Radboud Repository

Radboud University Nijmegen {§

1
g

PDF hosted at the Radboud Repository of the Radboud University
Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/175500

Please be advised that this information was generated on 2018-07-07 and may be subject to
change.

http://hdl.handle.net/2066/175500

Industrial Experiences in Applying
Domain Specific Languages for
System Evolution

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen
op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken,
volgens besluit van het college van decanen
in het openbaar te verdedigen op
donderdag 21 september 2017 om 10:30 uur precies

door
M. T.W. Schuts

Promotor:

Prof. dr. J.J.M. Hooman

Manuscriptcommissie:

Dr. ir. A.J. Mooij (TNO-ESI)

Prof. dr. F.W. Vaandrager

Prof. dr. J.J. Vinju (Technische Universiteit Eindhoven)

Prof. dr. ir. J.M.W. Visser

Prof. dr. ir. J.P.M. Voeten (Technische Universiteit Eindhoven)

Copyright (© 2017 by M.T.W. Schuts

Omslag: Anneke van Sonsbeek
Druk: Gildeprint Drukkerijen

ISBN 978-94-6233-666-7

Industrial Experiences in Applying
Domain Specific Languages for
System Evolution

DOCTORAL THESIS

to obtain the degree of doctor
from Radboud University Nijmegen
on the authority of the Rector Magnificus prof. dr. J.H.J.M. van
Krieken,
according to the decision of the Council of Deans
to be defended in public on
Thursday, September 21, 2017 at 10:30 hours

by
M. T.W. Schuts

Supervisor:

Prof. dr. J.J.M. Hooman

Doctoral Thesis Committee:

Dr. ir. A.J. Mooij (TNO-ESI)

Prof. dr. F.W. Vaandrager

Prof. dr. J.J. Vinju (Eindhoven University of Technology)

Prof. dr. ir. JJM.W. Visser

Prof. dr. ir. J.P.M. Voeten (Eindhoven University of Technology)

Copyright (© 2017 by M.T.W. Schuts

Cover: Anneke van Sonsbeek
Print: Gildeprint Drukkerijen

ISBN 978-94-6233-666-7

ACKNOWLEDGEMENTS

This acknowledgement concludes a period of approximately six years in which I
applied new techniques at Philips and a period of half a year in which I wrote this
thesis. I would like to use the opportunity to thank a number of persons.

First and foremost, I owe many thanks to Jozef Hooman without whom it
would have been impossible to write this thesis. It started with searching a topic
for my Master’s thesis. Jozef arranged an internship at Philips, where he was co-
located for a research project of TNO-ESI, and guided me through my internship
in the lunch breaks.

The collaboration that started during my Master’s thesis project continued
the years thereafter. I learned many new techniques and I liked to apply all those
new techniques in industry. With Jozef I brainstormed on many occasions on how
to apply them in the best possible way. Some of these projects were interesting
enough to publish about, so that is what we did. After a few years of applying
these techniques and publishing papers, there was enough material to write a
thesis and Jozef became my promoter. I am very grateful for all the time Jozef
Hooman spent as my mentor and promoter. Jozef helped me a lot in streamlining
the storyline and guide me through the difficult process of writing this thesis.

I met Ammar Osaiweran at Philips where he was a PhD candidate when I was
writing my Master’s thesis. I would like to thank Ammar for the nice time we had
at Philips. We published a number of papers together and I like the time we spent
at a conference in Tallinn, Estonia. I do not think I would have written this thesis
if Ammar did not occasionally asked if I wanted to write a PhD thesis.

I would like to thank my two department managers at Philips: Ad Jurriens
and Paul Tielemans. Ad for offering me a job at Philips and giving me the space
to apply new techniques. Paul for promoting me to lead software designer which
gave me more freedom to apply the techniques in the components for which I was
responsible. Paul even suggested new problems where I could apply the techniques.
In addition, I would like to thank Dirk-Jan Swagerman for stimulating the use of
new techniques within the software departments in general and his support of the
ComMA framework in particular.

The work presented in this thesis all took place at Philips. I worked in different

projects and teams. I would like to thank all the team members for the pleasant
time and their support. Next a list of all the projects that contributed to this
thesis in chronological order.

I would like to thank the team members of the project in which I created
the Power Control Service (PCS): Fahmy Ali, John Bekx, Fehim Begtasevic,
Maruschka de Bruijn-Maessen, Michel van Geffen, Robert Huis in ‘t Veld, Arjen
Kaiser, Ron van Kesteren, Arjan van Lankveld, Dave Mollet, Leendert Nelemans,
Maarten van de Sande, and Arjan Versluys.

T am grateful to the team members of the two Power Distribution Unit (PDU)
projects: Tolgay Akkaya, Jaap van Alphen, Maria Berruezo, Laura Calvino, Jelle
Haandrikman, Gijs Hobo, Edwin Hoogeveen, Ron Jansen, Rob de Jong, Pratik
Khedkar, John Kennis, Rob Kleihorst, Ben Nijhuis, Ivo Pullens, Herman Roebbers,
Andre Schurer, Wim Swinkels, Peter Timmermans, Marcel van der Veeken, Stephan
Verhelst, Martin van Vliet Paul Wingelaar, and Edwin van Woudenberg.

This thesis is based on several papers, which are joint work with a number
of co-authors which are gratefully acknowledged: Jan Friso Groote, Ivan Kurtev,
Bart van Rijnsoever, Frits Vaandrager, and Jacco Wesselius.

I would like to thank the members of the doctoral thesis committee: Arjan
Mooij, Frits Vaandrager, Jurgen Vinju, Joost Visser, and Jeroen Voeten for their
suggestions for improving an earlier version of the manuscript.

Last but not least I would like to thank my family and friends for their support.

May 2017

1 Introduction

1.1 Context
1.2 Problem Statement
1.3 Goal and Evaluation Criteria
1.4 Approach
1.4.1 Domain Specific Languages
1.4.2 Overview Applied Techniques
1.4.3 General Aspects of Industrial Cases
1.5 Industrial Context
1.6 Thesis Outline

2 Related Work

3 Language for Creating New Components

3.1 Motivation for Applying ASD
3.2 Fundamentalsof ASD
3.2.1 ASD Interface Models

3.2.2 ASD Design Models and Model Checking

3.3 Integrating ASD in Industrial Workflow
3.3.1 The TDD Approach
3.3.2 The ASD Approach

34 Context of the PCS

3.5 Steps of Developing the PCS

3.6 FErrors Not Detected by the ASD Verification . . .

3.7 Results of Developing the PCS

3.8 Concluding Remarks

4 Language for Exploring New System Concepts

4.1 Motivation for Applying POOSL
4.2 Fundamentals of POOSL
4.2.1 POOSL Modelling Language
4.2.2 POOSL Tooling

CONTENTS

Ne B e R . L A

13

CONTENTS

4.3 Application at Philips o000
4.4 Modeling the SU/SD Concept in POOSL
4.4.1 Modelling Scope and Simulator
4.4.2 Modelling Steps
4.4.3 Modelling Devices and Control
4.44 Extensive Model Testing
4.5 Concluding Remarks o o000

Configuring a Component using DSLs

5.1 Motivation for Creating DSLs
5.2 Context of the Fieldbus,
5.3 DSL for Fieldbus Configurations
5.4 DSL Instance Validation L.
5.5 DSL to Describe System Configurations
5.6 Concluding Remarks

DSLs Combined with other Model-Based Techniques
6.1 Motivation and Global Overview
6.2 Context of the PDU,
6.3 Defining the Behaviour of the Component
6.3.1 POOSL
6.3.2 SAL
6.3.3 Generation of Configuration Files
6.4 Testing the Component
6.4.1 Testcases L
6.42 Test DSL
6.4.3 Automated Test Case Generation
6.5 Increasing the Confidence in Models and Generators
6.6 Concluding Remarks 0oL
6.6.1 Results
6.6.2 Analysismodels 0o oL
6.6.3 Evaluation

Model Learning to Validate Refactoring
7.1 Motivation for the Application of Model Learning
7.2 Learning Approach
7.3 Context of the PCS
7.4 Application of the Learning Approach
7.4.1 Design of the Learning Environment
7.4.2 Learned Output
7.4.3 Checking Equivalence
7.4.4 Investigating Counterexamples
7.5 Results of Learning the Implementations of the PCS
7.5.1 Tteration 1. L Lo
7.5.2 Tteration 2. L
7.5.3 Tteration 3.
7.54 Tteration 4. Lo
7.5.5 Tteration 5.
7.6 Scalability of the Learning Approach
7.6.1 Faster implementations

CONTENTS

7.6.2 Faster Learning and Testing Algorithms
7.6.3 Using Parallelization and Checkpointing
7.6.4 Using Abstraction and Restriction
7.7 Concluding Remarks

8 Refactoring a Legacy Implementation using a DSL

8.1 Motivation for the Transformation
8.2 Transformation Approach
8.3 State Machine Transformations
8.3.1 From Rhapsody to ComMA
8.3.2 Generating ComMA Instances
8.3.3 From ComMA to Dezyne
8.4 Increasing Confidence in the Generated Code
8.5 Concluding Remarks, ..

9 Epilogue

9.1 Evaluation of Criteria
9.2 Lessons Learned
9.3 Future Work

Bibliography
Samenvatting
Summary

Curriculum Vitae

141

143

145

CHAPTER 1

INTRODUCTION

This chapter is the introduction to this thesis. It starts with a description of
high-tech systems, the evolution of high-tech systems and the challenges with
legacy software. Based on this research context, we formulate the problem
statement. Next we define the goal of this thesis and discuss the research
approach. Subsequently, the industrial context in which the research took
place is presented. Finally we describe the chapter outline of this thesis.

1.1 Context

In the high-tech industry complex products are created. By definition high-tech
products are constructed using cutting edge technology. Consequently, embedded
system technology plays a major and often even decisive role in such systems [27].
Examples of high-tech products are: cars, trains, airplanes, smart phones, waver
steppers, medical devices, et cetera. These products consist for a large part of soft-
ware. The software in products is constructed using a process called the software
life cycle. The software life cycle consists of a number of distinct phases [165]. The
first phase concerns the construction of the software. In this phase it is specified,
designed, built and tested. When it is accepted by the customer, it is taken into
use. In the second phase the software needs to be maintained by the constructor
of the system. The system is taken out of use when it has reached end-of-life and
it is replaced by its successor.

Bennett et al. [16] define a staged model in which the maintenance phase is split
up into an evolution stage and a servicing stage. In the evolution stage, changes
are made to cope with changes in functional and non-functional requirements. If
evolutionary changes are no longer possible, the system moves to the servicing
stage. In the servicing stage only service patches are applied to keep the system
alive.

Lientz et al. [93] divided software maintenance activities into the following four
categories:

1 Introduction

e Adaptive; changes in the software environment,
e Perfective; new user requirements,

e Corrective; fixing errors, and

e Preventive; prevent problems in the future.

According to [158], 50-75 percent of all the effort on a software system is spent in
the maintenance phase.

High-tech systems are being made for many decades. While the systems for the
customer may be new, they are constructed from a collection of many components
from which some can be characterized as legacy components [26].

Legacy components suffer from a combination of the following characterist-
ics: high maintenance costs; no, or few test cases; complex software; source code
contains duplications; obsolete support software; maintenance of hardware and
software components from third parties has expired; lacking technical expertise;
business critical; backlog of change requests; no, poor, or outdated documentation;
embedded business knowledge; original developers or users are no longer available;
poorly understood by maintainers; and small maintenance tasks require a lot of
time [168, 166].

This thesis focuses on high-tech systems in the evolution stage. These systems
have legacy components as an additional challenge.

1.2 Problem Statement

For improving the software life cycle most can be gained by improving the time and
effort that needs to be spend in the maintenance phase. High-tech systems are the
result of decades of development with dozens of man-years invested. The resulting
systems are very large with millions of lines of source code. The code might no
longer be in line with the original design concepts and the documentation might
no longer be in line with the implementation. Descriptions of interfaces might be
incomplete, e.g. not describing the behaviour in terms of state or timing. Support
for obsolete hardware and other dead code might confuse the engineer that needs
to apply changes. Some software components might be created by obsolete tools
and languages. The original designers and developers may no longer be available.

High-tech systems also contain a lot of accumulated value. Replacing a leg-
acy system would require more resources than keeping the current implementation
alive [168]; scarce resources that could also be used to implement product innova-
tions on the existing system. Hence, these systems need to evolve to bring product
innovations to the market. In practice, changing these systems, or in other words
performing maintenance activities on these systems, consumes a lot of time and
effort. Summarizing, evolving high-tech systems is very hard.

1.3 Goal and Evaluation Criteria

The goal of the described research is to investigate the application of techniques,
that are new for Philips, to improve the evolution of high-tech systems with legacy

1.4 Approach

components. The applicability of the applied techniques is evaluated according to
the following criteria.

Scalability High-tech systems are large and complex, therefore it is relevant to
evaluate the scalability of new techniques. Scalability has different dimensions,
such as: size of engineering artefacts, size and complexity of languages used, and
number of engineering artefacts [89]. By evaluating these dimensions of scalability,
we check if a new technique can be applied on industry-sized problems.

Integration in an industrial context Applying techniques in industry means
that they need to be integrated in the industrial context. This criterion evaluates 1)
the learning curve needed before applying the techniques, 2) whether the technique
can be incorporated in the current way of working or to which extent the current
way of working has to be adapted, 3) whether organisational or cultural changes
are required, and 4) whether commercial support is available.

Return On Investment (ROI) Introducing a new technique in a company
needs to add value. ROI is defined as operational income divided by assets inves-
ted [110]. ROI is used to objectively evaluate the cost compared by the potential
gain of introducing a new technique. We exclude learning the technology from the
ROI calculations.

Improve system evolution We evaluate the contribution of a technique to
improve the evolution of a high-tech system.

Note that to be able to apply the techniques in industry, particular tools have
been used. So the evaluation also includes tool aspects.

1.4 Approach

According to Potts [119], the traditional approach of software engineering research
consists of distinct sequential activities. First, a researcher defines an industrial
problem to investigate, e.g., in a multi-year research program. Second, the re-
searcher incrementally refines the solution. Concurrently, when the researcher is
investigating solutions for the problem, the industrial context - and with it the
problem - also evolves. Last, by the time the researcher wants to transfer the
results back to industry, the solution no longer matches the current state of the
problem. Potts calls this approach: “research-then-transfer”. As an alternative, he
introduces the “industry-as-lab” approach. With the “industry-as-lab” approach,
the researcher and the industrial partner tightly work together to define the prob-
lem. The research results are iteratively tried and implemented by the industrial
partner. Benefits of applying the “industry-as-lab” approach are:

e The problem definition is frequently improved because of a better under-
standing of the problem domain.

1 Introduction

e Research results are incrementally integrated in industry with a short feed-
back loop.

e Research does not only address technical challenges, but also non-technical
challenges such as the transfer of the research results into the organization.

e Research takes into account the scale and complexity industry faces when
solving problems.

Davison et al. [41] define action research as an attempt by researchers to solve
real-world problems while simultaneously studying the experience of solving the
problem. Easterbrook et al. [46] describe: While most empirical research meth-
ods attempt to observe the world as it currently exists, action researchers aim
to intervene in the studied situations for the explicit purpose of improving the
situation.

Furthermore, Easterbrook et al. describe that the problem owner needs to
collaborate with the researcher to be able to solve the problem, and that the
problem owner and the researcher might be the same person.

The benefits of the “industry-as-lab” approach matches the goals described in
Section 1.3. For this reason, the research described here has taken place using an
“industry-as-lab” approach. Action research was applied during real development
projects in which the problem owner and researcher were the same person. The
projects were executed at Philips between 2010 and 2016.

1.4.1 Domain Specific Languages

This thesis focuses on applying techniques for improving the evolution of a high-
tech systems. The techniques investigated in this thesis are based on Domain
Specific Languages (DSLs) [155], because already long ago DSLs have been sug-
gested as a way to raise the level of abstraction, to deal with variability, and to
improve productivity and maintainability. An early overview of terminology, tech-
niques and applications can be found in [156]. According to Michaelson [101] a
DSL is defined as a notation oriented to a specific problem domain with specialised
types and control structures. Furthermore, Rosen et al. [124] discriminate between
a vertical and a horizontal DSLs. A vertical DSL focuses on a certain business
domain. Typically, a business domain is specific for a single company. These DSLs
are being used by domain experts. Alternatively, a horizontal DSL focuses on a
specific problem domain. Examples are SQL, HTTP, et cetera [42]. As one of the
disadvantages of DSLs, van Deursen et al. [156] mention the costs of designing,
implementing and maintaining a DSL. Since then, large improvements have been
achieved in the area of language workbenches. Such tools facilitate the efficient
construction of languages, editors, and transformations [57, 163].

1.4.2 Overview Applied Techniques

Figure 1.1 depicts the approach taken. We created multiple DSLs and generators
for these DSLs. From an instance of a DSL, a number of artefacts are gener-
ated, such as new implementations, e.g. source code or configuration files, and
test cases. Formal techniques provide confidence in the behaviour described by

4

1.4 Approach

a DSL instance and also visualizations have been generated from DSL instances.
Additionally, legacy implementations have been captured by DSL instances after
which the previous described techniques could be applied, e.g., to generate new
implementations.

—_—

Implemen-
tation

I

—_—
Test

Legacy Cases
R
Implementation
—_—

Formal

Technigue
L

—_—

| Visualization

-/

Figure 1.1: Qverview Approach

Next we provide an overview of the DSLs that have been applied to improve
system evolution. The choice for these techniques was pragmatic; we knew the
techniques from earlier experience and they seemed suitable for the projects in
which they were applied. The application of these DSLs in real industrial devel-
opment projects is evaluated according the criteria listed in Section 1.3.

Analytical Software Design (ASD) ASD [161] is a horizontal DSL that can
be used to describe data-independent control components and interfaces. Instances
of the ASD language can be checked, using CSP/FDR2 [29, 60], for a predefined
set of properties. Examples of these properties are: determinism of design models,
life-lock freedom, dead-lock freedom, and interface compliance. From the language
instances, source code is generated and this code is integrated into the product.
In addition, visualizations can be generated.

For replacing an obsolete hardware component, a new hardware component
was created. ASD has been applied to model a new software component that
interfaces with the new hardware component.

Parallel Object-Oriented Specification Language (POOSL) POOSL [147]
is a horizontal DSL for describing the behaviour of digital hardware and software
components. Instances of the language can be simulated using the Rotalumis sim-
ulator [22]. When model checking is no longer feasible because of the large number
of states, simulation with POOSL can be chosen as an alternative to get confidence
in the behaviour of a system.

POOSL has been applied to model the start-up/shut-down behaviour of a
high-tech system. The model includes both hardware and software components
and their interactions. Using this model, evolutionary changes to the system have

1 Introduction

been explored. Simulation was used to get confidence in the correctness of the new
system concepts, before implementing them in the real system.

Vertical DSLs A vertical DSL can be created using the Eclipse [171] plug-in
Xtext [18]. From a DSL instance, artefacts can be generated. In addition, errors
are prevented by a number of validation checks that are run on DSL instances.

New vertical DSLs have been created to generate configuration files for legacy
components. Besides generating configuration files, also SAL models have been
generated. SAL [138] is a formal technique which is used to verify the behaviour
specified by the DSL. In addition, SAL automatically generates test cases. These
test cases are represented in a second DSL to be able to exploit the test cases in
multiple frameworks.

Model learning and equivalence checking The externally observable beha-
viour of an implementation can be learned using LearnLib [76], which is a model
learner [153]. It generates a state machine in terms of an instance of the GraphViz’s
DOT-language [47]. Instances of this horizontal DSL can be used to generate an
instance of the mCRL2 horizontal DSL. The equivalence of two learned implement-
ations can be checked using the equivalence checker from the mCRL2 tool-set [38].

Model learning has been applied to learn the behaviour of a legacy component
and its new refactored implementation. Next equivalence of these two implement-
ations is checked.

Model transformation DSLs can be applied to perform model transforma-
tions. A horizontal DSL can be used to capture instances of one language and to
generate an instance of another language.

Model transformations have been used to replace a legacy implementation that
has been created with a modelling tool. Model files that were used by the tool to
generate implementations are instances of the horizontal DSL and a generator of
the DSL can create model instances for a new tool. Because there can be errors in
the transformation, model learning and equivalence checking provide confidence
in the correctness of the transformation.

1.4.3 General Aspects of Industrial Cases

We applied the techniques described above in real industrial development projects.
These projects address the following aspects of system evolution:

e Create a new software component for the replacement of a legacy hardware
component.

e Explore new concepts for system evolution.

e Keeping a legacy software component longer in the evolution stage by im-
proving its maintainability and extensibility.

e Acquire confidence that the behaviour of a refactored component is equival-
ent to its legacy predecessor.

1.5 Industrial Context

e Transform a legacy component into a new refactored component.

Note that [168, 166] describe these aspects as general industrial challenges for
system evolution.

1.5 Industrial Context

The industrial applications described in this thesis have been conducted at Philips
in the healthcare domain. Philips is an electronics company founded in 1891
by Gerard Philips in Eindhoven, the Netherlands. The business innovation unit
Image Guided Therapy (IGT) Systems makes interventional X-ray systems for
several medical segments such as cardiology, radiology, neuro-radiology, electro-
physiology, and surgery. The general product name is Allura. There are multiple
variations of this product for the different medical segments, depending on the
chosen hardware configuration and software packages. In Figure 1.2 a possible
configuration of the Allura product is depicted. The common factor of the product
variations is that X-ray movies of a patient’s body can be made in real-time.

Detector

Patient

Xray . — —— . o T / Support
Generator - \ ~ d

Figure 1.2: Allura

The patient lies on the table and is positioned between the X-ray generator
and detector which are mounted to the C-arc of the product. The table and C-
arc of the product can be manoeuvred by means of a software user interface. At
one end of the C-arc the generator transmits an X-ray beam through the patients’
body and at the other end of the C-arc the detector receives the residual radiation.
This received radiation is transformed into an image which can be processed and
viewed by the physician and other operating room personnel. The variations of
the product are for a large part determined by the software applications needed

7

1 Introduction

for specific medical segments. If, for example, a physician wants to place a stent
into the aorta of a patient, then the product is used to navigate the stent through
the patient’s arteries to the target position. The arteries of the patient can be
made visible by injecting a contrast medium.

Next a part of the architecture and components of the interventional X-ray
system are explained as far as needed to understand the applications described in
this thesis. The embedded software of the interventional X-ray system is deployed
on a cluster of PCs and devices that cooperate to achieve various clinical proced-
ures. The control of power to these components is the responsibility of a central
Power Distribution Unit (PDU). Clinical users of an individual PC cannot control
the power of the PC without using the PDU, as depicted in Figure 1.3. The PDU
also controls communication signals related to the start-up and shut-down of the
PCs.

UM —— Power
Controller| W L& Ethernet

PDU

S [o I I I I I

Figure 1.3: Components Involved in Start-Up and Shut-Down

As can be seen in Figure 1.3, each PC includes a Power Control Service (PCS)
which is a software component used for exchanging power-related communication
commands between running applications within a PC and the PDU through an
Ethernet network. As a typical example of powering off the system, the PDU
sends a message instructing all PCSs to gradually shut-down first the running
applications and next the Operating Systems (OS), in an orderly fashion. The
PDU is connected to a User Interface Module (UIM).

In this thesis, a number of chapters address the PCS and PDU components,
related to different phases of the evolution of these components. Chapter 3 de-
scribes the development of a new PCS. This PCS instance, however, was never
introduced in the field because the overall project was cancelled. For the successor
of the cancelled project, the concepts were different and a new PCS was created
by another team. This PCS is for an old version of the PDU, which is described
in Chapter 6, since also the PDU has been renewed. The differences between the
old and the new PDU are explained in Chapter 4. The refactored instance of the
PCS for the new PDU is presented in Chapter 7. The Chapters 5 and 8 describe
cases related to the components responsible for positioning the X-ray beam with
respect to the patient.

1.6 Thesis Outline

1.6 Thesis Outline

Related work for the techniques used in this thesis is described in Chapter 2.
Some conclusions can be found in Chapter 9. An overview of the other chapters
is depicted in Figure 1.4 which is a refinement of Figure 1.1.

Implemen-
tation Model
Ch:7, 8 Ch: 8

Learn . Transform

Generate

Model- Configu-
Visualization Checking Simulation ration
Ch:3,6,8 Ch:3,6,7,8 Ch: 4,6 Ch:5,6

Figure 1.4: Chapter Overview

Source
Code
Ch:3,8

Chapter 3 reports on the application of ASD that has been used to design
and integrate a new software component for the replacement of a legacy hardware
component. This chapter is based on the following papers:

e Jozef Hooman, Robert Huis in ’t Veld, and Mathijs Schuts. Experiences with
a Compositional Model Checker in the Healthcare Domain. In Foundations
of Health Information Engineering and Systems (FHIES 2011), LNCS 7151,
pages 93-110, Springer-Verlag, 2012 [75].

e Ammar Osaiweran, Mathijs Schuts, and Jozef Hooman. FEzperiences with
Incorporating Formal Techniques into Industrial Practice. In Journal Em-
pirical Software Engineering, Volume 19, Issue 4, Pages 1169-1194, August
2014 [113]. This is the journal version of the following paper:

e Ammar Osaiweran, Mathijs Schuts, Jozef Hooman, and Jacco Wesselius.
Incorporating Formal Techniques into Industrial Practice: an FExperience
Report. In Proceedings 9th International Workshop on Formal Engineer-
ing approaches to Software Components and Architectures (FESCA 2012),
ENTCS, volume 295, pages 49-63, 2013 [115].

The last paper [115] is also included in the PhD thesis of A.A.H. Osaiweran [112],
the second paper [113] is not. The application of ASD has been done by the author
of this thesis based on his ideas described in [126].

Chapter 4 describes the application of POOSL to explore new concepts for
system evolution. It is based on the following two papers:

e Mathijs Schuts and Jozef Hooman. Formalizing the Concept Phase of Product
Development. In Proceedings FM 2015: Formal Methods, LNCS 9109, pages

9

1 Introduction

605-608, Springer International Publishing, 2015 [128]. This is an extended
abstract of the following paper:

e Mathijs Schuts and Jozef Hooman. Formal Modelling in the Concept Phase
of Product Development. In Proceedings Conference on Software Engineering
Research & Practice (SERP 2015), WORLDCOMP’15, pages 3-9, CSREA
Press, USA, 2015 [127].

Chapter 5 describes the use of DSLs for keeping a legacy software component
longer in the evolution stage by improving its maintainability and extensibility.
From DSL instances, configuration files that instrument the legacy component are
generated. The contents is from the paper:

e Mathijs Schuts and Jozef Hooman. Improving Maintenance by Creating a
DSL for Configuring a Fieldbus. In Proceedings of the Workshop on Domain-
Specific Modeling (DSM 2016), pages 28-34, ACM, 2016 [130].

Chapter 6 extends the approach from Chapter 5 by the integration of a model-
based technique to increase the confidence in DSL instances. The following two
papers form the basis of Chapter 6:

e Mathijs Schuts and Jozef Hooman. Using Domain Specific Languages to
Improve the Development of a Power Control Unit. In Proceedings 2015
Federated Conference on Computer Science and Information Systems, An-
nals of Computer Science and Information Systems, Volume 5, IEEE, pages
781-788, 2015 [129].

e Mathijs Schuts and Jozef Hooman. Industrial Application of Domain Specific
Languages Combined with Formal Techniques. In Proceedings Workshop
on Real World Domain Specific Languages (RWDSL), The International
Symposium on Code Generation and Optimization (CGO), pages 2:1-2:8,
2016 [131].

Chapter 7 presents an approach on how model learning and equivalence check-
ing have been used to acquire confidence that the behaviour of a refactored com-
ponent is equivalent to its legacy predecessor. This chapter is based on:

e Mathijs Schuts, Jozef Hooman, and Frits Vaandrager. Refactoring of Leg-
acy Software using Model Learning and Equivalence Checking: an Industrial
Ezperience Report. In Proceedings 12th International Conference on integ-
rated Formal Methods (iFM 2016), LNCS 9681, pages 311-325, Springer,
2016 [132].

Chapter 8 describes a technique to automatically transform a legacy component
into a new refactored component by means of a DSL. This chapter is based on
unpublished work.

The author also contributed to the following papers, which are related to ap-
plying new techniques in an industrial context, but are not included in this thesis:

e Ivan Kurtev, Mathijs Schuts, Jozef Hooman, and Dirk-Jan Swagerman.
Integrating Interface Modeling and Analysis in an Industrial Setting. In
Proceedings 5th International Conference on Model-Driven Engineering and
Software Development (MODELSWARD 2017), pages 345-352, 2017 [91].

10

1.6 Thesis Outline

e Ammar Osaiweran, Mathijs Schuts, Jozef Hooman, Jan Friso Groote, and
Bart van Rijnsoever. Evaluating the effect of a lightweight formal technique
in industry. In Journal on Software Tools for Technology Transfer, Volume
18, Issue 1, pages 93-108, February 2016 [114].

e Jan Friso Groote, Ammar Osaiweran, Mathijs Schuts, and Jacco Wesselius.
Investigating the effects of designing industrial control software using push
and poll strategies. In Computer Science Report 11/16, Eindhoven University
of Technology, 2012 [66].

e Mathijs Schuts, Feng Zhu, Faranak Heidarian, and Frits Vaandrager. Model-
ling Clock Synchronization in the Chess gMAC WSN Protocol. In Proceed-
ings 1st Workshop on Quantitative Formal Methods (QFM 2009), EPTCS
13, pages 41-54, 2009 [133].

11

CHAPTER 2

RELATED WORK

This chapter provides an overview of the work related to the techniques that
have been applied for the research in this thesis. For the organisation of this
chapter, the overview of techniques as described in Section 1.4 is taken.

Analytical Software Design (ASD) The ASD approach has been inspired by
the formal Cleanroom software engineering method [94, 121] which is based on
systematic step-wise refinement from formal specification to implementation. As
observed in [28], the Cleanroom method lacks tool support to perform the required
verification of refinement steps. The tool ASD:Suite can be seen as a remedy to
this shortcoming. The additional code generation features of the tool make the
approach attractive for industry.

Related to this combination of formal verification and code generation are, for
instance, the formal language VDM++ [55] and the code generator of the industrial
tool VDMTools [159]. Similarly, the B-method [8], which has been used to develop
a number of safety-critical systems, is supported by the commercial Atelier B
tool [37]. The SCADE Suite [51] provides a formal industry-proven method for
critical applications with both code generation and verification. FALKO [25] is
a software package created by Siemens. It uses Abstract State Machines [24] to
simulate a software design before C++ code is generated. FALKO has been applied
by the operator of the Vienna subway system for creating railway process models.
SPARK is a formally defined subset of the Ada [78] programming language and
has been applied in industry for over 20 years [34].

Compared to ASD, most of these methods are less restricted and, consequently,
correctness usually requires interactive theorem proving. ASD is based on a care-
ful restriction to data-independent control components to enable fully automated
verification of a limited set of properties. In addition to the above listed work, [172]
contains an overview on the application of formal methods in industry including
70 references.

13

2 Related Work

Parallel Object-Oriented Specification Language (POOSL) POOSL fills
a gap between expensive commercial modelling tools (like MATLAB [97] and Ra-
tional Rhapsody [77]) that require detailed modelling, often close to the level of
code, and drawing tools (such as Visio and UML drawing tools) that do not allow
simulation. Related to the POOSL approach is the OMG specification called the
Semantics of a Foundational Subset for Executable UML Models (fUML) [111]
with, e.g., the Cameo Simulation Toolkit [95].

Related to our use of POOSL in the concept phase of development is the
application of ACL2 [88] for hardware development [125]. The ACL2 logic is used
for the specification of the communication structure of a system on chip. Formal
proofs of desirable properties, e.g., messages reach their destination, show the
correctness of the specifications. Also at Vanderlande [160], simulation is used in
the context of designing warehouses. They have created generic models describing
the building blocks. Using these building blocks, a model of a warehouse can
be constructed, next these models can be simulated, and the performance of the
warehouse can be predicted.

The application of formal techniques early in the development process was
already reported in [45]. It describes the application of tools such as PVS [116]
to requirements modelling for spacecraft fault protection systems. Although the
specification language of PVS appears to be easily understandable by engineers,
the interactive proof of properties is far from trivial. Hence, the conclusion of [45]
proposes a rapid prototyping approach, where prototypes are tested against high
level objectives.

The difficulty to use formal techniques early in the development process, when
there are many uncertainties and information changes rapidly, is also observed
in [61]. They investigated the use of formal simulations based on rewriting logic,
namely Maude executable specifications [36]. The approach has been applied to
the design of a new security protocol.

Vertical DSL According to Ward [167], DSLs improve the maintainability of
new software due to code size reduction and improved readability. In [13], a DSL
for a command-and-control simulator for Army fire support has been defined. They
observed an improvement of the maintainability and extensibility by a higher level
of abstraction using domain concepts.

There are a number of relevant applications of DSLs in the domain of embed-
ded systems. For instance, there is an interesting laboratory experiment of the
application of MetaEdit+ to heart rate monitors of Polar [87], showing a large
increase in productivity. Xtext has been used to define a DSL which models the
hardware configuration of the complex lithography machines of ASML [109]. From
this DSL, a simulation of hardware behaviour which enables software in the loop
simulation has been generated. At ASML [30], they also created another fam-
ily of DSLs called Control Architecture Reference Model (CARM) to explore the
throughput of tasks in lithography systems. From DSL instances, POOSL simula-
tion models were generated to simulate the throughput depending on the number
of cores of a CPU. In [33], a DSL based on Xtext has been developed to generate
code for real-time large-scale distributed data processing. By means of the MPS
approach [3], an extension of the C language has been constructed [164, 162]. Ex-

14

periences with DSLs at Philips are reported in [106, 105]. A DSL was created to
explore new concepts for a collision prevention component which is part of the
movement controller. To increase confidence in the new concepts, the generation
of analysis models was added to the DSL.

In addition to the topics mentioned above, this thesis also addresses the main-
tainability of legacy software. Cao et al. [31] report that most DSL research focuses
on new development. Concerning legacy software, [52, 49] try to improve the main-
tainability of large software systems by an evolutionary process that can be used
to incrementally refactor an implementation and raise abstraction using an ex-
tensible programming language called SugarJ. SugarJ enables the use of multiple
small embedded DSLs. These DSLs are embedded in Java source code. They have
created DSLs for XML and SQL. Major benefit of these embedded DSLs is that
instances can be statically validated, e.g. to check whether an XML file has the
right closure. The embedded DSLs are placed in libraries, to enable incremental
introduction of generated code in a code base. By importing the DSLs in a source
file, the DSL can be used only when required. The SugarJ approach has been
applied to a Java Pet Store and the Eclipse sources, a project with a code base of
10 million LOC. These applications show that it is possible to incrementally apply
small scale changes on large scale systems. In addition, they created a program
called “sweet tooth” to analyse a legacy software code base for identifying new re-
factor opportunities based on patterns taken from the generated code of the DSLs.
Stoel et al. [145] report on designing and applying a specification language called
Rebel in the context of the ING bank. Rebel is based on Rascal [12] which is a
tool created for meta-programming. Specifications in Rebel can be model checked,
new implementations can be generated, and test cases can be generated to test
legacy implementations.

At a large Austrian electricity company with more than 140 power plants, a
DSL has been developed for a legacy software system. The system describes sched-
ules that are used for trading electricity between companies [142]. They conclude
the following: This project report shows that a DSL-based system refactoring can
provide benefits in terms of reduced code redundancy for an improved maintain-
ability of a code base.

Bodeveix et al. [20] describe an early experiment to combine DSLs and formal
techniques. In this paper, the correctness of instances of a DSL for process schedul-
ing is verified using the B method [8]. To increase the use of formal methods in
industry, the paper [82] proposes the encapsulation of formal methods within do-
main specific languages. A DSL of the railway domain is formalized by means of
the algebraic specification language CASL [108].

Different from the related work above, we additionally used DSLs to improve
the use of configuration files. Tolvanen et al. [150] describe over 20 industrial ap-
plications of DSLs, including the generation of configuration files. They observed
that DSLs are beneficial for design guidance and early error prevention or detec-
tion. In addition, they report that DSLs increase productivity due to the raised
level of abstraction.

Software Product Line Engineering (SPLE) addresses modelling and analysis
of commonality and variability. System configurations can be generated from the
resulting models. Berger et al. [17] conducted a survey on the industrial usage

15

2 Related Work

of variability modelling. They conclude that the SPLE community focuses on
creating methods and tools for new systems and a shift might be needed towards
support for legacy software.

Model learning and equivalence checking Besides LearnLib, which is used
in this thesis, there are several other approaches to extract the behaviour of a
legacy implementation. Static analysis methods concentrate on the analysis and
transformation of source code. For instance, the commercial Design Maintenance
System (DMS) has been used in several industrial projects to re-engineer code.
DMS is based on abstract syntax tree (AST) representations of programs [9].

Whereas static analysis techniques focus on the internal structure of compon-
ents, learning techniques aim at capturing the externally visible behaviour of a
component. Process mining extracts business logic based on event logs [154].
In [86], a combination of static analysis and process mining has been applied to
a financial management system, identifying tasks, actors, and their roles. Process
mining can be seen as a passive way of learning which requires an instrumentation
of the code to obtain event logs.

Active learning techniques [10, 143] do not require code instrumentation, but
need an adapter to interact with a running system. In this approach, a learning
algorithm interacts with a software component by sending inputs and observing the
resulting output, and uses this information to construct a state machine model.
Active learning has, for instance, been successfully applied to learn models of
(and to find mistakes in) implementations of protocols such as TCP [54] and
TLS [43], to establish correctness of protocol implementations relative to a given
reference implementation [7], and to generate models of a telephone switch [96]
and a printer controller [141]. Learning-based testing [53] combines active learning
and model checking. In this approach, which requires the presence of a formal
specification of the system, model checking is used to guide the learning process.
In [53] three industrial applications of learning-based testing are described from
the web, automotive and finance domains.

Model transformation In their research agenda, van Deursen et al. [157] identi-
fy that migration from one model-based development tool to another, for instance,
using model to model transformations, is required for system evolution. Mens
et al. [99] discuss definitions of model transformation techniques. Model to model
transformation techniques are described and compared in [39].

To facilitate the migration from one model-based development tool to another,
the Object Management Group (OMG) has defined and specified a modelling
transformation language: Query Views Transformations (QVT) [118]. According
to [136], many UML modelling tools provide the possibility to import and export
models in a XML-based language called XML Metadata Interchange (XMI). In the
XMI format these models can be transformed from one modelling tool to another
using existing XML manipulation tools, e.g., the Extensible Stylesheet Language
Transformation (XSLT) tool. Czarnecki et al. [39] describe that XSLT has scalab-
ility issues and that Tratt [151] has overcome this shortcoming by creating a DSL
for applying model transformations. Another approach to replace XSLT is the
UML Model Transformation (UMT) tool. [64] describes the empirical successes

16

of UMT by means of a number of transformations, e.g., from UML to J2EE and
XDoclet, WSDL-to-UML, UML-to-WSDL and UML-to-BPEL4WS.

Mooij et al. [103] describe an industrial project at Philips in which legacy XML
files, used for describing field service procedures, are semi-automatically rejuven-
ated into DSL model instances. These rejuvenated DSL models are transformed
into redesigned DSL models from which new C++ source code is generated. In
two other projects Mooij et al. [107] used Abstract Syntax Trees (ASTs) for the
rejuvenation of legacy C++ code. The rejuvenated models are captured in a DSL
and altered using model transformation, before new C++ code is generated.

The previously described model transformation technologies assume that the
models to be transformed are in XML format. However, the modelling tool from
which we want to transform models stores the models in a proprietary format.
We used a DSL to transform legacy models into models for a new tool. A related
approach has been applied at ASML for a language called Logical Action Compon-
ent Environment (LACE). LACE defines how different sub-systems are allowed to
interact with each other. In [149], Tikhonova et al. describe how LACE mod-
els are transformed using DSL technology into Event-B models to gain access to
multiple specification analysis tools. In [134], an industrial case study at General
Motors is described where legacy models are converted to AUTomotive Open Sys-
tem ARchitecture (AUTOSAR) models. For the model to model transformations,
the MDWorkbench together with the Atlas Transformation Language (ATL) [84]
was used [135]. ATL is a QVT-like transformation language [85].

17

CHAPTER 3

LLANGUAGE FOR CREATING NEW COMPONENTS

In this chapter, we describe our experiences with Analytical Software Design
(ASD) during a real industrial development project. First the motivation for
applying ASD is given and the ASD approach is introduced as far as needed
to understand this chapter. Then we present the workflow that has been
used to combine ASD with traditional approaches for developing software
components. Next the industrial case is introduced and we describe the ap-
plication of the presented workflow to this case. Two errors which were found
after completing the formal verification using ASD are presented. Finally
we discuss the results achieved and our main observations.

3.1 DMotivation for Applying ASD

The interventional X-ray system introduced in Section 1.5 is based on a component-
based architecture and therefore consists of a large number of hardware and soft-
ware components. An obsolete hardware component is replaced by a new com-
ponent. Analytic Software Design (ASD) [161] has been applied to model a new
software component that interfaces with the hardware component. ASD is a ho-
rizontal DSL, with a tabular notation, that can be used to describe the signature
and behaviour of data-independent control components. Instances of the ASD
language can be model checked [29, 60], with respect to a predefined set of checks.
From the language instances, source code is generated. In addition, visualiza-
tions can be generated. The ASD approach is supported by the commercial tool
ASD:Suite of the company Verum.

Our focus is on the embedding of the ASD approach in the industrial workflow.
As observed in [19, 172], there are quite a number of reports about industrial
case studies with formal methods, but very few publications describe second or
subsequent use. Similarly, the literature about the incorporation of formal methods
in the standard industrial development process is very limited. This limitation is
evident in [172] which reports about the use of formal methods in industry and its

19

3 Language for Creating New Components

references (over 70 publications) which report about the use of formal methods in
industry.

Osaiweran et al. [68, 67] describe an analysis of the first usage of the ASD ap-
proach at Philips. They show that it leads to the development of components with
fewer reported defects compared to components developed with more traditional
development approaches. Therefore, formal methods are gradually becoming more
credible in developing software within Philips. However, in the healthcare domain
this requires validated tools and the incorporation of these new techniques into
well-defined development and quality management processes. This requires an
answer to a number of questions such as:

Test and integration To what extent does the formal verification affect the
test and integration phase? Are certain tests no longer needed? Which tests are
still essential to guarantee the quality of components? Can formal interface models
be used to generate test cases?

Quality management Which artefacts have to be included in the version man-
agement system; do we need the models, the generated code, or also the version of
the tool? How does the approach fit into the existing quality management system
(e.g., concerning the required review procedures)?

Workflow How can formal techniques be tightly integrated with standard de-
velopment processes in industry? How to deal with changes; how flexible is the
approach?

Design What is the impact of the modelling and formal verification on the
project planning? Is more time needed during the design phase? Can the test
and integration phase be shortened?

3.2 Fundamentals of ASD

ASD is a component-based, model-driven approach that combines formal math-
ematical methods with industrial software development methods. The approach is
supported by the commercial tool ASD:Suite of the company Verum. The tool sup-
ports two types of models which are both based on state machines and described
by a similar tabular notation: interface models and design models.

e The interface models are used to define the interaction protocol between
important system components in a formal way. An interface model describes
not only signatures of methods to be invoked by other components but also
the external behavior exposed to client components. Internal interactions
with used components are not present in this model.

e The design model describes the internal behavior of a component given its
interface model and typically uses the interface models of other components.
By means of the ASD:Suite it can be verified formally whether the design
model refines the interface model. Very important in our industrial context

20

3.2 Fundamentals of ASD

is that ASD:Suite supports complete code generation from design models to
a number of programming languages (C, C++, C#, Java). Hence, design
models provide a platform-independent description of internal component
behaviour.

ASD uses a Sequence-Based Specification Method [120] to obtain complete and
consistent specifications. This means that the response to all possible sequences of
input stimuli has to be defined. Sequences that cannot happen must be declared
illegal explicitly. The tool ASD:Suite translates the sequence-based specifications
into CSP. The FDR2 model checker [56] is used to verify a predefined fixed set of
properties such as refinement and absence of deadlock and livelock. Error traces
are visualized by means of sequence diagrams.

ASD:Suite hides the CSP and FDR2 details, which is important to enable in-
dustrial usage. To enable automated refinement checks, the use of design models
is restricted to components with data-independent control decisions. Components
that involve data manipulations or algorithms are implemented by other tech-
niques.

Scalability is addressed by the ASD interface model which defines a contract
between the ASD design models and the used components. ASD interface models
also enable compositional verification [74] in the sense that the formal verification
uses only the interfaces of the used components, without knowing their implement-
ation details.

3.2.1 ASD Interface Models

To illustrate the ASD approach we use a small camera example. We start with
an ASD interface model which represents the external behaviour of the server
(Camera). Clients can use this behaviour. There are two ways of communication
between client and server:

e Procedure calls from client to server, which are synchronous in the sense that
the client has to wait until the server is ready to accept the call. Next the
client is blocked until the server returns the call. Hence, all calls to a server
are serialized. There are two types of calls:

— Void calls, which return a void reply to signal the completion of the call

— Valued calls, which return a value upon completion

e Callbacks from server to client, which are asynchronous events that can be
sent by the server immediately. The client decouples a callback by putting
an event in the queue. Emptying the queue has priority over accepting new
synchronous calls. By default a queue of 5 elements deep is used during
model checking, but it is possible to change the number of elements of the
queue.

To model an interface, e.g., to trigger callbacks, an interface model may also
contain:

e Internal modelling events, which can be used in interface models to model
that an event can happen without an external trigger. Then the trigger is

21

3 Language for Creating New Components

the modelling event. Modelling events can be optional (meaning that they
may happen) or inevitable (meaning that they will happen eventually).

For the camera example we have the following signature, i.e., sets of calls, callbacks,
and modelling events:

e APICamera is the name of a grouped set of calls and contains three calls:

— PowerOn(): valued, with two possible return values: OnOK, OnFailed

— PowerOff(): void

— Click([in]exposureTime:int): void, Click has an input argument expos-
ureTime of type int

e CBCamera is the name of a grouped set of callbacks and contains four call-
backs:

— CBPicture([in]photo:image), CBPicture has an input argument photo
of type image

CBOn()

CBEmptyBattery()

— CBOnFailed()

e INTCamera is the name of a grouped set of modelling events and contains
four internal modelling events to trigger the four callbacks above:
— PictureMade, which is inevitable
— SwitchedOn, which is inevitable

SwitchedOnFailed, which is inevitable

BatteryEmpty, which is optional

An interface model is represented as a state machine which defines the behaviour
between client and server. Such an ASD interface model plays a similar role as
a protocol state machine of UML [23]. An ASD interface not only describes the
services offered by the server; it also specifies the calls allowed by the client. So
it can be seen as a contract between client and server, similar to the Design by
Contract approach [100].

In the Camera example, the ASD interface is shown in Figure 3.1. There are
four states: Off, SwitchingOn, On, and TakingPicture. In each state the actions
for all possible events are defined. The "+" behind the name of an event indicates
that it is a valued call. The tool ASD:Suite generates for each reachable state a
so-called canonical sequence which is a minimal sequence of input stimuli leading
to the state from the initial state (which is always the first state mentioned). This
canonical sequence is written behind the name of each state. Observe that the
state machine is non-deterministic; in state Off there are two possible responses
to the valued call PowerOn.

In state Off the calls PowerOff and Click are declared to be Illegal which means
that the client should not call these functions in this state. If the client makes an

22

3.2 Fundamentals of ASD

Tllegal call, the program will raise an exception and exit. The modelling events
are Disabled in state Off. The use of these internal modelling events is illustrated
by state SwitchingOn; when modelling event SwitchedOn or SwitchedOnFailed
occurs, the camera sends the corresponding callback to the client.

Note that the rules 2, 12, 21 and 30 are hidden; they can be used for invariants
which are not discussed in this chapter. Figure 3.2 shows a visual representation of
the state machine of this interface, which is generated automatically by ASD:Suite
from the table of Figure 3.1.

Interface | Ewent | Guard | Actions I State Wariable Updates | Target State
1 |OFf <=
3 |APICamera |PowerOn+ APICameta, Onok Switchingon
4 |APICamera |Powercn+ APICamera, OnFailed Off
5 |APICamera |PowerOff Tlegal -
& [APICamera |Click{exposureTime) Tlleqgal -
7 |INTCamera |PicutureMade Disabled -
g [IMNTCamera |SwitchedOn Disabled -
9 |INTCamera |SwitchedonFailed Disabled -
10 |INTCarmera |BakteryErmphy Disahled -
11 |switchingOn <APICamera.PowerOn+ >
13 |APICamera |PowerOnd Tllegal -
14 |APICamera |PowerOff APICamnera voidReply ff
15 |APICamera |Click{exposureTime) Tlegal -
16 |INTCamera |PicutureMade Disabled -
17 |INTCamera |SwitchedOn CBCamera, CBON on
18 |INTCamera |SwikchedOnFailed CBCamera, CBONFailed OFf
19 [INTCamera | BatteryEmphy CBCamera. CBEmpkyBattery ff
20 |On <APICamera.PowerOn+, INTCamera.SwitchedOn >
22 |APICamera |Poweron+ Tlleqgal -
23 |APICamera |PowerCff APICamera, WoidRephy ali
24 |APICamera |ClickiexposureTime) APICamnera voidReply TakingPickure
25 |INTCamera |PicubureMade Disabled -
26 [INTCamera |SwitchedOn Disabled -
27 [INTCamera | SwitchedOnFailed Disabled -
28 |IMTCamera |BatteryEmply CBCamera, CBEmptvBattery ali
29 |TakingPicture <APICamera.PowerOn+, INTCamera.SwitchedOn, APICamera.Click{exposureTime) >
31 |APICamera |PowerCn+ Tlegal -
3z |APICamera |PowerOff APTCamera, WoidRephy ali
33 |APICamera |Click{exposureTime) Tlleqgal -
34 |INTCamera |PicutureMade CBCamera, CBPickuredphota) o
35 [INTCamera |SwitchedOn Disabled -
36 [INTCamera |SwitchedOnFailed Disabled -
37 |IMNTCamera |BatteryEmply CBCamera, CBEmptvBattery ali

Figure 3.1: ICamera: Interface Model of the Camera Component

To design the camera component, two other components will be used: a battery
component and a shutter component. The interfaces of these components are

23

3 Language for Creating New Components

APICamera.PowerOn
/

APICamera.OnOK

INTCamera.BatteryEmpty
!

CBCamera.CBEmptyBattery

APICamera.PowerOff .
/ INTCamera.SwitchedOn
1

APlICamera.VoidReply c8c cBO
amera. n

INTCamera.SwitchedOnFailed
!

CBCamera.CBOnFailed APlICamera.PowerOff
!

APICamera.Click

APICamera.VoidReply !
- APICamera.VoidReply
n

INTCamera.BatteryEmpty
!

CBCamera.CBEmptyBattery

INTCamera.PicutureMade
!

APICamera.PowerOff
1 CBCamera.CBPicture

AP|Camera.VoidReply TakingPicture

INTCamera.BatteryEmpty
1

CBCamera.CBEmptyBatte

Figure 3.2: Graphical Representation of the Interface Model of the Camera

shown in Figure 3.3 and Figure 3.4, respectively, where illegal and disabled events
are hidden. Also these two interfaces are non-deterministic. Observe that the
battery interface uses a state variable EmptyDetected to describe the set of allowed
traces. Rule 16 of Figure 3.3 shows that a Charge call in state BatteryOn does
not lead to an externally visible action, but it updates variable EmptyDetected
if it is true. Hidden is the rule which expresses that the Charge call is illegal if
EmptyDetected equals false.

Inkerface | Ewent | Guard Actions Stake Variable Updates | Target State]

1 |BatteryOff <>

3 |APIBattery |BatteryCn APIEattery. VoidReply BiakkeryOn
S |APIBattery |CheckBattery+ APIBattery. Battery _OK BatteryOff
& |APIBattery |CheckBattery+ APIBattery, Battery _Emply BatteryOFf
g |INTBattery |Charge EmptyDetected==true (NoOp EmptyDetected=False |BatteryOff
9 |BatteryOn <APIBattery.BatteryDnZ>

12 |APIBattery |Batteryoff APIBattery. VoidReply BatkeryOff
13 |APIBattery |CheckBattery+ APIBattery, Battery_OK BatteryOn
14 |APIBattery |CheckBattery+ APIBattery, Bakbery_Emphy BakteryOn
15 |INTEattery |EmptyDetected |EmptyDetected==false |CEBBattery, CEBatteryEmpty [EmptyDetected=true |BatteryOff
16 |INTBattery |Charge EmptyDetected==true |NoOp EmpkyDetected=False |BatteryOn

Figure 3.3: [Battery: Interface Model of the Battery Component

These interfaces can be checked using the built-in model checker of ASD:Suite
which verifies a number of properties such as guard completeness, absence of state
invariant violations, absence of livelock (a livelock occurs when a component is
permanently busy with internal behaviour without any visible response to the
client), and absence of deadlock (a deadlock occurs when nothing can happen and
the component refuses all communication).

24

3.2 Fundamentals of ASD

Interface Ewent | Guard I Actions | State Wariable Updates I Target State]
1 |OFf <=
3 |APIShutkerr | SwitchOn+ APIShuktert QnCK an
4 |aPIShutterr | SwitchOn+ APIShuttert. OnFailed Off
g |0On <APIShutterr.SwitchOn+>
11 |APIShutterr |SwitchOff APIShutterr, vioidReply COff
12 |APIShutterr | ClickfexposureTime) APIShutterr, voidReply TakingPickure
14 |TakingPicture <APIShutterr.SwitchOn+, APIShutterr.Click{exposureTime)>
17 |APIShutterr | SwitchOFf APIShutterr, vioidReply [oli
19 [INTShutter | PicutureMade CEBShutter. CBRickure(phata) on

Figure 3.4: IShutter: Interface Model of the Shutter Component

3.2.2 ASD Design Models and Model Checking

To implement components, the ASD approach uses so-called design models. Design
models are tables similar to interface models with a few differences. A design
model must be deterministic and it has a number of associated interface models:
an implemented interface model and a number of used interface models.

The model checker of ASD:Suite can be used to check conformance with the
implemented interface and consistency with the used interfaces. Complete execut-
able code can be generated from the design model, where a choice can be made
between a number of programming languages (currently C, C++, C#, and Java).
Next the camera example is used to explain the ASD design models and the model
checker.

ASD Design Models

The design of the camera component is depicted in Figure 3.5, where ovals repres-
ent ASD interface models and the rectangle denotes an ASD design model. The
up arrow denotes that the design model refines the interface model of Figure 3.1,
as will be explained later in this section. The design uses the interfaces IBattery
of the battery (Figure 3.3) and IShutter of the shutter (Figure 3.4).

implemented interface
t refines

| | DCamera |

BatteryOn(): void
BatteryOff(): void
CheckBattery: valued

SwitchOn(): valued
SwitchOff(): void
Click([in]exposureTime:int): void

~
used interfaces CBPicture([in]photo:imagé)s

~Ihutter >

Figure 3.5: Design of the Camera Component

Figure 3.6 shows the ASD design model for the camera example, hiding illegal
and disabled events. Similar to the interface model, the table must be complete
in the sense that for all events an action must be defined (which might be Illegal
or Disabled). The events now include callbacks of the used interfaces, such as

25

3 Language for Creating New Components

the callbacks CBBatteryEmpty from the battery and CBPicture from the shutter.
Similarly, the actions may contain calls to used interfaces. For instance, in state Off
rule 3 expresses that, as a response to the PowerOn call, the function CheckBattery
of the battery is called. As indicated by the "+" behind the name, this is a valued
call and in state CheckingBattery the component is waiting for a response. In
such a so-called blocking state, all other events are blocked.

Interface | Event I Guard I Actions I State Yariable Updatesl Target: State |
1 |OFf <=
3 |APICamera PowerCn+ Biattery: APIBattery. CheckBattery+ CheckingBattery
g |Battery:CEBattery |CEBatteryEmpty ZEBCamera, CBEmptyBattery Off
12 |CheckingBattery <APICamera.PowerOn+ >
17 |Battery: APIBattery |Batkery _Emphy APICamera, OnFailed Off

APTCamera. Dnok;

18 |Battery: &PIBatkery |Battery _OK Battery: APIBattery.Battery On; SwitchingOn

Shutter: APIShutterr, SwitchOn+

23 |SwitchingOn <APICamera.PowerOn+, Battery:APIBattery.Battery _OK==
31 |shutter APIShutters Onok CBCamera,CBOn an
32 |shutter: APIShutterd OnFailed CBCamera, CBOnFailed OFf
34 |On <APICamera.PowerOn-+, Battery:APIBattery.Battery OK, Shutter:APIShutterr.On0OK =

Battery: APIBattery.Battery OFF;
37 |APICamera PowerOff Shutter: APIShutterr, Switchff; OFf
APICamera. voidRepl

Shutter: APTShutterr, Click{exposureTime);
APICamera. voidRepl

4] |Battery:CEBattery |CEBatteryEmply CBCamera.CBEmptyBattery OFf
45 |TakingPicture <APICamera.PowerOn+, Battery:APIBattery.Battery DK, Shutter:APIShutterr.OnOK, APICamera.Cli
Battery: APIBattery. Battery OFF;

e

38 |APICamera Click{exposureTime) TakingPRicture

e

43 |APICamers PowerOFF Shutter: APTShutkerr, Switchoff; i
APICamera. voidRepl

Sz |Battery:CEBattery |CEBatteryEmply CBCamera, CBEmptyBattery Off

g5 |shutter:CEshutter |CEPicturephoto) CBCamera.CBPictureiphoto) on

Figure 3.6: DCamera: Design Model of the Camera Component

The design model assumes that CBPicture only occurs in state TakingPicture;
in all other states the callback is illegal or blocked. The correctness of this as-
sumption is verified by the model checker using the interface specification of the
shutter. CBPicture is a so-called solicited callback, because it is received as a
response to the Click call to the shutter. On the other hand, CBBatteryEmpty
can be received in any non-blocking state and is called an unsolicited callback.

In an ASD design model it is not possible to make control decisions based
on parameters of function calls. For instance, in the camera example it is not
possible to make a case distinction on the exposureTime parameter of the Click
call. If control would depend on the value of such a parameter, it has to be sent
to a so-called foreign component, which is not implemented using ASD. Such a
foreign component can analyse the value and return different values or callbacks
to indicate the required control.

The semantics of a design model is such that callbacks from used components
can always be received and they are put into a so-called callback queue (FIFO).
Client calls are serialized, that is, at any point in time at most one client call
is executed. Callbacks have priority over client calls. Initially, and after the
completion of a rule case, first the callback queue is inspected. If this queue is
not empty, the rule case corresponding to the first callback is executed. When

26

3.2 Fundamentals of ASD

the callback queue is empty and no call is being processed, a new call may be
accepted. An illegal call or callback leads to a halt of the component.

Compositional Model Checking

The tool ASD:Suite contains a fixed number of checks on design models. Figure 3.7
shows a screenshot of part of the tool with a Verify window. Verification includes

[l Models(4) | |) | |
! Camera + Used Services Tags
B Camera = e e
(=) Main Machine :
| Bt Camera SES I States | State Variables |
[States
- Stake Variables |OFF
Sub Machines
t1- Used Services Inkerface | Event | Guard |
- Tags
1 |OFf <=
[[ICameralRead onlky)
- (& IBattery(Read only) 3 |APICamera Poweron+ Batte
[#- [IShutker{Read only) g |Battery:CEBattery |CBBatteryEmplby CBCal

1z |CheckingBattery <APICamera.PowerOn+

| S verify x| 17 [Battery:ARIBattery |Battery_Empty APIC:

werify the Following correctness properties: APTCE

158 |Battery:APIBattery |Battery Ok Eatker

[l] Checks (number of exarnples limited to 10) Shuth

=] e ICamera 73 |SwitchingOn <APICamera.PowerOn+, Battery:f
Madelling Error check

Livelock check 31 |Shutter: APIShutters OnoK CBCal
Deadlock check. 32 |shutter: APTShutter OnFailed CBCan
= (] [IBattery

Madelling Error check

34 |0On <APICamera.PowerOn+, Battery:APIBatter

Livelock check Eatter

2 & [&) 15hutker 37 [APICamera PaverCff Shutt

; Modelling Error check APICE

‘ Livelock check - - Shutk

38 |APICamera Click{exposureTime)

=[] &) Camera APICE

Determiniskic check 41 |Baktery:CBBattery |CEBBEatteryEmpty CBCal
Modelling Error check

45 |TakingPicture <APICamera.PowerOn+, Battery

Deadlock check.

Interface Compliance check Batter
Livelack check, 43 |APICamera PowerQFf Shuth

APIC:
Sektings | Ok I Cancel 52 |Battery:CBEBattery |CBBatteryEmpty CBCal
55 |Shutter: CEShutter |CEPicture(phota) CBCal

Figure 3.7: Screenshot ASD:Suite with Verify Window

the previously discussed checks on all interfaces, i.e., implemented and used inter-
faces. In addition there are specific checks for design models, such as a check to
ensure that the design model is deterministic. Most important is a check on the
consistency of all interfaces. The design should adhere to all interface models of
used components and it should conform to the implemented interface. Conform-
ance has been defined formally in the failures-divergence model of CSP [123] and
is checked with the underlying FDR2 model checker [56]. Note that FDR2, which
is an abbreviation of Failures/Divergence Refinement 2, is in fact a refinement
checker.

In the camera example, verification revealed quite a number of problems in the
models presented above. A few errors found by the model checker:

27

3 Language for Creating New Components

e In used interface IBattery it is possible to get a BatteryOff call in state
BatteryOff; this is a race condition between a PowerOff call and a callback
CBBatteryEmpty send by the battery components. Note that the callback
is put into the callback queue of the camera component while the Battery-
Off call is processed. This problem is corrected by improving the battery
interface as shown in Figure 3.8 where rule 4 now allows a BatteryOff call.

e The model checker complained about an attempt to switch the shutter on
when it was already on, which is not allowed by the interface of the shutter as
specified in Fig 3.4. Analysing this situation, it turned out that in the design
model it was forgotten to switch the shutter off when a CBBatteryEmpty
has been received (rules 41 and 52 in Figure 3.6).

Interface | Event | Guard | Actions | State Variable Llpdatesl Target State

1 |BatteryOFf <=

3 |aPIEattery |BatteryOn APIBattery.VoidReply EatteryOn
5 |APIBattery |CheckBatkery+ APIBatkery.Battery_Ok BatteryOff
6 |APIBattery |CheckBatkery+ APIBattery.Battery_Emply BatteryQff
8 |INTEattery |Charge EmplyDetected==trus |NoOp EmptyDetected=False | BatkeryQff
9 |BatteryOn < APIBattery.BatteryOn-

12 | APIBattery |BatteryOff AFIBatkery, voidReply BatteryQFf
13 |APIBatkery |CheckBattery+ APIBattery.Batkery_OK BatteryOn
14 | AFIBattery | CheckBattery+ APIBatkery Battery_Emply BakteryCn
15 |INTEattery |EmptyDetected | EmphyDetected==False (CBBattery, CBBatkeryEmpty | EmptyDetected=true | BatteryOFF
16 |INTBatkery | Charge EmplyDetected==trus [MoOp EmptyDetected=False |BatteryCn

Figure 3.8: Improved Battery Interface IBattery

e Similarly, it was forgotten to switch the battery off when an attempt to
switch the shutter on fails (rule 32 in Figure 3.6).

e As another race condition, the model checker shows that a callback CBPic-
ture might be received in state Off, namely after a CBBatteryEmpty in state
TakingPicture. This has been repaired by adding a rule case in the design
to receive the callback, but not forwarding it to the client.

ASD:Suite has a nice visualization of error traces, which makes it easy to find
the cause of an error. Figure 3.9 shows the visualization of the last problem
mentioned above. It shows the lifeline of the Camera component, with a client,
the callback queue (called DPC+Q), its used components Battery and Shutter,
and an environment which triggers modelling events in the used interfaces.

The corrected design model for the camera is shown in Figure 3.10, with changes
in rules 11, 32, 41, and 52.

Observe that the verification is compositional since it uses only the interfaces
of the used components. Hence, the used components can be developed independ-
ently according to their interface. Also note that there is no obligation to develop
these components with ASD. Typically, components that involve data manipula-
tions will be implemented differently and conformance to their ASD interface is
checked by means of testing. To support manually implemented components, the
ASD:Suite can generate a dummy implementation of which only the body of the
calls need to be filled in manually.

28

3.3 Integrating ASD in Industrial Workflow

Internal
o Cdlient & camera L) DPC+D & Battery | Shutter Ervironment

L 8t APIShutterrOnOK

10: INTE attery EmptyDetected

9 CECamera CHOn

11: CBEaltery CBBatteryEmphy,

12: APICamera Click

13 APIShutterrClick

14: APIShutterrYoidReply

158 APTCamera YoidReply

16: Battery:CBBattery CBBatteryEmply

171 CBCamera CBEmptyBattery,

18 IM _EutterPicutureMade

19: CEShutterCBPicture

_ZID: ?I-qutte (CEShutter CBPickure:
.

Ilegal-la ction performed

Figure 3.9: Visualization of an Error Trace

Finally, observe that the components have a strict communication pattern;
a client of a component can only perform synchronous calls and might receive
asynchronous callbacks from the component. Similarly, the component itself will
only perform synchronous calls on its used components and receive callbacks from
them. In this way the absence of deadlocks in communication between components
is achieved by construction. Note that a deadlock in a design model, e.g. because
it has a terminal state, is detected by the model checker.

3.3 Integrating ASD in Industrial Workflow

The development process of software, used in projects within the context of Philips,
is an evolutionary iterative process. That is, the entire software product is de-
veloped through accumulative increments, each of which requires regular review

29

3 Language for Creating New Components

Interface | Event | Guard | Actions |ariabIeU| Targek State

1 |OFF <=

3 |APICamera PowerOn+ Batkery: APIBattery, ChackBattery+ CheckingBattary

g |Battery:CEBattery |CBEatteryEmply ZBCamera, CBEmptyEatkery COFF

11 |Shutker:CBShutter | CBPickure(photo) MoCp CQFf

1z |CheckingBattery <APICamera.PowerOn+>=

17 |Battery:APIBattery |Battery Emply APTCamera, OnFailed CFf
ARICamera, onok;

18 |Bakkery APTEattery |Batbery OF EBatkery: APIBattery, BatteryCn; SwitchingOn
Shutter : APTShukkerr, Switchion+

23 |SwitchingOn <APICamera.PowerOn+, Battery:APIBattery.Battery 0K

31 |Shutter: APIShutkerr| QRO CBCamera CBOn on

32 |shutter:APTShutterr | OnFailed gg&::“e:;‘aﬁga?gat';:&er off off

34 |0On <APICamera.PowerOn+, Battery:APIBattery.Battery_OK, Shutter:APIShutterr.OnOK =
Battery:APIBattery. BatteryOFf;

37 |APICamera PowerOff Shutter:PIShutkerr, SwitchoFF; OFf
APICamera, voidR.epl

38 |APICamera Clicks exzposureTime) il;;lét:;ﬁilil;:.clltpt;giCIick(exposureTime); TakingPicture

41 |Battery:CBBattery |CBBatteryEmpty EEL(E;B:rn%éii?tiﬁfsiﬁ:tiﬁéff COFF

45 |TakingPicture <APICamera.PowerOn+, Battery:APIBattery.Battery_OK, Shutter:APIShutterr.On0OK, APICa
Battery: APIEattery. BatteryOFf;

43 |APICamera PawerJFF Shutter; APIShukkerr, Switchioff; Cff
APICamera. voidRepl

52 |Battery:CBBattery |CBBatteryEmpty gﬁft?;nre:rn%éii?tﬁi%iﬁ?tiﬁéff COFF

55 |ShutkeriCBShutter |CEPicture{phato) CBCarmera, CBPickure{phata) on

Figure 3.10: Correct Design Model for the Camera

and acceptance meetings by several stakeholders. When creating components with
ASD, not all code can be generated. Hence, an application will always contain
foreign components. For the manually crafted code we take the test-driven de-
velopment (TDD) [14] approach. Figure 3.11 outlines the flow of activities in a
development increment, highlighting the steps to incorporate both the ASD and

TDD approaches.

specification . verification

Behavioral Code

Specification |
generation

review

Code

> integration

y

Requirements Incremental Scyftwart;+ ASD
planning design
b T [N \p—— p——
TDD N

Test

t » Test +code
execution

» Manual »

|
Module End of

increment

coding review

testing

Figure 3.11: Steps Performed in a Development Increment

Each increment starts with identifying a list of requirements to be implemented
by team members. As soon as requirements are approved by lead architects, the
development team is required to provide work breakdown estimations that include,
for instance, required functionalities to be implemented, necessary time, potential

risks, and efforts.

30

3.3 Integrating ASD in Industrial Workflow

For planning and tracking a Work Breakdown Structure (WBS) is created. A
WBS consists of tasks that need to be completed in a certain order to obtain
a finished product. At the beginning of each increment a new WBS for that
increment is created. For each task, the time needed to complete the task is
estimated with the Wideband Delphi estimation method [144]; this means that
the effort needed for every task is estimated by two or more experienced software
designers in the first phase. In the second phase, software designers need to get
consensus on the estimate. The outcome of the estimate is then used in the
planning. Not all tasks of the WBS are estimated; some are derived from historical
data. Examples are overhead and average time needed to solve a defect.

Team and project leaders take these work breakdown estimations as an input
for preparing an incremental plan, which includes the list of functions to be imple-
mented in a chronological order, tightly scheduled with strict deadlines to realize
each of them. The plan is used as a reference during a weekly progress meeting
for monitoring the development progress.

The construction of software components starts with an accepted design, i.e.,
a decomposition into components with clear interfaces and well-defined responsib-
ilities. Usually such a design is the result of iterative design sessions and approved
by all team members.

When the aim is to use ASD, a common design practice at Philips is to organize
components in a hierarchical control structure. Typically, there is a main compon-
ent on the top which is responsible for high-level, abstract behaviour, e.g., dealing
with the main modes and the transitions between these modes. More detailed be-
haviour is delegated to lower-level components which deal with a particular mode
or part of the functionality.

The control components that include state machines are then developed using
ASD, whereas TDD is used for the other type of components such as those used
for data processing since ASD may not be very suitable for developing components
responsible for data computations or manipulations.

The ASD and the TDD approaches are explained below, describing the well-
known TDD approach only briefly.

3.3.1 The TDD Approach

The TDD approach starts each increment with the definition of a set of test cases.
To validate the test set, it is checked whether all tests fail on an empty imple-
mentation. Next the components are developed iteratively, gradually increasing
the set of passed test cases. When all tests succeed, the code of the components is
reviewed by the team before it is integrated with the code generated by the ASD
approach.

3.3.2 The ASD Approach

An overview of the activities in the ASD approach we followed is depicted in

Figure 3.12. Starting point is a structure of the components as described above.
ASD components can be developed in a top-down, bottom-up or middle-out

fashion. Each component is developed using ASD according to the steps 1 through

31

3 Language for Creating New Components

Design ASD specification Behavioral verification Review + code
generation
1. 2. 3. 4. 5. 6.
) Specify Specify : Verify design Check whether Generate and
Start with a interface interface Describe plus used models of step integrate code.
given M —>| models of used — component > interface models |»| 2,3 refinethe | Start
structure of focelold components behavior in a is deadlock, interface model developing a
components comn::\rlment on the design model livelock, and constructed in new
boundary illegal free step 1 component
E N S S L Al L 20— vl ¥

Figure 3.12: The ASD Approach to Develop Components

6 of Figure 3.12:

1. Specification of externally visible behaviour. At first, an ASD interface model
of the component being developed is created. This interface model might already
exist if the component is used by a component that has been developed already,
as explained in the next step.

2. Specification of external behaviour of used components. Similarly, ASD
interface models are constructed to formalize the external behaviour of components
that are used by the component under development.

3. Model component design. An ASD design model of the component is created;
it describes the complete behaviour of the component, including calls to used
interface models (as created in step 2) to realize proper responses to client calls.

4. Formal verification of the design model. Using the FDR2 model checker
controlled by the ASD:Suite tool, the design model is exhaustively checked on
the absence of deadlocks, livelocks, and illegal interactions with the used interface
models. When an error is detected by FDR2, ASD:Suite presents a nice sequence
diagram and allows users to trace the source of the error in the models.

5. Formal refinement check. ASD:Suite is used to check whether the design
model created in step 4 is a correct refinement of the interface model of step 1.
As in the previous steps, errors are visualized and related to the models to allow
easy debugging.

6. Code generation and integration. After all formal verification checks are
successfully accomplished, source code can be generated from the model.

3.4 Context of the PCS

Interventional X-ray systems have been introduced in Section 1.5. As can be seen
in Figure 1.3 of Section 1.5, each PC includes a Power Control Service (PCS) which
is used for exchanging power-related communication commands between running
applications within a PC and the Power Distribution Unit (PDU) through an
internal Ethernet control network. A typical scenario is powering off the system;
the user presses the off button on the User Interface Module (UIM), PDU then
sends a message instructing all PCSs to gradually shut-down first the running
applications and next the operating systems (OS), in an orderly fashion.

Figure 3.13 sketches the PCS in a PC as a black-box, surrounded by a number
of internal and external concurrent components, located inside and outside the
PC. For instance, the PDU interacts with the PCS to reboot or shut-down the

32

3.4 Context of the PCS

PC. Moreover, the PCS can also send events to the PDU to enable or disable a
number of buttons on the UIM.

1] S|
POU Applications InstallApplication
@, & O O
IPdu App_vl1.0 App_vl.l InstallApp

A

Power Control Service

e— 1 1
Logon POy Appl icaﬁm‘\
B, i (G &
ILogon IPdy’ App_vl1.0' App_vl.l'

Figure 3.13: The PCS as a Black-Boz Surrounded by Concurrent Components

Another example of a concurrent component is the InstallApplication which is
an external component used to install and upgrade software on the PC. During
the installation of software on a PC, the PCS instructs the running applications
to stop, start or restart.

The main function of the PCS is to coordinate all requests to and from these
concurrent components. Due to the concurrent execution, controlling the flow of
events among the components is rather complex, and the architecture sketched in
Figure 3.13 is prone to deadlocks, livelocks, race conditions and illegal interactions.
Since the PCS is deployed on every PC, any error is replicated on every PC and
potentially leads to serious problems for the entire system.

Moreover, the PCS may lose connection with other applications at any time
due to a failure of one of these applications or with the PDU (e.g., due to a network
outage). The PCS has to be robust against such failures, especially when the PCS
is in the middle of executing a particular scenario. When the PCS detects that
the system is in a faulty state, it should take appropriate actions and log the
events for further diagnostics by the field service engineer. As soon as the cause
of malfunctions has disappeared, the PCS ensures that all its internal components
are synchronized back with other external components to a predefined state.

Due to the complex behaviour of the PCS and the many possible regular and
exceptional execution scenarios that need to be considered carefully, the ASD
technology has been used to develop the control part of the service, and to specify
the external behaviour of the components on the boundary of the PCS. The TDD
approach has been applied to develop the non-control part of the service and the
components on the boundary of the PCS.

33

3 Language for Creating New Components

3.5 Steps of Developing the PCS

In this section we report about the component-based development of the PCS by
one developer working full-time on the project from October 2010 till October 2011.
The development process contained five increments, each implementing part of the
PCS functionality. The ASD-based development of control components and the
development of other components using TDD has been carried out in parallel, as
depicted in Figure 3.11. Below we describe the development process in more detail,
concentrating on the ASD part, since the TDD approach is more conventional.

Requirements and incremental planning The development process was star-
ted by identifying the scope and the requirements of the PCS. At early stages of
development it was difficult to reach agreement with all stakeholders, since they
had different wishes concerning the required functionality. The process of getting
consensus took up to two-thirds of the total time. During this negotiation phase,
requirements and design documents were iteratively written and reviewed by team
members to reflect the current view of the solution and as input for further dis-
cussions.

Hence, the development process initially took place in a context where scope
and requirements were very uncertain and changed frequently - even within a single
increment. Additionally, the features required to be implemented in every incre-
ment were only known at a very abstract level, such as: “In increment 2 automatic
logon of the default user of a PC has to be implemented". The requirements of
each increment were only acquired just at the beginning of the increment, which
put more pressure on meeting the strict deadlines.

Software design The design of the PCS consists of a hierarchy of components,
as depicted in Figure 3.14. In this decomposition, ASD components are depicted
in a gray colour, whereas light coloured components have been developed using
TDD. Not shown in the picture are commonly used components such as tracing (to
facilitate in-house diagnostics by developers) and logging (to facilitate diagnostic
by field service engineers in the field).

The decomposition of PCS components was accomplished top-down in steps,
such that each lower level comprises components with more detailed behaviour.
Below we describe each ASD component individually, sketching briefly their related
responsibilities.

e The PduFEventController component mainly serves commands issued by the
external components: the PDU and the InstallApplication, for instance. It
contains a top-level state machine that captures overall global states (or
modes) of a PC: normal mode, installing, starting/stopping applications,
operational, et cetera.

e The InstallTransitioning component implements the detailed behaviour of
the installation mode of the top-level state machine. The component is
responsible of safeguarding the detailed transitions from normal mode to
installation mode, and vice versa.

34

3.5 Steps of Developing the PCS

o
ILogonInt

PDU Applications InstallApplication
Q

IPdu App_v1.0 App_v1.1 InstallApp
[
\ 1| | \

Power Control Service I / [
E NetworkProtocol E Fsa_v1.0 ‘ E Fsa_vl.1 ‘ P Installation
)

©

IPduEvents _ IFsa_v1.0

IStarting

/ ‘I e

IFO

IF1 IF2

|

&

=2 DduEventsControl ler

&

IFO IF1 IF2

g Filter_v1.0 ‘

O
TPdulnt

g Filter,vl.l ‘

IBridge_v1.0Int

IFsa_v1.1

&

IInstall

ITransitioning

T Install Transitioning
)

I0sActions

©
IStartStop
y

s

L OsActions
]

Startstdplnstall

7 StartStoplInstall
)

©
IBridge_v1.1Int

I
g Logon

| | t
g NetworkProtocolSend g Bridge_v1.0 ‘ g Bridge_v1.1 ‘
I [I I
=i —1] |
LOQ(%” D%‘ 6 Applications' (B
ILogon IPdu’ App_v1.0' App_v1.1'

Figure 3.14: Components of the PCS

e The Starting component launches the clinical applications of a PC and logs-
on/off the default clinical user. It ensures that clinical applications are suc-
cessfully started.

e The Stopping component is responsible for ensuring that closing the running
applications and then shutting down or rebooting the OS is done sequentially.

e The Filter components are responsible for starting, restarting, and stopping
the applications within a predefined fixed time. They are the facade to the
components located outside the boundary of the PCS.

Experience shows that most novice ASD users tend to design rather large
components leading to large ASD models [126, 67], in terms of many hundreds
of rules. Although this might be acceptable in traditional development methods,
it leads to serious problems when using formal techniques such as ASD:Suite. In
fact, formal techniques such as ASD would show the consequences of poor designs
early during development while in conventional practices these consequences would
appear at later stages when the developed system becomes overly complex and
difficult to maintain. In general, the key issues encountered with large models
were as follows.

e Verifiability: while verifying large models one quickly runs into the main lim-
itation of model checking, namely the state-space explosion problem. Veri-

35

3 Language for Creating New Components

fication may take a large number of hours or might even be impossible for
large models.

e Maintainability: design models which contain a substantial number of input
stimuli and states are difficult to adapt or to extend. This leads to problems
when requirements change or functionality has to be added.

e Readability: large design models are hard to read and to understand. Design
reviews will consume a large amount of development time.

During the development of the PCS, the first point was the main concern.
Earlier experience showed that as soon as the state space explosion problem is
faced, the development process is blocked and components have to be refined
and redesigned from scratch. Since code generation is only allowed when the
formal verification checks succeed, this causes some visible deviations between
hours estimated in the WBS’s and actual hours spent for development.

Therefore, from the start we designed the PCS to be decomposed into rather
small components, described using small models. Although the ASD approach
shown in Figure 3.12 does not prescribe an order in which the components are
realized, we used a top-down, step-wise refinement approach. This effectively
helped us distributing responsibilities and maintaining a proper degree of abstrac-
tion among all components. In this way we obtained a set of formally verifiable
components.

Specification and formal verification of ASD models The ASD models
were specified using the ASD:Suite version 6.2.0, following the ASD approach.
Each component was modelled in isolation with interfaces of boundary compon-
ents. An example structure of ASD models related to the Stopping component is
depicted in Figure 3.15.

/ Used by upper
client components

Design model -~—
uses interfaces of = Combined model
used components - SO refines IStopping

7~

e N e N
/) \ / . \
| Filter_v1.0 | I ~Filter_v1i.1 |
I %IDD% | I |
I \ | |

Figure 3.15: Structure of ASD Models of the Stopping Component

The Figure depicts the interface model IStopping that describes the external
behaviour of the Stopping component excluding related lower-level interactions.
As shown in the figure, the interface is refined by a design model and a number of
interface models that represents lower-level ASD and non-ASD components.

36

3.5 Steps of Developing the PCS

Upon the completion of their specification, the interface and design models
were verified also in isolation. The formal verification was performed on a remote
server located at the company Verum.

The ASD formal properties introduced in Section 3.2.2 were performed step
by step for the models of each component. We first started checking correctness
of interface models. When this check succeeded, we searched for illegal scenarios
and then for deadlocks in the design model. After that we checked determinism
and finally refinement of designs against the interfaces.

Note that although we followed this order, the entire verification process is
rather iterative. That is, when a property fails and certain changes to the models
are required, we re-check all previously succeeded properties.

Usually, this reveals quite a number of errors, both in design and interface
models, e.g. illegal interactions. Since changes in interface models affect other
boundary components this sometimes leads to a chain of changes. However, since
our components are kept small, it is easy and fast (usually less than a second) to
re-check these other components.

Specification review, code generation and integration Although the formal
verification is very useful to detect errors, it does not guarantee that the design
model realizes the intended behaviour. For instance, the correct relation between
client calls and calls to used components is not checked. Also the value of paramet-
ers is not verified. Hence, when all formal checks succeed, the ASD models were
reviewed by the project team. The review process performed for the ASD models
was similar to the review process of any normal source code developed manually.
After the team review, including corrections and a re-check of the formal verifica-
tion, C# source code was generated automatically using ASD:Suite. This code is
then integrated with the manually coded components.

Testing At the end of each increment the ASD generated code plus the manually
coded components were exposed to black-box testing. Corresponding test cases
were specified and implemented before and in parallel to the implementation of
the increment. As a result of the black-box testing, a total of three errors were
found, two of which were related to ASD components and one to the manually
coded components. Note that the manually coded components are rather straight-
forward and less complex than the control part developed in ASD. The error in the
manually coded components was due to the existence of a null reference exception.
We detail ASD errors in the next section.

The entire PCS code was exposed to further testing on module level at the
end of all increments. After that, both manually written code and test code were
carefully reviewed by team members. As a result of review, minor issues were
identified and immediately resolved. Test cases were rerun in order to assure that
the rework after review did not break the intended behaviour of the service.

37

3 Language for Creating New Components

3.6 Errors Not Detected by the ASD Verification

As a result of the black-box testing, two errors were found in the ASD code
throughout all increments. We refer to the two errors as:

e the ordering error, since it concerns the ordering of messages of multiple
components, and

e the multi-client error, since it results from the interaction between multiple
clients.

As described earlier the model checker does not detect functional errors. Therefore,
we expected to find functional errors during black-box testing.

Below we explain the details of these errors, highlighting their sources and
potential solutions.

The ordering error This error was not found because of the impossibility to
specify and verify properties about the order of messages of two components in
ASD. In our project, this concerns the Stopping component and the Filter com-
ponents. Considering Figure 3.14, the Stopping component can receive a request to
shutdown the PC from the PduFEventsController component. The Stopping com-
ponent first instructs the Filter component to stop the running applications and
then waits for the result before it instructs the OsActions component to shutdown
the OS.

As specified in rule case 19 in Figure 3.16 of the Filter design model, the Filter
component starts its timer, instructs the clinical applications to stop, and transits
to the Stopping state waiting some seconds for a notification from the applications
indicating the completion of the stop request. Meanwhile, if the timer expires while
waiting for the notification, the Filter notifies the Stopping component using the
Stopped callback and then logs a “FinishedStoppingAfterTimeOut" message; see
rule case 28 in Figure 3.16.

When the Stopping component receives the notification from the Filter, it
instructs the OsActions component to shutdown the operating system and then
logs a “Shutdown" message indicating that the system is shutting down.

A test case was implemented which requires the log messages to be received in
a logical order. That is, the “FinishedStoppingAfterTimeOut" is received followed
by the “Shutdown" message. But the test case failed since it unexpectedly received
the messages in the reverse order.

The reason of this error was that when the timer expired, the Filter component
sent the Stopped callback to the queue of the Stopping component and then tries
to log the “FinishedStoppingAfterTimeOut" message. Since the queue runs in a
separate execution thread, the execution context was switched such that the Stop-
ping component quickly de-queued the callback, sent the shutdown request to the
OS and immediately logged the “Shutdown" message before the Filter component
logged the “FinishedStoppingAfterTimeOut" message; see the sequence diagram
of Figure 3.17.

This error was hard to reproduce due to its concurrent nature. Once the error
occurred, it was easy to find the cause by examining the logging produced by the

38

3.6 Errors Not Detected by the ASD Verification

Channel Stimulus event ‘Predirate ‘ Response |State update ‘ Next state |Corrment|

1 |Init<>

2 |PdsEvents_v1l Initialize PdsEvents_v11.NullRet; Stopped
Log:ILog. Initialize(suSdLogger)

3 |PdsEvents_v11 Restart PdsEvents_v11.NullRet Init

4 |Starting_v11l Start Starting_v11.NullRet Init

5 |Stopping_v11 Stop Stopping_v11.NullRet Init

6 |Pm_v11:IStar B_v11 |Fini ping Tllegal -

7 | Timer:ITimerCB Timeout Tllegal -

8 | Stopped<PdsEvents_v11.Initialize>

9 |PdsEvents_v11l Initialize PdsEvents_v11.NullRet Stopped

10 |PdsEvents_v11 Restart PdsEvents_v11.NullRet Stopped

11 |Starting_v11 Start Starting_v11.NullRet; StartedOrStarting
Pm_v11:IStatupShutdown_v11.Start

12 |Stopping_v11 Stop Stopping_v11.NullRet; Stopped
StoppingCB_v11.Stopped

13 |Pm_v11:IStar B v11 | Fini ing Log:ILog. Log($"FinishedStoppingAfterTimeOut"$) Stopped

14 | Timer:ITimerCB Timeout Tllegal -

15 | StartedOrStarting<PdsEvents_v11.Initialize, Starting_v11.Start>

16 | PdsEvents_v11 Initialize Illegal -

17 |PdsEvents_vi11 Restart PdsEvents_v11.NullRet; StartedOrStarting
Pm_v11:IStatupShutdown_v11.Restart

18 |Starting_v11 Start Starting_v11.NullRet StartedOrStarting

19 |Stopping_v11 Stop Stopping_v11.NullRet; Stopping
Timer:ITimer.CreateTimerMSec(< <waitForPM);
Pm_v11:IStatupShutdown_v11.Stop

20 Pm_v11:IStar B_v11 |Fini ing Illegal -

21 | Timer:ITimerCB Timeout Illegal -

22 | Stopping<PdsEvents_v11.Initialize, Starting_v11.Start, Stopping_v11.Stop>

23 |PdsEvents_v11 Initialize Tllegal -

24 |PdsEvents_v11 Restart Illegal -

25 |Starting_v11 Start Illegal -

26 | Stopping_v11 Stop Illegal -

27 |Pm_v11:IStar B v11 |Fini ping Timer:ITimer.CancelTimer; Stopped
StoppingCB_v11.Stopped

28 | Timer:ITimerCB Timeout Timer:ITimer.CancelTimer; Stopped
StoppingCB_v11.Stopped;
Log:ILog. Log($"FinishedStoppingAfterTimeOut"$)

Figure 3.16: Design Model of the Filter Component

Stopping ’ Filter ‘ Application ’ Timer ‘ ’ OSActions ’ os ‘ ’ Test ‘
—Shutdown=| : 1 1 ! ! !
e S : ! : :
| ———Start timer i i |
‘ ‘ i : : :
| 55 i it
l<=—Stopped—! Tlme ou } i i i
Context switched. Log 1 1 ! ! !
. | | |
message is blocked. | } | | |
| | I I
H hutdown j —Shutdown—=| 1
Log message “Shutdown™ T T =
! | |
I I

|
| t t (Unexpected. Test
! ! ! case asserts.

I

I

I

I

I

i I

' Context switched. ' ' !

| Filter continues. | | | | |
1 ——————-Log message “FinishedStoppingAfterTimeOut" ———— =
i i i

I I

Figure 3.17: Error Caused by Concurrent Execution of Events Due to Wrong Ordering

application. The scenario was not detected by the model checker due to the way
ASD performs compositional verification. That is, verification of the Filter design

39

3 Language for Creating New Components

model did not include the design of the Stopping design model.

Fixing the error was straightforward. We changed the order of responses in rule
case 28 of the Filter component such that the “FinishedStoppingAfterTimeOut"
message is logged before notifying the Stopping component.

Combined model of the PduEventsController that includes the
external behavior of linstallTransitioning and I1Stopping

——————————————

/ PduEventsController |

InstallTransitioning

Initializing the Stopping component
via this channel was not
considered by ASD verification

Stopping

Figure 3.18: Model Checker Could Not Detect the Error Due to a Hidden Dependency

The multi-client error Although the model checker of ASD:Suite verified the
absence of illegal events, testing showed an illegal event during the execution of
the PCS. Figure 3.18 depicts the structure of the three components involved in
the error: the PduFEventController, the Install Transitioning and the Stopping com-
ponents. The Stopping component was initially in the Created state, waiting to be
initialized by its client components. Upon receiving the initialize call, it initializes
other lower-level components and then transits to the Initialized state, where any
other initialize call is illegal. However, the Stopping component received the first
initialize call from the PduFEventController component, and then the second call
from the Install Transitioning component, causing the illegal error in the Initialized
state.

The reason of not detecting this error using model checking when verifying the
PduFEventController component is that the interface model of the InstallTrans-
itioning component exposes only the interaction with the client PduFventCon-
troller component, excluding any interaction with the Stopping component; see
Figure 3.18. More precisely, the initialize call from InstallTransitioning to the
Stopping component is excluded from the specification and formal verification,
causing a hidden dependency between the InstallTransitioning and Stopping com-
ponents not visible to the PduFEventController.

We have observed that the courses and the information Verum provides about
ASD:Suite only addresses the usage of the tool. This information does not describe
how to create suitable designs. The tool supports the generation of multi-threaded
components. These components allow the interaction with several clients. From
experience we know that it is common to have a diamond-like structure of compon-
ents. The reason is that on the top of an application their is a single interface to

40

3.7 Results of Developing the PCS

the client of the application and at the bottom of the application, the application
is a client for another application. Since we want to check the interface between
the application and another application that acts as a server to this application we
need to capture the interface to the server with a component. An example of this
is depicted in Figure 3.14; the PCS application interfaces with, e.g., App_v1.0
applications. The App_v1.0 applications act as a server for the PCS. In the body
of the application we need multiple small components between the two previously
described components on the boundary of the application that interface with other
applications. For this reason, at the bottom of the application we need multiple
components to be the client of the boundary component. In Figure 3.14 the Fil-
ter _v1.0 component plays this role. However, the underlying CSP/FDR2 model
checker does not test for this situation and only supports checking a tree-like struc-
ture of components. Hence, additional black-box testing is needed to catch errors
that might occur because of the deviation from the tree structure.

Similar to the first error, solving this issue was also straightforward. We ignored
any initialize request in the Initialized state instead of assigning illegal responses.
We manually searched for similar occurrences in other components and corrected
them similarly.

3.7 Results of Developing the PCS

Effective lines of code of BasixSW_BasIX-1_pre-int_TICS/uBasixSW/BasixSW/StartupShutdown/Src/

2,800 2,800

2,700 | 2,700

2,600 | 2,600

2,500 | 2,500

2300 { 2,300
2200 { 2,200
2,100 { 12,100

2,000 | 2,000

1,000 { 1,000
1.800 1.800
1,700 | 1,700

1,600 | 1,600

1,500 - - - 1,500

Figure 3.19: Evolution of the Manually Coded Components

Figure 3.19 depicts code evolution of the manually coded components, after
mining the code repository using TIOBE software [70]. The figure shows only
the effective lines of code (ELOC), i.e., all blank and comment lines are excluded
from calculations. The code was officially placed in the repository at the start of
May 2011, with approximately 1,600 ELOC of previously coded components. As

41

3 Language for Creating New Components

can be seen from the figure, the construction of the manually coded components
was smooth and gradually evolved throughout all increments. The figure also
indicates that there were no major redesign activities causing any removal of the
implemented code in any increment.

Similarly, Figure 3.20 depicts the evolution of test code. The reason of having
more testing code than product code is that the manually coded components were
developed under the control of the TDD technique. As mentioned earlier, the
TDD approach implies that test cases have to be written first, before the product
code.

Effective lines of code of BasixSW_BasIX-1_pre-int_TICS/uBasixSW/BasixSW/StartupShutdown/Test/

8,000 8,000

7.500 17,500

7.000 7.000

6,500 | 8,500

6,000 + 8,000

5,500 | 5,500

5,000 | 5,000

4,500 | 4.500

4,000 | 4,000

3,500 3,500

3,000 | 3,000

2,500 | 2,500

2,000 | 2,000

1,500 [1,500

1,000 1,000

| May Jun | Jul | Aug | Sep Oct

[crassTestst - ModulsTasts! -+ MPDUadapter! |

Figure 3.20: FEwolution of Test Code

Figure 3.21 sketches the evolution of the ASD generated code, highlighting
5 versions from 5 stable baselines at the end of each increment, taken from a
code management system, called IBM ClearCase [15]. We extracted such figures
manually since the ASD code did not comply to the coding standard enforced by
the TIOBE technology and hence was excluded from calculation by the technology
since the early phase of the development process. As can be seen from the figure,
the PCS appeared to already be stable since the start of increment 3. In previous
projects where ASD was used [67, 68], major redesigns were needed due to the
state space explosion problem. This did not happen in the PCS project since all
ASD components are kept small and fit within the limits of the model checker.

In Table 3.1 we provide statistical data of the final developed ASD components
after increment 5, listing all corresponding interface and design models. The first
and second column include all ASD interface and design models (IM and DM
respectively). The third column shows the number of rule cases of each model.
These rule cases have been reviewed thoroughly by team members. The fourth
and fifth column reveal the states and transitions reported from the model checker
FDR2 to check deadlock freedom (which holds for all models). For the other checks

42

3.7 Results of Developing the PCS

9000
8000
7000

6000 / ’_—./.

5000
/ == of LOC

4000
/' == # of ELOC

3000

2000

1000

0 T T T T)
1 2 3 4 5
Figure 3.21: FEwolution of ASD Code
Model Type Rule States Transitions LOC ELOC
cases

IPdsEventController M 102 55 139 112 58
PdsEventController DM 242 141 225 2891 2165
IPmFilter v10 M 33 17 29 37 28
IStarting M 10 3 4 36 13
IStopping M 24 9 16 117 41
IPmFilter v11 M 28 13 21 36 27
IPdsAdapter IM 12 3 6 21 12
IInstallTransitioning M 45 11 14 61 22
ILog M 8 3 4 35 12
InstallTransitioning IM 78 59 62 989 830
IStartStopInstall M 10 3 4 20 11
10sActions M 14 3 7 22 13
PmFilter _v10 DM 46 79 113 859 712
IPm_v10 M 25 9 13 50 19
ITimer M 14 5 9 26 17
PmFilter v11 DM 32 45 59 651 549
IPm_v11 M 18 7 8 26 17
Starting DM 12 12 13 435 379
ICpActions M 8 3 3 19 10
Stopping DM 78 51 58 1065 903
ASD runtime - - - - 803 701
Total 5D + 151 839 - - 8311 6539

Table 3.1: The ASD Models of the PCS

43

3 Language for Creating New Components

we obtained similar numbers.

Each interface model was verified separately, whereas every design model was
verified as a combined model that includes all interface models of used compon-
ents. The verification of all ASD models was conducted on a remote server at the
company Verum, the provider of ASD:Suite. All models were checked in less than
one second by FDR2, covering all possible execution scenarios. Compared to more
traditional testing this reduced both time and effort.

Last two columns present, the total number of generated lines of generated code
(LOC), in the C# language. The LOC column denotes the sum of all generated
source code lines, including blank and comment lines.

Table 3.2 depicts metrics related to all manually developed code. It includes
the sum of all total and executable lines of code written for the product and test
code.

Code LOC ELOC
Manual Code 8,915 3,828
Simulator Code 2,553 1,275

Class Test Code 15,180 7,437
Module Test Code 12,531 5,946

Table 3.2: Statistical Data of the PCS

The entire service includes 17,226 lines of ASD generated and manually written
code. It includes a total of 30,264 LOC of test code. The end quality result of
the PCS service is remarkable, as the entire service exhibited only 0.17 defect per
KLOC, according the definition of defect described in [62]. This level of quality
is much better than the industry standard defect rate of 1-25 defects per KLOC
[98].

Table 3.3 depicts the hours spent during each increment. The total hours spent
for developing the entire service is 1787, with average productivity of 5.8 effective
lines of code per hour.

Increment incl inc2 inc3 inc4 inch
Requirements Specification 13 64 1 15 8
Design Specification 18 96 4 4 40
TDD/ASD 101 167 67.5 103 88
Verification Specification 49.5 46.5 40.5 22.5 4
Verification Report 18.5 5 2
Test code 182.5 91 94 91.5 42
Simulator 55.5 18 16
Other 24.5 63.5 33 97.5
Total 438 512 270.5 271 295.5

Table 3.3: Hours Spent on the PCS

The PCS service was deployed on all PCs in the product, and further tested
by independent teams who are responsible of developing the clinical applications

44

3.8 Concluding Remarks

on each PC. The result of testing was that no errors were found and the service
appeared to function correctly on every PC, from the first run.

Feedback received from the independent test teams was very positive, and the
service seems to be stable and reliable. Team members of the PCS appreciated the
quality of the service, and decided to further incorporate the ASD technology to
the development of other parts of the system. The behavioural verification and the
firm specification and code reviews provided a suitable framework for increasing
the quality, assisting the work, and decreasing potential efforts devoted to bug
fixing at later stages of the project.

3.8 Concluding Remarks

We have described our experiences with the PCS case at Philips with a component-
based development method which is supported by the commercial formal tool
ASD:Suite. The proposed workflow also includes test-driven development. This
approach has been used for the development of a basic power control service. We
list our main observations and lessons learned.

Test and integration Concerning the code generated by ASD:Suite, TDD tests
can be safely discarded since all possible execution scenarios have been covered by
the model checker of this tool. However, it is important to test the combination of
ASD components and hand-written components. In the PCS project this revealed
a few errors.

Observations from other projects at Philips using more conventional approaches
shows that integrating concurrent components is usually a challenging task. It is
often the case that components work correctly on their own, but do not function
as expected when they are integrated with one another. Sometimes, errors are
profound in length, hard to analyse and often tough to reproduce due to the
concurrent nature of components.

Our experience with ASD differs from the observations mentioned above. Design
errors were detected by the model checker early and automatically before any single
line of code is being written or generated. The behavioural verification thoroughly
checked the correctness behaviour of components under all circumstances of use.
It was often the case that fixing an error caused other errors to emerge, which
were deeper in length and complexity than a previous one, but these design errors
were detected with the click of a button. Fixing these errors was done iteratively
until components became neat and free from all sources of errors. Since formal
verification of each ASD design model was done with the interface specification of
the boundary components, integrating the code of all ASD design models is often
quick and accomplished without errors.

Quality management While applying the proposed workflow, we observed a
few tensions with the current quality management system. The code generated
by ASD:Suite does not comply to the required coding standards provided by the
TIOBE technology. Moreover, the fact that ASD forces the designer to define
the response to all possible stimuli in all states leads to very robust code, but

45

3 Language for Creating New Components

it decreases the test coverage. In our case, it is acceptable for quality managers
to exclude ASD generated code from coverage metrics and coding standards. In
fact, the quality of the generated code turned out to be very good, since the PCS
components have been used frequently by several parts of the system without any
problem report.

In the version management system, ASD models and code are stored. Code
is used for a fast build process, independent of the ASD:Suite tool. The models
are used for maintenance and to include change requests. New versions of the
ASD:Suite tool accepts models from previous versions.

Workflow In the PCS project a lot of time was needed to clarify the require-
ments, since there were many stakeholders at different sites. We believe that in
such a situation the formal ASD interface models are very useful. Since ASD
requires complete interface models, requirements have to be complete and clear.
Discussions to clarify the requirements resulted into new and changed requirements
and certainly improved the quality of the requirements.

Moreover, after identifying parts of the system that are most likely rather
stable, these parts can already be implemented using ASD in parallel with ongoing
discussions about unclear requirements. If the design is based on a set of small
components this can be done, since adapting and extending small ASD models
has proven to be easy. When large models are being used, this could prove to
be cumbersome. Further, the definition of ASD interfaces enables concurrent
engineering of components.

As mentioned above, an important benefit of the proposed workflow is that the
test and integration phase becomes more predictable.

Design The use of ASD has a clear impact on the design and the definition
of components. Because formal verification and code generation with ASD is
only possible for control components, the design should make a clear separation
between data and control. Control components are generated using ASD:Suite
whereas test-driven development is used for the data components. Especially for
designers used to object-oriented design this requires a paradigm shift.

Another important aspect is that large ASD components should be broken
down into smaller components to enable efficient model checking; as a guideline
a design model should not contain more than 250 rule cases, a few asynchron-
ous callbacks, leading to not more than approximately 3000 lines of code. With
these restrictions, the formal technique is rather easy to use without much training
and models are easy to understand and to modify. This is similar to traditional
programming where breaking a program down into smaller parts is highly recom-
mended to reduce the effort of applying changes.

46

CHAPTER 4

LLANGUAGE FOR EXPLORING NEW SYSTEM
CONCEPTS

This chapter describes a case where we applied the Parallel Object Oriented
Specification Language (POOSL). We propose an approach to explore new
system concepts and motivate the use of POOSL. The POOSL models are
simulated and tested to check their intended behaviour.

4.1 Motivation for Applying POOSL
In industry, the traditional development process from concept to a validated

product is depicted in Figure 4.1, see for instance [90]. It describes six distinct
phases between concept and product. During the concept phase of a new sys-

[[[[
Requirements Design Integration
Concept q Specification Specification Implementation Verification Valia:a\iinn

Figure 4.1: Traditional Process Framework

tem release an informal document is being created with a high level description
of the concept. This document is reviewed and agreed upon by all stakeholders.
The document consists of a decomposition of the developed product, the different
hardware and software components it consists of, the responsibilities per com-
ponent, and the interaction between the components, possibly with an informal
interface description. From the concept description, different development groups
concurrently start developing the component they are responsible for. This may
also include third party components developed by other companies.

The process framework depicted in Figure 4.1 provides a structured way to
come from concept to product and allows the concept to be decomposed into
different components such that multiple development groups can concurrently work

47

4 Language for Exploring New System Concepts

on the different components. A frequently occurring problem in industry, however,
is that the integration and validation phase takes a large amount of time and is
rather uncontrollable because many problems are detected in this phase and might
require a redesign of components.

An important reason for these problems is the informal nature of the concept
phase [35]. Clearly, this leads to ambiguities and inconsistencies. Moreover, only
a part of the complete behaviour is described in an informal document, often only
a part of the basic functional behaviour without taking errors or non-functional
aspects into account. The complete behaviour is defined during the implementa-
tion phase of the different components. Hence, a large part of system behaviour
is implicitly defined during the implementation phase. If multiple development
groups work in parallel in realizing the concept, the integration phase can take a
lot of time because the independently developed components do not work together
seamlessly. Another problem is that during the integration phase sometimes issues
are found in which hardware is involved. Then it is usually too late to change the
hardware and a workaround in software has to be found.

To prevent these types of problems, like others [92, 117], we propose the use
of formal modelling techniques in the concept phase, because it is early in the
process and all consecutive phases can benefit from an improved unambiguous
concept description. Moreover, errors made in this phase are very costly to repair
in a later phase [21, 169].

By making a formal model of the system in the concept phase, ambiguities,
contradictions and errors are removed from the informal concept description. Dur-
ing modelling one is forced to think about the exceptional behaviour, such as a
failing component, early in the development process. Many questions needs to
be answered which would be implicitly defined during the implementation phase
otherwise. Moreover, by formalizing interface descriptions, less problems during
the integration phase are expected. Figure 4.2 depicts a graphical representation
of the proposed extension of the product realisation framework.

/| M~
Draft version N Model ~ Final version
Concept s Concept . Concept
/1 ~

7 ~ ~
/ /7 ~ ~
/ / ~ ~
~ ~
/ / ~ -~
Change Verify Align with
Model Model Stakeholders

Figure 4.2: Model-Based Concept Phase

The formal model is developed incrementally to allow updates after aligning
with stakeholders and to incorporate new insights frequently. Before choosing a
formal method, we first list the aspects that are important in the concept phase:

e The definition of complete system behaviour, including error scenarios.

48

4.2 Fundamentals of POOSL

e A clear and unambiguous definition of interfaces and design concepts to
support parallel development in subsequent phases.

e The possibilities to explore concepts and design decisions fast.

e Communication with stakeholders to obtain agreement on the concepts and
externally visible behaviour of the product.

e The possibility to model a combination of hardware and software compon-
ents.

Furthermore, the formal method should be easy to use by industrial engin-
eers and scalable to large and complex systems. Based on earlier experiences,
see, e.g., [66], we decided not to aim for exhaustive model checking. Since our
applications consist of many asynchronous components with queues and also tim-
ing aspects are important, one would almost immediately run into state-space
explosion problems.

As an alternative to increase the confidence in the model, we will use simula-
tion. Formal models are expressed using the Parallel Object Oriented Specification
Language (POOSL). The language is supported by a simulator and a new Eclipse
Integrated Development Environment (IDE). The tooling can easily be combined
with a dedicated Graphical User Interface (GUI) to support communication with
all stakeholders.

4.2 Fundamentals of POOSL

One of the goals of the POOSL tooling is to shorten the development time of
complex high-tech systems by providing a light-weight modelling and simulation
approach. It is targeted at the early phases of system development, where require-
ments might not yet be very clear and many decisions have to be taken about
the structure of the system, the responsibilities and behaviour of the components,
and their interaction. Another goal of the POOSL tooling, not described in this
chapter, is the support for performance analysis of a system.

In Section 4.2.1 we introduce the POOSL modelling language and describe the
available tool support in Section 4.2.2.

4.2.1 POOSL Modelling Language

POOSL is a modelling language for systems that include both software and di-
gital hardware. It is not intended for continuous aspects, e.g., modelling physical
processes by differential equations is not possible. POOSL is an object-oriented
modelling language with the following aspects:

e Concurrent parallel processes A system consists of a number of parallel pro-
cesses. A process is an instance of a process class which describes the beha-
viour of the process by means of an imperative language. A process has a
number of external ports for message-based communication with its envir-
onment.

49

4 Language for Exploring New System Concepts

e Hierarchical structure A number of processes and clusters can be grouped
into a cluster. A cluster is an instance of a cluster class which has a number
of external ports and specifies how the ports of its processes are connected.

o System definition A system is defined by a number of instances of processes
and clusters and the connections between the ports of its instances.

e Synchronization Processes communicate externally by synchronous message
passing along ports, similar to CCS [102]. That is, both sender and receiver
of a message have to wait until a corresponding communication statement is
ready to execute. A process may contain parallel statements which internally
communicate by shared data objects.

e Timing Progress of time can be represented by statements of the form delay
d. Tt postpones the execution of the process by d time units. All other
statements do not take time. Delay statements are only executed if no other
statement can be executed.

o Object-oriented data structures Processes may use data objects that are in-
stances of data classes. Data objects are passive sequential entities which
can be created dynamically. A number of structures can be accessed from a
library, such as set, queue, stack, matrix, etc.

e Stochastic behaviour A library provides support for stochastic distribution
functions; a large number of standard distribution functions are supported,
such as DiscreteUniform, Exponential, Normal, and Weibull.

The formal semantics of POOSL has been defined in [22] by means of a prob-
abilistic structural operational semantics for the process layer and a probabilistic
denotational semantics for the data layer.

4.2.2 POOSL Tooling

As explained in [22], the operational semantics of POOSL has been implemen-
ted in a high-speed simulation engine called Rotalumis. It supports the Soft-
ware/Hardware Engineering (SHE) methodology [139]. The tool SHESim [59] is
intended for editing POOSL models and validating them by interactive simula-
tion. Recently, a modern Eclipse IDE has been developed on top of an improved
Rotalumis simulation engine. The combination of the last two tools have been
used for the application described in this chapter.

The Eclipse-based POOSL IDE is freely available [147] and supports advanced
textual editing with early validation and extensive model debugging possibilities.
It is easy to use for industrial users and scalable to industrial-sized systems. The
tool contains on-line explanation and documentation®.

Model validation is convenient to detect modelling errors early, before they
appear during simulation. It includes checks on undeclared variables and ports,
types, unconnected ports, and mismatches between send and receive statements.
The debugging view, as shown in Figure 4.3, allows step-wise execution of models,

Ipoosl.esi.nl

50

4.3 Application at Philips

inspection of variables, setting of breakpoints, and a running sequence diagram
during simulation.

File Edit Navigate Search Project Run Window Help

- Cin|plEN LS i PO Qg iy iy G Quick Access |:| 18 | &)
%5 Debug 2 % = O | % Execution Tree % = 8 - Variables 3 btB v=0
o fctridevices/devices/qpower ~ | 4 ftester 4 Name Value
of fetridevicesctrl 4 paralle 2| @ msoQueue Unbounded Queue [String] (id=125)
of ftester 4 sequential @ itDevstatus Array("Started", "Started", "Started", °S.
o fitDev1Stub 4 sequential @ rand RandomGenerator (id=129)
o fitDev2Stub 4 while i <= 8 do rVal := tn
of fitDev3Stub T 4 sequential <[I | »
o fitDev4Stub - 4 while Val do delay
o fitDev11Stub 4 sequential 2 -
o fitDev125tub hd IR T 4 < ’
su oosl 9 Tester.poosl 2 = B T Sequence Diagram 3 = Outline @GS = O
instances am P
ctrldevices : ControlDevicesCluster () - = = = E pre—
tester: TesterClass() ‘ tester ‘ | itDeviStub ‘ ‘ itDev2Stub ‘ itDev3Stub ‘ ‘ itDev4Stub ‘ itDevi1
// stubs for ipmi disabled devices T T
itDeviStub: ProbStublithoutIpmiClass(ipadd P— pa I StatusUpdateqtl, “shutdavn’) I |
itDev2Stub: ProbStubliithoutIpmiClass(ipAdd ’ N f } f f !
itDev3Stub: ProbStubWithoutIpmiClass(ipAdd !/ 1 StatusUpdate(d, "Started”) 1 1 I
itDev4Stub: ProbStubWithoutIpmiClass(ipAdd 9.99234E3 K T f T 1 |
// stubs for ipmi enabled devices | | | | | |
itDev11Stub: ProbStubWithIpmiClass(ipAddr 5992853 K | | StatusUpdate, *shutdown’) |
itDev12Stub: ProbStublWithIpmiClass(ipAddr ’ | | | | | |
itDev13Stub: ProbStubWithIpmiClass(ipAddr v | | | SttusUpdate(ts, "Sootraiked’) |
itDevl14Stub: ProbStubliithIpmiClass(ipAddr [Z] — 99931483 |'\ i i i i i
=2 StatusUpdate(11, "BootFailed"
ehannels - , 00036662 :/ ; au‘s pdate(. ootfailed") ; ;
Proble. e P Tasks = StatusUpdate(13, "BootFailed”
B Console 5 . Proble.. P 8 09042483 L | | atusUpdate(13, "BootFailed") | I
B X% EE |mE | | I | | |
Tester.poos! [POOSL Simulation) [Seed: 1] 4 StatusUpdate(3, *Shutdown") | | RE
TIme : BZ.431 STeps: Zizroo ¥, 99943683 | | | | | |
Real Time: 84.413 Steps: 245535 < | | | | | |
< I 3 < I] »

Figure 4.3: Debug Mode of the POOSL Eclipse IDE

4.3 Application at Philips

Control & Devices

su/sb

conoer | | [~ T T 1
| | | |

Uninterruptabld ..
Power Supply

IT Device
B segment
With IPMI

IT Device
ower A segment
‘ Distribution| ‘Without IPMI

IT Device IT Device
B segment A segment
Without IPMI With IPMI

MAINS

......... Control line
Power line
—— Ethernet

Figure 4.4: System Overview

The proposed approach has been applied at Philips, in the context of inter-
ventional X-ray systems which are introduced in Section 1.5. For a new product
release, we have explored evolutionary changes to create a new concept for start-
ing up and shutting down the system. This section briefly describes the informal
concepts of the new start-up/shut-down (SU/SD) behaviour.

51

4 Language for Exploring New System Concepts

As shown in Figure 4.4, which is a refinement of Figure 1.3, the system is
partitioned into two segments: A and B (for reasons of confidentiality, some aspects
have been renamed). This partitioning is mainly used in the case of a power failure.
When all segments are powered and the mains power is lost, the UPS takes over.
Once this happens, the A segment is shut down in a controlled way, leaving the B
segment powered by the battery of the UPS. If the battery energy level of the UPS
becomes critical, also the B segment is shut down in a controlled way. Usually,
the diesel generator of the hospital will provide power before this happens. An IT
device is part of either the A segment or the B segment.

One of the evolutionary changes is the use of Intelligent Platform Management
Interface (IPMI) [79], a standard interface to manage and monitor IT devices in a
network. The IT devices in the system are either IPMI enabled or IPMI disabled.

e IPMI disabled IT devices are started and stopped directly by switching the
power tap on or off.

e IPMI enabled IT devices are on a power tap that is continuously powered.
To start-up these IT devices, the SU/SD controller sends a command via
IPMI to them.

Combined with the two types of segments, this leads to four types of IT devices,
as depicted in Figure 4.4.

This figure also shows that there are several communication mechanisms between
the components

e Power lines for turning the power on and off.
e Control lines to connect the controller to the UI and the UPS.
e The internal Ethernet network, which is used for different purposes:

— By the IT devices, to request the SU/SD state of the SU/SD controller
and to receive SU/SD notification messages from this controller.

— By the SU/SD controller, to ping the Operating System (OS) of an
IPMI disabled IT device to observe its shut down.

— By the SU/SD controller, to turn on an IPMI enabled IT device and to
observe the shut down of the device.

A mains disconnector switch (MDS) can be used to power the complete system.
An example of a SU/SD scenario is the shut-down scenario. When all segments
are powered and the SU/SD controller detects that the AllSegmentOff button
is pressed by the user, it will send an AllSegmentOff-pressed notification to all
registered IT devices. Next all IT devices go through the following shut-down
phases:

e The applications and services running on the IT device are stopped.

e The IPMI disabled IT devices will register themselves and ask the SU/SD
controller to observe their shut-down. This is needed because the controller
does not know which IPMI disabled devices are connected to a power tap.
The ITPMI enabled devices are known to the controller by configuration.

52

4.4 Modeling the SU/SD Concept in POOSL

e Once the applications and services are stopped, the OS will be shut down.

The scenario ends when the SU/SD controller has detected that all IT devices
are shut down. IPMI disabled IT devices are pinged to observe that they are
shut down and IPMI enabled IT devices are requested for their state via IPMI to
detect that they are shut down. Next the SU/SD controller will instruct the power
distribution component to turn off the switchable power taps with which the IPMI
disabled IT devices are powered. The IT tap that powers the IPMI enabled IT
devices remains powered while these devices are in the standby state.

In [66], an abstract model of the current start-up and shut-down concept for a
simpler version of the system has been made for three model checkers: mCRL2 [65],
FDR2 [146] and CADP [58]. For reasons of comparison, exactly the same model
was made for all three tools, leading to 78,088,550 states and 122,354,296 trans-
itions. Model checking such a model easily takes hours. The new concept described
here is far more complex because of the many asynchronous IT devices that all
exhibit different behaviour. For example, the IT devices can sometimes fail to
start-up or shut down. Also the timing and order in which they start-up and shut
down might be different. Hence, we assume that the new concept is too complex
to model check. Consequently, we decided to model the system in POOSL and
used simulation to increase the confidence in the concepts.

4.4 Modeling the SU/SD Concept in POOSL

This section describes an incremental approach to model the SU/SD concepts in
POOSL. The scope of the model and the simulation environment is described
in Section 4.4.1. Section 4.4.2 contains the modelling steps. A few details of
the POOSL models can be found in Section 4.4.3. Our approach to test models
automatically is presented in Section 4.4.4.

4.4.1 Modelling Scope and Simulator

The aim was to model the Control & Devices part of Figure 4.4 in POOSL. Besides
the SU/SD Controller and the Power Distribution, the model should contain all
four types of IT devices, i.e., all combinations of segments (A and B) and IPMI
support. Moreover, to capture as much as possible of the timing and ordering
behaviour, we decided to include two instances of each type.

To be able to discuss the main concepts to stakeholders, we connect the POOSL
model to a simulation of the environment of the Control & Devices part. We
created a Simulator in Java with the use of WindowBuilder in Eclipse to allow
the manual execution of scenarios. It allows sending commands from the User
Interface and power components to the model and displaying information received
from the model. Additionally, one can observe the status of IT devices and even
influence the behaviour of these devices, e.g., to validate scenarios in which one
or more IT devices do not start-up or shut down properly. Figure 4.5 shows a
screenshot of the SU/SD simulator.

53

4 Language for Exploring New System Concepts

Prraer Driribution
Tap 1 ON T bus)

Fap 2 OFF (8 seg)
Tap 3 OFF (A seg)

UranietnopablePeweriugg

5 Segrent

1PMI Disakled
IT dewl I dew2
NotPowered Hothk

4 Busbeemate o hutamate
P Ensbled
IT dew il M dev k2
Standby Standby
hustomnate o Autcmate

P Driabled
IMdev3 IMdevd
NetPawered
o Automate o Aomaste
1Pl Enabled
I dev 13 T dew 14
Standby Standby
o Automate o Paspmate

[10:27:18] PO Tap 3 OFF (& seq)
[10:317:18] SuSdCanl AlifegrmentsC8
[10:27:18] HDevi2 MetPoveered
(13713] hDel] FotFovwened
[10:37:12] P Tap 2 OFF (8 seg]
[10:27:18] HD e Shwddown
[10:27-18] ROe3 St dirars
[102T:18] WD Shandorn
[I0:37:13] REI2 St down
[10:27:27] hDevid Saanetiey
[IRITA7] hDevl3 Stansdly
[10:27:17] HDevL2 Standley
[MRIT17] hDevld Sandby
[10:27-17] RO St dirans
[10:2717] ROl Stanadlory
[I0:2717] D3 Snstdemn
(1027171 WD Shndonsn
[W-IT17] RDev14 Standty
[10:27:16] KD SmAdown
[IIT16] hDevl] Standby
[10:27:16] iDev1] Standby
[URIT16] hDel] SwtingDown
[10:2T-16] RO ShnttingDewen
[102T:16] kDl ShastingDawn
[MRIT6] RDeF SwtingDown
[10e2728] SuSdCan AltSegmentsOHT ranst
[WRITIE] RD o)} ShastingDown
[10:27:15] HDev L4 SatingDewn
[MRIT15] RDedl] ShastingDown
[10:27-15] RDev11 ShutingDees
[10:2747) RDedM. Stacted
[10:2707] R4 CheckSeste
(102707 D3 Stamted
[MEIT4T] RDeAF CheckSeate
(1027071 Dol Staried
[IRIT06] hDeul] Checlcitate
[10:27:08] HDeu12 Started
[10:27:05]) RDe1] CheckS2ate
[10:27:06] RDVev14 Started
[102T:05] hDevid CheckSeate

Figure 4.5: GUI Simulator

There are three main columns:

e The left column contains three parts:

— On the top, the state and the UI buttons to control the SU/SD con-

troller are displayed.

— On the bottom, the UPS triggers are displayed.

e The middle part contains a column for the B segment and one for the A

segment; each contains a row for the IPMI disabled IT devices and one for
For each IT device the state is displayed.
The start-up and shut-down behaviour of an IT device can be simulated
automatically or it can be set to manual to simulate error scenarios, where
the system might fall into a Timeout (see the Internal Event in the column

the IPMI enabled IT devices.

of the SU/SD controller).

In the middle, the tap state of the segments is displayed.

e In the right column, the status updates of the model are displayed.

The Java simulation is connected to POOSL by means of a socket. The struc-

ture of the POOSL system model is shown in Figure 4.6.

The system part to be modelled (the Control & Devices part) is represented by
cluster ControlDevicesCluster. It has 10 external ports, one to communicate with
the SU/SD controller (simc), one for power commands (simqp) and 8 for the IT

54

4.4 Modeling the SU/SD Concept in POOSL

SimulationEnvironmentCluster ‘ ’ ControlDevicesCluster

Wmcm }—{simcm}—-| simo |
| S|mP }—{ SII’T'IP }—{S|mqp|

| 5|m1 }—{ S|m1 H S|m1 |

| simi14 — sim1'4 }—{éim14|
~_—

LPJ
Socket

Figure 4.6: Simulation Environment

devices: siml, sim2, sim3, and sim4 for IPMI disabled devices; sim11, sim12,
sim13, sim14 for IPMI enabled devices. These ports are connected to correspond-
ing ports of the SimulationEnvironmentCluster. This cluster contains an instance
of the standard Socket process class provided by the POOSL library. Class Ul-
interface is responsible for the translation between strings of the socket interface
and the SU/SD system interface.

4.4.2 Modelling Steps

c [3
Power

Distribution

Outle

IT device 11
L—| iPMI enabled
B Segment

IT device 13
L~ 1PMi enabled
ASegment

T device 3 IT device 4
L—{ 1M disabled L— ipMi disabled
ASsegment ASegment

3| 4] 11|

13[14|

Figure 4.7: Structure of the POOSL Model of the ControlDevicesCluster

After the simulator was built, the ControlDevicesCluster was gradually defined
in POOSL. The proposed framework, in Figure 4.2, defines an incremental ap-
proach to build the model of the concept. We have used the simulator to validate
the intermediate models and align the behaviour with internal stakeholders.

We started with a model of an TPMI disabled IT device and a model of the
SU/SD controller for shutting down these IT devices of the A segment. In this
model there were two instantiations of IPMI disabled IT devices. Note that
POOSL supports a partial model where not all ports are used.

95

4 Language for Exploring New System Concepts

This model has been extended gradually to a model where all 8 instances of IT
devices are present. Next, the SU/SD controller was extended with error behaviour
to verify, for instance, that the system is always in a defined state after shut-down,
which is an important requirement.

Finally, we added a model of the interface between the IT device and the
SU/SD controller, because these two components will be developed concurrently.
Hence, it is important to specify this contract formally and to verify it. Every IT
device has an instance of the same interface model, which is implemented in such
a way that the system will deadlock if the formal interface is violated. Hence,
interface compliance is verified continuously during simulation.

The structure of the resulting model of this incremental approach is depicted
in Figure 4.7.

4.4.3 Modelling Devices and Control

This section provides some details of the POOSL models. The first part of the
model of an IT device with IPMI is shown in Figure 4.8. It imports a library which,
e.g., defines queues. Next the process class is defined, including two parameters for
the IP address and the segment. All IT devices have an IP address to be able to
connect them to the same network. In the model we only use the least significant
byte of the IP address used in the system. Subsequently, the ports, the messages
(only one is shown here), the variables and the initial method call are defined.
Note that the variables define two queues.

In the initial method init()(), the queues are initialized, which are FIFO by
default. Next the method defines three parallel activities. The first activity defines
a state machine, where the states are represented by methods. It starts the state
machine by calling the initial state ItDevNotPowered()().

Figure 4.9 shows a typical definition of a state, in this case state ItDevShut-
tingDown()(). The state is defined as a method with local variable m. It selects
the next state based on the contents of the ipmiQueue or the receipt (indicated
by "#") of a particular message on one of its ports. Since switching a power tap
on or off is instantaneous and cannot be refused by a process, all states allow the
receipt of messages On and Off via port outlet.

The other two parallel activities of the nit()() method are used to model the
asynchronous nature of the Ethernet communication. Method MsgReceive Buffer
receives messages on port con and stores them in queue msgQueue, as shown in
Figure 4.10.

Note that POOSL allows a condition on the receive statement to express that
only messages with the corresponding IP address are received. Similarly, method
IpmiReceiveBuffer stores messages in ipmiQueue.

56

4.4 Modeling the SU/SD Concept in POOSL

import "../libraries/structures.poosl”
process class ItDevllithIpmiClass(ipAddr : Integer,
segment: String)

ports

outlet, con, ipmi, sim
messages

outlet ? On,[]
variables

msgQueue : Queue,
ipmiQueue: Queue

init
init() ()
methods
init()() /* initial method */
msgQueue := new(Queue);
ipmiQueue := new(Queue);
par
ItDevNotPowered() ()
and
MsgReceiveBuffer() ()
and
IpmiReceiveBuffer(}()
rap

Figure 4.8: POOSL Definition IPMI Enabled Device

ItDevShuttingDown()() | m : String |

sel
[!(ipmiQueue isEmpty())] m := ipmiQueue remove();
if m = "status" then ipmi ! On(ipAddr) fi;
ItDevShuttingDown() ()

or sim ? Shutdown; ItDevPowered()()

or outlet ? On; ItDevShuttingDown()()

or outlet ? Off; ItDevNotPowered()()

or sim ? Started; ItDevShuttingDown()()

or sim ? BootUp; ItDevShuttingDown()()

les

Figure 4.9: State ItDevShuttingDown

MsgReceiveBuffer()() | m : String, ip : Integer |
con ? RecvEvent(m, ip | ip = ipAddr);
msgQueue add(m);
delay(1);

MsgReceiveBuffer()()

Figure 4.10: Receive Buffer

4.4.4 Extensive Model Testing

The simulator has been used to align the behaviour with internal stakeholders and
to get confidence in the correctness of the behaviour. To increase the confidence
without the need of many manual mouse clicks, we created a separate test envir-
onment in POOSL. Therefore, a stub is connected to every IT device. A stub is a

57

4 Language for Exploring New System Concepts

process which randomizes the start-up and shut-down timing of an IT device. In
addition, a stub randomly decides if a device fails to start-up or shut-down. Also
in these random cases the system has to respond well and it needs to be forced
into defined states. The POOSL fragment of Figure 4.11 depicts how the random
timing and random behaviour is implemented in the Stub.

process class ProbStubWithoutIpmiClass
(ipAddr : Integer,
StartUpProp : Real,
ShutDownProp: Real)
ports
sim, tester

Loop()() | message : String |
[!(msgQueue isEmpty())] message := msgQueue remove();
if message = "Booting" then
delay(rand random * 5.0);
if rand random <= StartUpProp then
sim ! Started;
tester | StatusUpdate(ipAddr, "Started")
else
tester ! StatusUpdate(ipAddr, "StartFailed")
fi
fi;

Figure 4.11: Stub Used for Testing the Model

// stubs for ipmi disabled devices

itDev1Stub: ProbStublWithoutIpmiClass(ipAddr := 1,
StartUpProp := 0.9,
ShutDownProp := 8.9

itDev2Stub: ProbStubllithoutIpmiClass(ipAddr := 2

itDev3Stub: ProbStubWithoutIpmiClass(ipAddr :

itDev4Stub: ProbStublWithoutIpmiClass(ipAddr :=

// stubs for ipmi enabled devices

itDev11Stub: ProbStubWithIpmiClass(ipAddr := 11,

StartUpProp := 0.9

é}D
EPRN
4, [

>

ShutDownProp := 8.9)
itDev12Stub: ProbStubWithIpmiClass(ipAddr := 12, []
itDev13Stub: ProbStubWithIpmiClass(ipAddr := 13, []
itDev14Stub: ProbStubWithIpmiClass(ipAddr := 14, []

Figure 4.12: Stub Instances

The stubs are configured such that they fail to start-up or shut-down in 10%

of the cases, as shown in Figure 4.12.

58

4.4 Modeling the SU/SD Concept in POOSL

In reality the IT devices are quite reliable, but to reduce testing time it is more
convenient to make the I'T devices less reliable. Moreover, we are interested in the
error handling behaviour of the system and not in the statistical behaviour.

For the execution of scenarios initiated by a user and the UPS, a Tester process
has been created to automatically drive the system. Every stub has a feedback
channel to the Tester to report the status of an IT device. Figure 4.13 depicts how
the Tester and Stubs are connected to the system.

TestCluster ControlDevicesCluster
Tester simCtrl —simCtrl simc

| [\
| simP H simP Hsimqp|

ITdev |

WithoutlpmiClass

ProbStub | sim | sim1 Hsim1|

ProbStub | sim14 | sim14 |—{sim14]

WithlpmiClass

Figure 4.13: System Composition with Tester

MName Value
& delayedBatteryLow false
4 @ ipmiQueus Ermnpty
@ Occupation]
@ PrimQueue nil
@ QueuingPolicy "FIFO"
@ Size -1
@ Unbounded -1
@ osQueus Empty

Figure 4.14: Variable Values from the POOSL IDE’s Debug Window

The definition of the Tester is such that it leads to a deadlock when the SU/SD
controller or the IT devices do not behave as intended. Deadlock and livelock can
be detected by the lack of progress in the debug mode as shown in Figure 4.3.
Already during the first simulation run we experienced a deadlock. The cause
of the problem was found using the debug possibilities of the new POOSL IDE.
We simulated the model in debug mode and inspected the sequence diagram (see

59

4 Language for Exploring New System Concepts

also Figure 4.3) when the deadlock occurred. In this sequence diagram we saw a
problem with a message about the IPMI status of an IT device. Next we inspected
the variables window as shown in Figure 4.14.

It revealed that the ipmiQueue was empty, which was not expected at this
point in the execution. When checking the code that handles the IPMI queue, we
found that the queue was emptied after the IPMI status request had been sent.
The race condition was fixed by changing the order; first empty the queue and then
send the TPMI status request. After fixing the race condition, the model has been
executed 100,000 random start-up and shut-down cycles without experiencing a
single deadlock.

4.5 Concluding Remarks

In the concept phase of product definition, we have used a formal system descrip-
tion in POOSL in combination with a graphical user interface to align stakeholders
and to get confidence in the behaviour of the system. We have added a model with
a formal interface description between two important components of the system
that will be developed concurrently. To increase the confidence in the concept, we
created an automated test driver for the system with stubs that exhibit random
behaviour and random timing.

While modelling, we found several issues that were not foreseen in the draft
concept. We had to address issues that would otherwise have been postponed
to the implementation phase and which might easily lead to integration problems.
We observed that the definition of a formal executable model of the SU/SD system
required a number of design choices. We give two examples of such choices.

o If all segments are on and the UPS indicates that the mains power input
fails, then the system will shut down the A segment. If, however, during
this transition one or more of the IPMI enabled IT devices fail to shut down,
then the SU/SD controller has no way to force these IT devices into the
right state. This could be solved by an additional tap, but given the costs of
an extra tap and the small chance that this will happen (both mains power
and shut down of an IT device should fail), we have decided to leave it this
way. If the user experiences unexpected behaviour of the system, the user
can always recover the system by turning it off and on again.

e An early version of the SU/SD controller did not track if an IPMI enabled IT
device did in fact start up. However, if something is wrong with the start-up
or shut-down of an IPMI enabled IT device, we want to toggle the power
during shut-down in the hope that a reset will solve the issue. Once we
found the described issue with the simulator, we extended the model of the
SU/SD controller with a storage of the start-up status of an IPMI enabled
IT device.

In addition, the model triggered many discussions about the combined beha-
viour of the hardware and software involved in start-up and shut-down. This
resulted in a clear description of responsibilities in the final concept. Also the
exceptional system behaviour when errors occur has been elaborated much more

60

4.5 Concluding Remarks

compared to the traditional approach. Note that the modelling approach required
a relatively small investment. The main POOSL model and the Java simulator
were made in 40 hours; the tester and the stubs required another 10 hours.

The application of exhaustive model checking techniques to the full model is
not feasible, give the large number of concurrent processes and the use of queues
for asynchronous communication. However, it might be possible to apply these
techniques to verify certain aspects on an abstraction of the model.

61

CHAPTER b

LCONFIGURING A COMPONENT USING DSLS

In this chapter we investigate the maintainability improvement of a legacy
component by vertical DSLs. We consider a legacy component which re-
quires low-level configuration files and create a DSL to generate these files.
Validation checks on language instances ensure correctness of the generated
files. To be able to deal with a large number of configurations, a second DSL
has been created which has a higher level of abstraction.

5.1 Motivation for Creating DSLs

Legacy components are often the result of decades of development with dozens of
man-years invested. Creating new implementations would require a similar invest-
ment and typical more resources than keeping the legacy implementation alive;
scarce resources that could also be used to implement product innovations [168].

The aim of this chapter is to investigate whether a vertical DSL could improve
the maintainability and extensibility of a legacy component. In particular, we
investigate the definition of low-level configuration files for a legacy component.
Our experience is that constructing such configuration files is time consuming and
error prone. To abstract from low-level details, a DSL has been created. The
configuration files are generated from instances of the DSL. In addition, validation
checks have been defined to prevent errors in language instances.

We would like to get an answer to the following questions:

e Is it financially feasible to extend the life of a legacy component using a
DSL?

e What are the pros and cons of using a DSL compared to the current way of
working?

In this chapter, we try to answer these research questions based on our experiences.

63

5 Configuring a Component using DSLs

5.2 Context of the Fieldbus

The interventional X-ray system, as introduced in Section 1.5 and depicted in
Figure 1.2, consists of a number of building blocks such as the patient table, one
or two stands which hold an X-ray generator and a detector, and a stand mover
that can position the stands away from the table. Each building block has a
number of axes that are used to position the X-ray beam with respect to the
patient. The axes are controlled by motion drives which are connected by means
of a fieldbus. A fieldbus is an industrial network used for real-time distributed
control.

For each building block there are a number of variations, e.g., they may have a
different number of axes or might come from different third-party vendors. For ex-
ample, the table can have one, two, three, four, five or six moveable axes. Moreover,
there are many possible combinations of these building blocks, leading to many
systems configurations depending on the wishes of the customer. The fieldbus
needs a separate topology description for all these combinations. In addition, past
and future configurations need to be supported.

Computer B _— b
Master < A Node |2 A[Node |C ﬁ
—) TYPE_A1 TYPE_A2
N\ E» N |B» \'
vl | |
Al A A
Motion Drive Motion Drive Motion Drive
TYPE_D TYPE_B TYPE_C
A |§ A | B B
Motion Drive Motion Drive
TYPE_D TYPE_B
B B
v|4 v |4
Type = Vendor + Model A A
Node Motion Drive
TYPE_E TYPE_B
B B
Stand Table Stand Mover

Figure 5.1: Fieldbus Topology

Figure 5.1 depicts an example network topology. A number of components can
be distinguished: a Computer, a Hub, a Stand, a Table, and a Stand Mover. The
Computer runs the fieldbus master and also hosts the motion application. The
fieldbus Hub is an embedded device that supports the use of tree topologies. The
Hub is optional; for instance, a configuration with only a Table does not need a
Hub. Because of the Hub, different cable sets toward the Table and Stand(s) can
be bundled. A Stand consists of two motion drives, each controlling a number of
axes, and a node that is used to prevent collisions between the Stand and other
objects in the room. The Table has a motion drive for every axis. So the Table
has up to six motion drives. The Stand Mover has a motion drive that controls a

64

5.3 DSL for Fieldbus Configurations

number of axes to move the Stand away from the Table.

Every node or motion drive in the fieldbus has a certain type. A type is a
combination of a vendor and model. The concept is that every motion drive in
the system can be replaced by a compatible type from another vendor. The Hub
has two nodes of TYPE A1l and TYPE A2 respectively. A Stand uses devices of
TYPE D and TYPE E. The Table uses motion drives from TYPE B and the
Stand Mover from TYPE C.

The nodes of the Hub have four ports. The node of TYPE A1 is connected to a
master via port A. The nodes TYPE A1l and TYPE A2 are internally connected
via port D of TYPE A1 and port A of TYPE A2. The motion drives have two
ports: A and B. At the end of a branch it is possible that a port is not connected
to another device.

The arrows in Figure 5.1 describe the flow of messages over the fieldbus. The
master sends a packet to the node it is connected to. A packet consists of different
fields. Every node in the network has its own field. Every node reads and writes
its field of the message. At the end, the master receives a message with all updates
of the nodes. The master sends messages with a time interval of 2 milliseconds.

During the start-up of the network, the master reads a configuration file that
describes the physical network. The master then starts the network by program-
ming the nodes. The nodes need to be programmed such that they know their
field, the elements of this field, and the address of the elements.

To create the configuration files of the master, a commercial tool is used. A
tutorial of 29 pages describes how a configuration file needs to be created. The
first two pages explain how to install the tool and some basic explanation of the
topologies used in the system. The remaining 27 pages describe what needs to be
filled in when making network topologies for the system.

Currently, the interventional X-ray system needs about 40 different topology
configuration files for the product family. All files are created with the commercial
tool. To test the configuration files, it is too expensive to physically build 40
different complete systems, in terms of effort, lead time and system cost. Hence,
for testing a lab set-up is created. In the lab set-up the master is started using a
stripped version of the motion application. The nodes, such as the motion drives,
are placed on a board. Using the board it is possible to reroute the cables to test
different, configurations.

The configuration files are formatted using eXtensible Markup Language (XML).
Today, the simplest configuration file consists of 2147 lines and the most extensive
configuration contains 13128 lines.

5.3 DSL for Fieldbus Configurations

The number of configurations explodes when multiple suppliers and motion drive
types have to be supported. The commercial tool that is used to create network
topologies has many settings and options. However, for the system configurations
we want to describe, the settings and options are always the same. The only
variation between the different configurations is the number of nodes, their type
and how they are connected to each other.

65

5 Configuring a Component using DSLs

To handle these differences, a DSL is created to generate configuration files
for the fieldbus. The DSL only describes the variations; the fixed options and
settings are defined by the generator. For creating the language, Eclipse [171] is
used with Xtext and Xtend [18]. Figure 5.2 presents an example instance of the
language. Each topology needs to have a name which is used as the file name for
the generated configuration. After the network keyword the ordering of the nodes
is described. The language has predefined node types. In the language used at
Philips the types have more meaningful names, but for confidentiality reasons we
use abstract names in this chapter.

topology
name ExampleTopology
network TYPE_AL <-> TYPE_A2 <-> TYPE_B

<-> TYPE_B <-> TYPE_B
prev TYPE_A2 port C TYPE_C
prev TYPE_Al port C TYPE_D

<-» TYPE_D <-> TYPE_E

Figure 5.2: Ezample Topology Description

Figure 5.2 presents the network topology of the system configuration depicted
by Figure 5.1. The example presents a single network topology, but typically a DSL
instance consists of multiple topology definitions. The master is always present
in a topology and hence omitted in the DSL instances. The nodes TYPE A1l
and TYPE A2 of the Hub are connected to each other. Because the connection
between TYPE A1l and TYPE A2 is hardwired inside the Hub, this informa-
tion does need to be provided when creating a DSL instance. The other devices
(nodes and motion drives) are implicitly connected via port A to port B of the
previous device. Hence, this information does not have to be described in a DSL
instance. With “prev TYPE A2 port C TYPE C” a branch is created by con-
necting port C of TYPE A2 to port A of TYPE C. Similarly, a branch is created
from TYPE A1l to TYPE_ D.

From every topology in a DSL instance, an XML configuration file is generated.
The XML configuration file generator has been defined using multi-line template
expressions [18]. The settings that are always the same for network topologies are
part of the template. The configuration settings that vary, e.g., the position of
the nodes and the fields, are calculated and filled in the right position. A DSL
instance of 5 lines describing an existing topology leads to an XML file of 13128
lines. The output of the generator has been validated by generating ten existing
network topologies and comparing the configuration files with the ones that are
produced with the commercial tool.

5.4 DSL Instance Validation

To prevent that the user of the language makes faults in describing network topo-
logies, validation rules have been added to check the validity of a network topology.
For example, it is physically impossible to connect two branches of motion drives
to the same port of the Hub. Figure 5.3 shows the validation rule which expresses

66

5.5 DSL to Describe System Configurations

@Check
def CheckTagPortUnique(Topology topo) {
for (var i = @8; i < topo.nextNode.length; i++) {
var nodeA = topo.nextNode.get(i)
for (var j = @; j < topo.nextNode.Llength; j++) {
var nodeB = topo.nextNode.get(3j)
if (nodeA.prev != null && nodeB.prev != null) {
if (i != j && nodeA.prev.name == nodeB.prev.name &&
nodeA.port0fPrev == nodeB.portOfPrev) {
error("A port can only be used once”, null)

Figure 5.3: Vaulidation Rule

that a port of a specific node can only be used once within a topology. The
rule checks for every topology and for every pair of nodes which have the same
predecessor that they are connected to different ports of this predecessor.

In addition to the rule in Figure 5.3, there are validation rules to check that:

e Within a DSL instance, a topology has a unique name.

e Within a topology, the types TYPE A1l and TYPE A2 are paired. TYPE-
Al and TYPE A2 are either both present or both absent.

e Within a topology, TYPE A1 comes before TYPE A2 and is connected to
TYPE A2.

Using the commercial tool there are many ways to produce a faulty config-
uration file. The DSL and the above described validation rules provide enough
confidence in the validity of the produced configuration files. Hence, the language,
including its validation rules, is restricted in such a way that only valid configur-
ation files can be produced. Creating a hardware set-up in the lab to check the
correctness of a network configuration is no longer needed.

5.5 DSL to Describe System Configurations

Once a year a new system release is made. Because the system is a medical device,
for such a release all functionality needs to be verified and validated using strict
rules of authorities. Hence, all supported network topology configurations are
part of the annual release and all of them are installed on every system. A system
configuration prescribes which configuration file is used for a particular system
instance.

When in the future many network topology configuration files are needed, it is
still a gigantic and error-prone task to create them all. For this reason, we invest-
igated the possibility to further raise the abstraction level. The result is a second
language to represent system level configurations and generate a DSL instance of
the previously described network topologies. The system configuration DSL con-
sists of two parts: the first part describes building block definitions and the second

67

5 Configuring a Component using DSLs

part describes system configuration descriptions which consists of combinations of
the building blocks.

building blocks

building block

id BE1

type CeilingStand
vendor(s) VENDOR_A

building block
id BB2

type Table
vendor(s) VENMDOR_A VENDOR_B

Figure 5.4: Building Block Definitions

Figure 5.4 shows a fragment of the building block definitions. Every building
block has a unique id. Building blocks have a type, for instance, a Stand can be
based on the floor or the ceiling. Also the Table is a building block.

Depending on which options a customer chooses, the Table can have one up
to six motorized degrees of freedom. Hence, there are six combinations of motion
drives for a Table. For certain building blocks, nodes from multiple vendors can be
used. Recall that in the topology descriptions of the first DSL, nodes of a certain
type are used. The relation between vendors and types has been encoded in the
generator, e.g., VENDOR A corresponds to types TYPE C and TYPE D. Also
information about which port of a building block needs to be connected is hard
coded into the generator. The items are fixed in the generator because the system’s
reference architecture fixes these items and therefore they are not expected to
change.

configurations

configuration

name Configurationl
building blocks BB1
configuration

name Configuration2
building blocks BBl BB2

Figure 5.5: System Configuration Descriptions

A fragment of two system configuration descriptions is shown in Figure 5.5:

e Configurationl describes a system configuration consisting of a ceiling stand
with motion drives of vendor A. This is a very basic example that results in
a single network topology.

68

5.6 Concluding Remarks

e Configuration2 consists of a ceiling stand and a table. The table can have
from 1 up to 6 motion drives and each of these motion drives can be either
from VENDOR A or VENDOR _B. If a table has one motion drive it can
be of two different vendors, leading to two network topologies. If a table has
two motion drives, then four different combinations are possible, et cetera.
When we sum all possibilities, we get 126 network topologies.

The Configuration2 example makes the need for the system configuration lan-
guage clear. The number of network topologies grows exponentially with the
number of different vendors that need to be supported.

Using the system configuration language, the generation of the configuration
files takes a two step approach. In the first step, an instance of the system config-
uration language generates an instance with network topology descriptions. From
the network topologies, XML configuration files are generated.

5.6 Concluding Remarks

We have presented an approach to improve the maintenance of a legacy component
using two DSLs. The first DSL describes network topologies from which XML files
are generated for the master of a fieldbus network. Because of the expected large
number of topologies in the future, we further raised the abstraction level by means
of a second DSL that describes system configurations and generates an instance of
the first network topology DSL. The experiences with these DSLs at Philips leads
to the following observations.

e Is it financially feasible to extend the life of a legacy component using a DSL?
We calculate the Return On Investment (ROI) for the presented DSL. First
we compute the required investment for the DSL approach. To learn the
domain and the structure of the configuration XML files took 10 hours. The
construction of the DSL took about 40 hours including the creation of the
validation rules. In total it took about 50 hours to create the DSL. We
expect a new vendor in the future and estimate that it will take 30 hours to
extend the DSL framework with support for this vendor.

Next we compare the DSL approach with the current way-of-working. We
estimate that approximately 8 hours are required to manually create a to-
pology file, build a physical hardware set-up and test if the master can start
the fieldbus. Of the 8 hours approximately half an hour is needed required
to create the topology file. If we multiply these 8 hours of work with the the
2000 network topologies we need in the future, it takes 16000 hours which is
10 man-years.

Using the DSL we expect it takes around 20 hours to create instances de-
scribing the system configurations for the 2000 topologies. These 20 hours
plus support for new vendors (30 hours) plus the 50 hours to create the DSL
itself leads to 100 hours of investment. ROI = (gain from investment — cost
of investment) / cost of investment = (16000 - 100) / 100 = 159. Hence, the
DSL has a high ROI which indicates that the investment in the DSL will be
preferred above keeping the current way-of-working.

69

5 Configuring a Component using DSLs

o What are the pros and cons of using a DSL compared to the current way of
working?
We list a number of advantages and disadvantages of using a DSL compared
to the current way of working. We start with the advantages, in addition to
the large ROI computed in the previous point:

— Our DSLs are simple and easy to use; the users of the commercial tool,
which are software engineers, should be able to create a new network
topology and a new system configuration in a short amount of time.

— Creating a network topology can be done in less time than with the
current way of working, i.e., using the commercial tool.

— The validation rules check if a network topology is valid, while with the
commercial tool faults can be introduced that can only be found when
a topology is build and tested.

Below a list of disadvantages:

— The generators of the DSLs contain additional code that needs to be
archived, supported and maintained.

— C++ is the programming language that is used at Philips. The gen-
erators of the DSLs can be programmed in Xtend and/or Java. The
switch in programming language will create a barrier for some software
engineers although the generator only needs to be supported by a few
software engineers. There will be more users for the language than there
are software engineers that need to maintain the language.

— The preferred Integrated Development Environment (IDE) at Philips is
Microsoft Visual Studio (MSVS). We have investigated and compared
multiple solutions to create DSLs using MSVS, but the outcome of the
investigation is that we can only use Eclipse for our needs. Installing a
second IDE and switching between IDEs is a disadvantage.

At Philips, we clearly have a maintenance challenge when 2000 network topo-
logies need to be supported. In this case, the DSL approach has a large ROI and,
despite a few drawbacks, provides a very good solution for this future maintenance
problem. In general, due to the challenges with maintaining legacy components
and the experiences presented in this chapter, Philips will continue with the DSL
approach.

70

CHAPTER 0

LDSLS COMBINED WITH OTHER MODEL-BASED
TECHNIQUES

The industrial case described in this chapter is a legacy component which
uses configuration files that are hard to maintain. To improve the situation
we used an approach in which we combine DSLs with other model-based
techniques. DSLs have been created to describe the behaviour and the test
cases of the component. In addition, we created cross-checks to increase
confidence in our approach.

6.1 Motivation and Global Overview

The Power Distribution Unit (PDU) of an interventional X-ray system is respons-
ible for executing power control scenarios, such as start-up, shut-down and power
failure. During such a scenario the PDU is the master of the system and all other
hardware and software components follow the instructions of the PDU.

The PDU consists of a generic part that needs to be configured for every re-
lease and every different hardware configuration to obtain the desired behaviour.
In the existing situation, the configuration files are difficult to maintain and de-
fining extensions is time-consuming and error-prone. Given the increasing system
complexity of the product family, this will likely create problems in future releases.
In addition, based on the behaviour defined by configuration, for every release a
separate test set is required.

In addition to the use of DSLs, we would like to investigate whether formal
techniques could contribute in a structural way to the development of a high quality
PDU. This means that the focus is not on a single system but on support for a
product family. It should be fairly easy to re-use the formal techniques for new
product releases and configurations. In this context, the focus is on a lightweight
approach [72, 83]. Since the application of formal techniques is not the main aim
of the project, the costs and effort of the use of formal methods should be very
low. There is no budget for tools or training.

71

6 DSLs Combined with other Model-Based Techniques

While re-engineering the configuration of the PDU using a DSL, there was
a clear need to test the component, i.e., the newly generated configuration files
together with the general software framework and the hardware. Since the existing
test set was not completely satisfactory, we also developed a DSL to describe test
cases. We used formal techniques to generate instances of the test DSL from the
configuration DSL automatically. From the test DSL we could easily generate the
low-level test scripts.

A global overview of our approach is depicted in Figure 6.1. A DSL is used to
define the behaviour of a component. From this description an implementation and
a formal model are generated. The formal model is used to validate the correctness
of the described behaviour and to generate test sequences. The test sequences are
described as an instance of a second DSL which generates test scripts for a certain
test framework.

behaviour
instance
generates

Implemen- formal
tation model generates

test
instance

generates

Test
cases

Figure 6.1: DSL’s Combined with Formal Techniques

An advantage of the DSL approach is that there is a single source (an instance of
the DSL) from which both formal models and implementation files are generated.
For a new product release or system configuration, only the DSL instance has to
be adapted or extended, after which all artefacts are generated automatically.

The central role of a DSL instance implies that its correctness is very import-
ant. Hence we generate models for different tools to simulate and verify DSL
instances. A weak point is that the semantics of the DSL is implicitly defined
by the generators and it is not obvious that all generators implement the same
semantics. We use several techniques to increase the confidence in the generators.
For instance, we verify that system logs, which capture real system usage, are
allowed traces of the formal models. Moreover, the test DSL is used to generate
tests for these formal models.

To construct DSLs we used the Xtext plugin of Eclipse [18], supported by a
manual [104]. To be able to simulate the behaviour of the PDU based on a DSL
instance, we use a translation to POOSL [148], see Chapter 4 for more details
about POOSL. Formal verification has been done by means of SAL [138], because
it also includes convenient support for test generation from a formal model.

72

6.2 Context of the PDU

We present our experiences with this approach in a real development project.
The business goal of the development project is to improve the maintainability
and extendibility of the PDU. The aim of our work is to investigate whether DSLs
could provide a solution to improve the maintainability and testability of the PDU.
We would like to get an answer to the following questions:

e How much time is needed to learn the tools and techniques?

e How much effort is needed to migrate the current legacy component to a
component which is defined by a high-level human-usable DSL?

e Does the DSL approach support the combination with analysis techniques
such as simulation tools and formal model checkers?

e What are the benefits of introducing these new techniques compared to the
current way of working?

6.2 Context of the PDU

An interventional X-ray system, as introduced in Section 1.5, has a distributed
architecture with a large number of hardware and software components. The sys-
tem is highly configurable, i.e., customers can select a particular combination of
X-ray stands, patient table, monitors, image processing capabilities, etc. Power-
ing the hardware components, and starting up and shutting down the software
components are the responsibility of the PDU, see Figure 1.3. This component
is installed in a technical room together with a number of cabinets which contain
the supporting hardware components.

The PDU consists of a controller that has three interfaces, as shown in Fig-
ure 6.2:

e An interface to a User Interface Module (UIM) that has On and Off buttons,
and LEDs for user feedback.

e An interface with software components running on computers.

e An interface with power distribution panels that are placed in the cabinets
to power the hardware components installed within the same cabinet. Each
power distribution panel has a number of individually switchable High and
Low Voltage Terminals (HVT/LVT) that are managed by the controller.

The controller and all distribution panels have a 16 bit micro-controller running
an embedded application and they communicate with each other via LonWorks [2]
using a master-slave topology. LonWorks creates a communication channel su-
perimposed on the power line with which the controller powers the distribution
panels.

The controller is configured by two files: the recalls configuration file and the
scenarios configuration file. A recall defines the state of all terminals that power
the other components of the system. The recalls configuration file describes a
number of possible recalls that can be used in the scenarios. A fragment is shown in
Table 6.1, defining recall TermStandby. Everything behind a # sign is a comment.

73

6 DSLs Combined with other Model-Based Techniques

Computer

Software
component
Ethernet
(rou NS I

[Controller }

Uimv

Buttons
LEDs

LonWorks

Distribution panel

‘ High voltage terminal
1

I
‘ Low voltage terminal u /
1

|
Hardware
component

Figure 6.2: Overview Power Distribution Unit

The first column of the numbers describes the location of a terminal, e.g., 00 for
the Controller and 04 for the M-Cabinet. The second column codes the number
of the terminal. For the HVTs the third column codes if the terminal should
provide power (1) or not (0). Likewise, for the LVTs the fourth column codes if
the terminal should provide power (0) or not (1), but observe that the numbers
are inverted. We do not explain the other columns, which are different for HVTs
and LVTs.

The scenarios configuration file describes the scenarios in terms of a state ma-
chine. The state machine consists of two parts:

e A high-level state machine that is part of the application running inside the
controller.

e A scenarios configuration file that describes the low-level state behaviour of
the PDU.

The scenarios configuration file is used by the high-level state machine to perform
the configuration-specific transitions. The high-level state machine is implemen-
ted with VisualState [5] and describes the main states and the associated LED
behaviour when transitioning between these main states. These main states are:

e Off: the PDU is not powered;

e Init: represents the start-up of the PDU, in this state a Power On Self Test
(POST) is executed;

74

6.2 Context of the PDU

TermStandby

<RECALL 1>

<TAP>

00 71 0.0 0.0 0.0 # Controller PowerBus, status = On

00 8 0 0.0 0.0 0.0 # Controller_PulsePowerBus, status = Off
04010.00.016.0 # M_Cab_HVTI, status = On
04100.00.016.0# M_Cab_HVT2, status = Off

04111# M_Cab_LVT5V1, status = Off
04211+# M_Cab_LVTI12V1, status = Off
04510 # M_Cab_LVTGHI, status = On

Table 6.1: Fragment of the Recalls Configuration File

e Standby: the system is off for the user, but PDU is standby and some
continuous power terminals are powered;

e Operational: the system is on for the user, typically all terminals provide
power in this state;

e Emergency Power Off (EPO): the controller cuts off the power of the dis-
tribution panels immediately and thereby also all the terminals loose power
(only the controller stays powered) - used when the user presses a red safety
button;

e Stop: a terminal state which is entered when critical parts of the PDU are
detected to be faulty during the POST; in this state only the controller is
powered to be able to diagnose the problem.

The low-level state machine for the PDU defines the so-called recalls and the
transitions between these recalls. Each recall denotes a required setting of the high
and low voltage terminals, i.e., whether an individual terminal needs to provide
power or not. These settings are described in the recalls configuration file.

To realize a particular recall, the controller compares the current status of
the low and high voltage terminals, which it has stored in volatile memory, with
the desired status of the low and high voltage terminals. If the current status
is different from the desired one, the controller starts communicating with the
distribution panels to change the status. The transition from one recall to another
may take a considerable amount of time, because of the inherently slow LonWorks
communication. Depending on the chosen hardware components by the customer,
there are two or three cabinets and it takes between 10 and 30 seconds to address
all distribution panels. Note that in case of an emergency power off, hardware
immediately cuts off all power.

Transitions between recalls are not atomic, that is, during such a transition
a stimulus might lead to another required recall. To represent the state of these
transitions, each main state consists of three substates:

e Entry: the controller compares the current status of the low and high voltage
terminals with the desired recall. If they are different the next substate is

75

6 DSLs Combined with other Model-Based Techniques

g A
{ Standby \. { Operational \\\
[Entry] [Entry]
System ' System T
Transitioning ¢ Transitioning
[Transitioning ‘ { Transitioning ‘
D System) System ‘_
Stable | Stable
[Stable] [Stable]

g v

Figure 6.3: Two Main States and Their Substates

Table 6.2: Line of a Configuration File for a Low-Level State Machine

2 2 0 00000000 00000000 112 42 # < OPERATIONAL > recall 2
exit out of forced off

Transitioning, otherwise it is Stable, except for the first recall where it stays
in Entry.

e Transitioning: the controller is busy changing the state of the low and high
voltage terminals.

e Stable: all distribution panels have reached the desired state for the low and
high voltage terminals.

Figure 6.3 shows part of the high level VisualState state machine with two
main states and their substates. The main states and substates are fixed, whereas
the number of recalls is variable and defined in the recalls configuration file. The
low-level state machine and the recalls are different for every system release. The
scenarios configuration file describes for each recall and stimulus, possibly with
a given guard, what the next recall is and between which main states it has to
transition. This is all coded in numbers. The main states are numbered, e.g.,
Standby = 2 and Operational = 3. Similar for the substates: Entry = 0, Trans-
itioning = 1, and Stable = 2. Also all stimuli and all transitions between the main
states have a fixed number. The recalls have a configurable number. The guard
of a transition consists of two values: the relevant values of a status register and
a mask. Table 6.2 shows an example of a line in the scenarios configuration file.
Everything after a # is a comment.

The first three columns of Table 6.2 describe the state or -1 if it does not care.

1. The first column is the main state which is the source of the transition (in
this example, state 2 denotes Standby).

76

6.3 Defining the Behaviour of the Component

2. The second column the substate which is the source of the transition (here
2 denotes substate Stable).

3. The third column the source recall (here 0 denoting that all terminals are
off).

The fourth and fifth column describe the guard.
4. The fourth column describes the bits of the status register.
5. The fifth column the mask that will be applied.

The other columns have the following meaning;:

6. The sixth column, describes the stimulus number (in this example, 112 de-
notes pushing the on button for 3 seconds).

7. The seventh column is the number of the specified transition between two
main states (it might be a self-transition).

8. The eighth column describes the required recall (recall 2 in this example).
By default, the substate will be Entry.

For performance reasons, this file is sorted on the sixth column. That is, the file
is sorted on stimulus number and not on state, which hampers readability.

6.3 Defining the Behaviour of the Component

The configuration files are hard to read, to change and to maintain, but they have
to be updated for every new product release. To reduce the risk of making errors,
we developed a DSL to express the essential concepts of the configuration files
in a natural and readable way. To improve the confidence in the correct beha-
viour of the configuration, generators are also added to create simulation models
(POOSL), described in Section 6.3.1, and verification models (SAL), described in
Section 6.3.2.

grammar

configuration
(Xtext)

, instance of

configuration
instance

generates

system simulation Verification
scenario model model
configuration (POOSL) (SAL)

system
recall
configuration

Figure 6.4: OQverview Configuration DSL Transformations

7

6 DSLs Combined with other Model-Based Techniques

An overview is given in Figure 6.4. An instance of the DSL corresponds to a
product release. It leads to one scenarios configuration file and multiple recalls
configuration files, corresponding to the different system configurations a customer
can choose which results in different hardware components (and their associated
behaviour).

The grammar for the DSL is expressed in Xtext. The Xtend language is very
suitable to define generators, because it contains convenient constructs to refer to
elements of the grammar and to define transformations. We have used Xtend to
generate configuration files and analysis models from language instances.

Since the main states and their substates are always the same, there is no need
to define them explicitly in the DSL. The main purpose is to define the recalls and
their transitions. Figure 6.5 depicts a fragment of the first section of an instance.

termstatuses = SystemInit or Systemlff or
SystemFselff or SystemOn ..

group = SystemFse(ff and SystemEPO recalllD = ALLOff
Eroup Systemff and SystemOffError recall = TermStandby
group = SystemOn and SystemOnError recalllD = AllOn

state Init
termstatus Systemlnit
if Transitioning stim PostFail
next termstatus SystemStop
stim Initialized
next termstatus SystemOff
state Standby
termstatus SystemFseQff
stim EpoActive
next termstatus SystemEPD
if Stable stim ButtonOn3sec
next termstatus SystemOn
termstatus System(ff
if Stable stim ButtonOn3sec
next termstatus SystemlToggleTaps
stim ButtonOffl@sec
next termstatus SystemFse(ff
stim EpoActive
next termstatus SystemEPO
termstatus ShuttingDownSystem
if Transitioning stim ShutdownTimedOut
next termstatus SystemOff
stim ShutdownCompleted
next termstatus SystemOff
stim EpoActive
next termstatus SystemEPO

Figure 6.5: First Section of an Instance of the Configuration DSL
To improve readability, the DSL instance starts with defining meaningful names

78

6.3 Defining the Behaviour of the Component

for the required status of the terminals, here called termstatus. Since several
termstatuses might correspond to the same required settings of the terminals,
the second part of the DSL groups the termstatuses and associates a recall with
each group. The third part defines a state machine, where for a main state, a
termstatus, and a stimulus we define the next termstatus. A transition might
have a condition on the current substate, indicated by keyword if. Note that each
termstatus belongs to exactly one main state, so the nezt relation implicitly defines
the next main state.

The grammar for this language has been expressed in Xtext; a fragment is
depicted in Figure 6.6. Based on this grammar, the Xtext framework generates
an editor for the language with, for instance, content assist. This makes it easy to
define instances of the languages, such as the instance shown in Figure 6.5.

PowerConfiguration:
"termstatuses = ' termstatNames += TermStatus
(" or ' termstatNames += TermStatus)*

(termStatGroups += TermStatGroup)+
(states += State)+

TermStatus:
name = ID
TermStatGroup:
'group = ' termstatName += [TermStatus]
(" and ' termstatName += [TermStatus])*
', recall = ' recall = INT

2

Figure 6.6: Grammar of the Configuration DSL

Figure 6.7 shows the last section of the configuration DSL which describes
the recalls. As mentioned before, for every system configuration (i.e., choice of
hardware components) there is a separate recalls configuration file. Hence, the DSL
specifies several configurations and a number of recalls for each configuration. For
convenience, we allow the definition of a default state for all terminals which can
be overridden for particular HVTs or LVTs. Moreover, for a recall configuration
(e.g., setup_derivedl in Figure 6.7) the setting of another configuration (e.g.,
setup) can be used and only the differences have to be specified.

6.3.1 POOSL

To increase the confidence in the correctness of the behaviour of the PDU, we sim-
ulate the specified behaviour using POOSL. Using the Xtext/Xtend framework we
implemented a generator which delivers a POOSL model for every DSL instance.
Using sockets, such a POOSL model is connected to a Graphical User Interface
(GUI), see Figure 6.8, which allows the injection of events and the inspection of
the system state, such as the settings of the HVTs and LVTs, during simulation.
The simulation is used to validate and align the system behaviour with internal

79

6 DSLs Combined with other Model-Based Techniques

config name = setup
recall TermStandby

Default for recall status OFf
Controller
PowerBus status On
M_Cab
HVT1 status On
HVT4 status On
LVT24V2a3 status On
LVTGh1 status On

config name = setup derivedl

recall TermStandby

Use config setup

M_Cab
LVT24V2a3 status Off

recall TermToggle

Use config setup
recall TermShutDown

Use config setup

Figure 6.7: Last Section of an Instance of the Configuration DSL

stakeholders. In this way, we detected problems in the DSL instance, e.g., the
simulation in POOSL revealed a missing condition.

Comtiply M_Cabursst B_Cabsrst B Cabnat E_Cabanitt
g fur r p [T— :
H¥T H&T Lo
(2] 2 i
ol] T wT
Gining il 4 1
e '
Shest
— [3n0e Ve e
| Tt | v video O
Coepicted =y
Intmrad fvents kvt Ny Oy
& Bafomabe Faec O
Irsasionng [towson |
Habes Paeres Paver
St Meioher
[0 AT Spatarr DM Tramiitmng - = Syte=Stable > SyiboniiStsbic -
197:48:12] Event SyvtemTamnsitioning rect sliowed in fate fystemOH Tamitionng
37l 71| SpanarveHERdry -5 Tymtem Taptaieng -+ Tyl arn T igedprare)

Figure 6.8: GUI of the Simulation of the Power Distribution Unit

80

6.3 Defining the Behaviour of the Component

6.3.2 SAL

To increase our confidence in the intended behaviour of the PDU, we generated a
SAL model [71, 137] to enable formal model checking. Table 6.3 shows a fragment
of the SAL model. It starts with defining the State and Stim types, which are used
to define the input and output of the main module. Local variables are defined
to represent the status of the LVTs and HVTs (e.g. M_Cab_HVT1) which can
provide power (TRUE) or not (FALSE). Next the initial state and initial values of
the boolean variables are specified. Subsequently, the transitions are defined. The
ELSE statement at the end ensures input enabledness, i.e., in any state always all
inputs can be received.

SALModel: CONTEXT =
BEGIN
State : TYPE = {SystemOnStable, SystemPartlyOnStable, ...};
Stim : TYPE = {ButtonOn3sec, ButtonOn10sec, ButtonOff, ...};
main : MODULE =
BEGIN
INPUT stim : Stim
OUTPUT state : State
LOCAL Controller_ PowerBus, M_Cab_HVTI, ... : BOOLEAN
INITTALIZATION state = SystemOffStable;
Controller _PowerBus = TRUE;
Controller PulsePowerBus = FALSE; ...
TRANSITION
[state = SystemOffStable AND stim = ButtonOn3sec
—— > state’ = SystemToggleTapsStable;
Controller PowerBus’ = TRUE;
Controller _PulsePowerBus’ = TRUE; ...
[| state = SystemOffStable AND stim = ButtonPartlyOn3sec
—— > state’ = SystemPartlyOnStable;
Controller PowerBus’ = TRUE;
Controller PulsePowerBus’ = FALSE; ...
[ELSE —— > % implicitly: state’= state
]
END;
% Properties
END

Table 6.3: Fragment of a SAL Model

Table 6.4 list a part of the properties we verified on the SAL model. We
mainly checked invariants, using the G (Globally) operator of Linear Temporal
Logic (LTL). We briefly explain the theorems:

th1l The first property checks if LVTs and HVTs that belong to the same behavi-
oural group always have the same state.

th2 The second property checks if a terminal provides power in the SystemOff-
Stable state, then it also provides power in all future steps when it is in
the SystemPartlyOnStable state. Similarly, with SystemPartlyOnStable and
SystemOnStable.

81

6 DSLs Combined with other Model-Based Techniques

th3 The third property checks if the LVT24V2a3 terminal in the M-Cabinet
provides power in all states except for the SystemToggleTapsStable state.

th4 For a LVT to provide power it needs to be set to the on state as well as
some preconditions also need to be met. Based on the hardware design,
the preconditions for a LVT to provide power is that LVTGDbI is on and
that HVT1 provides power. The property specifies that if a LVT needs to
provide power, the LVT global switch is on, and if a LVT global switch needs
to provide power, the corresponding HVT1 is on.

thl: THEOREM main |—
G(Controller PowerBus = M_Cab_HVT1 = M_Cab_HVT2 =
R_Cab_HVT4 — B_Cab_HVT3) AND

G(M_Cab_HVT1 = M_Cab_HVT2);

th2: THEOREM main |—
G((state = SystemOffStable AND M_Cab_HVT4) =>
G(state = SystemPartlyOnStable => M_Cab_HVT4))
AND
G((state = SystemPartlyOnStable AND M_ Cab_HVT4) =>
G(state = SystemOnStable => M_ Cab_HVT4))
AND

th3: THEOREM main |—
FORALL (i: State): (NOT(i = SystemToggleTapsStable)) =>
M_Cab_LVT24V2a3);

th4: THEOREM main |—
G(M_Cab_LVT5V1 => M_Cab_LVTGbl) AND
G(M Cab LVTGbl => M Cab HVT1) AND

G(R_Cab_IVT5V1 =>R_Cab_LVTGbl) AND
G(R_Cab_LVTGbl => R_Cab_HVT1) AND

Table 6.4: SAL Property

When we checked the last property, the SAL model checker reports a counter-
example: in the SystemToggleTapsStable state the LVT24V2a3 in the R-Cabinet
should provide power, but the HVT1 does not provide power in the SystemTogg-
leTapsStable state, which is clearly wrong. We changed the DSL instance, which
automatically leads to the generation of a new SAL model. Checking the new
model did not reveal any errors.

6.3.3 Generation of Configuration Files

Having simulated and verified the DSL instance, we finally generate the configur-
ation files. A fragment of the generated scenarios configuration file is shown in
Table 6.5. Since the state machine described by the DSL is ordered on the states,

82

6.4 Testing the Component

6 0 0 00000000 00000000 109 19 2

E.SystemEPO -> BUTTON ONI10SEC -> O.SystemOn
2 21 00000000 00000000 112 4 3

S.SystemOff -> BUTTON _ON3SEC -> 0O.SystemToggleTaps
2 2 0 00000000 00000000 112 4 2

S.SystemFseOff -> BUTTON _ON3SEC -> O.SystemOn
21 1 00000000 00000000 115 6 O

S.SystemOff -> BUTTON OFF10SEC -> S.SystemFseOff
5 1 2 00000000 00000000 117 21 5

0.SystemOnError -> BUTTON_OFF -> S.ShuttingDownError
3 2 2 00000000 00000000 117 5 5

0.SystemOn -> BUTTON _ OFF -> S.ShuttingDownSystem
3 2 3 00000000 00000000 134 7 2

0O.SystemToggleTaps -> TIMER EXPIRED -> O.SystemOn

Table 6.5: Fragment of the Generated Scenarios Configuration File

Figure 6.9: State Diagram of the Configuration DSL

the generator has to transform this to a list that is sorted on the stimulus num-
ber. We have added useful comments to facilitate reviewing and debugging of the
generator. The first eight columns, till the # sign, are the same as the manually
created configuration file described previously. In the comment part, the gener-
ator writes the first letter of the source main state, the source termstatus name,
the stimulus, followed by the first letter of the target main state and the target
termstatus name. Similarly, for all system configurations, a recalls configuration
file has been generated.

Additionally, we have generators that yield for every language instance a set
of UML state diagrams, at several levels of abstraction, using PlantUML [4]. An
impression of a generated diagram is given in given in Figure 6.9 (not readable for
reasons of confidentiality).

6.4 Testing the Component

The PDU has a test set to validate its behaviour, i.e., to check that the combina-
tion of the general software framework, the configuration files, and the hardware
conforms to the requirements. Clearly, this is needed for every new product re-

83

6 DSLs Combined with other Model-Based Techniques

PDS:QUE9:PAR-1 | NoErr | 30000 | 1000 | 2000 | On Button
PDS:SYST? 3:2:2 1000 1000 | 2000 | System On

Table 6.6: Part of a Test Case

lease, but it is also important to rerun all tests after maintenance, e.g., to solve
issues found in the field or to upgrade hardware.

We describe the existing test cases in Section 6.4.1. A DSL to improve main-
tainability of the test cases is presented in Section 6.4.2. Our approach to gener-
ating test cases using SAL is explained in Section 6.4.3.

6.4.1 Test cases

To test the PDU, there is an automated test tool running on a companion PC that
connects to the controller of the PDU via Ethernet. It can inject stimuli and ask
the current state. A test case is a comma separated (CVS) file. All test cases start
and end in the same state which makes it possible to execute them consecutively.
Table 6.6 shows two lines of a test case.

1. The first column is the network command that is send from the test tool to
the PDU (QUE injects a stimulus into the state machine and SYST asks the
current state).

2. The second column is the expected response from the PDU to the test tool
(“NoErr” means that the command is successfully parsed and “3:2:2” is the
current state, with main state 3 (Operational), substate 2 (Stable), and recall
2).

3. The third column is the time (in milliseconds) that the test tool waits before
it sends the next command to the PDU (in this example, the test tool waits
30 seconds between the QUE and the SYST command).

4. The fourth column is a time-out (in milliseconds) on the reply of the PDU;
within this amount of time the PDU should send a message to indicate that
it accepts the command.

5. The fifth column is a time-out (in milliseconds) on the response of the PDU
(as specified in the second column).

6. The sixth column contains comments.

A test case fails on a wrong response or on a time-out of the accept message or
the response.

In the existing situation, a test case consists of about 20 lines. For testing a
single product release about 30 test cases have been constructed manually. The
test cases are difficult to read and to change.

Every night these test cases are executed multiple times on two PDUs with
Jenkins [1] and the developers will find the results of the test execution in their
mailbox. If test cases fail, a lot of time is spent investigating the cause and solving
it in either the software of the PDU or the test case. Test cases often fail because

84

6.4 Testing the Component

termstatuses

termstatus SystemFseOffEntry code "2:0:8"
termstatus SystemFseOffTransitioning code "2:1:8"
termstatus SystemFseOffStable code "2:2:8"

transitions

transition stim EpoActive from termstatus SystemFseOffEntry
to termstatus SystemEPOEntry

transition stim EpoActive from termstatus SystemFseOffTransitioning
to termstatus SystemEPOEntry

transition stim ButtonOn3sec from termstatus SystemFseOffStable
to termstatus SystemOnEntry

tracesets
traceset SystemEPOEntry
trace SystemEPOEntry -> ButtonOnl@sec -> SystemOnEntry ->

SystemTransitioning -> SystemOnTransitioning -> SystemStable ->
... =-> EpoActive -> SystemEPOEntry

Figure 6.10: Test DSL

of timing issues in which the PDU and the test tool are out of sync; this is almost
always caused by the unreliable timing nature of LonWorks. The solution for such
timing issues is an increase of the time bounds in the test cases. This results in
long-lasting test cases with a lot of waiting time.

6.4.2 Test DSL

To describe test cases for the PDU in a maintainable way, a test DSL has been
created. The test DSL is explained using the instance fragment depicted in Fig-
ure 6.10. Note that this instance is generated from an instance of the configuration
DSL. In the first part, for each termstatus of the configuration instance three ex-
tended termstatuses are generated corresponding to the three substates, by adding
Entry, Transitioning, and Stable behind the name. The string after keyword code
matches the first three columns of the VisualState configuration file; it is obtained
using the code of the main state of the termstatus, the code of the substate, and
the recall number defined in the configuration instance.

The second part lists all possible transitions. This is used to generate a report
about coverage of termstatuses and transitions and to generate additional tests
for stimuli that should not lead to a transition. In the third part, one or more
trace sets are defined. Each trace set has one or more traces. A trace consists of
an initial extended termstatus, and a number of pairs consisting of a stimulus and
a next extended termstatus. Each trace starts and ends with the same extended
termstatus, which makes it possible to run a number of traces in one go. Note
that this requirement makes the generation of an instance of the test DSL a bit
more complicated.

The generator of the trace DSL generates a test case, as shown in Table 6.7, for
each trace in the language instance. Every Transitioning and Stable termstatus

85

6 DSLs Combined with other Model-Based Techniques

PDS:SYST? 6:00:00 | 2500 1000 | 2000 | SystemEPOEntry
PDS:QUE9:PAR | NoErr | 2500 1000 | 2000 | ButtonOn10sec
PDS:FWV? 3.0.0.0 | T016_TRANS | 1500 | 2000 | SystemTransitioning
PDS:SYST? 3:01:02 | 1000 1000 | 2000 | SystemOnTransitioning
PDS:FWV? 3.0.0.0 | T017_STABLE | 1500 | 2000 | SystemStable
PDS:SYST? 3:02:02 | 1000 1000 | 2000 | SystemOnStable

Table 6.7: Part of a Generated Test Case

will result in a line in the test case with a SYST command that expects the string
defined after the code key word in the termstatuses part of the instance. Since
Entry substates are not observable (except for the first one), they are omitted. A
stimulus will result in a line in the test case with a QUE command. Note that the
third column is slightly different from Table 6.6; instead of a waiting time, now
also an event can be specified. Such an event is used to synchronize with the PDU
and avoids long waiting times. It makes the testing process much faster.

Additionally, we used PlantUML to generate a visualization of a test trace as
a sequence diagram. An examples is depicted in Figure 6.11.

The generator also generates a coverage file. Based on the selected term-
statuses, transitions and traces, it creates a list of covered states, uncovered states,
covered transitions and uncovered transitions. Figure 6.12 shows a fragment of a
coverage file.

6.4.3 Automated Test Case Generation

Creating test cases with the test DSL is an improvement compared to manually
writing the test cases in the format the test tool takes as input. However, it is
still a lot of work to construct the test cases and to guarantee a certain level of
coverage. Hence, we have experimented with the automatic generation of test
cases.

Since the configuration DSL describes the state behaviour and instances have
been validated using POOSL and SAL, these instances form the basis for our test
generation. For this purpose, the SAL test generator is used, where the SAL
model described in Table 6.3 is extended. Auxiliary variables (e.g., t0, t1, ..) are
added to every transition and updated (e.g., t0’ = TRUE) when the transition is
taken. These auxiliary variables are initially FALSE and only updated when the
transition is taken. Table 6.8 depicts a fragment of an updated SAL model.

The SAL test generator is fed with three files:

e the SAL model described in Table 6.8 which is generated automatically from
the configuration DSL;

e afile describing the test goal (all auxiliary variables t0, t1, ... recording taken
transitions need to be TRUE) - this file is also generated automatically from
the configuration DSL; and,

e a file that defines which information should be visible in the output and how
the output should be formatted.

86

6.4 Testing the Component

3

T L’:Sltf:f

i
' GetState i

| SystsmEPOEnty

' ButtonOn10sec

R

| GetState

e
|

]
SystemXrayOnEntry ...
]

' _ SystemTransitioning

! GetState

_ System¥rayOnTransitioning |

R-A™"

SystemStable

GetState

System¥rayOnStable

. ButtonXrayOff

[
[
[
i
[
[
§
[
[
)
[
[
i
[
[
L i
] [
[
i
i
[
I
[
]
i
[
[
'
[
[
[
[

| GetState

1. ShuttingDownUpsEntry
'

| EpoActive

| GetState

. SystemEPOEntry

Tester suT |

Figure 6.11: Generated Sequence Diagram of a Test Case

Based on this input, the SAL test generator yields test traces until the goal is
satisfied. From the output of the SAL test generator, an instance of the test DSL
is generated automatically using a small script.

Typically, we create two trace sets. The first trace set covers all transitions
and is used for state and transitions coverage. A disadvantage of this set is that
it also tests Emergency Power Off (EPO), which implies that only the controller
of the PDU remains powered; the distribution panels will lose power including
the processor inside. Since this will rarely happen during normal usage, a second
set is created with more realistic user scenarios where the distribution panels stay
powered. Jenkins is configured to run these tests every weekend many times to
test the reliability of the software running inside the PDU. Outside the weekend,
the full test set is run every night.

With the generated test cases, approximately twice as many transitions are
covered as with the manually written test cases. Theses manually written test

87

6 DSLs Combined with other Model-Based Techniques

Covered states
SystemFseOffEntry
SystemFse0ffTransitioning
SystemFseOffStable
SystemToggleTapsEntry
SystemToggleTapsTransitioning
SystemToggleTapsStable

Uncovered states
PrePostEntry
PrePostTransitioning
PrePostStable

Covered transitions
Epokctive
SystemTransitioning
SystemStable
ButtonOn3sec
ButtonOffllsec

Uncovered transitions
Mds0n
Initialized
PdmCommissionTmo
PostFail

Figure 6.12: Part of a Coverage File

LOCAL t0, t1, t2, t3, t4, ...,
INITTALIZATION state = SystemOffStable;
t0 = t1 = ... = FALSE ...
TRANSITION
[state = SystemOffStable AND stim = ButtonOn3sec
—— > state’ = SystemToggleTapsStable;
t0’ = TRUE; Controller PowerBus’ = TRUE; ...
[] state = SystemOffStable AND stim = ButtonVideoOn3sec
—— > state’ = SystemVideoOnStable;
t1’ = TRUE; Controller _PowerBus’ = TRUE; ...
[] ELSE —— >
]
END;
% Properties
END

Table 6.8: Fragment of a SAL Model

cases only make transitions from the Stable substates. The generated test cases
also make transitions from the Entry and Transitioning substates, which leads to
approximately twice as much transition coverage.

88

6.5 Increasing the Confidence in Models and Generators

The manually written cases were very time-dependent, with many long wait-
ing times. They could still fail by a slow response of hardware, which required
some analysis and typically a further increase of the waiting times. By having
all concepts described in a clear and concise way using DSLs, we could make the
test cases much more efficient. Instead of waiting all the time, the test tool now
synchronizes with the PDU and immediately resumes the test case once the PDU
has reached the desired state.

6.5 Increasing the Confidence in Models and Gen-
erators

To increase the confidence in the correctness of the models and the transformations,
we have used several cross checks and logging information of the system in use.
The PDU writes its state and stimulus events to a log file during its routine usage.
To validate our approach, we have used log files made by system testers and users
in the field. We implemented a small script that can be used to translate this
logging information into a trace which is formatted according to the test DSL. To
use these test traces for the validation of the POOSL and SAL models, we have
constructed additional transformations from the test DSL to POOSL and SAL.
An overview of the transformation is depicted in Figure 6.13.

configuration

Instance generated

system translated test
logging instance

genefated
A4
system trace property
tests (POOSL) (SAL)

Figure 6.13: Overview Test DSL Transformations

To validate the POOSL models and generators, we generate from an instance of
the test DSL a separate POOSL process which tests the POOSL model generated
from the configuration DSL (see Section 6.3.1). This POOSL test process replaces
the GUI and runs the test trace by providing the stimuli of the trace and comparing
the output of the model with the output specified in the trace. The results are
written to a test report.

For SAL, the test DSL is extended with a generator which delivers an LTL
formula describing a test trace in SAL. Table 6.9 provides an example of such a

89

6 DSLs Combined with other Model-Based Techniques

formula, where X is the next operator referring to the next step. Next the SAL

model checker can be used to check the existence of the test trace in the model.

th1l: THEOREM main |—
G((state = SystemOffStable AND stim = ButtonPartlyOn3sec) =>
X(state = SystemPartlyOnStable)) AND
G((state = SystemPartlyOnStable AND stim = ButtonOff) =>
X(state = ShuttingDownPartlySystemTransitioning)) AND
G((state = ShuttingDownPartlySystemTransitioning AND
stim = ShutdownCompleted) =>
X(state = SystemOffStable));

Table 6.9: Fragment of a Trace Expressed in LTL

Finally, Figure 6.14 provides an overview of the role of SAL in our approach. It
is used to verify properties of instances of the configuration DSL and to generate
test traces, i.e., instances of the test DSL. Moreover, the SAL model is validated

using system logs.

configuration
instance

generated

y

loaded in

system
configuration

generated (

analysis model
including properties

formal model generated

(SAL)

N

generated & checked

test
instance

A
translatedto

test
instan

ce

system generated
logging
produces ,
applied to system
system
tests

Figure 6.14: SAL Overview

90

6.6 Concluding Remarks

6.6 Concluding Remarks

We summarize the results in Section 6.6.1. The additional generation of analysis
models is described in Section 6.6.2. Section 6.6.3 addresses the research questions.

6.6.1 Results

We started with the configuration DSL and generated a configuration file for the
current system release. This generated file was successfully tested on the target
hardware. Comparing the generated file with the existing one, we found a number
of issues in the existing file. It contained a non-existing transition and a number
of transitions were missing. As a next step, we made a DSL instance for the
next system release and generated the configuration file. The size of this new
configuration file is about twice the size of the current file, which indicates the
increasing complexity of our system releases.

With the generated test cases, approximately twice as much transitions are
covered as the manually written tests. The manually written test cases only make
transitions from the Stable substates. The generated test cases also make trans-
itions from the Entry and Transitioning substates, which leads to twice as many
transition coverage.

The manually written cases were very time-dependent, with many long wait-
ing times. They could still fail by a slow response of hardware, which required
some analysis and typically a further increase of the waiting times. By having
all concepts described in a clear and concise way using DSLs, we could make the
test cases much more efficient. Instead of waiting all the time, the test tool now
synchronizes with the PDU and immediately resumes the test case once the PDU
has reached the desired state.

6.6.2 Analysis models

In addition to the generated configuration and test files, we generated a number
of analysis models. From the configuration DSL we generated models for the
simulation tooling of POOSL and the model checker SAL. The generators for
SAL and POOSL combine the behaviour of the high-level state machine and the
low-level state behaviour described by the (generated) configuration file, into one
state machine describing the complete system start-up and shut-down behaviour.
Implicitly, these generators define the semantics of the DSLs. The use of multiple
tools increases the confidence in the correctness of the generators.

The advantage of having a separate test DSL is that we can also generate tests
or checks for the analysis models. For POOSL, we generated a tester process that
communicates with the generated state machine. Every test trace results in a
method that applies stimuli to the state machine process and checks whether the
returned responses are as expected. The results are written to a file with a test
report.

SAL was very useful in generating an improved test set with twice as many
transition coverage. However, model checking with SAL is quite time consuming.
For instance, defining and checking the SAL properties took 20 hours. The main
reason it took this long was because model checking of some properties took at

91

6 DSLs Combined with other Model-Based Techniques

least 30 minutes or run out of memory on an i7 with 6 cores with 20GB of RAM.
Also the logic to express properties is limited to LTL (or a corresponding subset of
CTL). So we were not able to check certain desirable properties about the existence
of a path to certain states.

Using POOSL and SAL, we detected problems in the DSL instance, e.g., the

simulation of a POOSL model revealed a missing condition. Moreover, we can
detect whether a termstatus occurs in multiple main states. With SAL we found
an error in the HVT power status of the recall configuration file.

6.6.3 Evaluation

We discuss the questions listed:

92

e How much time is needed to learn the tools and techniques?

Clearly, the learning curve for new techniques depends on previous education
and knowledge. With a Master’s in Computer Science, including courses
about grammars and formal techniques, the basic part of the manual requires
4 hours to install the tools and to redo the examples of the manual. This
was enough to get started.

How much effort is needed to migrate the current legacy component to a
component which is defined by a high-level human-usable DSL?

It took about 35 hours to create the two DSLs presented here and to integrate
them with the PDU and the test tool. This step was sufficient to demonstrate
the usefulness of the approach to management. In later increments, we added
the generators for the analysis models and the use of SAL for test generation.
Since the adaptation of grammars and generators is relatively easy and fast,
the approach supports an incremental way of working. The Eclipse/Xtext
framework is quite mature and provides many basic features such as syntax
highlighting, auto completion, and content assist.

Does the DSL approach support the combination with analysis techniques
such as simulation tools and formal model checkers?

Given earlier experience with POOSL, and SAL, it was straightforward to
write generators for these languages. For each of the three languages men-
tioned, this took about 5 hours. The generators to visualize the state diagram
and test traces using PlantUML requires only a few hours of work.

What are the benefits of introducing these new techniques compared to the
current way of working?

Currently, the configuration files need to be crafted manually. Because of
the format of these configuration files, this is a difficult and error prone
task. For the new product release, the size of the files almost doubled which
indicates that the complexity of our configuration files is expected to increase
quickly. It took only 45 hours to be ready for this increasing complexity. We
can now create the configuration and test cases for the PDU in a readable,
easy to change and maintainable format. The tests are now 3 times faster
with a double coverage. It is expected that creating a new instance of the

6.6 Concluding Remarks

configuration DSL and integrating the generated artefacts for a new product
release, we need only 8 hours instead of the estimated 60 hours.

Our experience is in accordance with a recent report about the state of practice
in model-driven engineering [170]. It shows that most successful applications of
model-driven development use small DSLs.

93

CHAPTER [

LMODEL LEARNING TO VALIDATE REFACTORING

This chapter describes the use of model learning to check the correctness
of a refactored component. First we describe the motivation for applying
model learning. Next we explain the learning approach in more detail. Then
the industrial case is described to the extent needed for understanding this
chapter. This is followed by the results of model learning and model checking
to compare the legacy implementation with the new implementation. Lastly
we discuss the scalability of our approach.

7.1 Motivation for the Application of Model Learn-
ing

In this chapter, we report about a novel industrial application of model learn-
ing to gain confidence in a refactored legacy component. We decided to use a
combination of tools similar to the approach of [63, 7]. The model learning tool
LearnLib [76] was used to learn models of the legacy component and the refactored
implementation. The version of LearnLib we used can actively learn derministic
Mealy machines. These models were then compared to check if the two imple-
mentations are equivalent. Since the manual comparison of large models is not
feasible, we used an equivalence checker from the mCRL2 toolset [38] for this task.

We report about our experiences with the described approach on a real develop-
ment project at Philips. The project concerns the introduction of a new hardware
component, the Power Distribution Unit (PDU). As described in Section 1.5, the
PDU is used to start-up and shut-down an interventional X-ray system. All com-
puters in the system have a software component, the Power Control Service (PCS)
which communicates with the PDU over an internal control network during the
execution of start-up and shut-down scenarios. To deal with the new hardware
of the PDU, which has a different interface, a new implementation of the PCS
is needed. Since different configurations have to be supported, with old and new

95

7 Model Learning to Validate Refactoring

PDU hardware, the old and new PCS software should have exactly the same ex-
ternally visible behaviour.

7.2 Learning Approach

The learning approach can be described as follows (see also Figure 7.1):

96

Implementation AJ Implementation B

model learner model learner

Model MA J Model MB J

equivalence

checker

models refine
correct model(s)
for o? using

counter
example ¢

adapt
implementation(s)

Figure 7.1: Approach to Compare Legacy Component and Refactored Version

. Implementation A (the legacy component) is explored by a model learner.

The output of the model learner is converted to an input format for the
equivalence checker, model MA.

. Implementation B (the refactored component) is explored by a model learner.

The output of the model learner is converted to an input format for the
equivalence checker, model MB.

. The two models are checked by the equivalence checker. The result of the

equivalence checker can be:

e The two models are equivalent. In this case we are done.

e The two models are not equivalent and a counterexample is provided: a
sequence of inputs o for which the outputs produced by the two models
are different. In this case we proceed to step 4.

. Because models A and B have been obtained through a finite number of tests,

we can never be sure that they correctly describe implementations A and B,
respectively. Therefore, if we find a counterexample o for the equivalence of
models MA and MB, we first check whether implementation A and model
MA behave the same for o, and whether implementation B and model MB

7.3 Context of the PCS

behave the same for o. If there is a discrepancy between a model and the
corresponding implementation, this means that the model is incorrect and
we ask the model learner to construct a new model based on counterexample
o, that is, we go back to step 1 or 2. Otherwise, counterexample ¢ exhibits a
difference between the two implementations. In this case we need to change
at least one of the implementations, depending on which output triggered
in response to input o is considered unsatisfactory behaviour. Note that
also the legacy component A might be changed, because the counterexample
might indicate an unsatisfactory behaviour of A. After the change, a correc-
ted implementation needs to be learned again, i.e., we go back to step 1 or
2 for relearning the corrected implementation.

Since the learning of an implementation can take a substantial amount of time,
we start with a limited subset of input stimuli for the model learner and increase
the number of stimuli once the implementations are equivalent for a smaller number
of stimuli. Hence, the approach needs to be executed iteratively.

7.3 Context of the PCS

The PCS is a software component that is used to start and stop subsystems via
their Session Managers (SMs). In addition to the start-up and shut-down scenarios
executed by the PDU, the PCS is also involved during service scenarios such as
upgrading the subsystem’s software.

The PCS implementation for the old PDU is event-based. An event is handled
differently based on the value of global flags in the source code. Hence, all state
behaviour is implicitly coded by these flags, which makes the implementation
unmaintainable. The development of a new implementation for supporting the
new PDU is an opportunity to create a maintainable implementation. The new
implementation makes the state behaviour explicit by a manually crafted state
machine.

To be able to support both the old and the new PDU, the PCS software has
been refactored such that the common behaviour for both PDUs is extracted.
Figure 7.2(a) depicts the PCS before refactoring. The Host implements the IHost
interface that is used by the service application. The implementation of the PCS
after refactoring is show in Figure 7.2(b).

@Hnst @Pcscammon

/N

Host ©Pcs0rigina|
© > ©0IdeuSuppnn ©NedeuSuppnn

(a) Before refactoring (b) After refactoring
Figure 7.2: Class Diagrams of PCS Design
The PcsCommon class implements the ISessionManager interface to control

97

7 Model Learning to Validate Refactoring

the SMs. The OldPduSupport class contains the legacy implementation for the
old PDU whereas a NewPduSupport class deals with the new PDU. Both classes
inherit from the PcsCommon class to achieve the same internal interface for the
Host. Depending on the configuration, the Host creates an instance of either the
OldPduSupport or the NewPduSupport class.

The PCS as depicted in Figure 7.2(b) is written in C++ and consists of a total
of 3365 Lines Of Code (LOC): Host has 741 LOC, PcsCommon has 376 LOC,
OldPduSupport has 911 LOC, and NewPduSupport has 1337 LOC.

The unit test cases were adapted to include tests for the new implementation.
It was known that the unit test set is far from complete. Hence, we investigated
the possibility to use model learning to get more confidence in the equivalence of
the old and new implementations.

7.4 Application of the Learning Approach

To learn models of our implementations, we used the LearnLib tool [122], see
http://learnlib.de/. For a detailed introduction into LearnLib we refer to
[143]. In our application we used the development 1.0-SNAPSHOT of LearnLib
and its MealyLearner which is connected to the System Under Learning (SUL) by
means of an adapter and a TCP/IP connection.

7.4.1 Design of the Learning Environment

Figure 7.3 depicts the design used for learning the PCS component. Creating an
initial version of the adapter took about 8 hours, because the test primitives of
the existing unit test environment could be re-used.

z LearnLib | z SessionManager

ISessionianager

PDU Stub

Figure 7.3: Design Learning Environment

With this design, the PCS can be learned for both the old and the new PDU.
The adapter automatically changes the configuration of the PCS such that the PCS
knows if it needs to instantiate the old or the new implementation. Depending on
the old or new PDU, the adapter instantiates a different PDU stub.

98

http://learnlib.de/

7.4 Application of the Learning Approach

7.4.2 Learned Output

The Mealy machine that is the result of a LearnLib session is represented as a
"dot" file, which can be visualized using Graphviz!. A fragment of a model is
shown in Table 7.1.

digraph g {
start0 [label="" shape="none"[;

s0 [shape="circle" label="0"];

s1 [shape="circle" label="1"];

52 [shape="circle" label="2"];

s3 [shape="circle" label="3"];

s4 [shape="circle" label="4"];

s5 [shape="circle" label="5"];

s6 [shape="circle" label="6"];

s7 [shape="circle" label="7"];

s8 [shape="circle" label="8"];

50 -> sl [label="|PDU(StateSystemOn)| / [PCS(Running);SM1(Running);SM2(Running)|"];

s0 -> s2 [label="|PDU(StateSystemOff)| / |[PCS(Running);SM1(Stopped);SM2(Stopped);Dev(Shutdown)|"];
s1 -> s2 [label="|PDU(ButtonSystemOff)| / |PCS(Running);SM1(Stopped);SM2(Stopped);Dev(Shutdown)|"];
51 -> s3 [label="|Host(goToOpenProfile)| / [PCS(Stopped);SM1(Stopped);SM2(Stopped);Dev(OpenProfile)|"];

startQ -> s0;

}

Table 7.1: Fragment of a Learned DOT-File

7.4.3 Checking Equivalence

For models with more than five states it is difficult to compare the graphical output
of LearnLib for different implementations. Therefore, an equivalence checker is
used to perform the comparison. In our case, we used the tool support for mCRL2
(micro Common Representation Language 2) which is a specification language
that can be used for specifying system behaviour. The mCRL2 language comes
with a rich set of supporting programs for analysing the behaviour of a modelled
system [38].

Once the implementation is learned, a small script is used to convert the out-
put from LearnLib to a mCRL2 model. Basically, the learned Mealy machine is
represented as an mCRL2 process Spec (s:States). As an example, the two
transitions of state s0 in the dot-file

s0 -> s1 [label="|PDU(StateSystemOn)| / |[PCS(Running);SM1(Running);SM2(Running)|"];
s0 -> s2 [label="|PDU(StateSystemOff)| / [PCS(Running);SM1(Stopped);SM2(Stopped);Dev(Shutdown)|"];
are translated into the following process algebra construction:

(s==s0) -> (
(PDU(StateSystemOn) . PCS(Running) . SM1(Running) . SM2(Running) . Spec(sl)) +
(PDU(StateSystemOff) . PCS(Running) . SM1(Stopped) . SM2(Stopped) . Dev(Shutdown) . Spec(s2))

)

A part of the result of translating the model of Table 7.1 to mCRL2 is shown in
Table 7.2.

Iwww.graphviz.org/

99

7 Model Learning to Validate Refactoring

sort States = struct s0 | s1 | s2 | s3 | sd |s5 | s6 | s7 | s8;

OsStim = struct StartPcs | StopPcs;

PDUStim = struct StateSystemOn | StateSystemOff | ...;
HostStim = struct stopForInstallation | startAfterInstallation | ...;
ServiceStates = struct Running | Stopped,;

DevStates = struct OpenProfile | Shutdown;

act OS:0sStim;

act PDU:PDUStim;
act Host:HostStim;
act PCS:ServiceStates;
act SM1:ServiceStates;
act SM2:ServiceStates;
act Dev:DevStates;

proc Spec(s:States)=

(s==s0) -> (

(PDU(StateSystemOn) . PCS(Running) . SM1(Running) . SM2(Running) . Spec(sl)) +
(PDU(StateSystemOff) . PCS(Running) . SM1(Stopped) . SM2(Stopped) . Dev(Shutdown) . Spec(s2))

(PDU(ButtonSystemOff) . PCS(Running) . SM1(Stopped) . SM2(Stopped) . Dev(Shutdown) . Spec(s2)) +
(Host(goToOpenProfile) . PCS(Stopped) . SM1(Stopped) . SM2(Stopped) . Dev(OpenProfile) . Spec(s3)) +
(Host(goToClosedProfile) . PCS(Stopped) . SM1(Stopped) . SM2(Stopped) . Spec(s4)) +
(Host(openProfileStart Application) . PCS(Running) . SM1(Running) . SM2(Running) . Spec(sl)) +

(Host (openProfileStopApplication) . PCS(Running) . SM1(Running) . SM2(Running) . Spec(sl)) +
(OS(StartPes) . PCS(Running) . SM1(Running) . SM2(Running) . Spec(sl)) +
(OS(StopPcs) . PCS(Stopped) . SM1(Stopped) . SM2(Stopped) . Spec(s4))

(s==52) -> (
.).;.

init Spec(s0);

Table 7.2: Fragment of mCRL2 Model

Given two (deterministic) Mealy machines, the labelled transition systems for
the associated mCRL2 processes are also deterministic. Since the labelled trans-
ition systems also do not contain any 7-transitions, trace equivalence and bisim-
ulation equivalence coincide, and there is no difference between weak and strong
equivalences [48]. Thus, two Mealy machines are equivalent iff the associated
mCRL2 processes are (strong) trace equivalent, and the mCRL2 processes are
(strong) trace equivalent iff they are (strong) bisimulation equivalent.

7.4.4 Investigating Counterexamples

When the equivalence check indicates that the two models are not equivalent,
the mCRL2 tool provides a counterexample. To investigate counterexamples, we
created a program that reads a produced counterexample and executes this on the
implementations. In the design depicted in Figure 7.3, the LearnLib component
has been replaced by the counterexample program. As before, switching between
the two implementations can be done by instructing the adapter. In this way,
the standard logging facilities of program execution are exploited to study the
counterexample.

100

7.5 Results of Learning the Implementations of the PCS

7.5 Results of Learning the Implementations of the
PCS

In this section we describe the results of applying the approach to the implement-
ations of the PCS component.

7.5.1 Iteration 1

The first iteration was used to realize the learning environment as is described in
Section 7.4.1. An adapter was created to interface between the PCS and LearnLib.
Because the communication between the PCS and the adapter is asynchronous,
the adapter has to wait some time before the state of the PCS can be examined.
In this iteration we performed a few try runs to tweak the wait time needed before
taking a sample. In addition, the first iteration was used to get an impression on
how long learning the PCS takes with different numbers of stimuli. The necessary
waiting time of 10 seconds after a stimulus for learning the PCS is quite long, and
this greatly influenced the time needed for learning models.

7.5.2 Iteration 2

After a first analysis of the time needed for model learning in iteration 1, we
decided to start learning with 9 stimuli. These 9 stimuli were all related to basic
start-up/shut-down and service scenarios. We learned the PCS implementation
for the old PDU and the PCS implementation for the new PDU. The results are
presented in Table 7.3. The table has a column for the number of stimuli, for the
number of states and transitions found, and for the time it took for LearnLib to
learn the implementations.

Stimuli | States | Transitions | Time (in seconds)
PCS impl. for old PDU | 9 8 43 32531
PCS impl. for new PDU | 9 3 8 1231

Table 7.3: Results Learning PCS with 9 Stimuli

Note that learning a model for the old implementation took 9 hours. (This
excludes the time used to test the correctness of the final model.) As described in
Section 7.4.3, the learned models were converted to mCRL2 processes. Next, the
mCRL2 tools found a counterexample starting with:

PDU(StateSystemOn), PCS(Running), SM1(Running), SM2(Running), ...

We investigated this counterexample and found an issue in the PCS imple-
mentation for the new PDU. The new implementation did not make a distinction
between the SystemOff event, and the ServiceStop and ServiceShutdown events.

Note that before performing the learning experiment the new and old imple-
mentations were checked using the existing regression test cases. This issue was
not found by the existing unit test cases.

101

7 Model Learning to Validate Refactoring

7.5.3 Iteration 3

In the third iteration, the PCS implementation for the new PDU was re-learned
after solving the fix. Table 7.4 describes the results.

Stimuli | States | Transitions | Time (in seconds)
PCS impl. for old PDU | 9 8 43 32531
PCS impl. for new PDU | 9 7 36 8187

Table 7.4: Results Learning PCS with 9 Stimuli

An equivalence check with the mCRL2 tools resulted in a new counterexample
of 23 commands:
PDU(StateSystemOn), PCS(Running), SM1(Running), SM2(Running),
Host(goToOpenProfile), PCS(Stopped), SM1(Stopped), SM2(Stopped),
Dev(OpenProfile), OS(StartPcs), PCS(Running), SM1(Stopped),
SM2(Running), Dev(OpenProfile), Host(openProfileStopApplication),
PCS(Running), SM1(Stopped), SM2(Running), Dev(OpenProfile),
PDU(ButtonSystemOff), PCS(Running), SM1(Stopped), SM2(Running).

When we executed this counterexample on the PCS implementation for the
old PDU, we found the following statement in the logging of the PCS: "Off button
not handled because of PCS state (Stopping)". A quick search in the source
code revealed that the stopSessionManagers method prints this statement when
the Stopping flag is active. This is clearly wrong, because this flag is set by
the previous stimulus, i.e., the openProfileStopApplication stimulus. The PCS
implementation for the old PDU was adapted to reset the Stopping flag after
handling the openProfileStopApplication stimulus.

7.5.4 Iteration 4

In the fourth iteration, the PCS implementation for the old PDU was re-learned
after solving the fix. Table 7.5 describes the results after re-learning. Note that,
after correcting the error, learning the model for the old implementation only
takes slightly more than one hour. When checking the equivalence, the mCRL2
tool reports that the two implementation are (strong) trace equivalent for these 9
stimuli.

Stimuli | States | Transitions | Time (in seconds)
PCS impl. for old PDU | 9 7 36 4141
PCS impl. for new PDU | 9 7 36 8187

Table 7.5: Results Learning PCS with 9 Stimuli

102

7.6 Scalability of the Learning Approach

7.5.5 Iteration 5

As a next step we re-learned the implementations for the complete set of 12 stimuli;
the results are shown in Table 7.6. Note that learning the new implementation
takes approximately 3.5 hours. The mCRL2 tools report that the two obtained
models with 12 stimuli are trace equivalence and bisimulation equivalent.

Stimuli | States | Transitions | Time (in seconds)
PCS impl. for old PDU | 12 9 65 10059
PCS impl. for new PDU | 12 9 65 12615

Table 7.6: Results Learning PCS with 12 Stimuli

7.6 Scalability of the Learning Approach

Using model learning we found issues in both a legacy software component and in
a refactored implementation. After fixing these issues, model learning helped to
increase confidence that the old and the new implementations behave the same.
Although this is a genuine industrial project, the learned Mealy machine models
are very small. Nevertheless, learning these tiny models already took up to 9
hours. For applying these techniques in industry there is an obvious need to make
model learning more efficient in terms of the time needed to explore a system
under learning. Clearly, our approach has been highly effective for the PCS. But
will it scale?

Below we present an overview of some recent results that make us optimistic
that indeed our approach can be scaled to a large class of more complex legacy
systems.

7.6.1 Faster implementations

The main reason why model learning takes so long for the PCS is the long waiting
time in between input events. As a result, running a single test sequence (a.k.a.
membership query) took on average about 10 seconds and a reset of the imple-
mentation took about 5 seconds. In another industrial project a model for a printer
controller was learned with 3410 states and 77 stimuli [141]. Even though more
than 60 million test sequences were needed to learn it, the task could be completed
within 9 hours because on average running a single test sequence took only 0.0005
seconds. For most software components the waiting times can be much smaller
than for the PCS component studied in this chapter. In addition, if the waiting
times are too long then sometimes it may be possible to modify the components
(just for the purpose of the model learning) and reduce the response times. For our
PCS project such an approach is difficult. The PCS controls the Session Managers
(SMs), which are Windows services. After an input event we want to observe the
resulting state change of the SMs, but due to the unreliable timing of the OS we
need to wait quite long. In order to reduce waiting times we would need to speed
up Windows.

103

7 Model Learning to Validate Refactoring

7.6.2 Faster Learning and Testing Algorithms

There has been much progress recently in developing new algorithms for automata
learning. In particular, the new TTT learning algorithm that has been introduced
by Isberner [80] is much faster than the variant of Angluin’s L* algorithm [10]
that we used in our experiments. Since the models for the PCS components are
so simple, the L* algorithm does not need any intermediate hypothesis: the first
model that L* learns is always correct (that is, extensive testing did not reveal any
counterexample). The TTT algorithm typically generates many more intermediate
hypotheses than L*. This means that it becomes more important which testing
algorithm is being used. But also in the area of conformance testing there has
been much progress recently [44, 141]. Figure 7.4 displays the results of some
experiments that we did using an implementation of the TTT algorithm that has
become available very recently in LearnLib, in combination with a range of testing
algorithms from [44, 141]. As one can see, irrespective of the test method that is
used, the TTT algorithm reduces the total number of input events needed to learn
the final PCS model with a factor of about 3.

TTT we L°. Philips.
&000

. . . ; - .
TITHSI [
TTT H-ADS

| TTT H-UIOv x
7000 oy
TTTWp 3

G000 + L 8

5000
4000

3000 -

actions performed in total

2000 - -

1000 - 8

states leamed

Figure 7.4: Ezperiments with TTT algorithm for final PCS implementation for new
PDU. The used test methods (W, Wp, hybrid adaptive distinguishing sequences, hybrid
UIOv) were all randomised. For each test method 100 runs were performed. In each case
95% of the runs were in the shaded area. The dotted lines give the median run for a given
test method.

7.6.3 Using Parallelization and Checkpointing

Learning and testing can be easily parallelized by running multiple instances of
the system under learning (in our case the PCS implementation) at the same

104

7.7 Concluding Remarks

time. Henrix [73] reports on experiments in which doubling the number of parallel
instances nearly doubles the execution speed (on average with a factor 1.83). An-
other technique that may speed-up learning is to save and restore software states
of the system under learning (checkpointing). The benefit is that if the learner
wants to explore different outgoing transitions from a saved state ¢ it only needs
to restore ¢, which usually is much faster than resetting the system and bringing it
back to g by an appropriate sequence of inputs. Henrix [73] reports on experiments
in which checkpointing with DMTCP [11] speeds up the learning process with a
factor of about 1.7.

7.6.4 Using Abstraction and Restriction

The number of test/membership queries of most learning algorithms grows lin-
early with the number of inputs. However, these algorithms usually assume an
oracle that provides counterexamples for incorrect hypothesis models. Such an or-
acle is typically implemented using a conformance testing algorithm. In practice,
conformance testing often becomes a bottleneck when the number of inputs gets
larger. Thus we seek methods that help us to reduce the number of inputs.

To get confidence that two implementations with a large number of stimuli
exhibit the same behaviour, a simple but practical approach is to apply model
learning for multiple smaller subsets of stimuli. This will significantly reduce
the learning complexity, also because the set of reachable states will typically be
smaller for a restricted number of stimuli. Models learned for a subset of the
inputs may then be used to generate counterexamples while learning models for
larger subsets on inputs. Smeenk [140] reports on some successful experiments in
which this heuristic was used.

A different approach, which has been applied successfully in many case studies,
is to apply abstraction techniques that replace multiple concrete inputs by a single
abstract input. One may, for instance, forget certain parameters of an input event,
or only record the sign of an integer parameter. We refer to [6, 32] for recent
overviews of these techniques.

7.7 Concluding Remarks

We presented an approach to get confidence that a refactored software compon-
ent has equivalent external control behaviour as its non-refactored legacy software
implementation. From both the refactored implementation and its legacy imple-
mentation, a model is obtained by using model learning. Both learned models are
then compared using an equivalence checker. The implementations are learned and
checked iteratively with increasing sets of stimuli to handle scalability. By using
this approach we found issues in both the refactored and the legacy implementa-
tion in an early stage of the development, before the component was integrated.
In this way, we avoided costly rework in a later phase of development.

105

CHAPTER 8

LREFACTORING A LEGACY IMPLEMENTATION
USING A DSL

In this chapter, we describe a case in which models created with a legacy
tool are transformed to models that can be used by another tool. The
transformation is established by means of a DSL for the legacy models. The
model transformations are defined as a generator of this DSL and we explain
how confidence in these transformations has been obtained.

8.1 Motivation for the Transformation

Rhapsody [77] is an UML-based modelling tool that is used at Philips to develop
software components. In Rhapsody, state machines can be modelled graphically.
From these models, the Rhapsody tooling generates source code in C+-+ which can
be integrated into the product. The generated source code depends on run-time
libraries from Rhapsody that are required to execute the state machine code.

Unfortunately, the use of Rhapsody did not bring the expected benefits. Partly
this is due to a wrong use of the tool, but it is also not very convenient to use the
Rhapsody tooling in the way of working at Philips. Code, e.g., to describe actions
on transitions, has to be entered via a small window and it is difficult to get a
good overview. The main problem is the difficulty to merge development streams,
which easily leads to product faults.

This led to the wish to remove the dependency on Rhapsody and to migrate
Rhapsody models to Dezyne models. Dezyne is a commercial modelling tool cre-
ated by the company Verum. It is the successor of the ASD approach described
in Chapter 3. Whereas ASD models have a tabular notation, Dezyne models are
described in a text-based horizontal DSL. All model checking capabilities present
in ASD are also available in Dezyne. From Dezyne models source code can be
generated. Dezyne is already used at Philips, hence a transformation of Rhapsody
to Dezyne would also reduce the number of tools that have to be supported.

107

8 Refactoring a Legacy Implementation using a DSL

As an intermediate step in the transformation, we use ComMA models [91].
Component Modelling & Analysis (ComMA) is a horizontal DSL created at Philips.
The main business driver for this DSL was the need to test and monitor interfaces
of components. For instance, to check interface compliance of third-party com-
ponents. Interface definitions in ComMA include state machines to describe the
allowed interactions, similar to UML’s protocol state machines. In the approach
of this chapter, the state machine notation of ComMA is used to describe the
internal behaviour of components and to generate a Dezyne model from it. In this
way, we avoid a strong dependency on Dezyne and allow the direct generation of
source code from ComMA models in the future.

In this chapter we investigate the following two research questions:

e Can a DSL be used to migrate from one model to another model?

e Is it financially feasible to transform a legacy model using a DSL?

8.2 Transformation Approach
The migration from Rhapsody to Dezyne is based on two steps:

1. From a Rhapsody model, an implementation is generated. The generated
C++ source code is placed in a Microsoft Visual Studio project. After this,
the implementation can be maintained without the use of Rhapsody.

2. The implementation generated in step 1 still depends on Rhapsody run-time
libraries for the Rhapsody generated state machines. To be able to remove
the Rhapsody dependencies, the Rhapsody state machines are transformed
into Dezyne state machines. From Dezyne state machine source code is
generated and integrated into the Visual Studio project of step 1.

The approach to migrate Rhapsody models into Dezyne models is depicted in
Figure 8.1. From a Rhapsody model, the Rhapsody tool can generate an imple-
mentation in source code that includes the Rhapsody state machines. After trans-
forming the state machines in a Rhapsody model to a Dezyne model, the Dezyne
tool can generate a state machine implementation. The Dezyne state machines
replaces the Rhapsody state machines in the Rhapsody generated implementation.
An example of a Rhapsody model instance is shown in Figure 8.2. It describes
a transition from one state (indicated by _ itsSource) to another state (indicated
by itsTarget). The transition is triggered by tgPostDone. When triggered and
the guard (AllSlavePostEzecuted) evaluates to true, the action body is executed.
A DSL, called Rhapsody DSL, is defined such that it accepts such Rhapsody mod-
els as language instances. A generator of this DSL transforms the model into a
ComMA instance. This transformation is described formally in Section 8.3.

Next a Dezyne model is generated from a ComMA instance, as described in
Section 8.3.3. Finally, from a Dezyne model a state machine implementation in
C++ is generated which replaces the Rhapsody generated state machine.

108

8.2 Transformation Approach

Rhapsody Rhapsody ComMA ComMA

Model DSL Model DSL

Parses Generates Parses Generates
A 4
Y Dezyne

Rhapsody Model

Tool

Parses

Generates

Generates

A Generates
v . s v
Implementations are equal
Machine Only the state machines are different Machine

Implementation — Implementation

Figure 8.1: Transformation Approach

fe22 -£1b7-4
- b r = "tgPostDone":

- 1 nterfaceltem =

la== = "ITriggered”;

IIacePrintf{MCI_EIaceLevelLow,
m_PostExecuteSemaphore-»signal():":

Figure 8.2: Fragment of a Rhapsody Model

109

8 Refactoring a Legacy Implementation using a DSL

8.3 State Machine Transformations

In this section, we describe the essence of the transformation from Rhapsody state
machines to ComMA state machines. The aim is to define this transformation in
such a way that the generation from ComMA to Dezyne is trivial. Our notations
are inspired by [40, 50].

State machine representation A state machine (SM) is represented using a
tuple < sq, 5,7, Sub > where

110

e S is a set of states. A state s has a name, denoted by name(s). Optionally,

a state may have a Global Unique IDentifier (GUID), denoted by GUID(s).
The set S may contain so-called connector states (denoted by s, s¢,,...). A
connector state is a state that can be used to model choices on transitions.

sq € S is the default state, also called the initial state, and denoted by
default(SM).

. " » t
T is a set of transitions. A transition has the from sg M> $1 where

— 8¢9 € S is the source state.

— g is a guard, which is a boolean expression consisting of method calls
that evaluate to either true or false. The guard is optional, i.e., can be
omitted.

— act is an activation which can be a trigger which is a synchronous
method or an asynchronous event. For a synchronous method, the
caller has to wait until the callee is available. Events are queued. The
activation part is optional.

— a is a list of actions. An action is a method call. The action part is
optional.

— 51 € S is the target state.

For such a transition ¢ we use source(t) = sg, guard(t) = g, activation(t) =
act, action(t) = a, and target(t) = s1.

e Sub is set of sub state machines. A sub state machine is a tuple of the form

< 83, SM; > where s; € S and SM; is a state machine. Note that Sub may
be empty.

The states s; occurring in sub state machines are called super states. Super(s)
is true iff s is a super state.

Figure 8.3 depicts an example state machine (SM) < s4,S,T, Sub > where
e The default state is sy = sg.
e The set of states S is {so, s1, $2, $3, S4}-

e The set of transitions T is {¢o, t1,t2,t3} for which:

lgolacto/ao
—tg=8) ——— s1

8.3 State Machine Transformations

-
54 W
. S5 I [g3 AND gd] act2 /a3, a4 | S6

(¢

%

Figure 8.3: Ezample of a State Machine

[lact:/— $o

—t1:81

— ty = 59 l[g1]—/a1 s3

by = sy lg2]—/a2 54
e Sub is < s4,SMy >.
For sub-state machine SMy is defined by < sq,, S4, T4, Suby > where
e The default state is sq = ss.

e The set of states Sy = {s5,56}.

e t)
e The set of transitions Ty = {ss losngalacts/as,an, S6}

o Suby = 0.
Rhapsody models The Rhapsody models considered for the transformations

discussed in this chapter are state machines, but they satisfy a number of con-
straints. First of all, states and GUIDs are unique:

e Each state occurs at most once in the hierarchy of states. The same holds
for GUIDs. However, there can be multiple states with the same name.

Moreover, for each transition ¢:
e If ¢ has an action list, then the list has length 1.

e If ¢t has a guard, then this is a single method call which returns a boolean
value.

o If source(t) is a connector state then ¢ has no activation. It may have a guard
and may have an action. Moreover, target(t) # source(t), i-e., connector
states do not have self transitions.

o If source(t) is not a connector state and target(t) is a connector state, then
t has an activation, but no guard and no action.

111

8 Refactoring a Legacy Implementation using a DSL

e For each connector state s. there is one incoming transition (for which s,
is the target) and two outgoing transitions (for which s. is the source).
Moreover, the guard of one outgoing transition is the negation of the guard
on the other transition.

e The source of ¢ is not a super state, i.e., "Super(source(t)).

A state machine which satisfies our restrictions on a Rhapsody model is denoted
by SM,.
ComMA models A state machine in ComMA satisfies the following restric-

tions:

e States only have a name, no GUID. Names are unique, i.e., if s; # s, then
name(sy) # name(ss).

e There are no connector states.
e There are no sub state machines (and hence no super states), i.e., Sub = @.

Note that for readability we choose to use state names instead of GUIDs for the
states in ComMA. To allow a straightforward translation from ComMA models
to Dezyne we add one additional restriction on the ComMA models used in this
chapter:

e All transitions have an activation.

A state machine which satisfies the restrictions above on a ComMA model is
denoted by SM..

8.3.1 From Rhapsody to ComMA

In the previous subsection the Rhapsody and ComMA models are formally de-
scribed. In this subsection, we describe transformations needed to come from a
Rhapsody to a ComMA model. The following transformations are required to
convert the models:

e Rename duplicate state names to allow removal of GUIDs.
e Remove hierarchy, i.e., allow removal of sub state machines.
e Remove connector states.

e Make input enabled. Implicitly, all inputs are allowed in all states in Rhaps-
ody models.

e Add an activation to transitions without it.

The transformations are applied to a Rhapsody state machine SM,. =< s4, .5, T, Sub >.

112

8.3 State Machine Transformations

Rename duplicate state names In the first transformation the duplicate
states are renamed using the RenameDuplicateNames method. We use + for
string concatenation and asString to convert a number to a string.

RenameDuplicateNames(SM) :=
FORALL s € S DO
nr <1
FORALL s' € 5,5’ # s DO
IF name(s) = name(s’) THEN
name(s') < name(s’) + asString(nr)
nr<nr+1
FI
oD
oD
RETURN SM

Remove hierarchy Removing the hierarchy is done in a number of steps. To
remove the sub state machines, we first remove transitions to super states as
follows:

RemoveSuperStates(SM) ::=
FORALL < s;, SM; > Sub DO
FORALL ¢t € T AND target(t) = s; DO
target(t) < default(SM;)
OD
S+ S \ S;
RemoveSuperStates(SM;)
oD
RETURN SM

Next, all states and all transitions are collected by the following recursive defini-
tions for a state machine SM:

o if Sub = (), then define S;;(SM) =S and T} (SM) =T.

e Otherwise, for Sub = {< s1,SM; >,...,< $n, SM,, >} define
Stot(SM) =Su Stot(SMl) Uu...u Stot(SMn) and
Tyor(SM) = T U Tyor(SM1) U .. U Thor (SM,y).

This is used in the following transformation:

RemoveHierarchy(SM) ==

SM’ + RemoveSuperStates(SM)
S’ Stot(SM/)

T «+ Ttot(SM/)

Sub' +— &

RETURN SM’

113

8 Refactoring a Legacy Implementation using a DSL

Remove connector states The connector states are removed using the trans-
formation RemoveConnectorStates. Note that, by the restrictions on Rhapsody
state machines, an outgoing transition has no activation.

RemoveConnectorStates(SM) ::=
FORALL connector state s. € .S DO
FORALL ¢ € T with target(t) = s. DO
FORALL ¢, € T with source(t) = s. DO
g < guard(t) A guard(ty)
a < action(t), action(ty)

T « T U {source(t) lelactivation(t)/a, target(t1)}
T+ T \ t1
OD
T+ T\t
oD
S+ S\ se
oD
RETURN SM

Make input enabled To ensure that in all states there is a transition for every
activation, EnableInput adds self transitions with activations to states that are
not input enabled. The reason for this transformation is explained in Section 8.4.
EnableInput uses two helper methods:

o Actioi(T) = {activation(t) |t € T}

o Actsiate(s) to collect all activations used in a certain state, defined by
Actstate(s,T) = {activation(t) | t € T A source(t) = s}

EnableInput(SM) :=

FORALL s € S DO
Act Acttot (T) \ ACtstate(S7 T)
FORALL act € Act DO

T+ TU{s ot/ s}
oD
oD
RETURN SM

Add an activation to transitions To ensure that all transitions have an activ-
ation, every transition ¢ without an activation gets an activation event (eventg,),
where n is some unique number. All incoming transitions of source(t) get an ad-
ditional action (actiong,). This action places an event (eventg,) in the queue.
This is formalized in transformation HandleActivation.

HandleActivation(SM) ::=

nr <1

FORALL ¢ € T without an activation DO
activation(t) < eventg

nr

114

8.3 State Machine Transformations

FORALL ¢ € T with target(t') = source(t) DO
action(t') < add(action(t'), actiong,)

oD
nr<nr+1
(0)D)
RETURN SM

This leads to complete transformation of a Rhapsody state machine SM,. to a
ComMA model SM, as follows:
SM; = RenameDuplicateNames(SM,)
SMs = RemoveHierarchy(SM)
SM3 = RemoveConnectorStates(SMy)
SMy = EnableInput(SMs)
SM, = HandleActivation(SMy)
After the described transformations, the state machine of Figure 8.3 is trans-
formed into the state machine shown in Figure 8.4.

=11 I [gD]actUIaD‘ S I [g2]act1f32‘ S5 I

(g1] act1 / al (93 AND g4] act2 / a3, ad

__J)

Figure 8.4: Result of Transforming the State Machine of Figure 8.3

8.3.2 Generating ComMA Instances

The mathematical description of the transformations in the previous subsection
has been encoded in generators of the Rhapsody DSL. The resulting ComMA
model is defined by three files, as shown in Figure 8.5:

e The .if file describes the interfaces signatures. In the .if file two interfaces are
defined: the first interface (IImpl) includes all activations, and the second
interface (IUsed) includes all actions.

e The .sm file contains the state machine behaviour specification.

e The .mp file provides a mapping from the guards and actions to the source
code implementation of these methods.

Figures 8.6 and 8.7 show an example of an interface signatures file and a state
machine behaviour specification file, respectively. Both examples correspond to
the state machine as depicted in Figure 8.4.

Figure 8.8 provides an example of the mapping from actions and guards to
the source code implementation. In this example, we assume that the transition

115

8 Refactoring a Legacy Implementation using a DSL

—_—
Interface

Signature
-

Interface

Behaviour
-

——

Rhapsody
Model

Mapping

—

Figure 8.5: Generating Two ComMA Files and a Mapping File

So M Sy of Figure 8.4 corresponds to the transition in the Rhapsody

model fragment depicted in Figure 8.2. The mappings are separated by ###.
Note that in the source code there are no lines starting with = or ##+#.

interface IImpl {
commands

vold acte

vold actl

void act2

}

interface IUsed {
commands
void a@
void al
void a2
void a3
void a4

Figure 8.6: Ezample of a ComMA Interface File

import "Interfaces.if"
Behavior:
machine StateMachine provides IImpl requires IUsed {

I
initial
state S@ {
transition trigger: IImpl::act@
guard: (g®)
do: IUsed::a®
next state: 51
state S1 {
transition trigger: IImpl::actl
guard: (gl)
do: IUsed::al
next state: 53
transition trigger: IImpl::actl
guard: (g2)
do: IUsed::a2
next state: 55
H
I¥

Figure 8.7: Ezample of a Specification of Interface Behaviour in ComMA

116

8.4 Increasing Confidence in the Generated Code

g0

4115lavePostsExecuted ()
#4F
al

TracePrintf (MCI tracelevellow, “"All POSTz executed\");
m_PostExecuteSemaphore-»signal () ;

L2 L

Figure 8.8: Ezample of a Mapping File

8.3.3 From ComMA to Dezyne

In the ComMA framework, we have defined a generator which transforms a ComMA
model (i.e., an interface file and a state machine file) and a mapping file into a
Dezyne model.

The ComMA interface of Figure 8.6 is transformed into Dezyne interfaces as
shown in Figure 8.9. Observe that, different from the ComMA model, the guards
are part of the IUsed interface and return an enum value of type RVal which
contains the values Ok and Nok.

interface IImpl {
in void acte();
in wvoid actl();
in void act2();
behaviour {}

}

interface IUsed {
in void a@()
in void al()
in void a2()
in void a3()
in void a4()
enum Rval {0k, Mok};
in Rval g@()
in Rval gi()
in Rval g2()
in Rval g3();
in Rval g4();
behaviour {}

i}
>
i}

}

Figure 8.9: Dezyne Interfaces

Figure 8.10 shows part of the Dezyne model which is generated from the
ComMA state machine of Figure 8.7. Note that by our restrictions on a Rhapsody
state machine, we have g2 = —gl. In the Dezyne model this is generated as an
else clause.

8.4 Increasing Confidence in the Generated Code

After model checking the Dezyne models, source code in C++ is generated and
integrated into a Visual Studio project. The existing regression test set is executed

117

8 Refactoring a Legacy Implementation using a DSL

component StateMachine {

provides impl;
requires used;
behaviour {

enum State {58, 51, 52, 53, 54, 55};
State state = State.58;

[state.56] {
on acte(): {
IUsed.Rval rval = LE8();
if (rval == IUsed.RVal.Ok) {
-a8();
state = State.51;
h
}
}
[-51]
on Lactl(): {
IUsed.Rval rval = EL();
if (r¥al == IUsed.RVal.oOk) {
al();
state = State.53;
} else { // g2
-a2();
state = State.55;
}
}

Figure 8.10: Dezyne Instance

to get confidence in the generated code. To further increase the confidence, we
applied the learning approach of Chapter 7.

Figure 8.11 depicts the use of learning in our approach. The two versions
of state machine code, generated by Rhapsody and Dezyne, are stimulated by
all possible inputs and the resulting outputs are examined by the model learner.
The two models that are the result of the learning phase are compared by the
equivalence checker of the mCRL2 tool set.

With the learning approach, we found two errors in the Dezyne models that
were not detected by the existing regression test set. The next two paragraphs
describe these errors.

Make the model input enabled By learning and comparing the Rhapsody
and Dezyne state machines, we found out that the Rhapsody generated imple-
mentation is implicitly made input enabled by the Rhapsody run-time libraries.
This behaviour is not described in the Rhapsody models. In the Dezyne models
all transitions have to be defined explicitly. Before we started learning the imple-
mentations, the EnableInput method was not present in the transformation from
Rhapsody to Dezyne. After adding the EnableInput method, re-learning confirmed

118

8.5 Concluding Remarks

Rhapsody Rhapsody ComMA Dezyne
Model DsL Model Model

Parses Generates Parses Generates

Rhapsody
Tool

Generates

State
Machine

Generates

State
Machine

Model Model
Learner Learner

Learns Generates Generates Learns

Equivalence
Checker

Model Model

Figure 8.11: Learning Approach

that both state machines are input enabled.

Add an activation to transitions The first solution for the HandleActivation
method had a different implementation. Because every state with a transition
without an activation had a self-transition with only an activation, these two trans-
itions were combined to get a transition with an activation and the self-transition
was removed. When we found out that Rhapsody models are input enabled, the
HandleActivation method was modified according to the implementation described
in Subsection 8.3.1.

After fixing the two issues found, re-learning confirmed that both state ma-
chines exhibit equivalent external behaviour. As proposed in Chapter 7, we used
an iterative approach. We did two learning experiments for learning two state
machines. The first state machine was learned with 14 stimuli and the second
state machine was learned with 22 stimuli. Table 8.1 lists the final results of these
two learning experiments with the number of states and the number of transitions
found.

Experiment | Stimuli | States | Transitions
1 14 34 476
2 22 58 1276

Table 8.1: Learning Results

8.5 Concluding Remarks
In this chapter, we presented an approach to use a DSL to transform models from

one tool to another tool. We applied the approach to transform Rhapsody models
into Dezyne models. To gain confidence in the transformation, model learning

119

8 Refactoring a Legacy Implementation using a DSL

was applied. The experiences with this approach at Philips lead to the following
answers to the research questions of Section 8.1.

e Can a DSL be used to migrate from one model to another model?

When the model that needs to be converted is in a textual and human
readable format, a DSL can be created that accepts this model as language
instance. Next a generator of the DSL can transform this instance into the
target model format. Given the existence of powerful techniques such as
Xtext and Xtend, this approach can be realized quickly and conveniently. In
addition, it is rather easy and fast to create additional generators for instance
for visualisations. An alternative approach would be to write a script, for
instance using Perl or Python, that does the parsing and transformation.
We expect that this would consume more time and requires more expertise,
e.g., concerning parsing.

Is it financially feasible to transform a legacy model using a DSL?

We calculate the Return On Investment (ROI) for the presented DSL. First
we compute the required investment for the model transformation approach.
It took about 60 hours to learn the Rhapsody model structure, create the
Rhapsody DSL and add a Dezyne generator to ComMA. Increasing confid-
ence into the transformations by model learning and equivalence checking
costed an additional 15 hours. Placing the generated code into a Visual
Studio project took another 25 hours. Hence, the total investment was ap-
proximately 100 hours.

Next we compare the approach with the current way-of-working. We estim-
ate that on every development stream the annual inefficiencies of applying
Rhapsody is more than 50 hours. We have one stream for new development
and two streams for maintenance, leading to an inefficiency of at least 150
hours per year. A product in the field needs to be supported for more than
10 years. This leads to a total of 1500 hours of inefficiency.

ROI = (gain from investment — cost of investment) / cost of investment =
(1500 - 100) / 100 = 14. This positive ROI value indicates that transforming
the legacy implementation is preferred above keeping the current Rhapsody
models.

The approach was applied on one software component. In the future, we want

to convert other components that use Rhapsody models. These components have
three Rhapsody state machines. For these other components we think that we can
generate the new implementations in 5 hours and integrate it into Visual Studio
projects in 20 hours. By also converting these software components we can further
improve our ROL

120

CHAPTER 9

EPILOGUE

This epilogue starts with an evaluation of the applied techniques. Sub-
sequently, we describe our lessons learned for industrial engineers. We con-
clude the epilogue with a discussion about possible future work.

9.1 Evaluation of Criteria

In this thesis we investigated the application of techniques that were new for Philips
to improve the evolution of interventional X-ray systems with legacy components.
More specifically, we looked at Domain Specific Languages (DSLs). The applied
techniques are Analytical Software Design (ASD), Parallel Object-Oriented Spe-
cification Language (POOSL), vertical DSLs, the combination of model learning
and equivalence checking, and model transformation.

These techniques were applied on real industrial development projects and were
evaluated with the criteria listed in Section 1.3: scalability, integration in an indus-
trial context, Return On Investment (ROI), and improve system evolution. The
following conclusions are based on our observations made while executing these
projects. They might generalize, but we do not have evidence for a generalization.
Note that the evaluation also includes tool aspects, because in order to apply a
technique one or more tools have been used.

Scalability We evaluate the scalability of the techniques by checking whether a
technique can be applied on industry-sized problems. We list our conclusions.

e The first technique we applied was ASD. Large applications can be created
with ASD when exploiting the compositional approach using small compon-
ents. ASD does not scale for large, complex components because the model
checker might hit the state-space explosion problem, e.g., because of a large
number of callbacks. For this reason, ASD requires a design with small
components. Another way in which ASD prevents the state-space explosion

121

9 Epilogue

is that ASD checks for a limited set of properties. Using this approach in
the project described in Chapter 3, we never encountered the state-space
explosion problem.

e A number of language constructs make that POOSL is scalable, e.g. object-
orientation and the import construct. Simulation of POOSL models was used
because exhaustive model checking, e.g. with mCRL2, of the full model was
not feasible, given the large number of concurrent processes and the use of
queues for asynchronous communication.

e We applied the vertical DSL approach on two projects. When instances
of a DSL become too large, it might be possible to raise the abstraction
level by creating a more abstract language that generates instances of the
prior DSL. In one of the projects we created a second more abstract DSL.
Another way to improve scalability is to work modular with imports. In
this way, instances are spread over multiple files. Using imports also enables
the ability to reuse partial instances. In addition, a large language can be
split into multiple smaller languages. This approach has been used in the
ComMA framework for interface specifications. Hence, an usage tree of small
and simple languages can be created. In the projects described in this thesis,
we did not encounter scalability issues.

e The fourth technique applied is a combination of model learning with Learn-
Lib and equivalence checking with mCRL2. For this combination of tools,
we expect to encounter scalability issues with LearnLib before we hit the
state space explosion in model checking with mCRL2. The number of quer-
ies needed to learn a System Under Learning (SUL) with the L* algorithm
depends on the number of possible inputs and the number of states. In
Section 7.6 we listed a number of recent research results that decrease the
number of stimuli needed to learn an implementation. In addition the time
required to learn the implementation depends on the time required to query
and reset the SUL. There were no scalability issues encountered in the pro-
ject described in Chapter 7. The implementations are learned and checked
iteratively with increasing sets of stimuli to handle scalability. Although this
was a reasonable small implementation, learning took a substantial amount
of time.

e In Chapter 8, we created a horizontal DSL for the transformations from
Rhapsody model instances to Dezyne model instances. More specifically,
we transformed the state machines defined in Rhapsody models. Regarding
scalability, the transformations from one state machine model into another
model did not increase the number of states and the transformations are
executed in less than a second. In addition, we applied the model learning
technique of the previous point to gain additional confidence in the trans-
formations. Because the implementations (SULs) responded in a few mil-
liseconds on queries and could be reset in milliseconds, learning was faster
than in the project of Chapter 7.

Summarizing, our experience is that model learning takes a substantial amount
of time. Scalability issues can be expected for learning large implementations or

122

9.1 Evaluation of Criteria

implementations for which resetting and querying takes a significant amount of
time.

Integration in an industrial context Applying new techniques in industry
means that they need to be integrated within the industrial context.

e Regarding ASD, the company that creates the ASD:Suite provides two 2-
day courses on ASD to get started and to master more advanced aspects.
Our experience is that these courses are a good introduction to the tool.
However, they do not provide the information needed to create a design that
is verifiable. The company also provides commercial support for modelling
and usage of the ASD:Suite.

The use of ASD has a clear impact on the design and the definition of com-
ponents. Because formal verification and code generation is only possible for
control components, the design has to make a clear separation between data
and control. Especially for designers familiar with object-oriented design,
ASD requires a paradigm shift [126].

e POOSL comes with example models and a website explains the language con-
structs. Our experience is that these two sources provide enough information
to quickly apply the tooling. The tooling is not commercially supported.

To apply POOSL in an industrial context we presented an adaptation of the
concept phase of the industrial development process to model new features.

e Vertical and horizontal DSLs have been created based on a manual [104].
The basic part of the manual requires 4 hours to install the tools and to
redo the examples of the manual. This was enough to get started. The
tooling is commercially supported by Itemis [81] and commercially trainings
are provided by TypeFox [152].

Our experience is that the DSLs we developed are simple and easy to use.
The main benefit of the DSLs is that they provide a way to solve industrial
problems in less time than with the current way of working, i.e., using a
commercial tool for configuring a fieldbus as described in Chapter 5. Val-
idation rules can be added to check some correctness properties of language
instances. The main disadvantage of applying the techniques we used is that
the generators of the DSLs are programmed in Xtend and/or Java while
C++ is the programming language that is used at Philips. The switch in
programming language will create a barrier for some software engineers al-
though the generator only needs to be supported by a few software engineers.
There will be more users for the language than there are software engineers
that need to maintain the language.

e Setting up LearnLib can be done by following a Wiki. For mCRL2 many
examples and tutorials are available, see for instance [65]. Both tools are not
commercially supported.

All techniques we applied could be integrated in our industrial context.

123

9 Epilogue

Return On Investment (ROI) Introducing a new technique in a company
needs to add value. ROI is operational income divided by assets invested [110].
ROI is used to evaluate objectively the cost compared by the potential gain of
introducing a new technique. Note that to simplify our calculations we use person
hours instead of income in monetary terms, because the ROI does not change if
we multiple the person hours with a fixed hourly rate.

124

e The first technique we applied is ASD. In the 17,000 lines of source code

(LOC) produced in the project where we applied ASD, we found only 1
defect. Hence, the entire project exhibited only 0.17 defect per KLOC. This
level of quality is much better than the industry standard defect rate of 1-25
defects per KLOC [98]. When this project would have been done with the
normal way of working, the number of defects would have been at least 17
assuming 1 defect per KLOC. Based on historical data at Philips, solving a
single error takes on average 8 hours, which leads to 8 times 17 is 136 hours.
The average productivity of our project was 5.8 effective lines of code per
hour. The industry standard is 1-2 effective lines of code (ELOC) per hour,
including all non-coding overhead [98]. Next we calculate how many hours it
would have taken to create a similar component from the same size in terms
of ELOC. To be on the safe side we use 2 ELOC in our calculations. Hence,
without applying ASD the 1787 hours (see Section 3.7) shall be multiplied
with a factor 5.8 ELOC / 2 ELOC = 2.9 leads to 2.9 * 1787 hours = 5182
hours. The gain from the investment is 5182 plus 136 (for solving defects)
is 5318 and the cost of the investment is 1787 plus 8 is 1795. ROI = (gain
from investment — cost of investment) / cost of investment = (5318 - 1795)
/ 1795 = 2.

POOSL is the second technique we applied. The modelling approach required
a relatively small investment. The POOSL models and the Java simulator
were made in 50 hours. While modelling, we found several issues that were
not foreseen initially. We had to address issues that would otherwise have
been postponed to the implementation phase and which might easily lead to
integration problems. We observed that the definition of a formal execut-
able model required a number of design choices that in the standard way
of working would not have been made in the concept phase but in a later
phase. The investment it took to make the POOSL models can be quantified
(50 hours). We cannot quantify the savings we made by preventing issues in
later phases. Hence, we cannot quantify the ROI for this technique.

Vertical DSLs were applied in two projects. For the fieldbus configuration
project described in Chapter 5, we calculated the ROI in Section 5.6. ROI
= (16000 - 100) / 100 = 159.

In Chapter 6 we described the PDU project. We use the hours presented in
Section 6.6.3 in the ROI calculation. The costs are 45 hours plus 3 times
8 hours is 69 hours. The current way of working would require 3 times
60 hours is 180 hours. ROI = (180 - 69) / 69 = 1.6. In this calculation
we only included the work to make all the artefacts for a new release, not

9.1 Evaluation of Criteria

the prevented issues with the new way of working because this is hard to
quantify.

In [150], over 20 industrial cases are analyzed and they conclude that pro-
ductivity is improved by the higher level of abstraction of DSLs.

e The fourth technique applied is a combination of model learning with LearnLib
and equivalence checking using the mCRL2 toolkit. Because we do not
known when the defects found by applying these techniques would have
been found otherwise, we cannot calculate a ROI value for applying these
techniques based on this project.

e The ROI for the presented horizontal DSL applied for the transformation of
legacy Rhapsody models described in Section 8.5 is (1500 - 100) / 100 = 14.

The techniques for which we could perform a calculation leads to a ROI greater
than 1 which indicates that the projects benefited from the technique.

Improve system evolution We evaluate the contribution of the techniques to
improve the evolution of interventional X-ray systems.

e A common activity in system evolution is replacing a legacy hardware com-
ponent of the current system by a new hardware component for a new system
release. In this context, we applied ASD for making a new software com-
ponent that interfaces with the new hardware component. In the described
case we improved on productivity in terms of lines of code per hour and we
improved on the number of defects per lines of code.

Our observations are in line with other reported projects at Philips about
the application of ASD [114]. In addition, [114] refers to many industrial
projects about the application of model based techniques and concludes that
productivity and quality improved when applying these techniques.

e When evolving a system, new concepts need to be added. To explore new
system concepts we modelled the existing system and added the new concepts
for evaluation. By modelling the new concepts in the first phase of product
development questions were raised early and costly rework at later phases
was avoided. Hence, by modelling the system concepts with POOSL we
could improve system evolution for this specific case.

e Another aspect of system evolution is to deal with legacy components. We
considered components that need to be instrumented by configuration files.
We applied DSLs to improve the maintainability and extensibility of two leg-
acy software components. From languages that expresses domain concepts,
we can generate the required configuration files. Before we generate config-
uration files, the language instances are checked to acquire confidence that
they describe the intended behaviour. With DSLs we could keep these two
components longer in the evolution stage. This is consistent with was was
reported in e.g. [167, 13] about improved maintainability using a DSL.

125

9 Epilogue

e As part of system evolution, a legacy software component should be replaced

by a new component, e.g., to support future extensions. When replacing a
component it is important that its behaviour is exactly the same as its pre-
decessor to ensure that other interfacing system components are unaffected.
We proposed a combination of model learning and equivalence checking to
acquire confidence in the refactored component. We applied this combina-
tion of techniques in two projects. In both projects we found issues in an
early stage that otherwise would be found at a later stage or could potentially
become a field issue.

Another aspect is the usage of obsolete tools. In Chapter 8, we have created
a DSL that accepts model instances of an obsolete modelling tool. From a
DSL instance, a new implementation could be generated. In this way, we
automatically replaced the implementation of a component. This avoids the
need to make a new implementation from scratch.

The applied techniques had a positive contribution in the considered system

evolution cases on which we applied the techniques.

9.2 Lessons Learned

In this section, we list a number of lessons learned. Goal of this section is to
provide guidance to industrial engineers about the application of the presented
techniques.

126

e When using ASD or its successor Dezyne, make a design with small compon-

ents to avoid hitting the state-space explosion problem. Using small com-
ponents has the additional advantage that when modifications are required
planning effort is more predictable and modifying many small components
is less difficult than changing one large component.

ASD checks interface conformance of components, but it does not verify the
functionality of an application. ASD does not make the use of testing obsol-
ete. On the other hand, ASD can detect race-conditions that are difficult to
find using a regular test approach [69].

Our experience is that creating a DSL can be beneficial, if the following can
be accomplished.

— Raise abstraction by hiding lower level details; an example of this has
been presented in Chapter 5.

— Repetition in the target artefacts in terms of copy-paste or some pattern
that is used over and over again; see for instance Chapters 5 and 6.

— Target artefacts are poorly readable; as in Chapter 6.

The investment of making small DSLs was earned back on first or second
usage. Hence, even if the DSL is no longer used in the near future, the
investment had a positive effect. Also [170] reports that the most successful
applications of model-driven development use small DSLs.

9.3 Future Work

e For the combination of model learning and equivalence checking one needs to
note that creating an adapter can be time consuming as well as the time the
model learner needs to learn a software component. If the adapter needs to
observe an asynchronous event, this can only be done by letting the adapter
wait before sending the output to the model learner. Hence, the time needed
for learning depends also on the response time of the SUL. Note that learned
models may be incorrect.

In general, when considering the application of one of the techniques described
in this thesis, one need to consider if learning and applying the technique is an
investment that can be earned back. Another consideration is that applying new
tools creates tomorrows legacy. In case of a DSL, a new generator can be created
to migrate to a new technique when required in the future.

9.3 Future Work

The results of this thesis have been acquired using an action research approach
applied in industry. Taking the industry-as-lab approach has some limitations.
We applied a number of techniques in a limited number of industrial projects. For
every project it was only feasible to apply a single technique. Because we only
applied one technique per project, we did not compare the techniques with each
other on the same project. Moreover, we applied every technique on only one or
two projects. So we cannot generalize our findings for the application of these
techniques for other projects.

In this thesis we have described the usage of some techniques to improve system
evolution. To get a better view on how these techniques can help the high-tech
industry, future work could improve this view by:

e applying the techniques described in this thesis in a different industrial set-
ting, and

e applying different techniques for cases comparable with the cases described
in this thesis.

A ROI calculation is a way to compare multiple techniques and helps with making a
choice which technique to use [110]. The higher the ROI value, the higher the gain.
We applied different techniques on different projects. For this reason, we cannot
compare the ROI values of the techniques. By performing additional research
we could, for instance, compare the ROI when applying different techniques for
comparable cases. In addition we could compare the usage of a single technique
in different industrial settings.

This thesis presented the usage of new techniques for system evolution with
the focus on legacy components. The applied techniques helped improving system
evolution for the project they were applied in. However, the new techniques today
are tomorrows legacy. Future work could address how to maintain DSLs and how
to create maintainable DSLs.

In future work new model learning algorithms such as TTT [80] could be ap-
plied to reduce the number of queries and resets needed, and by doing so less time

127

9 Epilogue

is needed to learn an implementation. TTT and future algorithms could improve
the scalability of model learning for industrial sized applications.

ASD checks a predefined limited set of properties. Checking functional veri-
fication would be a valuable addition. The challenge is to make these techniques
applicable by an average industrial engineer. Such a new technique should for
instance hide the details of, e.g., LTL and CTL like model checking techniques.

In this thesis we applied a number of DSLs, each of which stores instances of
the language in a different format to file. For example, ASD stores instances to
a XML file, Rhapsody has its own proprietary format, and POOSL, Dezyne and
the vertical DSLs store instances one-to-one to file. At Philips, there are multiple
(maintenance) streams in our archive and our experience is that merging ASD and
Rhapsody instances is cumbersome and error prone. Even though these techniques
come with tools to automate merging, manual merging is the preferred approach.
We choose to create new textual DSLs instead of graphical DSLs for these reasons.
If graphical DSLs could write an instance to a file in an easily manually mergeable
format, then these graphical DSLs would be worth considering to use in industry.

In Chapter 8, ComMA was introduced and we described the extension of the
ComMA framework with a generator for the Dezyne tool. In the future, we want to
extend ComMA further by adding generators for model-checking and model-based
testing. In addition we want to create new DSLs for the generation of ComMA
models from other technologies than Rhapsody.

128

BIBLIOGRAPHY

[1]
2]

3]

[4]
[5]

[6]

[7]

18]

[9]

[10]

[11]

Jenkins. www. jenkins—ci.org/, 2015. Cited on page 84.

LonWorks. www.echelon.com/technology/lonworks/, 2015. Cited
on page 73.

Meta programming system (MPS). www.jetbrains.com/mps, 2015.
Cited on page 14.

PlantUML. plantuml.sourceforge.net/, 2015. Cited on page 83.

VisualState. www.lar.com/Products/IAR-visualSTATE/, 2015.
Cited on page 74.

F. Aarts, B. Jonsson, J. Uijen, and F. Vaandrager. Generating models of
infinite-state communication protocols using regular inference with abstrac-
tion. Formal Methods in System Design, 46(1):1-41, 2015. Cited on page 105.

F. Aarts, H. Kuppens, G. Tretmans, F. Vaandrager, and S. Verwer. Improv-
ing active Mealy machine learning for protocol conformance testing. Machine
Learning, 96(1-2):189-224, 2014. Cited on pages 16 and 95.

J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge
University Press, 2005. Cited on pages 13 and 15.

R. Akers, I. Baxter, M. Mehlich, B. Ellis, and K. Luecke. Case study:
Re-engineering C++ component models via automatic program transform-
ation. Information and Software Technology, 49(3):275 — 291, 2007. Cited
on page 16.

D. Angluin. Learning regular sets from queries and counterexamples. In-
formation and Computation, 75(2), 1987. Cited on pages 16 and 104.

J. Ansel, K. Arya, and G. Cooperman. DMTCP: Transparent checkpointing
for cluster computations and the desktop. In IEEE Parallel and Distributed
Processing Symposium, 2009. Cited on page 105.

www.jenkins-ci.org/
www.echelon.com/technology/lonworks/
www.jetbrains.com/mps
plantuml.sourceforge.net/
www.iar.com/Products/IAR-visualSTATE/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

B. Basten, J. van den Bos, M. Hills, P. Klint, A. Lankamp, B. Lisser,
A. van der Ploeg, T. van der Storm, and J. Vinju. Modular language imple-
mentation in rascal-experience report. Science of Computer Programming,
114:7-19, 2015. Cited on page 15.

D. Batory, C. Johnson, B. MacDonald, and D. Von Heeder. Achieving extens-
ibility through product-lines and domain-specific languages: A case study.
ACM Transactions on Software Engineering and Methodology (TOSEM),
11(2):191-214, 2002. Cited on pages 14 and 125.

K. Beck. Test-driven development: by example. Addison-Wesley Professional,
2003. Cited on page 30.

D. Bellagio and T. Milligan. Software configuration management strategies
and ibm®) rational® clearcase®): a practical introduction. IBM Press, 2005.
Cited on page 42.

K. Bennett and V. Rajlich. Software maintenance and evolution: a roadmap.
In Proceedings of the Conference on the Future of Software Engineering,
pages 73-87. ACM, 2000. Cited on page 1.

T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, and
A. Wasowski. A survey of variability modeling in industrial practice. In
Proceedings of the Seventh International Workshop on Variability Modelling
of Software-intensive Systems, page 7. ACM, 2013. Cited on page 15.

L. Bettini. Implementing Domain-Specific Languages with Xtext and Xtend.
Packt Publishing Ltd, 2013. Cited on pages 6, 66, and 72.

J. C. Bicarregui, J. S. Fitzgerald, P. G. Larsen, and J. Woodcock. Indus-
trial practice in formal methods: A review. In International Symposium on
Formal Methods, pages 810-813. Springer, 2009. Cited on page 19.

J.-P. Bodeveix, M. Filali, J. Lawall, and G. Muller. Formal methods meet
domain specific languages. In Integrated Formal Methods, volume 3771 of
LNCS, pages 187—-206. Springer, 2005. Cited on page 15.

B. Boehm and V. Basili. Software defect reduction top 10 list. IEEE Com-
puter, 34(1):135-137, 2001. Cited on page 48.

L. Bokhoven. Constructive tool design for formal languages: from semantics
to executing models. PhD thesis, Technische Universiteit Eindhoven, 2002.
Cited on pages 5 and 50.

G. Booch, J. Rumbaugh, and I. Jacobson. The unified modeling language
user guide - the ultimate tutorial to the UML from the original designers.
Addison-Wesley object technology series. Addison-Wesley-Longman, 1999.
Cited on page 22.

E. Borger and J. Huggins. Abstract state machines 1988-1998: Commented
asm bibliography. In Bulletin of EATCS. Citeseer, 1998. Cited on page 13.

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

E. Borger, P. Pappinghaus, and J. Schmid. Report on a practical application
of asms in software design. In International Workshop on Abstract State
Machines, pages 361-366. Springer, 2000. Cited on page 13.

H. Breivold, I. Crnkovic, and M. Larsson. A systematic review of soft-
ware architecture evolution research. Information and Software Technology,
54(1):16-40, 2012. Cited on page 2.

E. Brinksma and J. Hooman. Dependability for high-tech systems: an
industry-as-laboratory approach. IEEE, 2008. Cited on page 1.

G. Broadfoot and P. Hopcroft. Introducing formal methods into industry
using cleanroom and csp. Dedicated Systems Magazine @, 1:2005, 2005.
Cited on page 13.

S. Brookes, C. Hoare, and A. Roscoe. A theory of communicating sequential
processes. Journal of the ACM (JACM), 31(3):560-599, 1984. Cited on
pages 5 and 19.

V. Camelo. Multi-core CPU exploration for CARM host in ASML technology.
Master thesis, Eindhoven University of Technology, 2012. Cited on page 14.

L. Cao, B. Ramesh, and M. Rossi. Are domain-specific models easier to
maintain than uml models? IEEE software, 26(4):19-21, 2009. Cited on
page 15.

S. Cassel. Learning Component Behavior from Tests: Theory and Algorithms
for Automata with Data. PhD thesis, University of Uppsala, 2015. Cited on
page 105.

K. Chandrasekaran, S. Santurkar, and A. Arora. Stormgen - a domain spe-
cific language to create ad-hoc storm topologies. In M. P. M. Ganzha, L. Ma-
ciaszek, editor, Proceedings of the 2014 Federated Conference on Computer
Science and Information Systems, volume 2 of Annals of Computer Science
and Information Systems, pages 1621-1628. IEEE, 2014. Cited on page 14.

R. Chapman and F. Schanda. Are we there yet? 20 years of industrial
theorem proving with spark. In International Conference on Interactive
Theorem Proving, pages 17-26. Springer, 2014. Cited on page 13.

B. Cheng, S. Easterbrook, R. France, and B. Rumpe. Integrating formal and
informal specification techniques. why? how? 1998. Cited on page 48.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and
J. Quesada. Maude: specification and programming in rewriting logic. The-
oretical Computer Science, 285(2):187 — 243, 2002. Cited on page 14.

A. ClearSy. Industrial tool supporting the b method, 2012. Cited on page 13.

S. Cranen, J. Groote, J. Keiren, F. Stappers, E. de Vink, W. Wesselink,
and T. Willemse. An overview of the mCRL2 toolset and its recent ad-
vances. In Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS), pages 199-213. Springer, 2013. Cited on pages 6, 95, and 99.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

K. Czarnecki and S. Helsen. Feature-based survey of model transformation
approaches. IBM Systems Journal, 45(3):621-645, 2006. Cited on page 16.

A. David, J. Deneux, and J. d’Orso. A formal semantics for UML statecharts.
Technical Report 2003-010, Uppsala University, 2003. Cited on page 110.

R. Davison, M. Martinsons, and N. Kock. Principles of canonical action
research. Information systems journal, 14(1):65-86, 2004. Cited on page 4.

G. De Geest, A. Savelkoul, and A. Alikoski. Building a framework to support
domain-specific language evolution using microsoft dsl tools. In Proceedings
of the Tth OOPSLA Workshop on Domain-Specific Modelling, 2007. Cited
on page 4.

J. de Ruiter and E. Poll. Protocol state fuzzing of tls implementations. In
24th USENIX Security Symposium (USENIX Security 15), pages 193-206.
USENIX Association, 2015. Cited on page 16.

R. Dorofeeva, K. El-Fakih, S. Maag, A. Cavalli, and N. Yevtushenko. FSM-
based conformance testing methods: A survey annotated with experimental
evaluation. Information & Software Technology, 52(12):1286-1297, 2010.
Cited on page 104.

S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton.
Experiences using lightweight formal methods for requirements modeling.
IEEFE Trans. Software Eng., 24(1):4-14, 1998. Cited on page 14.

S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting empirical
methods for software engineering research. In Guide to advanced empirical
software engineering, pages 285-311. Springer, 2008. Cited on page 4.

J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull.
Graphviz—open source graph drawing tools. In International Symposium
on Graph Drawing, pages 483—484. Springer, 2001. Cited on page 6.

J. Engelfriet. Determinacy - (observation equivalence = trace equivalence).
Theoretical Computer Science, 36:21-25, 1985. Cited on page 100.

S. Erdweg, S. Fehrenbach, and K. Ostermann. Evolution of software systems
with extensible languages and dsls. IEEFE Software, 31(5):68-75, 2014. Cited
on page 15.

R. Eshuis. Reconciling statechart semantics. Seci. Comput. Program.,
74(3):65-99, Jan. 2009. Cited on page 110.

Esterel Technologies. SCADE Suite, 2011. Model based devel-
opment environment dedicated to critical embedded software, www.
esterel-technologies.com/products/scade-suite/. Cited on
page 13.

S. Fehrenbach, S. Erdweg, and K. Ostermann. Software evolution to domain-
specific languages. In International Conference on Software Language En-
gineering, pages 96—-116. Springer, 2013. Cited on page 15.

www.esterel-technologies.com/products/scade-suite/
www.esterel-technologies.com/products/scade-suite/

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

L. Feng, S. Lundmark, K. Meinke, F. Niu, M. Sindhu, and P. Wong. Case
studies in learning-based testing. In H. Yenigiin, C. Yilmaz, and A. Ulrich,
editors, ICTSS 2013, LNCS, vol. 8254, pages 164—179. Springer, Heidelberg,
2013. Cited on page 16.

P. Fiterau-Brogtean, R. Janssen, and F. Vaandrager. Learning fragments of
the TCP network protocol. In F. Lang and F. Flammini, editors, FMICS
2014, LNCS, vol. 8718, pages 78-93. Springer, Heidelberg, 2014. Cited on
page 16.

J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef. Validated
Designs for Object-oriented Systems. Springer, New York, 2005. Examples
are available at www .vdmbook . com. Cited on page 13.

Formal Systems (Europe) Ltd. FDR2 model checker, 2011. www.fsel.
com/. Cited on pages 21 and 27.

M. Fowler. Domain Specific Languages. Addison-Wesley Professional, 2010.
Cited on page 4.

H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: a toolbox for
the construction and analysis of distributed processes. International Journal
on Software Tools for Technology Transfer, 15(2):89-107, 2013. Cited on
page 53.

M. Geilen. Formal techniques for verification of complex real-time sys-
tems. Phd thesis, Eindhoven University of Technology, the Netherlands,
2002. Cited on page 50.

M. Goldsmith, B. Roscoe, and P. Armstrong. Failures-divergence refinement-
fdr2 user manual, 2005. Cited on pages 5 and 19.

A. Goodloe, C. Gunter, and M.-O. Stehr. Formal prototyping in early stages
of protocol design. In Proc. of the 2005 Workshop on Issues in the Theory
of Security, WITS *05, pages 67-80. ACM, 2005. Cited on page 14.

D. Graham, E. Van Veenendaal, and 1. Evans. Foundations of software
testing: ISTQB certification. Cengage Learning EMEA, 2008. Cited on
page 44.

A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. Logic
Journal of IGPL, 14(5):729-744, 2006. Cited on page 95.

R. Grgnmo and J. Oldevik. An empirical study of the uml model transform-
ation tool (umt). Proc. First Interoperability of Enterprise Software and
Applications, Geneva, Switzerland, 2005. Cited on page 16.

J. Groote, J. Keiren, A. Mathijssen, B. Ploeger, F. Stappers, C. Tankink,
Y. Usenko, M. v. Weerdenburg, W. Wesselink, T. Willemse, and J. v. d.
Wulp. The mCRL2 toolset. In Proceedings of the International Workshop on
Advanced Software Development Tools and Techniques (WASDeTT 2008),
2008. Cited on pages 53 and 123.

www.vdmbook.com
www.fsel.com/
www.fsel.com/

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

78]

J. Groote, A. Osaiweran, M. Schuts, and J. Wesselius. Investigating the
effects of designing industrial control software using push and poll strategies.
Computer Science Report 11/16, Eindhoven University of Technology, the
Netherlands, 2011. Cited on pages 11, 49, and 53.

J. Groote, A. Osaiweran, and J. Wesselius. Analyzing the effects of formal
methods on the development of industrial control software. In Software
Maintenance (ICSM), 2011 27th IEEE International Conference on, pages
467-472. IEEE, 2011. Cited on pages 20, 35, and 42.

J. Groote, A. Osaiweran, and J. Wesselius. Experience report on developing
the front-end client unit under the control of formal methods. In Proceedings
of the 27th Annual ACM Symposium on Applied Computing, pages 1183~
1190. ACM, 2012. Cited on pages 20 and 42.

M. Grottke and K. Trivedi. Fighting bugs: Remove, retry, replicate, and
rejuvenate. Computer, 40(2), 2007. Cited on page 126.

T. Group et al. Tiobe index for ranking the popularity of programming
languages, 2013. Cited on page 41.

G. Hamon, L. de Moura, and J. Rushby. Automated test generation with
SAL. CSL Technical Note, SRI International, January 2005. Cited on
page 81.

C. Heitmeyer. On the need for practical formal methods. In Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, volume 1486 of LNCS,
pages 18-26. Springer, 1998. Cited on page 71.

M. Henrix. Performance improvement in automata learning. Master thesis,
Radboud University, Nijmegen, 2015. Cited on page 105.

J. Hooman. Specification and Compositional Verification of Real-Time Sys-
tems, volume 558 of LNCS. Springer, 1991. Cited on page 21.

J. Hooman, R. Huis in 't Veld, and M. Schuts. Experiences with a compos-
itional model checker in the healthcare domain. In Foundations of Health
Information Engineering and Systems, number 7151 in LNCS, pages 93-110.
Springer—Verlag, 2012. Cited on page 9.

F. Howar, M. Isberner, M. Merten, and B. Steffen. Learnlib tutorial: From
finite automata to register interface programs. In T. Margaria, editor, ISoLA
2012, LNCS, vol. 7609, pages 587—-590. Springer, Heidelberg, 2012. Cited on
pages 6 and 95.

IBM. Rational Rhapsody. www.ibm.com/software/products/en/
ratirhapfami, 2015. Cited on pages 14 and 107.

J. Ichbiah. Rationale for the design of the Ada programming language. Cam-
bridge University Press, 1991. Cited on page 13.

www.ibm.com/software/products/en/ratirhapfami
www.ibm.com/software/products/en/ratirhapfami

[79] Intel. Intelligent Platform Management Interface (IPMI) - spe-
cifications. www.intel.com/content/www/us/en/servers/ipmi/
ipmi-specifications.html, 2015. Cited on page 52.

[80] M. Isberner. Foundations of Active Automata Learning: An Algorithmic
Perspective. PhD thesis, Technical University of Dortmund, 2015. Cited on
pages 104 and 127.

[81] Itemis. Xtext, 2016. xtext.itemis.com. Cited on page 123.

[82] P. James and M. Roggenbach. Encapsulating formal methods within do-
main specific languages: A solution for verifying railway scheme plans. The
Computing Research Repository, abs/1403.3034, 2014. Cited on page 15.

[83] C. Jones, D. Jackson, and J. Wing. Formal methods light. Computer,
29(4):20-22, 1996. Cited on page 71.

[84] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. Atl: A model transform-
ation tool. Science of computer programming, 72(1):31-39, 2008. Cited on
page 17.

[85] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. Atl: a qvt-
like transformation language. In Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applic-
ations, pages 719-720. ACM, 2006. Cited on page 17.

[86] A. Kalsing, G. do Nascimento, C. Iochpe, and L. Thom. An incremental
process mining approach to extract knowledge from legacy systems. In En-
terprise Distributed Object Computing Conference (EDOC), pages 79-88,
2010. Cited on page 16.

[87] J. Kérni, J.-P. Tolvanen, and S. Kelly. Evaluating the use of domain-specific
modeling in practice. In The 9th OOPSLA workshop on Domain-Specific
Modeling, 2009. Cited on page 14.

[88] M. Kaufmann, J. Moore, and P. Manolios. Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, 2000. Cited on page 14.

[89] D. Kolovos, L. Rose, N. Matragkas, R. Paige, E. Guerra, J. Cuadrado,
J. De Lara, I. Rath, D. Varr6, M. Tisi, et al. A research roadmap to-
wards achieving scalability in model driven engineering. In Proceedings of
the Workshop on Scalability in Model Driven Engineering, page 2. ACM,
2013. Cited on page 3.

[90] S. Koo, H. Son, and P. Seong. Nusee: Nuclear software engineering envir-
onment. In Reliability and Risk Issues in Large Scale Safety-critical Digital
Control Systems, Springer Series in Reliability Engineering, pages 121-135.
Springer London, 2009. Cited on page 47.

[91] I. Kurtev, M. Schuts, J. Hooman, and D.-J. Swagerman. Integrating interface
modeling and analysis in an industrial setting. In Proceedings 5th Interna-
tional Conference on Model-Driven Engineering and Software Development,
pages 345-352, 2017. Cited on pages 10 and 108.

www.intel.com/content/www/us/en/servers/ipmi/ipmi-specifications.html
www.intel.com/content/www/us/en/servers/ipmi/ipmi-specifications.html
xtext.itemis.com

[92]

[93]

[94]

[95]

[96]

97]

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

P. Larsen, J. Fitzgerald, and T. Brookes. Applying formal specification in
industry. IEEE software, 13(3):48-56, 1996. Cited on page 48.

B. Lientz and E. Swanson. Software Maintenance Management. Addison
Wesley, 1980. Cited on page 1.

R. C. Linger. Cleanroom process model. IEEE Software, 11(2):50, 1994.
Cited on page 13.

MagicDraw. Cameo simulation toolkit. www.nomagic.com/products/
magicdraw-addons/cameo-simulation-toolkit.html, 2015.
Cited on page 14.

T. Margaria, O. Niese, H. Raffelt, and B. Steffen. Efficient test-based model
generation for legacy reactive systems. In 9th IEEFE Int. High-Level Design
Validation and Test Workshop, pages 95-100, 2004. Cited on page 16.

MathWorks. Matlab and Simulink. www.mathworks.com, 2015. Cited on
page 14.

S. McConnell. Code complete. Pearson Education, 2004. Cited on pages 44
and 124.

T. Mens and P. Van Gorp. A taxonomy of model transformation. Electronic
Notes in Theoretical Computer Science, 152:125-142, 2006. Cited on page 16.

B. Meyer. Applying “design by contract”. IEEE Computer, 25(10):40-51,
1992. Cited on page 22.

G. Michaelson. Are there domain specific languages? In Proceedings of
the 1st International Workshop on Real World Domain Specific Languages,
page 1. ACM, 2016. Cited on page 4.

R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980.
Cited on page 50.

A. Mooij, G. Eggen, J. Hooman, and H. van Wezep. Cost-effective indus-
trial software rejuvenation using domain-specific models. In International
Conference on Theory and Practice of Model Transformations, pages 66-81.
Springer, 2015. Cited on page 17.

A. Mooij and J. Hooman. Creating a Domain Specific Language (DSL)
with Xtext. www.cs.ru.nl/J.Hooman/DSL/, 2015. Cited on pages 72
and 123.

A. Mooij, J. Hooman, and R. Albers. Early fault detection using design mod-
els for collision prevention in medical equipment. In International Symposium
on Foundations of Health Informatics Engineering and Systems, pages 170
187. Springer, 2013. Cited on page 15.

www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.html
www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.html
www.mathworks.com
www.cs.ru.nl/J.Hooman/DSL/

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

A. Mooij, J. Hooman, and R. Albers. Gaining industrial confidence for the
introduction of domain-specific languages. In Computer Software and Ap-
plications Conference Workshops (COMPSACW), 2013 IEEE 37th Annual,
pages 662-667. IEEE, 2013. Cited on page 15.

A. Mooij, M. Joy, G. Eggen, P. Janson, and A. Radulescu. Industrial soft-
ware rejuvenation using open-source parsers. In International Conference
on Theory and Practice of Model Transformations, pages 157-172. Springer,
2016. Cited on page 17.

P. Mosses, editor. CASL Reference Manual, volume 2960 of LNCS. Springer,
2004. Cited on page 15.

I. Nagy, L. Cleophas, M. van den Brand, L. Engelen, L. Raulea, and
E. Mithun. VPDS: A DSL for software in the loop simulations covering
material flow. In 17th Int. Conf. on Engineering of Complex Computer Sys-
tems (ICECCS), pages 318-327, 2012. Cited on page 14.

B. Needles, M. Powers, and S. Crosson. Principles of accounting. Cengage
Learning, 2013. Cited on pages 3, 124, and 127.

OMG. Semantics of a foundational subset for executable UML models
(fUML). www.omg.org/spec/FUML/, 2015. Cited on page 14.

A. Osaiweran. Formal development of control software in the medical systems
domain. PhD thesis, Eindhoven University of Technology, 2012. Cited on
page 9.

A. Osaiweran, M. Schuts, and J. Hooman. Incorporating formal techniques
into industrial practice. Empirical Software Engineering, 19:1169-1194,
2014. Cited on page 9.

A. Osaiweran, M. Schuts, J. Hooman, J. Groote, and B. van Rijnsoever.
Evaluating the effect of a lightweight formal technique in industry. Inter-
national Journal on Software Tools for Technology Transfer, 18(1):93-108,
2016. Cited on pages 11 and 125.

A. Osaiweran, M. Schuts, J. Hooman, and J. Wesselius. Incorporating formal
techniques into industrial practice: an experience report. In Proceedings
9th International Workshop on Formal Engineering approaches to Software
Components and Architectures, volume 295 of ENTCS, pages 49-63, 2013.
Cited on page 9.

S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification
for fault-tolerant architectures: prolegomena to the design of pvs. Software
Engineering, IEEE Transactions on, 21(2):107-125, Feb 1995. Cited on
page 14.

G. Palshikar. Applying formal specifications to real-world software develop-
ment. IEEE Software, 18(6):89-97, 2001. Cited on page 48.

www.omg.org/spec/FUML/

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

R. Pérez-Castillo, I. De Guzman, and M. Piattini. Knowledge discovery
metamodel-iso/iec 19506: A standard to modernize legacy systems. Com-
puter Standards & Interfaces, 33(6):519-532, 2011. Cited on page 16.

C. Potts. Software-engineering research revisited. IEEE software, 10(5):19-
28, 1993. Cited on page 3.

S. Prowell and J. Poore. Foundations of sequence-based software specifica-
tion. IFEE Transactions on Software Engineering, 29:417-429, 2003. Cited
on page 21.

S. J. Prowell, C. J. Trammell, R. C. Linger, and J. H. Poore. Cleanroom soft-
ware engineering: technology and process. Pearson Education, 1999. Cited
on page 13.

H. Raffelt, B. Steffen, T. Berg, and T. Margaria. LearnLib: a framework
for extrapolating behavioral models. STTT, 11(5):393-407, 2009. Cited on
page 98.

A. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.
Cited on page 27.

M. Rosen, B. Lublinsky, K. Smith, and M. Balcer. Applied SOA: service-
oriented architecture and design strategies. John Wiley & Sons, 2012. Cited
on page 4.

J. Schmaltz and D. Borrione. A functional approach to the formal specific-
ation of networks on chip. In Formal Methods in Computer-Aided Design,
number 3312 in LNCS, pages 52—66. Springer—Verlag, 2004. Cited on page 14.

M. Schuts. Improving software development: The introduction and imple-
mentation of ASD at Philips Healthcare. Master thesis, 2010. Cited on
pages 9, 35, and 123.

M. Schuts and J. Hooman. Formal modelling in the concept phase of product
development. In Software FEngineering Research & Practice, WORLD-
COMP’15, pages 3-9. CSREA Press, 2015. Cited on page 10.

M. Schuts and J. Hooman. Formalizing the concept phase of product develop-
ment. In Formal Methods, number 9109 in LNCS, pages 605-608. Springer—
Verlag, 2015. Cited on page 10.

M. Schuts and J. Hooman. Using domain specific languages to improve the
development of a power control unit. In Proceedings 2015 Federated Con-
ference on Computer Science and Information Systems, volume 5 of Annals
of Computer Science and Information Systems, pages 781-788. IEEE, 2015.
Cited on page 10.

M. Schuts and J. Hooman. Improving maintenance by creating a dsl for
configuring a fieldbus. In Proceedings of the International Workshop on
Domain-Specific Modeling, DSM 2016, pages 28-34. ACM, 2016. Cited on
page 10.

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

M. Schuts and J. Hooman. Industrial application of domain specific lan-
guages combined with formal techniques. In Proceedings Workshop on Real
World Domain Specific Languages, pages 2:1-2:8. ACM, 2016. Cited on
page 10.

M. Schuts, J. Hooman, and F. Vaandrager. Refactoring of legacy software
using model learning and equivalence checking: an industrial experience
report. In integrated Formal Methods, number 9681 in LNCS, pages 311-
325. Springer—Verlag, 2016. Cited on page 10.

M. Schuts, F. Zhu, F. Heidarian, and F. Vaandrager. Modelling clock syn-
chronization in the chess gmac wsn protocol. In Proceedings 1st Workshop
on Quantitative Formal Methods (QFM 2009), volume 13 of EPTCS, pages
41-54. Cited on page 11.

G. Selim, S. Wang, J. Cordy, and J. Dingel. Model transformations for
migrating legacy models: an industrial case study. In Furopean Conference
on Modelling Foundations and Applications, pages 90-101. Springer, 2012.
Cited on page 17.

G. Selim, S. Wang, J. Cordy, and J. Dingel. Model transformations for
migrating legacy deployment models in the automotive industry. Software
& Systems Modeling, 14(1):365-381, 2015. Cited on page 17.

S. Sendall and W. Kozaczynski. Model transformation the heart and soul
of model-driven software development. Technical report, 2003. Cited on
page 16.

N. Shankar. Combining theorem proving and model checking through sym-
bolic analysis. In CONCUR’00: Concurrency Theory, number 1877 in LNCS,
pages 1-16. Springer, 2000. Cited on page 81.

N. Shankar. Symbolic analysis of transition systems. In Abstract State
Machines: Theory and Applications (ASM 2000), volume 1912 of LNCS,
pages 287-302. Springer, 2000. Cited on pages 6 and 72.

SHE. System-level design with the SHE methodology. www.es.ele.tue.
nl/she/, 2015. Cited on page 50.

W. Smeenk. Applying Automata Learning to Complex Industrial Software.
Master thesis, Radboud University, Nijmegen, Sept. 2012. Cited on page 105.

W. Smeenk, J. Moerman, F. Vaandrager, and D. Jansen. Applying auto-
mata learning to embedded control software. In M. Butler, S. Conchon, and
F. Zaidi, editors, ICFEM 2015, LNCS, vol. 9407, pages 67-83. Springer,
Heidelberg, 2015. Cited on pages 16, 103, and 104.

S. Sobernig, M. Strembeck, and A. Beck. Developing a domain-specific lan-
guage for scheduling in the european energy sector. In International Confer-
ence on Software Language Engineering, pages 19-35. Springer, 2013. Cited
on page 15.

www.es.ele.tue.nl/she/
www.es.ele.tue.nl/she/

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

B. Steffen, F. Howar, and M. Merten. Introduction to active automata
learning from a practical perspective. In M. Bernardo and V. Issarny, editors,
SFM 2011, LNCS, vol. 6659, pages 256-296. Springer, Heidelberg, 2011.
Cited on pages 16 and 98.

A. Stellman and J. Greene. Applied software project management. " O’Reilly
Media, Inc.", 2005. Cited on page 31.

J. Stoel, T. v. d. Storm, J. Vinju, and J. Bosman. Solving the bank with
rebel: on the design of the rebel specification language and its application
inside a bank. In Proceedings of the 1st Industry Track on Software Language
Engineering, pages 13-20. ACM, 2016. Cited on page 15.

F. Systems. Failures-Divergences Refinement (FDR). www.fsel.com,
2015. Cited on page 53.

B. Theelen, O. Florescu, M. Geilen, J. Huang, P. van der Putten, and J. P.
Voeten. Software/hardware engineering with the parallel object-oriented
specification language. In Proceedings of the 5th IEEE/ACM International
Conference on Formal Methods and Models for Codesign, pages 139-148.
IEEE Computer Society, 2007. Cited on pages 5 and 50.

B. D. Theelen, O. Florescu, M. Geilen, J. Huang, P. van der Putten, and
J. Voeten. Software/hardware engineering with the parallel object-oriented
specification language. In Proceedings of MEMOCODE’07, pages 139-148.
IEEE, 2007. Cited on page 72.

U. Tikhonova, M. Manders, M. van den Brand, S. Andova, and T. Verhoeff.
Applying model transformation and event-b for specifying an industrial dsl.
In MoDeVVa@ MoDELS, pages 41-50, 2013. Cited on page 17.

J.-P. Tolvanen and S. Kelly. Defining domain-specific modeling languages
to automate product derivation: Collected experiences. In International
Conference on Software Product Lines, pages 198-209. Springer, 2005. Cited
on pages 15 and 125.

L. Tratt. The mt model transformation language. In Proceedings of the
2006 ACM symposium on Applied computing, pages 1296-1303. ACM, 2006.
Cited on page 16.

TypeFox. DSL trainings, 2016. www.typefox.io/trainings-2. Cited
on page 123.

F. Vaandrager. Model learning. Communications of the ACM, 60(2):86-95,
2017. Cited on page 6.

W. van der Aalst. Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer-Verlag Berlin Heidelberg, 2011. Cited
on page 16.

A. Van Deursen and P. Klint. Little languages: little maintenance? Journal
of software maintenance, 10(2):75-92, 1998. Cited on page 4.

www.fsel.com
www.typefox.io/trainings-2

[156] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. SIGPLAN Notices, 35(6):26-36, 2000. Cited on
page 4.

[157] A. Van Deursen, E. Visser, and J. Warmer. Model-driven software evolu-
tion: A research agenda. Technical report, Delft University of Technology,
Software Engineering Research Group, 2007. Cited on page 16.

[158] H. Van Vliet, H. Van Vliet, and J. Van Vliet. Software Engineering: Prin-
ciples and Practice. John Wiley & Sons, 2008. Cited on page 2.

[159] VDMTools. Industrial tool of CSK systems corporation supporting
VDM++. www.vdmtools.jp/en, 2015. Cited on page 13.

[160] J. Verriet, R. Hamberg, J. Caarls, and B. van Wijngaarden. Warehouse
simulation through model configuration. In ECMS, pages 629-635, 2013.
Cited on page 14.

[161] Verum. ASD:Suite, 2011. www.verum.com/. Cited on pages 5 and 19.

[162] M. Voelter. Generic Tools, Specific Languages. PhD thesis, Delft University
of Technology, 2014. Cited on page 14.

[163] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. Kats,
E. Visser, and G. Wachsmuth. DSL Engineering - Designing, Implementing
and Using Domain-Specific Languages. dslbook.org, 2013. Cited on page 4.

[164] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. Mbeddr: An extensible C-
based programming language and IDE for embedded systems. In Proceedings
of the 3rd Annual Conference on Systems, Programming, and Applications:
Software for Humanity (SPLASH ’12), pages 121-140. ACM, 2012. Cited
on page 14.

[165] V. Vyatkin. Software engineering in industrial automation: State-of-the-art
review. IEEE Transactions on Industrial Informatics, 9(3):1234-1249, 2013.
Cited on page 1.

[166] C. Wagner. Model-Driven Software Migration: A Methodology. Springer
Vieweg, 2014. Cited on pages 2 and 7.

[167] M. Ward. Language-oriented programming. Software-Concepts and Tools,
15(4):147-161, 1994. Cited on pages 14 and 125.

[168] I. Warren. The renaissance of legacy systems: method support for software-
system evolution. Springer Science & Business Media, 2012. Cited on pages 2,
7, and 63.

[169] J. Westland. The cost of errors in software development: evidence from
industry. The Journal of Systems and Software, 62:1-9, 2002. Cited on
page 48.

www.verum.com/

[170] J. Whittle, J. Hutchinson, and M. Rouncefiled. The state of practice in
model-driven engineering. In IEEE Software, pages 79-85. IEEE, 2014. Cited

on pages 93 and 126.

[171] J. Wiegand et al. Eclipse: A platform for integrating development tools.
IBM Systems Journal, 43(2):371-383, 2004. Cited on pages 6 and 66.

[172] J. Woodcock, P. Larsen, J. Bicarregui, and J. Fitzgerald. Formal methods:
Practice and experience. ACM Computing Surveys, 41(4):1-36, 2009. Cited
on pages 13 and 19.

SAMENVATTING

Complexe systemen zoals vliegtuigen, auto’s, en medische apparaten bestaan voor
een groot gedeelte uit complexe software. Het aanpassen en uitbreiden van derge-
lijke apparaten is een uitdagende taak. Neem als voorbeeld de Image Guided Ther-
apy (IGT) systemen van Philips. Deze systemen worden gebruikt voor minimaal
invensieve operaties van, b.v., hart- en vaatziekten. De software die verantwoor-
delijk is voor de aansturing van de hardware van het systeem bestaat uit miljoenen
regels broncode. Voor een nieuw systeem worden grote delen van eerder uitgeb-
rachte systemen hergebruikt. Omdat de systemen van IGT al meer dan dertig jaar
bestaan, is een groot gedeelte van de broncode jaren geleden geschreven.

Het onderhoud van complexe systemen wordt belemmerd doordat een groot
gedeelte bestaat uit oude broncode. Vaak zijn de oorspronkelijke ontwikkelaars
vertrokken. De documentatie beschrijft niet de huidige toestand van de broncode
en er zijn onvoldoende testen om te garanderen dat er niets omvalt na het aan-
brengen van wijzigingen in de broncode. Hierdoor kunnen wijzigingen gemakkelijk
leiden tot fouten. Anderzijds zijn er voordurend vragen om aanpassingen te maken
voor nieuwe toepassingen, zoals voor nieuwe medische procedures.

Om te onderzoeken of nieuwe technieken de onderhoudbaarheid van complexe
systemen kunnen verbeteren hebben we een aantal van deze technieken toegepast
in ontwikkelprojecten bij Philips. Bij alle technieken zijn Domain Specific Lan-
guages (DSLs) toegepast. Een DSL heeft een beperkte grammatica, zodat alleen
domain concepten kunnen worden beschreven. Hierdoor ontstaan abstracte mod-
ellen die gemakkelijk zijn te lezen en te onderhouden. Vanuit een DSL kunnen
verschillende artefacten automatisch worden gegenereerd, zoals simulatie model-
len, formele analyse modellen, en broncode.

Een techniek die we bij IGT hebben toegepast is Analytical Software Design
(ASD). ASD is gebruikt voor het ontwerpen en integreren van een nieuwe software
component die nodig was voor de vervanging van een oude hardware compon-
ent. ASD instanties kunnen formeel worden gecontroleerd en daarna kan broncode
worden gegenereerd. Door het gebruik van ASD is het aantal fouten afgenomen tot
slechts 0,17 fouten per 1000 regels broncode, terwijl de industriestandaard tussen
1 en 25 ligt. De ASD aanpak kan echter alleen worden toegepast voor kleine,
data-onafhankelijke besturingscomponenten.

Omdat de formele controle van ASD niet kan worden toegepast voor grote,
generieke componenten, hebben we geéxperimenteerd met de Parallel Object Ori-
ented Specification Language (POOSL). Met deze taal is het ook mogelijk om tijd

en probabilistisch gedrag te beschrijven. POOSL modellen kunnen worden gesimu-
leerd voor de validatie van een ontwerp. We hebben POOSL toegepast om ontwerp
ideeén te valideren voor de introductie van een nieuwe hardware component.

Recente ontwikkelingen in de DSL technologie maakt het mogelijk om snel een
taal en de bijbehorende generatoren te creéren. We hebben een taal gemaakt voor
het configureren van een oude component. Vanuit deze beknopte taal, die alleen
de essentiéle domain concepten beschrijft, kunnen we automatische grote config-
uratiebestanden genereren. De geldigheid van taal instanties wordt automatisch
gecontroleerd. Na het genereren van 13 configuratiebestanden is de benodigde in-
vestering om de taal te maken al terugverdiend. In totaal verwachten we ongeveer
2000 files op deze manier te gaan genereren.

Deze aanpak is ook toegepast op een andere, oude component die numerieke,
moeilijk te onderhouden configuratiebestanden gebruikt. We hebben een leesbare
taal gemaakt van waaruit niet alleen de configuratiebestanden kunnen worden
gegenereerd, maar ook analyse modellen. Met deze modellen kunnen we het be-
schreven gedrag formeel controleren en we kunnen test reeksen genereren. De
gegenereerde testen zijn een instantie van een tweede test DSL. Vanuit de test DSL
genereren we bestanden voor een testprogramma die de hardware en software van
een component aftest. Ook hebben we generatoren toegevoegd voor de generatie
van grafische plaatjes en testen om de analyse modellen te valideren. Daarnaast
gebruiken we logbestanden die het gebruik van het systeem vastleggen. Deze
logbestanden kunnen worden omgezet naar instanties van de test DSL. Op deze
manier kunnen we checken of het gedrag van de analyse modellen overeenstemt
met het gedrag van het systeem. Door deze kruisverbanden te bekijken krijgen we
vertrouwen in de DSL instanties en de gebruikte generatoren.

Een andere software component moest worden aangepast om te kunnen com-
municeren met een nieuwe hardware component. Verder moet het kunnen commu-
niceren met de bestaande, oude hardware component. Het gedrag van de software
component moest identiek zijn voor beide versies van de hardware. Om dit te
valideren hebben we gebruik gemaakt van een techniek die een model kan leren uit
het gedrag van een bestaande implementatie en een programma dat kan checken
of twee modellen identiek zijn. Dit leidde tot een aantal verschillen die niet waren
gevonden met de bestaande tests. Door het verwijderen van de verschillen hebben
we de kwaliteit van de aangepastte software component.

Als laatste toepassing hebben we oude modellen die gebruikt werden om bron-
code te genereren vervangen door modellen voor een nieuw programma dat ook
broncode kan genereren. De oude modellen zijn omgezet met een DSL. Om ver-
trouwen te krijgen in de omzetting hebben we de hierboven beschreven leertechniek
opnieuw toegepast.

Samenvattend kan gesteld worden dat alle technieken hebben bijgedragen aan
de onderhoudbaarheid van het systeem. ASD en POOSL hebben bijgedragen aan
de softwarekwaliteit door in een vroeg stadium van het ontwikkelproces fouten
te voorkomen. De investering om zelf een DSL te maken wordt ruimschoots
terugverdiend wanneer veel instanties nodig zijn, bijvoorbeeld in het geval van
configuratiebestanden. Door vanuit een enkele bron veel verschillende zaken te
genereren, zoals analyse modellen en broncode, worden inconsistentie en fouten op
een pragmatische manier vermeden.

SUMMARY

High-tech systems such as air planes, cars, and medical systems contain large
amounts of complex software. Adapting and extending such systems is a very
challenging task. As an example, consider the Image Guided Therapy (IGT)
systems of Philips. These systems are used for minimally invasive treatment of,
e.g., cardio and vascular diseases. The software that is responsible for managing
and controlling the hardware of the system contains millions of lines of source code.
Hence, a new system release will reuse large parts of previous releases. Since IGT
systems have been developed for over thirty years, they contain large parts of old
software that has been written many years ago.

In general, the maintainability of complex high-tech systems is hampered by the
existence of large amounts of old software. Often the original developers have left
the development group, the documentation describing the source code is not up to
date, and there are not sufficient tests to guarantee correctness after modifications.
Hence, changes are difficult and can easily lead to system failures. On the other
hand, there is a continuous stream of change requests to deal with new usage
scenarios, e.g., new medical procedures.

To investigate whether new techniques can improve the maintainability of com-
plex high-tech systems, we have applied them in a number of real development pro-
jects at Philips. Common to all techniques is the use of Domain Specific Languages
(DSLs). A DSL has a restricted grammar to express the essential domain concepts
only. This leads to abstract models that are easy to read and to maintain. Based
on a single model, several artefacts can be generated such as simulation models,
formal analysis models, and code.

The first applications of DSL-based techniques at IGT concerned Analytical
Software Design (ASD). ASD has been used to design and integrate a new software
component for the replacement of an old hardware component. Instances of the
ASD language can be verified formally and - from the same instance - source code
can be generated automatically. By applying ASD, the number of defects dropped
dramatically to 0.17 defects per 1000 lines of source code, while industry standard
is between 1 and 25. The approach can be used, however, for a restricted type of
small data-independent control components only. To deal with larger components
of a more general type, where formal verification is not feasible, we have experi-
mented with the Parallel Object Oriented Specification Language (POOSL). This
language allows the expression of timing and probabilistic behaviour. Models can
be simulated to explore and validate design concepts. POOSL has been applied

to explore new concepts for the introduction of a new hardware component.

Recent DSL technology makes it possible to create custom languages and gen-
erators within a limited amount of time. This enables fast prototyping with ded-
icated languages in industry. As an application, we have addressed the large
configuration files of an old component. We have created a concise language,
containing only the essential concepts, and automatically generate the large con-
figuration files. The validity of language instances can be checked automatically
before the configuration files are generated. The investment of creating the lan-
guage can be earned back after creating 13 configuration files, while we expect to
need approximately 2000 configuration files.

The approach to create a dedicated DSL was also applied to another old com-
ponent where the configuration files were completely numerical and consequently
difficult to maintain. We created a more readable language from which the low-
level configuration files can be generated. In addition, we also generated POOSL
models and models for the Symbolic Analysis Laboratory (SAL). SAL allows
formal verification of the model but also the generation of test cases. These test
cases are an instance of a so-called test DSL. From this test DSL we generate input
for the test tool that is used to test the combination of hardware and software.
We also generate graphical representations and checks to validate the POOSL and
SAL models. Moreover, log files from the usage of the real system are transformed
into instances of the test DSL and we check if they conform to the model of the
behaviour. By means of these cross checks between the different generated arte-
facts, we increased the confidence in the correctness of the language instances and
the generators.

In another application we considered a software component which was updated
to communicate with new hardware. Since it should be able to work with both
old and new hardware, the updated software should exhibit the same behaviour
as the original software. To validate this, we applied model learning, a technique
where automatically a state machine model is created by repeatedly stimulating an
implementation and observing the resulting output. The learned models of original
and updated software have been transformed into the language of an equivalence
checker. This led to a number of differences which were not found with the existing
regression test set and it improved the quality of the updated software component.

As a last application we addressed the transformation of old software models,
from which code is generated, to new model-based techniques that also allow code
generation. The old models have been transformed using DSL technology. To
improve the confidence in the model transformations, we applied the previously
described model learning technique.

Summarizing, we observe that all techniques improved the evolvability of the
system. ASD and POOSL improved software quality by preventing errors early
in the development process. DSLs show a very good return on investment when
there are many language instances, e.g., in case of configuration files. Having
a single source for all artefacts, such as analysis models and code, avoids error
prone manual transformations. Moreover, the use of cross checks between different
artefacts ensures consistency and correctness in a pragmatic way.

CURRICULUM VITAE

M.T.W. Schuts

1994 — 1998:
Norbertus MAVO Tilburg, the Netherlands.

1998 — 2002:
Professional education in Electronics,
ROC Tilburg, the Netherlands.

2002 - 2006:
Bachelor in Technical Informatics,
Fontys University of Applied Sciences Eindhoven, the Netherlands.

2007 - 2010:
Master of Science in Computing Science,
Radboud University Nijmegen, the Netherlands.

2010 — present:
Software Designer,
Philips Medical Systems Best, the Netherlands.

	Introduction
	Context
	Problem Statement
	Goal and Evaluation Criteria
	Approach
	Domain Specific Languages
	Overview Applied Techniques
	General Aspects of Industrial Cases

	Industrial Context
	Thesis Outline

	Related Work
	Language for Creating New Components
	Motivation for Applying ASD
	Fundamentals of ASD
	ASD Interface Models
	ASD Design Models and Model Checking

	Integrating ASD in Industrial Workflow
	The TDD Approach
	The ASD Approach

	Context of the PCS
	Steps of Developing the PCS
	Errors Not Detected by the ASD Verification
	Results of Developing the PCS
	Concluding Remarks

	Language for Exploring New System Concepts
	Motivation for Applying POOSL
	Fundamentals of POOSL
	POOSL Modelling Language
	POOSL Tooling

	Application at Philips
	Modeling the SU/SD Concept in POOSL
	Modelling Scope and Simulator
	Modelling Steps
	Modelling Devices and Control
	Extensive Model Testing

	Concluding Remarks

	Configuring a Component using DSLs
	Motivation for Creating DSLs
	Context of the Fieldbus
	DSL for Fieldbus Configurations
	DSL Instance Validation
	DSL to Describe System Configurations
	Concluding Remarks

	DSLs Combined with other Model-Based Techniques
	Motivation and Global Overview
	Context of the PDU
	Defining the Behaviour of the Component
	POOSL
	SAL
	Generation of Configuration Files

	Testing the Component
	Test cases
	Test DSL
	Automated Test Case Generation

	Increasing the Confidence in Models and Generators
	Concluding Remarks
	Results
	Analysis models
	Evaluation

	Model Learning to Validate Refactoring
	Motivation for the Application of Model Learning
	Learning Approach
	Context of the PCS
	Application of the Learning Approach
	Design of the Learning Environment
	Learned Output
	Checking Equivalence
	Investigating Counterexamples

	Results of Learning the Implementations of the PCS
	Iteration 1
	Iteration 2
	Iteration 3
	Iteration 4
	Iteration 5

	Scalability of the Learning Approach
	Faster implementations
	Faster Learning and Testing Algorithms
	Using Parallelization and Checkpointing
	Using Abstraction and Restriction

	Concluding Remarks

	Refactoring a Legacy Implementation using a DSL
	Motivation for the Transformation
	Transformation Approach
	State Machine Transformations
	From Rhapsody to ComMA
	Generating ComMA Instances
	From ComMA to Dezyne

	Increasing Confidence in the Generated Code
	Concluding Remarks

	Epilogue
	Evaluation of Criteria
	Lessons Learned
	Future Work

	Bibliography
	Samenvatting
	Summary
	Curriculum Vitae

