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A B S T R A C T

Elevated levels of polycyclic aromatic hydrocarbons (PAHs) are detected in aquafeeds where fish oils are
(partially) replaced by vegetable oils. The highly lipophilic PAHs solubilize readily in oil droplets and micelles in
the intestinal lumen that can affect enzymatic lipid digestion by altering lipase activity. We therefore
investigated the effect of two PAHs, benzo[a]pyrene (BaP) and phenanthrene (PHE), on bile salt-activated
lipase (BAL) activity in desalted luminal extracts of the proximal intestine of rainbow trout (Oncorhynchus
mykiss) using the triacylglycerides rapeseed oil and fish oil as substrates.

The hydrolysis of rapeseed oil and fish oil measured at a calculated substrate concentration of 2.2 mM,
increased linearly up to 30 min at 15 °C. Substrate dependency under initial velocity conditions was described by
simple Michaelis-Menten kinetics with a Km value of 1.2 mM for rapeseed and fish oil. Rapeseed oil hydrolysis
was inhibited by 1 nM BaP and 10 nM PHE. The hydrolysis of fish oil was only inhibited by 10 μM BaP. The in
vitro lipase activity data were corroborated by TLC/HPLC analysis of the reaction products, showing that in the
presence of BaP and PHE, 46–80% less free fatty acids (FFA) were hydrolysed from rapeseed and fish oil
triacylglycerides.

The presence of low concentrations of BaP and PHE decreased rapeseed oil hydrolysis by BAL whereas fish oil
hydrolysis was not affected. The replacement of fish oil by rapeseed oil in aquafeeds introduces PAHs that could
affect lipid digestion.

1. Introduction

Traditionally, marine fish oils and fishmeal have been used as main
fish ingredients in aquafeeds. However, the rapidly growing aquacul-
ture sector cannot continue to rely on the limited supply of fish
ingredients. Hence, fish oil and fishmeal in aquafeeds are more and
more replaced with ingredients from plant origin (FAO, 2014; Pickova
and Mørkøre, 2007; Tacon and Metian, 2008). The inclusion of
vegetable ingredients in aquafeeds, however, introduced polycyclic
aromatic hydrocarbon (PAH) congeners, including benzo[a]pyrene
(BaP) and phenanthrene (PHE) in Atlantic salmon (Salmo salar) tissue
(Berntssen et al., 2005, 2010, 2015). PAHs are ubiquitous lipophilic
organic contaminants composed of two or more fused aromatic rings.
These contaminants are mostly formed due to incomplete combustion
or pyrolysis of organic matter (Moret and Conte, 2002). In aquafeeds,
PAHs are formed by thermal processing of oil-containing seeds and
grains during toasting or gas drying (Moret et al., 2005; Phillips, 1999;

Teixeira et al., 2007). The diet contributes substantially to PAH
exposure with cereals, vegetable fats and oils being the principal
culprits (Phillips, 1999). Concern about these contaminants has been
due to the carcinogenic, mutagenic/genotoxic and other toxic effects
induced by PAHs (EFSA, 2008).

After oral ingestion, the lipophilic nature of PAHs promotes their
solubilization in oil droplets and mixed micelles in the intestinal lumen
(Jandacek and Genuis, 2013; Kelly et al., 2004; Porter et al., 2007)
where it can potentially interfere with lipase activity and lipid diges-
tion. Luminal entry of emulsified lipids stimulates the exocrine
pancreas and gall bladder to secrete digestive lipases and bile juice,
respectively, in the intestinal lumen (Olsen and Ringø, 1997; Tocher,
2003). In many teleost species, the exocrine pancreas is distributed
diffusely around the gastrointestinal tract and secretes its enzymes into
the lumen of the pyloric caeca and/or proximal intestine (Bakke et al.,
2010). Biliary components (e.g. bile salts and cholesterol) sponta-
neously form mixed micelles with free fatty acids (FFA) and, to a lesser
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extent, with mono-, di- and triacylglycerides (Bakke et al., 2010; Phan
and Tso, 2001; Wang et al., 2013; Yeap et al., 2013).

Two key lipolytic enzymes are secreted by the exocrine pancreas in
mammals, viz. bile salt-activated lipase (BAL) and pancreatic lipase
(Wang and Hartsuck, 1993). Lipases hydrolyze ester bonds in triacyl-
glycerides (TAGs), phospholipids, cholesteryl esters and fat-soluble
vitamins. In mammals, pancreatic lipase is the most important digestive
lipase. In fish, however, BAL is considered to be the most important
digestive lipase (Bogevik et al., 2008; Bogevik, 2011; Gjellesvik et al.,
1992; Olsen and Ringø, 1997; Rønnestad et al., 2013; Sæle et al., 2010;
Tocher, 2003). BAL has a broad substrate specificity, is highly
dependent on bile salts to be catalytically active and is more efficient
in hydrolyzing polyunsaturated fatty acids (PUFAs), which are abun-
dant in the diet of marine and freshwater fish (Chen et al., 1990;
Gjellesvik, 1991; Wang and Hartsuck, 1993).

The lipid composition of micelles can affect the solubility of PAHs.
Indeed, PAHs have a higher solubility in micelles composed of
unsaturated long-chain fatty acids compared to saturated short-chain
fatty acids (Doi et al., 2000; Laher and Barrowman, 1983) whereas
solubility in micelles composed of long-chain triacylglycerides is often
low (Porter et al., 2007). Fish oil is an important source of n−3
unsaturated long-chain fatty acids such as eicosapentaenoic acid (EPA;
20:5n−3) and docosahexaenoic acid (DHA; 22:6n−3) (Bell and
Waagbø, 2009; Sioen et al., 2008). Rapeseed oil is mainly used as a
substitute for fish oils and contains high levels of oleic acid (ca. 60%;
18:1n−9) and moderate levels of linoleic acid (ca. 20%; 18:2n−6) and
saturated short-chain fatty acids (Table 1). The different lipid composi-
tions of rapeseed oil and fish oil are thus likely to affect PAH levels in
micelles and, hence, influence lipase activity.

The objective of the present study was to investigate the effects of
BaP and PHE on the lipolytic activity of lipase in rainbow trout
(Oncorhynchus mykiss) using rapeseed oil and fish oil as substrates.

2. Materials and methods

2.1. Animals

Rainbow trout (Oncorhynchus mykiss) with a body weight of
429 ± 78 g (mean ± SD) were obtained from a commercial hatchery
‘Keijzersberg’ in Blitterswijck, the Netherlands. Fish were kept at
15.0 ± 0.5 °C (mean ± SD) in an indoor recirculating system contain-

ing 575 L (input of 1 L fresh tap water per minute) of biofiltered and
UV-treated Nijmegen tap water. Trout were fed a commercial fish feed
(Optiline trout, 3.0 mm, Skretting, Utah, USA) with an automated
feeder at 9.30 and 16.30 h at a ration of 2% of the estimated body
weight per day.

Previous studies showed that 6 h post-feeding feed was mainly
located in the proximal intestine in Atlantic salmon weighing 200 g (de
Gelder et al., 2016). Therefore, to ensure access to intestinal luminal
contents, rainbow trout were anaesthetized 6 h post-feeding in 0.1% (v/
v) 2-phenoxyethanol (Sigma, St. Louis, USA) and euthanized by spinal
transection caudal of the opercula. Experimental design obeyed Dutch
legislation and was approved by the ethical review committee of
Radboud University (RU-DEC 2012-315).

2.2. Preparation of BAL extracts

As the exocrine pancreas is made up of diffuse tissue in between the
pyloric caeca, the best way to collect pancreatic enzymes such as BAL is
by collection of luminal contents. The peritoneal cavity was opened and
the proximal intestine, defined as the section directly posterior of the
pyloric caeca to the beginning of the distal intestine, recognized by its
darker appearance and annulo-spiral septa, was dissected and placed in
a Petri dish on ice. All subsequent steps were performed at 0 – 4 °C.
Visceral fat was removed, the proximal intestine was opened long-
itudinally and the luminal contents were gently extruded and sus-
pended in four volumes (w/v) ice-cold 100 mM phosphate buffer
containing 2.5% aprotinin and 0.1 mM PMSF, pH 7.5. All chemicals
were purchased from Sigma-Aldrich Co, St Louis, U.S.A. unless men-
tioned otherwise. Samples were centrifuged at 10.000 g for 10 min at
4 °C. The lipid layer was aspirated from the surface of the supernatant
after which the supernatant was collected and designated as crude BAL
extract.

Crude BAL extracts were desalted overnight at 4 °C by dialysis
(Tube-O-Dialyzer, MWCO 4000 Da, G-Biosciences St Louis, U.S.A.)
against 100 mM phosphate buffer to remove endogenous bile salts.
Protein concentrations of the desalted BAL extracts were measured by
spectrophotometry with a Coomassie Brilliant Blue reagent kit (Bio-
Rad, München, Germany) using bovine serum albumin as a reference,
and diluted to 1.0 mg protein·mL−1 unless mentioned otherwise.

2.3. Validation of the modified titrimetric assay

Lipase activity was assessed with a modified titrimetric assay
(Gotthilf, 1974) by measuring the decline in pH following lipid
hydrolysis. Lipase activity can be assessed in a volumetric assay as
described by Gotthilf (1974), in which the fatty acids liberated from the
triacylglycerol substrate are titrated with NaOH. To prevent dilution of
substrate and enzyme concentrations in the incubate by the addition of
NaOH titrant, we have chosen to measure the initial decrease in pH of
the incubate with a sensitive pH electrode (GK2401C Radiometer
Analytical, Villeurbanne Cedex, France) connected to a pH meter
(CG-842 Schott Geräte GmbH, Mainz, Germany).

All assay media were mechanically stirred, pre-warmed for 10 min
and maintained at the designated temperature. The modified titrimetric
assay was validated with a substrate emulsion containing 11% (final
assay concentration: 35 mM) commercially available olive oil and 89%
gum Arabic (10% w/v) that was added to assay medium containing
30 mM sodium taurocholate and 32 mM NaCl. Olive oil is a generally
used substrate to measure lipase activity and known for its high levels
of monounsaturated fatty acids and deficiency in n−3 unsaturated
long-chain fatty acids (Gupta et al., 2003). The assay medium was
completed with substrate emulsion, assay medium and dH2O
(3:3:2.9 v/v). The medium was adjusted to exactly pH 9.0 with 0.1 or
0.01 M NaOH and maintained at pH 9.0 for 8 min to stabilize gum
Arabic. After 8 min, porcine pancreatin (4× United States Pharmaco-
peia (U.S.P.) specifications; 8.0 units lipase·mg pancreatin−1), dis-

Table 1
Fatty acid composition (area percentage of total fatty acids) of various diets containing
100% of the different oil sources. Table was adapted from 1Bell et al. (1999) and
2Torstensen et al. (2004).

Olive oil1 Fish oil2 Rapeseed oil2

14:0 0.3 6.7 0.4
16:0 9.7 11.7 5.7
18:0 3.2 1.0 1.7
Sum saturates 13.7 20.4 9.1
16:1n−7 0.7 8.0 0.6
18:1n−7 1.5 3.4 3.2
18:1n−9 73.9 11.2 53.6
20:1n−9 0.7 17.1 2.1
22:1n−11 0.7 13.3 1.0
Sum monoenes 77.5 57.1 61.1
18:2n−6 5.9 3.5 19.5
20:2n−6 – 0.2 –
20:4n−6 – 0.3 –
Sum n−6 5.9 4.1 19.5
18:3n−3 0.5 1.1 8.6
18:4n−3 – 2.8 0.2
20:4n−3 – 0.4 –
20:5n−3 0.3 5.9 0.7
22:5n−3 – 0.4 –
22:6n−3 0.6 4.6 1.0
Sum n−3 1.4 15.8 10.6
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solved in 300 μL assay medium was added as a source of lipase. The pH
was readjusted to 8.0 with NaOH, the volume was adjusted with dH2O
to 9.3 mL and the change in pH was measured. Samples were measured
in triplicate, measured pH values were recalculated to a H+ concentra-
tion, corrected for non-enzymatic fatty acid formation by subtracting
measurements on heat-inactivated samples (boiled for 10 min at
100 °C) and normalized for the total assay volume and protein content
of the incubate. The recalculated H+ activity was interpreted to be
equivalent to one released proton (H+) per liberated FFA by lipase

(Gotthilf, 1974). The liberation of FFA by lipase activity was expressed
as pmol FFA per minute per mg protein.

The time course of lipase activity by porcine pancreatin with 35 mM
olive oil as substrate is well described by a single first-order exponential
rate equation (Fig. 1A). Data points converged well on a linearization of
the single exponential, indicative of one active component in pancrea-
tin lipase activity. Olive oil hydrolysis was linear up to 40 μg pancrea-
tin·mL−1 (Fig. 1B). All further validation experiments were performed
with 6.5 μg pancreatin·mL−1. Linearity of olive oil hydrolysis was

Fig. 1. Optimization of the pH-drop assay with olive oil as substrate and porcine pancreatin as lipase source. A) Time course of lipase activity with 36 mM olive oil as substrate, 25 μg
porcine pancreatin·mL−1 at pH 9.0. Data were fitted to a single exponential equation with a calculated limit and a rate constant of 2567 pmol FFA·mg protein−1 and k = 0.044 min−1,
respectively. The inset shows linearization of the single exponential equation, indicative of a single site substrate. B) Effect of increasing porcine pancreatin concentrations ranging from 4
to 40 μg pancreatin·mL−1 at t = 5 min. C) Effect of pH on enzyme activity. D) Lipase activity at pH values from 6 to 11. E) Temperature dependence at temperature values from 10 to
60 °C. F) Substrate dependent hydrolysis. The kinetic parameters derived from this curve are: maximum hydrolysis rate Vmax is 3402 pmol FFA·mg protein−1·min−1, Km is 22.4 mM olive
oil and a substrate inhibition constant (Ki) of 5.7 mM olive oil. G) Inhibition of lipase activity with 2.4 mM olive oil by Orlistat. Orlistat significantly decreased olive oil hydrolysis by 40%
(ANOVA with Dunnett's multiple comparison test). Points represent experimental data (mean ± SEM; n = 3 and n = 5 for the orlistat experiment). Due to the small sample size (n = 3)
and the relatively large standard errors no sensible 95% CIs could be calculated.
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observed at pHs 7.5, 8 and 8.5 up to 10 min (Fig. 1C), hence we chose
an incubation time of 2 min to measure initial hydrolysis rates in all
further experiments with porcine pancreatin. Optimal pH for porcine
pancreatic lipase was 7.5 (Fig. 1D). However, as the time course was no
longer linear at pH 7.0, pH 8.0 was chosen for all further experiments to
allow a wider pH range over which pH could decrease. Optimal lipase
activity was observed around 40 °C (Fig. 1E). The initial hydrolysis rate
with olive oil was best described by a substrate inhibition model with a
substrate inhibition constant (Ki) of 5.7 mM olive oil (Fig. 1F). Pre-
incubation of porcine pancreatin for 1 h with 10 nM of the lipase
inhibitor orlistat decreased olive oil hydrolysis by 40%.

2.4. Trout intestinal lipase activity

Lipase activity was assayed as previously described with some small
modifications. Briefly, all media were cooled to 15 °C and maintained at
this temperature during the assay as this resembles the ambient
temperature of our laboratory stock and that of feral rainbow trout
(11–18 °C). A volume of 0.1 mL substrate emulsion containing 11%
(final assay concentration: 2.2 mM) olive oil, fish feed graded rapeseed
oil (Emmelev AS, Denmark) or fish oil (Norsildmel, Norway) and 89%
gum Arabic was added to 4.4 mL assay medium (final concentration:
20 mM sodium taurocholate and 32 mM NaCl). Assay conditions were
100 μg desalted BAL extracts of O. mykiss and 20 mM bile salt
(taurocholate) (Bogevik et al., 2008). The solution was adjusted to
exactly pH 9.0 and after 8 min 100 μL (1 mg protein·mL−1) desalted
BAL extract was added. The pH was readjusted with NaOH, the volume
was adjusted to 5.0 mL with dH2O and the decline in pH was measured.
The assay with desalted BAL extracts was optimized for time and
substrate dependency with olive oil, rapeseed oil and fish oil. Initial
hydrolysis rates were measured in a 30 min incubation time unless
mentioned otherwise. Under these assay conditions< 1% of the
substrate was hydrolyzed. Olive oil was used as substrate to validate
lipase activity in BAL extracts. The time course of lipase activity in
desalted BAL extracts with 2.2 mM olive oil was well described by a
single first-order exponential rate equation and the logarithmic trans-
formed data points converged well on a linearization of the single
exponential. The calculated rate constant and limit were 0.015 min−1

and 1352 pmol·mg protein−1, respectively. Substrate dependency at
t = 30 min showed characteristic single-site Michaelis-Menten kinetics
with calculated Michaelis constant (Km) value of 0.5 mM and a Vmax of
11.8 pmol·mg protein−1·min−1.

2.5. Lipase activity in the presence of PAHs

Stock solutions of 100 mM BaP and PHE were prepared in acetone
(propan-2-one). A preliminary test confirmed that a final assay
concentration of 0.1% acetone had no effect on lipid hydrolysis in
desalted BAL extracts of the proximal intestine of O. mykiss (data not
shown). Due to their non-polar, lipophilic nature, PAHs adsorb strongly
to labware surfaces. Previous studies have shown that untreated glass
vials had the highest recovery and lowest adsorption of PAHs (de
Gelder et al., 2017); we therefore used glass vials for all experiments.
The substrate emulsion was pre-incubated for 2 min with BaP or PHE
prior to addition to the assay medium. The effect of BaP and PHE on
rapeseed and fish oil hydrolysis was assessed at the established Km

values of the oil substrates (i.e. 1.2 mM). Final assay conditions were:
100 μg BAL extract, 1.2 mM rapeseed or fish oil, pH 8.0 at 15 °C and
measured at t = 30 min at initial rate. At t = 30 a sample of 1 mL was
immediately frozen in liquid nitrogen and stored at −80 °C for lipid
class analysis.

2.6. Lipid class analysis

Lipids were extracted from the samples by adding 750 μL of a
chloroform–methanol mixture (2:1 v/v) to 60 μL of the assay medium

after which the solution was vortexed. Then, 250 μL chloroform and
250 μL ddH2O were added and again vortexed thoroughly (Bligh and
Dyer, 1959). The samples were then filtered on a vacuum block in
10 mL reservoirs with a paper filter. The reservoirs are rinsed twice
with a chloroform:methanol mix (2:1 v/v). The filtered samples were
collected and dried in a RapidVap (Labconco, MO, USA). Lipid class
composition was determined using high-performance thin layer chro-
matography analysis as described by Henderson and Tocher (1992).
Briefly, samples were re-suspended in chloroform to an approximate
lipid concentration of 0.1 mg·mL−1 based on the weight of the dried
sample. To silica plates (20 × 10 cm), 1 μL chloroform was applied
1 cm from the bottom and polar lipids were separated in methyl
acetate:isopropanol:chloroform: methanol and 0.25% (w/v) aqueous
KCl (25:25:25:10:9, v/v). After drying the TLC plates, neutral lipids
were separated in isohexane:diethyl ether:acetic acid (80:20:1.5, v/v).
Lipid classes were visualised by charring at 160 °C for 15 min after
spraying with 3% copper acetate (w/v) in 8% phosphoric acid (v/v) and
identified by comparison with commercially available standards. Lipid
classes were quantified by scanning densitometry (CAMAG TLC Scanner
3) and calculated using an integrator (WinCATS-Planar Chromatogra-
phy manager, Version 1.2.0). Mono- and diacylglycerides were below
the limit of quantification (< 0.1 mg·g sample−1), hence all data are
given as triacylglycerides or FFA (as area percentage of total lipid
content).

2.7. Analysis and statistics

The molarities of olive oil, rapeseed oil and fish oil were calculated
based on the molecular weight of the most abundant FFA covalently
bound to glycerol per oil. The density of olive oil, rapeseed oil and fish
oil was calculated from the weights of 50 mL oil that were 0.911, 0.914
and 0.918 kg·L−1, respectively. The most prevalent FFA (i.e. oleic acid)
esterified to glycerol in olive oil gave an average triacylglyceride
molecular weight of 885.4 g·mol−1. The average triacylglyceride
molecular weight in rapeseed and fish oil was 882.8 and 903.5 g·mol−1,
respectively. With the average molecular weights and density, the
molarity of olive oil, rapeseed oil and fish oil was calculated to be 1.03,
1.04 and 1.02 M, respectively.

Enzyme kinetic data were analyzed using weighted non-linear
regression procedures in the statistical programming language R
(version 3.3.1) (R Development Core Team, 2013) where the Gauss-
Newton algorithm for least squares estimation of parameters was
employed. For each data point the SEM was used as an explicit
weighting value. A Kolmogorov-Smirnov normality test revealed that
data points in all groups followed a normal distribution. Time courses
were fitted to a single first-order rate equation:

p Limit e= ·(1 − )kt− (1)

where p represents the liberated FFA (pmol FFA·mg protein−1) by
lipase, Limit (pmol·mg protein−1) represents the uptake at time (t)
approaching ∞, and k is a first-order rate constant (min−1). The FFA
liberated by lipase was log-transformed to check for a systematic
deviation from a single first-order rate equation by:

⎜ ⎟
⎛
⎝

⎞
⎠kt p

Limit
− = ln 1 −

(2)

Initial hydrolysis rates approaching t = 0 min were calculated from
the slope of the tangents of the time course by solving dp/dt at
t = 0 min.

Initial hydrolysis rates of lipase activity were fitted to a simple
Michaelis-Menten equation:

v V S
K S

= + [ ]
+ [ ]m

0
max

(3)

where v0 is enzyme initial rate (pmol FFA·mg protein−1·min−1), [S] is
the substrate concentration (mM), Vmax is the maximum rate (pmol·mg
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protein−1), and Km is the Michaelis constant (mM). When a simple
Michaelis-Menten equation did not describe the data adequately, a
substrate inhibition function containing the Michaelis-Menten equation
plus an inhibition constant (Ki; mM) was used (Cornish-Bowden, 1995).
Calculated model parameters were compared using Akaike's informa-
tion criterion (AIC) and the best fitting (ANOVA, p ≤ 0.05) and the
most parsimonious model was chosen. Statistical significance was
therefore evaluated with a one-way ANOVA followed by Bonferroni's
or Dunnett's multiple comparison test, where appropriate. Results were
considered statistically significant when p < 0.05 (two-tailed) and
indicated with; *(p < 0.05), **(p < 0.01) and ***(p < 0.001).

3. Results

Addition of 20 mM bile salt (taurocholate) to desalted BAL extracts
from luminal trout contents significantly increased lipid hydrolysis by
300% compared to crude and desalted BAL extracts (ANOVA;
p < 0.001). Heat inactivated samples had no hydrolytic activity
(Table 2).

The time course of rapeseed and fish oil hydrolysis by BAL extracts
proceeded linearly up to 30 min (Fig. 2A). The hydrolysis of rapeseed
and fish oil is well described by a single first-order exponential rate
equation (Fig. 2B) with calculated rate constants of 0.01 and
0.008 min−1, respectively. The calculated limit for lipid hydrolysis at
a substrate concentration of 2.2 mM was practically similar for rape-
seed and fish oil (i.e. 918 and 1186 pmol FFA∙mg protein−1). The initial
hydrolysis rates calculated at t = 0 min were 9.2 and 9.0 pmol FFA·-
min−1·mg protein−1 for rapeseed and fish oil, respectively. Data points
converged on a linearization of the single exponential, indicative of a
single substrate site reflecting a single lipase entity.

Substrate dependency at initial hydrolysis rates showed character-
istic single-site Michaelis-Menten kinetics for rapeseed and fish oil
(Fig. 3). The calculated Michaelis constant (Km) value was 1.2 mM for

rapeseed as well as for fish oil. Proceeding from these observations, a
concentration of 1.2 mM rapeseed and fish oil was chosen to assess the
effects of BaP and PHE on lipase activity.

Both PAHs inhibited the hydrolysis of rapeseed oil where BaP was
10-fold more potent than PHE (Fig. 4). Rapeseed oil hydrolysis had
significantly decreased by 40% in the presence of 0.001 μM BaP
(p < 0.01) and by 55% with 0.01 μM PHE (p < 0.01) compared to
the control incubation (0 μM BaP or PHE). Interestingly, only the
highest BaP concentration significantly inhibited fish oil hydrolysis by
50% (p < 0.05). Unfortunately, since BaP has a low solubility in an
aqueous environment, the effect of BaP on lipase activity with
concentrations higher than 10 μM could not be measured.

TLC/HPLC analyses of the reaction products corroborate the in vitro
lipase activity data. Without PAHs, approximately 85% of the total lipid
content consisted of FFA after rapeseed and fish oil hydrolysis (Table 3).
TLC/HPLC analyses showed that the hydrolysis of rapeseed as well as
fish oil was inhibited by 0.001 μM BaP and 0.01 μM PHE whereas the
hydrolysis of fish oil measured with the in vitro lipase assay was only
significantly inhibited by 10 μM BaP. In the presence of 0.001 μM BaP,
50% of the lipid content consisted of triacylglycerides and FFA after fish
oil hydrolysis. Rapeseed oil hydrolysis was inhibited by 80% by
0.001 μM BaP as only 17% FFA were liberated by lipase activity.
Similar to BaP, 0.01 μM PHE inhibited FFA liberation from triacylgly-
cerides in rapeseed and fish oil by 55%.

Table 2
The effects of bile salt (taurocholate) on the hydrolysis of olive oil (pmol FFA·mg
protein−1·min−1) in crude and desalted BAL extracts from the proximal intestine of O.
mykiss. Measurements were corrected for rising acidity by subtracting control incubations
(heat inactivated samples). Mean values ± SD; n = 5. Different superscript letters
indicate significant differences (Student's t-test with Bonferroni's post-hoc test;
p < 0.001).

BAL extract Bile salt FFA release (pmol FFA·mg protein−1·min−1)
Average SEM

Control 20 mM 0.2 ± 0.1
Crude – 2.5 ± 0.5a

Desalted 0 mM 3.7 ± 0.5a

Desalted 20 mM 15.5 ± 1.5b

Fig. 2. Time course of rapeseed oil (open symbols) and fish oil (closed symbols) hydrolysis by BAL extracts of the proximal intestine of O. mykiss (n = 5, mean ± SEM). Time kinetics are
well described by a single exponential equation. Calculated parameters for rapeseed oil hydrolysis were: Limit = 918 pmol·mg protein−1 (95% CI [842, 994]), k = 0.010 min−1 [0.008,
0.011] and for fish oil hydrolysis: Limit = 1186 pmol·mg protein−1 [1106, 1265], k= 0.008 min−1 [0.007, 0.009]. B) Linear logarithmic transformation, indicative of one active
component in lipid hydrolysis.
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Fig. 3. Substrate dependence of lipase activity measured at initial rate in BAL extracts of
the proximal intestine of O. mykiss (n = 5, mean ± SEM). The hydrolysis of rapeseed
and fish oil are described by Michaelis-Menten kinetics. Calculated values for rapeseed oil
hydrolysis were Km = 1.2 mM (95% CI [0.5, 1.9]) and Vmax = 8.4 pmol·mg protein−1

[7.3, 9.5]. Calculated values for fish oil hydrolysis were Km = 1.2 mM [0.6, 1.7] and
Vmax = 11.1 pmol·mg protein−1 [9.4, 12.8].
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4. Discussion

The lipophilic PAHs, BaP and PHE inhibit rapeseed oil hydrolysis by
BAL in rainbow trout. This effect depends on the substrate's oil
composition, as the hydrolysis of fish oil was largely insensitive to
PAHs compared to rapeseed oil. The established inhibitory concentra-
tions of BaP and PHE are in the range of 0.3 to 2 μg·L−1, and are
comparable with detected BaP and PHE concentrations of 1.0 and
17 μg·kg−1 in aquafeeds (Berntssen et al., 2010). Therefore, we
speculate that the occurrence of PAHs in aquafeeds by partial replace-
ment of fish ingredients by vegetable ingredients could decrease lipid
digestion in vivo. This could result in decreased intestinal fatty acid
uptake and have a negative impact on organismal energy metabolism.

This study provides support for the notion that BAL is the prominent
lipase in rainbow trout as the addition of bile salts (i.e. taurocholate)
considerably increased lipase activity in desalted BAL extracts (Howles
et al., 2000; Lowe, 1997; Wang and Hartsuck, 1993). Linearization of
the data points of the single exponential from rapeseed and fish oil
hydrolysis illustrated a single catalytic component in the BAL extracts,
reflecting a single lipase entity. This indicates that there was no
contamination by other lipases (e.g. bacterial lipases) than BAL. In
Atlantic salmon, rainbow trout and Atlantic cod (Gadus morhua) bile
salts also stimulated lipase activity (Bogevik et al., 2008; Gjellesvik
et al., 1992; Lie and Lambertsen, 1985; Tocher and Sargent, 1984). BAL
is able to hydrolyze water-soluble lipid substrates composed of short-
chain fatty acids. However, BAL requires activation by bile salts to
hydrolyze mono-, di- and triacylglycerides, cholesteryl esters, phospho-
lipids, lysophospholipids, ceramides and fat-soluble vitamins (Hui and
Howles, 2002; Moore et al., 2001; Wang and Hartsuck, 1993). It is
presumed that bile salts interact with two sites on BAL's tertiary
structure to activate the protein. One site protects BAL from proteolysis
and promotes binding to the surface of lipid emulsions while the other
site causes a conformational change after bile salt binding that exposes
the active site of the enzyme (Hui and Howles, 2002; Kurtovic et al.,
2009; Moore et al., 2001). Crude luminal extracts prepared 6 h post-
feeding displayed similar lipase activities as desalted extracts without
bile salts. The capability of BAL to hydrolyze short-chain fatty acids
without bile salts might explain the low lipase activity in the desalted

extracts (Hui and Howles, 2002; Wang and Hartsuck, 1993).
To validate whether the initial decrease in pH of the incubate

coincides with an increased FFA concentration, TLC/HPLC was used to
quantitatively measure FFA liberation from triacylglycerides. The TLC/
HPLC analysis confirms the yield of FFA following the incubation of a
lipid substrate with a BAL extract and the inhibitory effect of BaP and
PHE on rapeseed oil hydrolysis. The data also showed inhibition of fish
oil hydrolysis by both PAHs, an effect that was not detected with the in
vitro pH assay. We have to note that TLC/HPLC measures the total lipid
content, including the 6–12% FFA already present in native fish oil
before hydrolysis, whereas the in vitro pH assay measures the decline in
pH resulting from FFA newly liberated from the lipid substrate. Since
the BAL extracts were prepared in a phosphate buffer, some hydronium
ions will be buffered and not detected with the pH electrode. These
technicalities likely result in some overestimation of the TLC/HPLC
outcome that might explain the different results obtained from TLC/
HPLC and the in vitro pH assay.

Dietary lipids and their digestion products, such as FFA, interact
with lipophilic contaminants in their intestinal uptake and luminal
transfer (de Gelder et al., 2016; Doi et al., 2000; Dulfer et al., 1998;
Gobas et al., 1993; Laher and Barrowman, 1983; Vasiluk et al., 2008;
Vetter et al., 1985). When PAHs enter the gastrointestinal tract,
micelles can facilitate luminal transfer across the unstirred water layer
towards the brush border membrane of enterocytes (Doi et al., 2000;
Laher and Barrowman, 1983). The solubility of lipophilic contaminants
is higher in micelles composed of unsaturated long-chain fatty acids
compared to saturated short-chain fatty acids (Doi et al., 2000; Laher
and Barrowman, 1983). Fish oil contains more PUFAs that have longer
fatty acid chains and a higher degree of unsaturated bonds than
rapeseed oil (Table 1). This fact coincides well with the more potent
inhibition of rapeseed oil hydrolysis by both PAHs. Since micelles
composed of rapeseed oil have a lower partitioning of PAHs compared
to fish oil-composed micelles, more PAHs would be freely available to
inhibit lipase activity. The relative resistance of fish oil hydrolysis to
PAHs is likely due to the increased partitioning of PAHs in fish oil-
composed micelles leaving less PAHs free to directly interact with
lipases.

Triacylglyceride hydrolysis in the intestinal lumen is necessary as
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Fig. 4. Hydrolysis of rapeseed oil (open symbols) and fish oil (closed symbols) in the presence of BaP (A) and PHE (B) by desalted BAL extracts of the proximal intestine of O. mykiss
(n = 6, mean ± SEM). Experimental incubations are compared to the control incubation (0 μM PAHs) with an ANOVA with Dunnett's multiple comparison test.

Table 3
Lipid class composition (area percentage of total lipid content) of triacylglycerides and FFA after rapeseed and fish oil hydrolysis in the presence of 0.001 μM BaP and 0.01 μM PHE by
desalted BAL extracts of the proximal intestine of O. mykiss (n = 2, mean ± SD).

Rapeseed oil Fish oil

0 μM PAH 1 nM BaP 10 nM PHE 0 μM PAH 1 nM BaP 10 nM PHE

Triacylglycerides (%) 16 ± 5 83 ± 6 65 ± 6 8 ± 2 50 ± 5 56 ± 1
FFA (%) 85 ± 5 17 ± 6 35 ± 6 92 ± 2 50 ± 5 44 ± 1
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intact triacylglycerides cannot cross the intestinal brush border mem-
brane (Gilham et al., 2007; Gilham and Lehner, 2005). Double knock-
out C57BL/6 mice lacking pancreatic lipase and BAL displayed a 40%
reduction in dietary triacylglyceride absorption compared with wild
type C57BL/6 mice under high fat/high cholesterol dietary conditions
(Gilham et al., 2007). The inhibition of lipase activity by BaP and PHE
also results in a functional lipase deficiency, and would likely reduce
lipid digestion leading to higher luminal lipid contents as triacylglycer-
ides cannot cross the intestinal brush border membrane. In a lipid-rich
diet less lipophilic chemicals are absorbed by the intestinal epithelium,
probably because higher luminal lipid contents reduce their bioavail-
ability (de Gelder et al., 2017; Kania-Korwel et al., 2008). Oral
administration of PCBs and chlorobenzenes in goldfish (Carassius
auratus) or PCB 136 in female C57BL/6 mice decreased intestinal
uptake of these lipophilic contaminants with increased dietary lipid
content (Gobas et al., 1993; Kania-Korwel et al., 2008). Furthermore,
increasing the lipid content of a diet with a mixture of non-absorbable
long-chain fatty acid bonded by ester links to sucrose (Olestra) also
increased fecal excretion of lipophilic chemicals (Geusau et al., 1999;
Jandacek et al., 2005; Moser and McLachlan, 1999; Mutter et al., 1988).
Although both BaP and PHE are absorbed along the entire teleost
intestinal tract into the systemic circulation following gavage (Bakke
et al., 2015; de Gelder et al., 2016; Solbakken et al., 1984), trans-
membrane uptake of BaP, in intestinal brush border membrane vesicle
preparations of rainbow trout, decreases in the presence of high EPA
and oleic acid concentrations (de Gelder et al., 2017). Therefore, the
inhibited hydrolysis of rapeseed oil by BaP and PHE could aid in
decreasing intestinal PAH uptake from vegetable based aquafeeds as a
decreased lipid digestion elevates luminal lipid contents. In a previous
study, we have observed that a vegetable (rapeseed) oil based diet
decreased intestinal BaP and PHE concentrations in vivo in Atlantic
salmon compared to a fish oil based diet (de Gelder et al., 2016). This
decrease in intestinal PAH uptake might be an effect initiated by the
more potent inhibition of rapeseed oil hydrolysis by BaP and PHE. Since
a decreased lipase activity could reduce intestinal lipid absorption and
therefore maintain high luminal lipid contents, this could lead to a
decreased PAH bioavailability (de Gelder et al., 2017; Gilham et al.,
2007; Kania-Korwel et al., 2008). In contrast, BaP and PHE did not
inhibit fish oil hydrolysis. Therefore, luminal lipid contents shall
decrease following lipid digestion and intestinal FFA uptake, which
increases intestinal PAH uptake (de Gelder et al., 2017).

5. Conclusion

This study has shown that BaP and PHE inhibit rapeseed oil
hydrolysis in-vitro. Substitution of fish oils by vegetable oils in aqua-
culture increases aquafeed levels of BaP and PHE. Therefore, the
inclusion of vegetable oils could result in a decreased lipase digestion
and subsequently a decreased intestinal fatty acid uptake which
ultimately could negatively impact organismal energy metabolism. In
vegetable-based aquafeeds more PAHs would be freely available to
inhibit lipase activity as PAHs have a lower solubility in micelles that
consist of shorter vegetable oil fatty acid chains lengths and have a
lower degree of unsaturated bonds compared to fish oil fatty acids.
Contrary, micelles composed of fish oil have a higher PAH solubility
and increase PAH partitioning in the intestinal lumen, leaving less PAHs
free to directly interact with lipases and maintain lipase activity.
Therefore, the fatty acid and lipid composition of an alternative
aquafeed is an important determinant for lipid digestion and should
be a considered in the development of novel sustainable aquafeeds.
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