, 127.7, 128.1, 128.3, 128.7, 129.0, 129.4, 129.5, 131.9, 

132.9, 135.5, 137.7, 174.3, 176.3, 176.7. MS (EI) m/z: 566 (M+, <1%), 393 (12), 392 

(45), 346 (21), 286 (44), 279 (21), 278 (100), 220 (36), 219 (17), 115 (23), 93 (34), 91 

(24). HRMS calculated for C33H31N2O4 [M–NO2]: 519.2284; found: 519.2275. 

Methyl (2S,3S,4R,5S)-1-[(3aS,4R,7S,7aS)-7-ethyl-1,3-dioxo-2-phenyl-

2,3,3a,4,7,7a-hexahydro-1H-isoindol-4-yl]-4-nitro-3,5-diphenylpyrrolidine-2-

carboxylate (3k): The representative procedure was followed by using exo-

nitroprolinate 1a (0.1 mmol, 32.6 mg), trans-2-hexenal (0.1 mmol, 11.8 µL) and N-

phenylmaleimide (0.1 mmol, 17.3 mg). The desired product was obtained as yellow 

prisms (41.7 mg, 72% yield), mp 201-204 ºC (Et2O), ����
�	 = +84.3 (c 1.0, CHCl3), IR 

(neat) �max: 1699, 1552, 1385, 1188, 1030, 758 cm-1. 1H NMR δ: 0.99 (t, J = 7.0 Hz, 

3H), 1.79-2.02 (m, 3H), 3.17 (dd, J = 8.7, 5.4 Hz, 1H), 3.31 (s, 3H), 3.57 (dd, J = 8.7, 

7.1 Hz, 1H), 3.71 (d, J = 7.1 Hz, 1H), 4.46 (d, J = 9.4 Hz, 1H), 4.98 (dd, J = 12.1, 9.4 

Hz, 1H), 5.27 (d, J = 8.5 Hz, 1H), 5.61 (dd, J = 12.1, 8.5 Hz, 1H), 5.81-5.90 (m, 2H), 

7.16-7.31 (m, 6H), 7.38-7.58 (m, 7H), 7.63-7.73 (m, 2H). 13C NMR δ: 12.7, 24.1, 37.9, 

40.3, 42.4, 50.9, 51.9, 54.1, 66.3, 68.3, 92.6, 126.8, 127.6, 127.8, 128.0, 128.1, 128.3, 

128.7, 129.0, 129.4, 129.5, 131.9, 132.9, 134.5, 137.8, 174.3, 176.2, 176.7. MS (EI) 

m/z: 580 (M+, <1%), 407 (15), 406 (53), 360 (21), 300 (37), 279 (21), 278 (100), 220 

(39), 193 (16), 115 (26), 107 (18), 91 (19), 79 (27). HRMS calculated for C34H33N2O4 

[M–NO2]: 533.2440; found: 533.2429. 

Methyl (2S,3S,4R,5S)-1-[(3aS,4R,7aS)-6-(4-methylpent-3-en-1-yl)-1,3-dioxo-2-

phenyl-2,3,3a,4,7,7a-hexahydro-1H-isoindol-4-yl]-4-nitro-3,5-diphenylpyrrolidine-2-

carboxylate (3l): The representative procedure was followed by using exo-nitroprolinate 

1a (0.1 mmol, 32.6 mg), geranial (0.1 mmol, 18.0 µL) and N-phenylmaleimide (0.1 
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mmol, 17.3 mg). The desired product was obtained as yellow plates (33.8 mg, 53% 

yield), mp 117-120 ºC (Et2O), ����
�
 = +34.3 (c 0.6, CHCl3), IR (neat) �max: 1743, 1703, 

1549, 1375, 1163, 750 cm-1. 1H NMR δ: 1.54 (s, 3H), 1.64 (s, 3H), 1.93-2.10 (m, 5H), 

2.67 (dd, J = 15.0, 1.9 Hz, 1H), 3.18 (ddd, J = 9.0, 7.2, 1.9 Hz, 1H), 3.30 (s, 3H), 3.56 

(dd, J = 9.0, 6.8 Hz, 1H), 3.69 (br s, 1H), 4.44 (d, J = 9.4 Hz, 1H), 4.97 (dd, J = 12.0, 

9.4 Hz, 1H), 4.97-5.03 (br s, 1H), 5.25 (d, J = 8.5 Hz, 1H), 5.45 (br s, 1H), 5.61 (dd, J = 

12.0, 8.5 Hz, 1H), 7.20-7.33 (m, 7H), 7.41-7.56 (m, 6H), 7.66-7.71 (m, 2H). 13C NMR 

δ: 17.8, 25.8, 25.9, 27.9, 37.2, 39.2, 39.6, 50.9, 51.9, 54.0, 66.0, 68.4, 92.5, 120.6, 

123.2, 126.6, 127.8, 128.1, 128.7, 129.0, 129.4, 129.5, 132.0, 132.5, 133.0, 137.9, 

142.0, 174.5, 177.2, 178.4. MS (EI) m/z: 634 (M+, <1%), 279 (27), 278 (100), 240 (13), 

220 (37), 115 (15), 91 (18), 69 (17). HRMS calculated for C38H39N2O4 [M–NO2]: 

587.2910; found: 587.2895. 

Methyl (2R,3S,4R,5S)-1-[(3aS,4R,7aS)-1,3-dioxo-2-phenyl-2,3,3a,4,7,7a-

hexahydro-1H-isoindol-4-yl]-3-(4-methoxyphenyl)-4-nitro-5-diphenylpyrrolidine-2-

carboxylate (3m): The representative procedure was followed by using exo-

nitroprolinate 1b (0.1 mmol, 35.6 mg), crotonaldehyde (0.1 mmol, 8.3 µL) and N-

phenylmaleimide (0.1 mmol, 17.3 mg). The desired product was obtained as orange 

prisms (47.2 mg, 81% yield), mp 208-211 ºC (Et2O), ����
�� = +86.3 (c 1.0, CHCl3), IR 

(neat) �max: 1745, 1702, 1550, 1517, 1388, 1254, 1156, 1024, 796, 761 cm-1. 1H NMR δ: 

1.93-2.04 (m, 1H), 2.80 (ddd, J = 15.7, 7.0, 1.7 Hz, 1H), 3.18 (ddd, J = 9.0, 7.5, 1.7 Hz, 

1H), 3.36 (s, 3H), 3.60 (dd, J = 9.0, 7.0 Hz, 1H), 3.71 (dd, J = 6.6, 3.0 Hz, 1H), 3.75 (s, 

3H), 4.40 (d, J = 9.3 Hz, 1H), 4.90 (dd, J = 12.1, 9.3 Hz, 1H), 5.23 (d, J = 8.5 Hz, 1H), 

5.54 (dd, J = 12.1, 8.5 Hz, 1H), 5.84 (dt, J = 9.7, 3.0 Hz, 1H), 5.98 (ddt, J = 10.0, 6.6, 

3.0 Hz, 1H), 6.76-7.31 (m, 6H), 7.39-7.56 (m, 6H), 7.65-7.69 (m, 2H). 13C NMR δ: 

23.9, 39.0, 39.6, 50.4, 52.0, 53.4, 55.3, 66.0, 68.2, 93.0, 114.1, 124.7, 126.7, 127.7, 
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128.8, 128.9, 129.0, 129.2, 129.4, 131.9, 137.8, 159.5, 174.5, 177.0, 178.6. MS (EI) 

m/z: 582 (M+, >1%), 362 (13), 309 (23), 308 (100), 302 (22), 250 (29), 249 (37), 223 

(25), 115 (13), 79 (24). HRMS calculated for C33H31N2O5 [M–NO2]: 535.2233; found: 

535.2222. 

Methyl (2S*,3R*,4S*,5S*)-3-cyclohexyl-1-[(3aS*,4R*,7aS*)-1,3-dioxo-2-

phenyl-2,3,3a,4,7,7a-hexahydro-1H-isoindol-4-yl]-4-nitro-5-phenylpyrrolidine-2-

carboxylate (3n): The representative procedure was followed by using rac-endo-

nitroprolinate 1c (0.1 mmol, 33.2 mg), crotonaldehyde (0.1 mmol, 8.3 µL) and N-

phenylmaleimide (0.1 mmol, 17.3 mg). The desired product was obtained as colorless 

prisms (26.5 mg, 79% yield), mp 76-80 ºC (Et2O), IR (neat) �max: 1705, 1551, 1380, 

1166 cm-1. 1H NMR δ [mixture of diastereoisomers (1:1)]: 0.75-0.94 (m, 4H), 0.98-1.18 

(m, 8H), 1.51-1.81 (m, 12H), 1.96-2.14 (m, 1H), 2.69-2.93 (m, 1H), 3.07-3.22 (m, 1H), 

3.30 (dd, J = 10.8, 4.3 Hz, 1H), 3.44 (ddd, J = 11.3, 9.7, 5.8 Hz, 1H), 3.60 (dd, J = 9.1, 

8.0 Hz, 1H), 3.80-4.00 (m with 2s at 3.82 and 3.90, 9H), 4.29 (d, J = 9.6 Hz, 1H), 4.75 

(d, J = 9.4 Hz, 1H), 5.21 (d, J = 9.1 Hz, 1H), 5.34 (dd, J = 9.1, 8.3 Hz, 1H), 5.58-5.66 

(m, 2H), 5.71-5.80 (m, 1H), 5.85 (dt, J = 10.0, 2.8 Hz, 1H), 5.90-5.99 (m, 1H), 7.21-

7.65 (m, 20H). 13C NMR δ [mixture of diastereoisomers (1:1)]: 22.8, 23.4, 26.1, 26.4, 

29.8, 30.1, 30.4, 30.7, 38.6, 38.8, 39.2, 39.4, 40.6, 48.4, 51.5, 52.5, 52.7, 54.7, 55.1, 

64.0, 66.1, 68.0, 89.3, 90.5, 126.5, 127.6, 128.3, 128.5, 128.7, 128.9, 129.1, 129.2, 

129.5, 137.2, 140.6, 173.6, 175.9, 176.7, 177.1, 178.4. MS (EI) m/z: 557 (M+
, <1%), 512 

(35), 511 (100), 498 (22), 451 (22), 384 (38), 337 (37), 331 (40), 286 (57), 284 (26), 

278 (46), 226 (45), 225 (32), 202 (67), 196 (48), 144 (64), 143 (24), 117 (27), 115 (18), 

91 (24), 79 (87). HRMS calculated for C32H35N2O4 [M–NO2]: 511.2597; found 

511.2602. 
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General procedure for the synthesis of pyrrolizidines endo-15-18: To a stirred 

solution of methyl prolinate 11-14 (0.1 mmol) in toluene (1 mL) crotonaldehyde (0.1 

mmol, 8.3 µL) and N-phenylmaleimide (0.1 mmol, 17.3 mg) were added. The reaction 

mixture was stirred overnight at room temperature and the solvent was evaporated under 

reduced pressure. The crude mixture was purified by flash column chromatography over 

silica gel (20% EtOAc in hexane as the eluent) to furnish the corresponding product. 

Methyl (3aS*,4S*,8aR*,8bR*)-1,3-dioxo-2-phenyl-4-[(E)-prop-1-en-1-

yl]octahydropyrrolo[3,4-a]-pyrrolizine-8a(6H)-carboxylate (endo-15): The 

representative procedure was followed by using L-proline methyl ester 11 (0.1 mmol, 

12.9 mg). The desired product was obtained as sticky yellow oil (21.6 mg, 61% yield), 

IR (neat) �max: 1707, 1498, 1376, 1215, 1176, 967, 733 cm-1. 1H NMR δ: 1.78 (dd, J = 

6.5, 1.6 Hz, 3H), 1.80-1.98 (m, 1H), 1.99-2.15 (m, 1H), 2.36-2.44 (m, 1H), 2.59-2.72 

(m, 2H), 3.18 (ddd, J = 10.4, 8.1, 3.0 Hz, 1H), 3.52 (t, J = 8.4 Hz, 1H), 3.81 (s, 3H), 

4.04 (d, J = 8.4 Hz, 1H), 4.13 (t, J = 8.9 Hz, 1H), 5.71 (ddd, J = 15.0, 9.5, 1.6 Hz, 1H), 

5.86-6.02 (m, 1H), 7.18-7.34 (m, 2H), 7.35-7.54 (m, 3H). 13C NMR δ: 18.1, 24.8, 30.3, 

48.9, 51.2, 51.6, 53.3, 65.5, 79.4, 124.2, 126.1, 126.6, 128.8, 129.2, 129.3, 131.8, 133.4, 

173.9, 175.5, 176.0. MS (EI) m/z: 354 (M+, <1%), 296 (19), 295 (100), 148 (14). HRMS 

calculated for C20H22N2O4: 354.1580; found: 354.1578. 

Methyl (3aS,4S,7R,8aR,8bR)-7-hydroxy-1,3-dioxo-2-phenyl-4-[(E)-prop-1-en-1-

yl]octahydropyrrolo[3,4-a]-pyrrolizine-8a(6H)-carboxylate (endo-16): The 

representative procedure was followed by using L-4-hydroxyproline methyl ester 12 

(0.1 mmol, 14.5 mg). The desired product was obtained as sticky yellow oil (25.6 mg, 

69% yield), ����
�	 = -42.4 (c 0.6, CHCl3), IR (neat) �max: 1705, 1377, 1178, 731 cm-1. 1H 

NMR δ: 1.79 (dd, J = 6.5, 1.6 Hz, 3H), 2.43 (d, J = 15.4 Hz, 1H), 2.82 (dd, J = 10.4, 4.2 

Hz, 1H), 2.96 (dd, J = 15.4, 6.2 Hz, 1H), 3.03-3.32 (br s, 1H), 3.14 (d, J = 10.4 Hz, 1H), 
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3.61 (t, J = 8.4 Hz, 1H), 3.86 (s, 3H), 4.09 (d, J = 8.4 Hz, 1H), 4.18 (t, J = 9.0 Hz, 1H), 

4.40 (t, J = 5.2 Hz, 1H), 5.59 (ddd, J = 15.0, 9.6, 1.7 Hz, 1H), 5.88-6.02 (m, 1H), 7.17-

7.23 (m, 2H), 7.37-7.54 (m, 3H). 13C NMR δ: 18.2, 40.5, 50.7, 52.1, 53.8, 57.4, 64.7, 

72.4, 77.9, 123.5, 126.1, 129.0, 129.4, 131.6, 134.2, 173.5, 175.0, 175.6. MS (EI) m/z: 

370 (M+, 1%), 312 (21), 311 (100). HRMS calculated for C20H22N2O5: 370.1529; found: 

370.1516. 

Methyl (3aR,3bR,3cR,6aS,7S,9R,9aS)-2-methyl-1,3,4,6-tetraoxo-5,9-diphenyl-7-

[(E)-prop-1-en-1-yl]dodecahydro-3bH-dipyrrolo[3,4-a:3',4'-f]pyrrolizine-3b-

carboxylate (endo-17): The representative procedure was followed by using proline 

ester derivative endo-13 (0.1 mmol, 28.8 mg). The desired product was obtained as 

colorless prisms (34.3 mg, 67% yield), mp 223-227 ºC (Et2O), ����
�� = +96.1 (c 0.9, 

CHCl3), IR (neat) �max: 1705, 1436, 1379, 1177, 1060, 963, 733 cm-1. 1H NMR δ: 1.22 

(dd, J = 6.5, 1.7 Hz, 3H), 2.77 (s, 3H), 3.41-3.46 (m, 1H), 3.48 (dd, J = 10.4, 8.2 Hz, 

1H), 3.93 (s, 3H), 4.19-4.26 (m, 1H), 4.30 (d, J = 8.2 Hz, 1H), 4.47 (d, J = 10.4 Hz, 

1H), 4.53 (d, J = 8.3 Hz, 1H), 5.16 (ddd, J = 14.9, 9.9, 1.7 Hz, 1H), 5.55 (ddd, J = 14.9, 

6.5, 0.6 Hz, 1H) 7.20-7.25 (m, 4H), 7.30-7.60 (m, 6H). 13C NMR δ: 17.4, 25.1, 48.6, 

50.2, 50.5, 52.5, 53.6, 66.3, 66.9, 81.1, 123.4, 125.8, 127.4, 128.3, 129.3, 129.8, 131.7, 

133.8, 138.9, 170.6, 173.7, 174.8, 175.1, 176.1. MS (EI) m/z: 513 (M+, 6%), 455 (26), 

454 (86), 341 (21), 340 (100), 193 (100), 282 (14), 281 (72), 228 (16), 115 (15). HRMS 

calculated for C29H27N3O6: 513.1900; found: 513.1896. 

7,8-Diisobutyl 8a-methyl (3aS,4S,6R,7S,8S,8aS,8bR)-1,3-dioxo-2,6-diphenyl-4-

[(E)-prop-1-en-1-yl]octahydropyrrolo[3,4-a]-pyrrolizine-7,8,8a(6H)-tricarboxylate 

(endo-18): The representative procedure was followed by using proline ester derivative 

endo-14 (0.1 mmol, 40.5 mg). The desired product was obtained as colorless prisms 

(42.9 mg, 68% yield), mp 132-135 ºC (Et2O), ����
�	 = +4.1 (c 1.0, CHCl3), IR (neat) 
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�max: 2960, 1381, 1223, 1178, 748 cm-1. 1H NMR δ: 0.77 (dd, J = 6.7, 2.4 Hz, 6H), 0.92 

(d, J = 6.7 Hz, 6H), 1.61 (dt, J = 6.5, 1.8 Hz, 1H), 1.62 (hept, J = 6.7 Hz, 1H), 1.97 

(hept, J = 6.7 Hz, 1H), 3.18 (dd, J = 10.6, 6.6 Hz, 1H), 3.49 (dd, J = 10.6, 6.6 Hz, 1H), 

3.65 (d, J = 10.6 Hz, 1H), 3.73 (dd, J = 10.6, 8.4 Hz, 1H), 3.95 (dd, J = 12.2, 10.9 Hz, 

1H), 3.91 (s, 3H), 3.95 (dd, J = 10.4, 6.7 Hz, 1H), 4.06 (dd, J = 10.4, 6.7 Hz, 1H), 4.31 

(ddt, J = 8.4, 4.7, 1.9 Hz, 1H), 4.64 (d, J = 10.9 Hz, 1H), 4.77 (d, J = 12.2 Hz, 1H), 5.40 

(ddq, J = 15.5, 4.7, 1.5 Hz, 1H), 5.95 (dqd, J = 14.9, 6.5, 1.9 Hz, 1H), 7.17-7.51 (m, 

10H). 13C NMR δ: 18.1, 19.0, 19.1, 19.2, 27.4, 27.6, 49.9, 50.1, 50.9, 51.0, 53.5, 63.2, 

66.6, 71.3, 72.0, 80.0, 126.2, 126.8, 127.7, 128.1, 128.6, 129.2, 131.0, 132.3, 140.9, 

169.2, 169.9, 170.3, 173.8, 175.0. MS (EI) m/z: 630 (M+, <1%), 572 (17), 571 (45), 498 

(15), 497 (48), 396 (28), 395 (100), 369 (30), 367 (16), 356 (12), 222 (12). HRMS 

calculated for C36H42N2O8: 630.2941; found: 630.2942. 

 

ASSOCIATED CONTENT 

The Supporting Information is available free of charge on the ACS Publications website 

at DOI: Experimental details, characterization data, and NMR spectra for new 

compounds (PDF), computational data and X-RD analysis. 

 

AUTHOR INFORMATION  

Corresponding Author: 

**For computacional material: abel.decozar@ehu.eus;  

*For experimental content: jmsansano@ua.es 

Author Contributions 

¥ V. S. is the first author of the experimental part. 

§ O. L. is the first author of the computational part. 

Page 47 of 50

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



48 

 

Notes 
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