International Journal of Fisheries and Aquatic Studies 2014; 1(6): 199-207

ISSN: 2347-5129

IJFAS 2014; 1(6): 199-207 © 2013 IJFAS www.fisheriesjournal.com Received: 23-06-2014 Accepted: 02-08-2014

Janakiram P.

Assistant professor Department of Marine Living Resources, Andhra University, Visakhapatnam - 530 003, (A P) India.

Veerendra kumar M.

Research scholar Department of Marine Living Resources, Andhra University, Visakhapatnam - 530 003, (AP) India.

Jayasree L.

Senior scientist Central Marine Fisheries Research Institute, Karwar - 581301, Karnataka, India.

Sivaprasad B.

Research Scholar Department of Marine Living Resources, Andhra University, Visakhapatnam - 530 003, (AP) India.

Correspondence:

Janakiram P. Assistant professor Department of Marine Living Resources, Andhra University, Visakhapatnam - 530 003, (A P) India.

Probiotic activity of *Pseudomonas aeruginosa* (PIC-4) isolated from Visakhapatnam coast, Bay of Bengal, India, against *Vibrio harveyi* in *Penaeus monodon*

Janakiram P., Veerendra kumar M., Jayasree L., Sivaprasad B.

Abstract

Pseudomonas aeruginosa (PIC 4), isolated from coastal waters of Visakhapatnam (Gen Bank Accession no: KF803248) was tested for its antagonistic activity against *Vibrio harveyi* as probiotic in cultured *Penaeus monodon. Pseudomonas aeruginosa* PIC 4 has proved to be non-pathogenic to the shrimp by pathogenicity tests. *Vibrio* counts in probiotic fed shrimp and the surrounding water medium were significantly lower when compared to the control group of shrimp and water during 50 days of culture. Mean weight of probiont fed shrimps after 50 days of culture was $(2.21 \pm 0.15 \text{ g})$, significantly higher than that of normal diet fed ones $(1.33\pm0.18 \text{ g})$. Survival percent was also significantly higher in probiont fed shrimp $(47.33\% \pm 5.55\%)$ than that of the control diet fed shrimp $(26.33\% \pm 7\%)$. Percent survival in probiotic fed and normal diet fed shrimp after the challenge with *V. harveyi* was 93.04 and 38.87 respectively.

Keywords: Probiotc, Pseudomonas aeruginosa, Vibrio harveyi, Penaeus monodon.

1. Introduction

The pathogenic *Vibrio* spp. have been implicated as major cause of bacterial infections in shrimp aquaculture ^[1]. *Vibrio harveyi*, a luminous species and commonly isolated from marine source, has been recognized to be pathogenic for fish and several Crustaceans, particularly, *Penaeus* spp. ^[2, 3, 4]. As antibiotic resistant strains are becoming more prevalent and difficult to treat, alternative methods of controlling the microbial environment are gaining significance ^[5]. Several alternative strategies to the use of antimicrobials in disease control have been proposed and applied very successfully in aquaculture ^[6]. A number of preventive approaches such as the use of vaccines, immunostimulants, and probiotics have been explored in order to reduce the losses due to diseases and mortality of cultured stock. A successful alternative method to antibiotic treatment is the application of probiotics. Probiotics have been proved to enhance specific, non-specific immunity and also improve water quality ^[7, 8, 9]. A variety of microbes have been investigated for use as probiotics in aquaculture such as Gram positive, Gram negative bacteria, yeast and unicellular algae ^[10, 11]. *Pseudomonas aeruginosa* isolated from Visakhapatnam coast was used as an alternative to the existing probiotic bacteria to fight against the *V. harveyi* infections in the cultured shrimp *P. monodon*.

2. Materials and Methods:

2.1 Selection of isolate & testing of antagonistic activity

Pseudomonas aeruginosa (PIC 4) isolated from Visakhapatnam coast (NCBI GenBank Accession no: KF803248) has been selected to test as probiotic bacterium against *V. harveyi* (MTCC 3438) in cultured shrimp (*Penaeus monodon*). Antagonistic activity of the isolate PIC 4 was tested by cross streak and agar well diffusion methods ^[12].

2.2 Pathogenicity Experiment

Pathogenicity of *Pseudomonas aeruginosa* (PI C4) was tested on the postlarvae (PL) of *Penaeus monodon* (stage PL15) obtained from a commercial hatchery. The postlarvae tested negative for white spot syndrome virus (WSSV) by nested PCR (WSSV Detection Kit supplied by Genei Bangalore, India) were acclimatised in laboratory for two days before conducting the experiment. One hundred Postlarvae (PL 15) of *P. monodon* were placed in each plastic tub of 8

litre capacity containing 4 litres of sterile sea water of 25 ppt salinity. The experiment was carried out with three replications and a control tank.

Pseudomonas aeruginosa (PI C4) cultured in LB Broth medium supplemented with 1% NaCl was harvested and washed in Phosphate Buffered saline (PBS) pH 7.8. Bacterial concentration level adjusted in PBS to the OD of 1.0 at 600 nm; corresponding to 5×10⁸ CFU/ml according to Vijayan *et al.*, [11]. Postlarvae were bath challenged at 10⁷ CFU/ml concentration with the *Pseudomonas aeruginosa* culture (PI C4). Survival rate was monitored at every 24 hrs for a period of seven days.

2.3 LD₅₀ of Vibrio harveyi against post larvae of Penaeus

This experiment was conducted to determine the dose of V. harveyi to be given in the challenge infections [13] to the postlarvae of P. monodon. V. harveyi cultured in Tryptone Sova Broth (TSA) was taken, centrifuged at 5000 rpm and washed and re-suspended with sterile saline. Postlarvae (PL 15) obtained from a local hatchery of Visakhapatnam were acclimatised for 3 days in four fibre troughs (8 litres capacity) with four litres of sterile marine water each tank containing 100 PLs. Temperature was maintained at 28 °C and pH at 8.2-8.5 and PLs were bath challenged with V. harveyi at different doses such as 10⁴, 10⁵, 10⁶ and 10⁷ CFU/ml. Mortality rate of PLs was noted at every 12 hrs interval up to 48 hrs [2, 14]. This experiment was conducted with three replications and a control. LD₅₀ value was determined based on the 50% of the mortality attained by the postlarvae at 48 hrs after bath challenge.

2.4 Experiment with *Pseudomonas aeruginosa* (PIC 4) as feed probiont

Based on the results obtained in the pathogenicity experiment, isolate of *Pseudomonas aeruginosa* (PIC 4) was selected as a probiotic bacterium as it proved to be non-pathogenic to the post larvae of *P. monodon*. Bacterial culture (PIC 4) of *P. aeruginosa* was prepared as a feed additive (probiotic) to find out the effect on survival and growth of *P.monodon* and also resistance against *Vibrio harveyi*.

2.4a Probiotic mixed shrimp feed preparation

Commercially available shrimp feed was altered by mixing with the Bacterial culture of Pseudomonas aeruginosa (PIC 4) following the standard protocols [15]. Pure isolate of Pseudomonas aeruginosa (PI C4) was cultured in LB broth supplemented with 1% w/v NaCl in an orbital shaker incubator at 200 rpm, 28 °C for 24 hrs. Bacterial cells were harvested by centrifugation at 7000 rpm and washed in Phosphate Buffered saline (pH 7.8) for two times and re-centrifuged at 7000 rpm. These bacterial cells at the concentration of 10⁷ CFU/g were mixed with pelleted shrimp feed (Classic shrimp feeds India starter II. Composition: protein 32-33%, fat 3.5%, fibre 4%, Moisture 11%) in 1:3 ratio (1part bacterial culture and 3 parts of feed by weight). The bacterial suspension in PBS was mixed with feed thoroughly so that the bacterial suspension formed a probiotic layer over the feed pellets and covered by a protein gel binder. Such probiotic coated feed was dried at room temperature and then stored at -20 °C for further use.

2.4b Experimental setup

Post larvae of Peneaus monodon (PL 20) were obtained from a commercial shrimp hatchery of Visakhapatnam, AP, and India. Postlarvae were tested negative for WSSV by nested PCR (WSSV Detection Kit supplied by Genei Bangalore India) were acclimatised to the laboratory conditions in FRP tanks (measuring 1.5x 0.5x0.75 m) for one week and fed with normal pelleted shrimp feed three times in a day at 10 % of the body weight. Experimental animals were fed three times a day by splitting the daily ration (Morning 25%, afternoon 25% and night 50%). Experiment was conducted in seven identical tanks containig 50 litres of sterile marine water with salinity 25 ppt and pH 8.2, having 100 animals in each tank on the first day of the experiment. Shrimp larvae in four culture tanks (control tanks C1-C4) were fed with commercial feed and those in three tanks (P1-P3) were fed with probiotic mixed feed for a period of 50days.

2.5 Bacterial and water quality analysis

Total bacterial counts of water as well as shrimp from each tank was enumerated by pour plate method on Zobell's Marine Agar(ZMA), *Vibrio* counts were enumerated on Thiosulphate Citrate Bile salt Sucrose agar (TCBS) agar and *Pseudomonas* counts on *Pseudomonas* isolation agar. Whole animal was sacrificed for the enumeration of bacterial counts up to four weeks and gut alone was taken from 5th week onwards to find out the effect of probiont on the gut flora. Water quality parameters such as Dissolved oxygen, Nitrate, Nitrite and Ammonia were also tested at weekly intervals. Growth and survival of the shrimp in all the experimental tanks were also monitored at weekly intervals.

2.6 Experimental challenge of *Vibrio harveyi* on the Postlarvae of *Peneaus monodon*

Vibrio harveyi (MTCC 3438) was harvested from LB broth by centrifugation and suspended in phosphate buffered saline (PBS) as per the protocol given by the Rengpipat *et al.*, ⁽¹⁵⁾. Shrimp in three tanks of probiotic fed group and three normal diet fed group (control tanks) were bath challenged with *Vibrio harveyi* @ 10^{7 CFU} /ml on 50th day of the experiment. One control tank (normal diet fed) was left as unchallenged control (UC). Second challenge was given after four days of the first challenge with the same dose. Total bacterial, *Vibrio* and *Pseudomonas* counts of the water and shrimp respectively were enumerated on 1st, 4th, 8th and 12th day of the post challenge.

2.7 Statistical analysis

Data on growth and survival of shrimp and bacterial counts during pre and post challenge period were tested by ANOVA to find out significance using SPSS (Version 21.0).

3. Results

3.1 Antagonistic activity: Isolate PIC 4 of *P. aeruginosa* showed inhibitory zone in cross streak as well as agar well diffusion methods (36 mm in dia). (Fig 1 & 2)

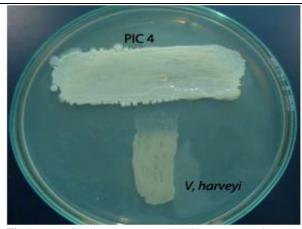
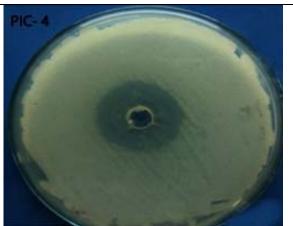



Fig 1: Petri dish showing cross streak between *Pseudomonas* aeruginosa (PIC 4) and *Vibrio harveyi*.

Fig 2: Petri dish showing Agar well diffusion of *Pseudomonas aeruginosa* (PIC 4) on *Vibrio harveyi*.

3.2 Pathogenicity test

Survival rate of post larvae of *P. monodon* was monitored for seven days after the bath challenge with the selected isolate of *Pseudomonas aeruginosa* (PIC4). The mean percent survival was 92.6, indicating very less mortality rate in a period of seven days similar to that of mortality rate in control (93% survival) (Table: 1).

3.3 LD 50 values

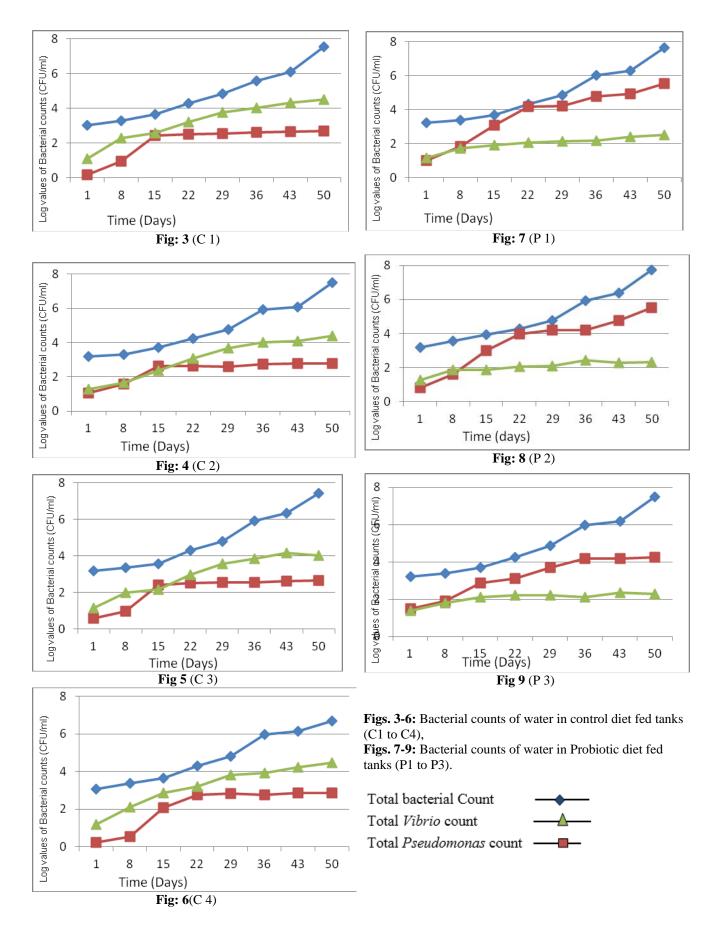
The lethal dose (LD_{50}) of *V. harveyi* to the postlarvae of *Penaeus monodon* was found to be 10^6 CFU/ml at 48 hrs (Table: 2). Hence, the next higher concentration i.e. 10^7 cfu/ml was applied as a challenge dose for the succeeding experiments.

Table 1: Survival rate of postlarvae challenged with the isolate PIC 4 *Pseudomonas aeruginosa* .

Day	% survival of Post larvae							
	Tank 1	Tank2	Tank3	Control				
1	100	100	100	100				
2	100	100	100	100				
3	100	99	100	99				
4	99	98	98	98				
5	96	95	97	96				
6	95	94	95	95				
7	94	92	92	93				

Table 2: Percent mortality of postlarvae of *P. monodon* challenged with *Vibrio harveyi*

Dogo of Vibrio harmoni (CEU/ml)	Cumulative Mortality rate						Man 0/ of a
Dose of Vibrio harveyi (CFU/ml)	Hrs. →	0	12	24	36	48	Mean % of mortality
	Tank 1	0/100	35/100	60/100	95/100	100/100	
10^{8}	Tank 2	0/100	35/100	65/100	100/100	100/100	98.33
10	Tank 3	0/100	30/100	55/100	90/100	95/100	
	Tank 1	0/100	23/100	42/100	62/100	86/100	
10 ⁷	Tank 2	0/100	21/100	38/100	61/100	79/100	82.67
	Tank 3	0/100	25/100	41/100	63/100	83/100	62.07
	Tank 1	0/100	15/100	25/100	45/100	52/100	
10 ⁶	Tank 2	0/100	10/100	25/100	40/100	49/100	51.33
	Tank 3	0/100	15/100	20/100	45/100	53/100	
	Tank 1	0/100	5/100	15/100	30/100	35/100	
10 5	Tank 2	0/100	10/100	10/100	35/100	40/100	36.66
	Tank 3	0/100	5/100	10/100	25/100	35/100	30.00
	Tank 1	0/100	0/100	5/100	15/100	25/100	
10 4	Tank 2	0/100	0/100	0/100	10/100	20/100	23.33
	Tank 3	0/100	5/100	5/100	15/100	25/100	25.55
Control		0/100	0/100	0/100	0/100	0/100	0


3.4 Bacterial analysis in probiotic experiment 3.4a Bacterial counts of water in the experimental tanks

Mean of Total bacterial count (TBC) of water from four control tanks was initially 6.9×10^2 and gradually increased to 3.27×10^7 CFU/ml on 50^{th} day. TBC of probiotic treated tank water was 7.7×10^2 CFU/ml on the first day, increased to 1.7×10^7 CFU/ml on the 50^{th} day of feeding. There was no significant difference in TBC of probiotic and control tanks (P>0.05). Mean of Total *Vibrio* counts (TVC) in the water of

control tanks was $0.13x10^2$ CFU/ml on first day, raised to 2 x 10^4 CFU/ml on 50^{th} day contributing major portion to TBC. *Vibrio* counts in probiotic fed tanks were $0.15x10^2$ CFU/ml on the first day, increased to $1.2x10^2$ CFU/ml on 50^{th} day, contributing very less portion to their TBC. *Vibrio* counts in the water medium of probiotic fed shrimp tanks were significantly lesser than those in water of control diet fed tanks (P<0.05). Mean of Total *Pseudomonas* counts (TPC) of water in probiotic fed tanks was $1.14x10^2$ CFU/ml on first day of the

experiment, reached to $7.1x10^6$ CFU/ml on 50^{th} day. TPC of water in control diet fed tanks was $0.03x10^2$ CFU/ml on the first day of the experiment and reached $5.08x10^2$ CFU/ml on

 50^{th} day, these values were significantly lesser than those of probiotic fed tanks (P<0.05) (Fig. 3-9).

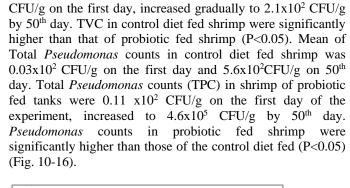
3.4b Bacterial counts of Shrimp

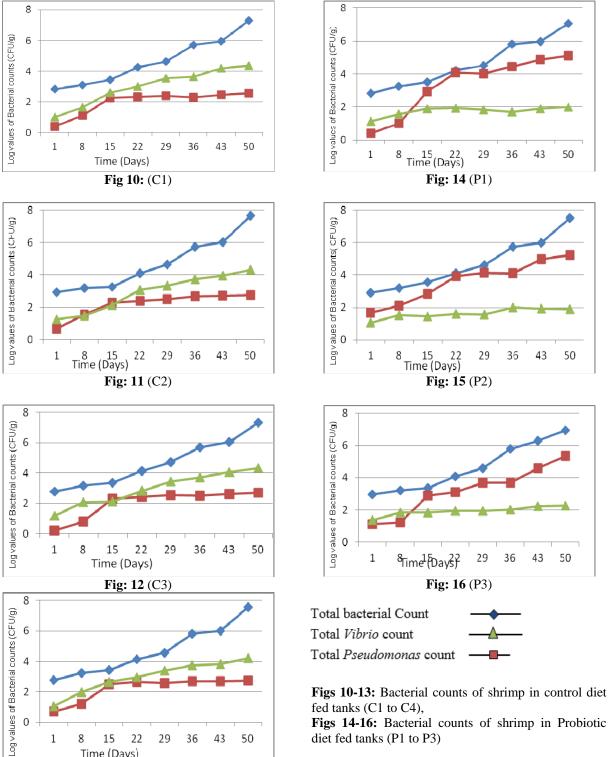
Mean total bacterial count (TBC) in the normal diet fed shrimps was 1.2 x103 CFU/g on the first day and increased to 3.6 x10⁷ CFU/g by 50th day of the experiment. TBC of probiotic fed ones was 1.5 x10³ CFU/g on the first day and reached 3.7x10⁷ CFU/g by the 50th day. There was no significant difference in TBC of shrimp in control and probiotic fed tanks (P>0.05). Mean value of the Total Vibrio count (TVC) in shrimp of control diet fed tanks was 0.14x10² CFU/g on the first day and 2 x10⁴ CFU/g on the 50th day. The mean TVC of shrimp in probiotic fed tanks was 0.18x10²

> 15 22

Time (Days)

Fig: 13 (C4)


1


29

36

43

50

fed tanks (C1 to C4), Figs 14-16: Bacterial counts of shrimp in Probiotic

diet fed tanks (P1 to P3)

3.5 Water quality analysis

The mean values of dissolved oxygen, nitrate, nitrite and ammonia concentrations in control and probiotic applied tanks were 5 to 6.4 mg/l, 0.6 to 2 mg/l, 1.7 to 3 mg/l, 0.12 to 0.69 mg/l and 5.2 to 6.6 mg/l, 0.6 to 1.5mg/l, 1.6 to 2.4 mg/l, 0.1 to 0.5 mg/l respectively. There was no considerable difference observed in water quality parameters between probiotic and normal diet fed tanks.

3.6 Growth and survival of shrimp

Mean weight after the 50 days of experimental period in all

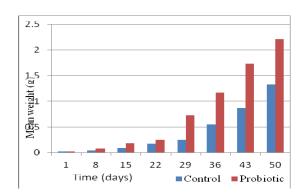


Fig 17: Weight gain (g) of shrimp in the experimental tanks.

3.7 Post - Challenge observations 3.7a Bacterial counts of water

Total bacterial count (TBC) of water in both control and probiotic diet fed tanks increased up to 108CFU/ml after second challenge with V. harveyi, and gradually reduced to 10⁷ by the 12th day. In control diet fed tanks, total *Vibrio* count

probiont fed shrimps was (2.21 + 0.15g) significantly higher (Fig. 17) than that of normal diet fed shrimp (1.33+0.18 g) (P<0.05). However there was no significant difference within these two groups individually (p>0.05). Mean survival percent during the 50 days of experimental period in probiont fed shrimp (47.33% \pm 5.55%) was significantly higher (Fig. 18) than that of the control diet fed shrimp (26.33% + 7%) (P<0.05). However, there was no significant difference within these two groups individualy (p>0.05).

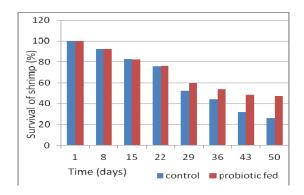
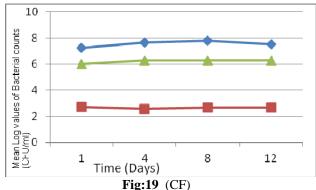



Fig 18: Percent shrimp survival in the experimental tanks

raised after second challenge, and reached up to 106 CFU/ml by 12th day whereas, the values in probiotic fed tanks were 7.2x10⁵ CFU/ml on 4th day (after second challenge), gradually decreased to 2.51x103 CFU/ml by 12th day. Similar values of TVC were observed in unchallenged control also (1.58x10³) CFU/ml) (Fig.19-21).

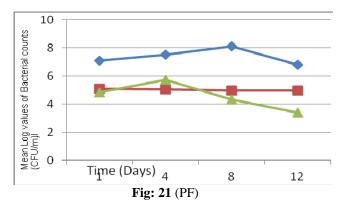


Fig. 19-21 Mean bacterial counts of water in Control diet fed tanks (CF), Probiotic fed tanks (PF) and in unchallenged control (UC) during the challenge with Vibrio harveyi

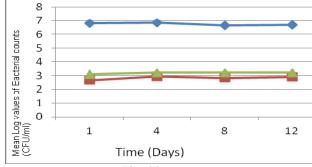
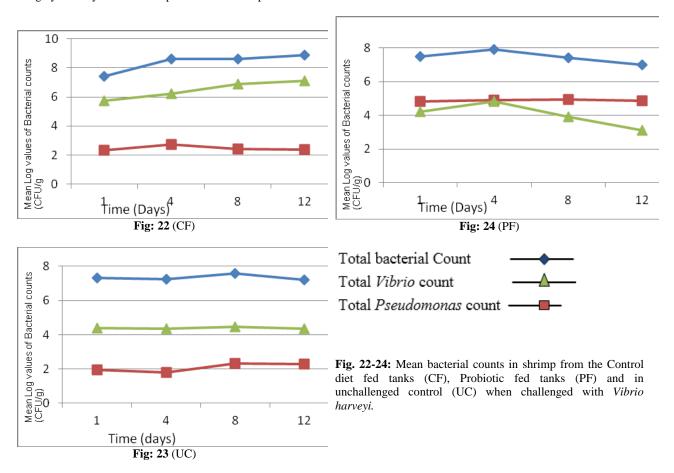


Fig: 20 (UC)


Total bacterial Count Total Vibrio count Total Pseudomonas count ·

(Mean values of bacterial counts three probiotic tanks and three control tanks were presented to simplify the results)

3.7b Bacterial counts in experimental Shrimp

TBC of control diet fed and probiotic shrimps were raised to a maximum of 10^8 CFU/g and 10^7 CFU/g respectively after second challenge. *Vibrio* count was also increased with TBC in control fed shrimp from 1.7 x10⁶ CFU/g on 4th day (after second challenge) to 1.3×10^7 CFU/g by 12^{th} day. The TVC of probiotic fed shrimp was

recorded as 6.6×10^4 CFU/g on 4^{th} day and gradually decreased to 1.3×10^3 by 12^{th} day of challenge. This value was lesser than the TVC of unchallenged control 2.24×10^4 CFU/g. *Pseudomonas* remained stable around 3×10^2 CFU/g in control shrimp and 7×10^4 CFU/g in probiotic fed shrimp during the 12 days of challenge (fig 22-24).

(Mean values of bacterial counts three probiotic tanks and three control tanks were presented to simplify the results).

3.8 Survival of shrimp after challenge with V. harveyi

Survival of the shrimp in experimental tanks after the post challenge has been represented graphically (Fig: 25). No mortality was recorded in all the three groups of shrimp up to 4 days of first challenge with *Vibrio harveyi* at 10⁷CFU/ml. Hence, a second challenge dose (10⁷CFU/ml) was given on 4th day.

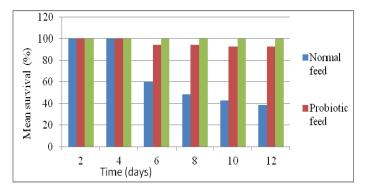


Fig 25: Percent survival of shrimp during the experimental challenge.

Survival rate in control diet fed shrimp was 59.75 % by the 6th

day, decreased to 48.66% on 8th day, 43.28% on 10th day and finally reached 38.87% on 12th day. Survival percent in probiotic diet fed shrimp was 94.44 % in 8 days. Percent survival did not fall much from 10th to 12th (ie 93.04%) which was significantly greater than that of the control diet fed shrimp (38.87%) (P<0.05). Shrimp survival was 100% in unchallenged control group.

4. Discussion

Application of probiotics for intensive shrimp cultivation is the most promising preventive method developed to fight against diseases caused by *V. anguillarum*, *V. vulnificus*, *V. alginolyticus* and *V. harveyi*. Many probiotics including *LactoBacillus* sp. [16, 17] *Bacillus* sp. [18], yeast [19, 20] have been reported to have effectively inhibited *Vibrios* in shrimp culture. A *Pseudomonas* sp, for example, isolated from a brackish water lagoon showed significant probiotic activity against a number of shrimp pathogenic *Vibrios*, while its safety in a mammalian system was also found satisfactory (11). These so-called beneficial bacteria are not therapeutic agents but will alter directly or indirectly the composition of the microbial community in the rearing environment and in the shrimp gut (6, 21). Antagonostic activity of *P. aeruginosa* on *V. harveyi* in our experiment has proved to be satisfactory to

proceed further. *Pseudomonas aeruginosa* inhibited the growth of *Vibrio* in both water as well as in shrimp. Similar results were obtained in a probiotic experiment with *Bacillus* conducted by Regipepat *et al.*, ^[15]. Pathogencity test in our experiment revealed that *Pseudomonas aeruginosa* (PIC4) was non-pathogenic to the shrimp larvae. Similar results were obtained by Vijayan *et al.*, ^[11]. The lethal dose (LD₅₀) of *V. harveyi* to the Post-larvae of *Penaeus monodon* was found to be 10⁶ CFU/ml at 48 hrs (Table: 2). Hence, the next higher concentration i.e. 10⁷cfu/ml was chosen as a challenge dose for the succeeding experiments.

During the 50 days of feeding, TBC in both control and probiotic of tank water were recorded as 10^7 CFU/ml, these counts were similar to those of normal bacterial count (10^7 CFU/ml) in regular shrimp culture pond water. [22, 23, 24, 25, 26]. TBC in control and probiotic shrimp has also reached up to 10^7 which were similar to TBC of shrimp in culture ponds, [24, 27]. *Vibrio* counts in culture tanks (10^7 CFU/g or ml) were similar to those of shrimp culture ponds reported by earlier workers [23, 24, 28]

Lesser *Vibrio* counts were recorded on 50th day in probiotic diet fed shrimps indicating that presence of *Pseudomonas aeruginosa* inhibited the growth of *Vibrio* in both water as well as in shrimp. Similar results were obtained in a probiotic experiment conducted by Regipepat ⁽¹⁵⁾.

Water quality parameters such as pH temperature salinity and ammonia of both control and probiotic tanks were under the range of safe shrimp culture practices in ponds and in hatcheries (24, 29,30,31,32,33,34,35). Similar values were also observed in probiotic experiment conducted by Rengpipat *et al.*, (15,36).

Probiotics in the form of Bacterial cells or their products have proved to be growth enhancers and promoters of resistance against pathogens, (15, 31, 37). In our experiment survival rate in probiotic fed shrimp was more due to exclusion of *Vibrios* both in shrimp as well as in the water, and our results are in concurrence with the earlier studies conducted by Khanitta *et al.*, (1). *Pseudomonas* counts in shrimp guts evidenced indirectly that probiotic *Pseudomonas* colonised in the guts of probiotic fed shrimp and there by reduced the *Vibrio* count.

Vibrio count in probiotic tanks after challenge with high dose of *V. harveyi* has gradually reduced from 10⁶ CFU/ml to 10³ CFU/ml by 12th day, these counts were equal to the TVC in normal shrimp culture ponds as reported by Jawahar and Debasis ^[24] and in hatcheries of P. monodon by Rajeshwari *et al.*, ^[37].

Mortality rate in P. monodon after challenge with *Vibrio harveyi* in probiont fed tanks was significantly less compared to the normal control diet fed tanks indicating the protection due to presence of probiont *Pseudomonas* (PIC 4), it is evident that the *Pseudomonas aeruginosa* (PIC4) is capable of inhibiting the growth of *Vibrio harveyi* in the guts as well as in the water medium. Several researchers have already reported the important role of probiotics in disease control and growth enhancement in aquaculture animals [31, 38] particularly against *Vibrio harveyi* in shrimp cultures, [15, 33, 36] The present finding adds a probable probiotic to already existing ones and may prove useful to control *Vibrio harveyi* in shrimp culture ponds.

5. Conclusions

Antagonistic activity of *Pseudomonas aeruginosa* (PIC-4) against the pathogenic *Vibrio harveyi* has been established. The isolate (PIC-4) of *P. aeruginosa* has been proved to be

non- pathogenic to the shrimp larvae through challenge infections and also reduced the total *Vibrio* counts in both shrimp as well as in the medium. The probiotic isolate has also increased the percent survival and growth rate in tiger shrimp. The present finding is a suitable probiotic to control *Vibrio harveyi* in shrimp culture ponds

6. Acknowledgments

Authors are grateful to the University Grants Commission, Govt of India, New Delhi for the financial assistance provided to carry out the research work.

7. References

- 1. Khanitta K & Tipparat H. Effect of *LactoBacillus* plantarum isolated from digestive tract of wild shrimp on growth and survival of white shrimp (*Litopenaeus vannamei*) challenged with *Vibrio harveyi*. Fish and Shellfish Immunology 2012; 32 (1):170-17.
- 2. Lavilla-Pitogo CR, Baticados MCL, Cruz-Lacierda ER, De la Pena LD. Occurrence of luminous bacterial disease of *Penaeus monodon* larvae in the Philippines. Aquaculture 1990; 91:1-13.
- 3. Liu PC, Lee KK, Yii KC, Kou GH & Chen SN. Isolation of *Vibrio harveyi* from diseased kuruma prawns Penaeus japonicus. Curr Microbiol 1996; 33: 129–133.
- 4. Robertson PAW, Calderon J, Carrera L, Stark JR, Zherdmant M, Austin B *et al*. Experimental *Vibrio harveyi* infections in Penaeus vannamei larvae Dis Aquat Org 1998; 32:151-155.
- Zokaeifar H, Balcazar JL, Kamarudin MS, Sijam K, Arshad A, Saad CR et al. Selection and identification of non-pathogenic bacteria isolated from fermented pickles with antagonic properties against two shrimp pathogens J antibiot 2012; 65:289-294.
- 6. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic bacteria as biological control agent in aquaculture. Microbiology and Molecular Biology Reviews 2000; 64:655-671.
- 7. Balcazar JL, Blas ID, Ruiz-Zarzuela I, Cunningham D, Vendrel D, Muzquiz JL *et al*. The role of probiotics in aquaculture. Veterinary Microbiology 2006; 114:173-86.
- 8. Gatesoupe FJ, The use of probiotics in aquaculture. Aquaculture 1999; 180:147-165.
- 9. Skjermo J, Vadstein O. Techniques for microbial control in the intensive rearing of marine larvae. Aquaculture 1999; 177:333-343.
- 10. Irianto A, Austin B. Probiotics in Aquaculture J Fish Dis 2002; 25:633-642.
- 11. Vijayan KK, Bright Singh IS, Jayaprakas NS, Alavandi SV, Somnath Pai S, Preetha R *et al.* A brackish water isolate of *Pseudomonas* PS-102, a potential antagonistic bacterium against pathogenic *Vibrios* in penaeid and nonpenaeid rearing systems. Aquaculture 2006; 251: 192-200.
- 12. Villani F, Pepe O, Moschetti G, Salzano G, Parente E, Coppola S *et al.* Antagonistic activity of lactic acid bacteria isolated from natural whey starters for waterbuffalo Mozzarella cheese manufacture. Italian Journal of Food Science 1995; 3:221-234.
- 13. Jaculine Pereira SJ, Shanmugam A, Sulthana, Sundaraj V. Effect of Vaccination on *Vibrios*is resistance of *Fenneropeneaus indicus*. Tamilnadu J Veterinary & Animal Sciences 2009; 5(6):246-250.
- 14. Denis S, Phillipe H, Cyrille G, Peva L, Dominique A.

- Experimental infection models for shrimp *Vibrio*sis studies: a review Aquaculture 2000; 191:133-144.
- 15. Rengpipat S, Phianphak W, Piyatiratitivorakul S Menasveta P. Effect of a probiotic bacterium on black tiger shrimp *Penaeus monodon* survival and growth. Aquaculture 1998; 167:301-313.
- Ajitha S, Sridhar M, Sridhar N, Singh ISB, Varghese V. Probiotic effects of lactic acid bacteria against *Vibrio* alginolyticus in *Penaeus* (Fenneropenaeus) *Indicus* (H. Milne Edwards). Asian Fish Sciences 2004; 17:71-80.
- 17. Chiu CH, Guu YK, Lui CH, Pan TM, Cheng W. Immune response and gene expression in white shrimp, Litopenaeus vannamei, induced by *LactoBacillus* plantarum. Fish and Shellfish Immunology 2007; 23:364-77
- 18. Vaseeharan B, Ramasamy P. Control of pathogenic *Vibrio* spp. by *Bacillus* subtilis BT23, a possible probiotic treatment for black tiger shrimp *Penaeus monodon*. J Appl Microbiol 2003; 36:83-87.
- 19. Scholz UG, Garcia DD, Ricque LE, Cruz SF, Albores V, Lalchford J *et al.* Enhancement of *Vibrios*is resistance in juvenile Penaeus vannamei by supplementation of diets with different yeast products. Aquaculture 1999; 176:271e83.
- 20. Suphantharika M, Khunrae P, Thanardkit P, Verduyn C. Preparation of spent brewer's yeast as an immunostimulatnt for black tiger shrimp, *Penaeus monodon*. Biores Technol 2003; 88:5560.
- 21. Moriarty DJW, Disease control in shrimp aquaculture with Probiotic bacteria in microbial biosystems: New Frontiers. proceedings of the 8th international symposium on Microbial ecology, Bell, C.R. Brylinsky, M. johnsongreen, P. (eds) Atlantic Canada society for Microbial ecology, Halifax, Canada. 1999; 237-243.
- 22. Colorni A. A study on the bacteria flora of giant prawn, *Macrobrachrium rosanbergii*. Larva fed with *Artemia salina naplii*. Aquaculture 1985; 49:1-10.
- 23. Hung LT. Rice-prawn and rice-shrimp culture in coastal areas of Vietnam, Integrated agriculture-aquaculture: a primer. FAO/ICLARM/IIRR. 2001; Fisheries Technical Paper No. 407. Rome, FAO. 149.
- 24. Jawahar AT & Debasis S. Influence of Salinity and Management Practices on the Shrimp (*Penaeus monodon*) Production and Bacterial Counts of Modified Extensive Brackishwater Ponds. Turkish Journal of Fisheries and Aquatic Sciences 2009; 9: 91-98.
- 25. Sheryl OF, Shantanu SK, Resha R, Shirodkar SV, Karekar R, Praveen Kumar RA *et al.* Water quality and bacteriology in an aquaculture facility equipped with a new aeration system. Environmental Monitoring and Assessment 2010; 164(4): 81-92.
- 26. Giri SS, Sen, SS & Sukumaran V. Effects of dietary supplementation of potential probiotic *Pseudomonas*

- *aeruginosa* VSG-2 on the innate immunity and disease resistance of tropical freshwater fish, Labeo rohita. Fish Shellfish Immunol. 2012; 32(6):1135-1140.
- 27. Abu H, Muhammad Y, Kawser AMd, Sabina Y. Prevalence of Microbial Load in Shrimp, *Penaeus monodon* and Prawn, *Macrobrachium rosenbergii* from Bangladesh. World Journal of Agricultural Sciences 2008; 4 (S): 852-855.
- 28. Kannapiran E, Ravindran J, Chandrasekar R, Kalaiarasi. A Studies on luminous, *Vibrio harveyi* associated with shrimp culture system rearing *Penaeus monodon*. J Environ Biol 2009; 30:791-795.
- 29. Jankiram P. Farming of *Penaeus monodon* in brackishwater ponds of Andhra Pradesh: an analysis of water and soil quality and production. Ph. D thesis, Andhra University, Visakhapatnam, 1998.
- 30. Chakraborti RK, Sundaray JK & Ghoshal TK. Production of *Penaeus monodon* in the tide fed ponds of Sunderbans. Indian J Fish 2002; 49(4):419-426.
- 31. Chaudhary A, Javed IQ. Influence of a probaiotic *Pseudomonas pseudoalcaligenes* fermented feed on growth performance of rohu (Labeo rohita) fingerlings. Punjab Univ J Zool 2007; 22(1-2):41-56.
- 32. Pushparajan N, Soundarapandian P. Recent Farming of Marine Black Tiger Shrimp, *Penaeus monodon* (Fabricius) in South India. African Journal of Basic & Applied Sciences, 2010; 2 (1-2):33-36.
- 33. Utiswannakul P, Siripen S, Rengpipat S. Enhanced growth of black tiger shrimp *Penaeus monodon* by dietary supplementation with *Bacillus* (BP11) as a probiotic. J Aquac Res Development 2011; http://dx.doi.org/10.4172/2155-9546.S1-006.
- 34. Shailender M, Krishna PV, Suresh Babu Ch. Effect of probiotics on growth and survival of post larvae of giant freshwater prawn, *Macrobrachium rosenbergii* (de man). 2012; 1(12):184-190.
- 35. Enox de PaivaM, George AM, Luis OA, Tereza Cristina VG. Effect of a commercial probiotic on bacterial and phytoplankton concentration in intensive shrimp farming (Litopenaeus vannamei) recirculation systems. Lat Am J Aquat Res 2013; 41(1):126-137.
- 36. Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S Menasveta P. Immunity enhancement in black tiger shrimp (*Penaeus monodon*) by probiont bacterium (*Bacillus* S11). Aquaculture 2000; 191:271-288.
- 37. Rajeswari shome BR, Soundararajan R. Studies on luminous *Vibrio harveyi* isolated from *Penaeus monodon* larvae reared in hatcheries in Andamans. Indian J Fish 1999; 46(2):141-14.
- 38. Abdul Kader Mohideen MM, Selva MT, Peer Mohamed S, Zahir Hussain M I. Effect of Probiotic Bacteria on the Growth rate of Freshwater Fish, *Catla catla*. International SJournal of Biological Technology 2010; 1(2):113-117.