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From microscopic point-dipole model calculations of the screening of the Coulomb interaction
in non-polar systems by polarizable atoms, it is known that screening strongly depends on dimen-
sionality. For example, in one dimensional systems the short range interaction is screened, while
the long range interaction is anti-screened. This anti-screening is also observed in some zero di-
mensional structures, i.e. molecular systems. By means of ab-initio calculations in conjunction
with the random-phase approximation (RPA) within the FLAPW method we study screening of the
Coulomb interaction in FexOy clusters. For completeness these results are compared with their bulk
counterpart magnetite. It appears that the onsite Coulomb interaction is very well screened both
in the clusters and bulk. On the other hand for the intersite Coulomb interaction the important
observation is made that it is almost contant throughout the clusters, while for the bulk it is almost
completely screened. More precisely and interestingly, in the clusters anti-screening is observed by
means of ab-initio calculations.

I. INTRODUCTION

The huge interest in nano-technology is fuelling the
trend of downscaling devices. Naturally this will reach
the regime of small clusters. However, also from a funda-
mental point of view clusters are very interesting. In gen-
eral clusters behave completely different from their bulk
counterpart. In particular, the removal or addition of just
one atom can change the electronic and magnetic prop-
erties completely.1–4 This clearly provides a huge play-
ground for the design of new devices.
For an efficient design, a proper fundamental under-

standing of the system is essential. This is usually com-
plicated by correlation effects that inhibit an exact solu-
tion to the problem. Therefore, in practice approximate
methods have to be considered. In order to find a proper
method, knowledge of the correlation effects is crucial.
For example, for weakly correlated systems it is known
that density functional theory (DFT) works very well,
while for strong local correlations a (generalized) Hub-
bard model provides a good description. Actually it is
the gradient of the (screened) Coulomb interaction that
matters.5 For a very small gradient, i.e. an almost con-
stant effective Coulomb interaction, clearly a mean-field
approach and thus single-particle approach is justified.
On the other hand, for a very large gradient, i.e., for
only a local effective Coulomb interaction, the Hubbard
model becomes adequate.
It is this important information on the effective

Coulomb interaction that is provided in this work for the
FexOy clusters. More precisely, Fe2O3, Fe3O4 and Fe4O6

are selected since they are well studied in literature.6–14

Furthermore, two of them are anti-ferromagnetic, while
the other is ferromagnetic. There exist several methods
to calculate the effective Coulomb interaction. For exam-
ple, in the bulk usually a uniform dielectric theory can be

used.15 Here the system is modeled as a continuum and
the (q-dependent) dielectric constant is obtained within
a mean-field approximation. For example, the Clausius
Mossotti approximation can be used for ionic insulators.
Since the dielectric constant depends only on the distance
between the charges (and not the crystal structure), this
approximation is only good when local field corrections
can be neglected. However, it is well known that these
local field corrections become important for low dimen-
sional systems. The microscopic point-dipole model can
be used to take local field corrections into account.5,15

This method is based on the assumption that the charge
distribution of a polarized system can be considered as
a collection of localized point dipoles. This assumption
works reasonably for localized charge distributions like in
ionic insulators, but becomes inadequate for systems with
delocalized charges due to for example covalent bonds.
Since it is not clear from the beginning to which regime
FexOy clusters belong, we use ab-initio theory in con-
junction with the random phase approximation (RPA).
In this way also local field corrections are included.

Iron oxide clusters and nanoparticles have applications
in catalysis, magnetic data storage and biomedical treat-
ment due to their unique catalytic, magnetic and bio-
chemical properties.16–18 Furthermore, iron oxide inter-
actions are interesting in general for corrosion and biolog-
ical oxygen transport processes. Thus, a detailed under-
standing of FexOy clusters could contribute to a better
understanding of such processes and new technological
applications. Due to this interest there have been a num-
ber of experimental and theoretical studies.6–14 Most the-
oretical studies are performed with DFT and focus on the
geometric structure. From a comparison of the experi-
mental and calculated vibrational spectrum the structure
of some FexOy clusters is well established.12,13 Further-
more, some studies address in some detail the electronic
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and magnetic structure. However, to our knowledge a
detailed consideration of correlation and screening effects
does not exist. In our opinion such an understanding is
crucial and should form the basis in determining which
methods to use for further studies.
The aim of the present work is the ab-initio deter-

mination of the screened Coulomb interaction in Fe2O3,
Fe3O4 and Fe4O6 clusters. Employing the random-phase
approximation (RPA) within the full-potential linearized
augmented plane wave (FLAPW) method using Wan-
nier functions we show that in these clusters the onsite
Coulomb interaction is well screened, while the inter-
site Coulomb interactions are barely screened or even
anti-screened. The important consequence being that
the Coulomb interaction is almost constant throughout
the clusters. For completeness we compared these re-
sults with their bulk counterpart magnetite. Herein
only the onsite Coulomb interaction is appreciable, while
the intersite Coulomb interactions are almost completely
screened. The rest of the paper is organized as follows.
The method and computational details are presented in
Section II and Section III, respectively. Section IV deals
with the results and discussion and finally in SectionV
we give the conclusions.

II. METHOD

In this work we study partially and fully screened
Coulomb interaction parameters calculated with the ab-
initio cRPA and RPA methods, respectively. The non-
interacting reference system is taken from a preceding
DFT calculation.
The effective Coulomb interaction is defined as

W (r, r′, ω) =

∫

dr′′ǫ−1(r, r′′, ω)v(r′′, r′), (1)

where ǫ(r, r′′, ω) is the dielectric function and v(r′′, r′) is
the bare Coulomb interaction potential. Since an exact
expression for the dielectric function is not accessible,
an approximation is required. In the RPA the dielectric
function is approximated by

ǫ(r, r′, ω) = δ(r − r
′)−

∫

dr′′v(r, r′′)P (r′′, r′, ω), (2)

where the polarization function P (r′′, r′, ω) is given by

P (r, r′, ω) =

∑

σ

occ
∑

k,m

unocc
∑

k′,m′

ϕσ
km(r)ϕσ∗

k′m′(r)ϕσ∗
km(r′)ϕσ

k′m′(r′)

×

[

1

ω −∆σ
km,k′m′

−
1

ω +∆σ
km,k′m′

]

.

(3)

Here ∆σ
km,k′m′ = ǫσ

k′m′−ǫσ
km−iη with ǫσ

km the single par-
ticle Kohn-Sham eigenvalues obtained from DFT and η a

positive infinitesimal. Further, the ϕσ
km(r) are the single

particle Kohn-Sham eigenstates with spin σ, wavenum-
ber k and band index m. The tags occ and unocc above
the summation symbol indicate that the summation is
respectively over occupied and unoccupied states only.
Eqs. (1), (2), and (3) constitute what is called the

RPA of the dynamically screened Coulomb interaction.
In the constrained RPA the effective Coulomb interac-
tion between a specific type of electrons in the system
is considered. For example, in this work the effective
Coulomb interaction between the 3d electrons of iron will
be investigated. Two types of RPA calculations are per-
formed leading to fully and partially screened (effective
U or Hubbard U) Coulomb interaction parameters. In
the latter the screening due to the electrons under con-
sideration is excluded, i.e. in our case the 3d electrons
of iron. Thus, such a cRPA calculation provides the ef-
fective interaction that the electrons in the 3d Hubbard
model would experience; in other words, it yields the
corresponding Hubbard U parameter. Obviously it also
gives insight to the importance of these 3d electrons in
the screening process.
In order to exclude the screening due to certain elec-

trons one separates the polarization function in Eq. (3)
as follows,

P = Pl + Pr. (4)

Here in our case Pl includes only transitions between the
strongly correlated 3d states of iron and Pr is the remain-
der. Then, the frequency dependent effective Coulomb
interaction is given schematically by the matrix equation

U(ω) = [1− vPr(ω)]
−1v, (5)

where v is the bare Coulomb interaction.
The problem with the separation of Eq. (4) is that it is

only well defined for disentangled states. For entangled
states different methods have been developed.19–21 In this
work we use the method described in Ref. 21. Here we
first define the probability to find a strongly correlated
electron (3d state of iron in our case) in eigenstate ϕσ

km

as,

cσ
km =

∑

i,n

|T σk
i,mn|

2, (6)

Here the unitary matrices T σk
i,mn are determined from the

concept of maximally localized Wannier functions,

wσ
in(r) =

1

N

∑

k

e−ik·Ri

∑

m

T σk
i,mnϕ

σ
km(r), (7)

where wσ
in(r) is a maximally localized Wannier function

located at site i, N is the number of discrete k points
in the full Brillouin zone and Ri the position vector of
atomic site i. The matrices T σk

i,mn are determined by min-
imizing the spread of the Wannier functions,

Ω =
∑

i,n,σ

(〈wσ
in|r

2|wσ
in〉 − 〈wσ

in|r|w
σ
in〉

2). (8)



3

Here the sum runs over all Wannier functions. It can be
shown that the maximally localized Wannier functions
constitute an orthonormal basis and that they resemble
atomic orbitals, i.e. they are centered at an atomic site
and decay with increasing distance from the site. Fur-
ther, there is an efficient algorithm to find the T σk

i,mn un-
der the condition that the spread is minimized. From
Eq. 7 it is clear that a choice has to be made on which
bands to include for the construction of the maximally lo-
calized Wannier states. In practice (for entangled states),
we make sure that enough bands are selected such that
all the strongly correlated electron character is contained.
Then, in general the number of maximally localized Wan-
nier functions obtained from this space is larger than the
dimensions spanned by the strongly correlated electrons.
Therefore, a selection has to be made. Since the strongly
correlated electrons are more localized than the other
electrons, the idea is that the subset consisting of the
most maximally localized Wannier functions correspond
to the strongly correlated electrons.
For entangled states the probability cσ

km < 1 in Eq. (6),
while for disentangled states cσ

km = 1. Then, the proba-
bility of an electron to be in the 3d correlated subspace
before and after a transition ϕσ

km → ϕσ
k′m′ is given by

pσ
km→k′m′ = cσ

kmcσ
k′m′ . (9)

Thus for disentangled states pσ
km→k′m′ = 1 and for en-

tangled states pσ
km→k′m′ < 1. The polarization function

Pl now becomes

Pl(r, r
′, ω) =

∑

σ

occ
∑

k,m

unocc
∑

k′,m′

(pσ
km→k′m′)2ϕσ

km(r)ϕσ∗
k′m′(r)ϕσ∗

km(r′)ϕσ
k′m′(r′)

×

[

1

ω −∆σ
km,k′m′

−
1

ω +∆σ
km,k′m′

]

.

(10)

By calculating the total polarization from Eq. (3) and
Pl from Eq. (10), Pr can be obtained from Eq. (4). For
completeness, the effective Coulomb matrix within the
selected subspace is computed by

U
σ1,σ2

in1,jn3,in2,jn4
(ω) =

∫ ∫

drdr′wσ1∗

in1
(r)wσ2∗

jn3
(r′)U(r, r′, ω)wσ2

jn4
(r′)wσ1

in2
(r).

(11)

In this work we only consider the static limit (ω = 0).
Furthermore, we use Slater parametrization,

Ui =
1

(2l + 1)2

∑

m,m′

U
σ1,σ2

im,im′,im,im′(ω = 0) and

Vij =
1

(2l + 1)2

∑

m,m′

U
σ1,σ2

im,jm′,im,jm′ (ω = 0).

(12)

Here Ui is the effective onsite Coulomb interaction at
site i and Vij the effective intersite Coulomb interaction
between sites i and j. Note that although the matrix
elements of the Coulomb potential are formally spin-
dependent due to the spin dependence of the Wannier
functions, we find that this dependence is negligible in
practice.

III. COMPUTATIONAL DETAILS

The DFT calculations are performed with the FLEUR
code, which is based on a full-potential linearized aug-
mented plane wave (FLAPW) implementation.22 All cal-
culations are performed with an exchange-correlation
functional in the generalized gradient approximation
(GGA) as formulated by Perdew, Burke and Ernzerhof
(PBE).23 Further, all calculations are without spin orbit
coupling.
Since it is a k-space code, a supercell approach was

employed for the cluster calculations, with a large empty
space between clusters that were repeated in a periodic
lattice. In our calculations a large unit cell of at least
12 Å dimensions is used in order to prevent the inter-
action between clusters of different unit cells. Further,
for the cluster calculations the cutoff for the plane waves
is 3.6 Bohr−1, lcut = 8 and the Γ point is the only k-
point considered. The ground state geometric and mag-
netic structure of the Fe2O3, Fe3O4 and Fe4O6 clusters
is obtained from Refs. 13 and 14 (see also Fig. 1). More
precisely, the geometries are optimized structures ob-
tained from hybrid (B3LYP) functional calculations.24

The Fe2O3 and Fe4O6 clusters are antiferromagnetic,
while Fe3O4 is ferromagnetic.
For magnetite the geometric and magnetic structure

is obtained from Refs. 25 and 26. Here the structure of
magnetite is monoclinic with 56 atoms in the unit cell.
The chemical formula is Fe3+A [Fe2+,Fe3+]BO4 with A re-
ferring to tetrahedral sites occupied by Fe3+ and B to
octahedral sites containing both Fe2+ and Fe3+. The
magnetic moments of the B sites are antiparallel to those
of the A sites. For the k-mesh a grid of 6x6x2 equidis-
tant k-points is used. The cutoff for the plane waves is
4.0 Bohr−1 and lcut = 8.
The DFT calculations are used as an input for the

SPEX code to perform RPA and cRPA calculations for
the screened Coulomb interaction.27 The SPEX code uses
the Wannier90 library to construct the maximally lo-
calized Wannier functions.28,29 For this construction we
used six states per iron atom, i.e. five 3d states and one
4s state.

IV. RESULTS AND DISCUSSION

In Fig. 1 the geometry and magnetic structure of the
Fe2O3, Fe3O4 and Fe4O6 clusters is depicted. The red
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FIG. 1. The geometry of the Fe2O3, Fe3O4 and Fe4O6 clus-
ters. Here the red spheres correspond to the oxygen atoms,
while the brown and green spheres correspond to iron atoms
with antiparallel local magnetic moments. The distances be-
tween some atoms are provided in Å.

spheres correspond to the oxygen atoms, while the brown
and green spheres correspond to iron atoms with antipar-
allel local magnetic moments. The distances between
some of the atoms are given in Å. Further, Fe2O3 and
Fe4O6 are antiferromagnetic, while Fe3O4 is ferromag-
netic. From Fe4O6 it can be observed that the direction
of the local magnetic moment has a small influence on the
bonding, i.e. the distance between two iron atoms with
parallel and antiparallel moments is 2.90 and 2.94 Å.

TABLE 1. The bare and fully screened (RPA) average
Coulomb interaction parameters for the Fe-3d and O-2p or-
bitals of the Fe2O3 cluster obtained from ab-initio calcula-
tions. Here U1 corresponds to the onsite Coulomb interaction
of atom 1 and V1,2 to the intersite Coulomb interaction be-
tween atoms 1 and 2 (see Fig. 1). The second column indicates
between what type of atoms this referes and the third column
correponds to the distance in Å between them. Note that due
to symmetry oxygen atoms 3 and 4 are equivalent.

U/V Atom Distance (Å) Bare (eV) RPA (eV)
U1 Fe 0 21.7 7.7
U2 Fe 0 22.2 7.8
U3 O 0 17.8 8.2
U5 O 0 17.7 7.9
V2,5 Fe-O 1.67 8.6 6.7
V2,3 Fe-O 1.79 8.0 6.5
V1,3 Fe-O 1.82 7.8 6.4
V1,2 Fe-Fe 2.45 5.9 6.5
V3,4 O-O 2.66 5.6 6.0
V3,5 O-O 3.16 4.8 6.0
V1,5 Fe-O 4.11 3.9 6.0

In the following first the matrix elements of the fully
screened Coulomb interaction (RPA) of the FexOy clus-
ters will be discussed and second the partially screened
Coulomb interaction (cRPA) is briefly addressed. The
latter is important in dealing with correlation effects in
clusters as well as it provides information on the con-
tribution of the Fe 3d → 3d channel to the screening.
In Table 1 the bare and fully screened onsite and inter-
site average Coulomb interaction parameters for Fe-3d
and O-2p orbitals are presented for the smallest Fe2O3

cluster. Since oxygen atoms 3 and 4 are equivalent due
to symmetry, only symmetry unequivalent interactions

TABLE 2. The bare and partially screened (cRPA) average
Coulomb interaction parameters for the Fe-3d orbitals of the
Fe2O3 cluster obtained from ab-initio calculations. Here U1

corresponds to the onsite Coulomb interaction of atom 1 and
V1,2 to the intersite Coulomb interaction between atoms 1 and
2 (see Fig. 1 to which atoms these numbers refer).

U/V Bare (eV) cRPA (eV)
U1 21.7 8.7
U2 22.2 8.9
V1,2 5.9 6.3

are presented. As seen the onsite Coulomb interactions
are very well screened. On the other hand the intersite
Coulomb interaction is much less screened and is more or
less constant as function of intersite distance. Interest-
ingly, starting from an intersite distance of 2.45 Å anti-
screening is observed, i.e. the fully screened interaction is
larger than the bare interaction. For example, for the in-
tersite Coulomb interaction between the two iron atoms
the anti-screening contribution is 0.6 eV and between iron
atom 1 and oxygen atom 5 it is even 2.1 eV.
Table 2 contains the partially screened (without iron

3d contribution) average Coulomb interaction parameters
for the Fe-3d orbitals. As mentioned from this Table
the contribution of the Fe-3d electrons, i.e. Fe 3d →
3d channel, to the screening can be investigated. For
the onsite Coulomb interaction this contribution is very
small, 1 eV, compared to that of the Fe(3d) → O(2p)
screening channel of about 13 eV. On the hand for the
intersite iron-iron Coulomb interaction the Fe 3d → 3d
channel contributes significantly, 0.2 eV, to the total anti-
screening effect of 0.6 eV.

TABLE 3. The same as in Table 1 for the Fe3O4 cluster. Note
that due to symmetry the iron atoms are equivalent, while for
oxygen atoms 4, 6 and 7 are equivalent.

U/V Atom Distance (Å) Bare (eV) RPA (eV)
U1 Fe 0 22.2 7.4
U4 O 0 17.8 7.8
U5 O 0 17.9 8.1
V1,6 Fe-O 1.84 7.8 5.8
V1,5 Fe-O 1.99 7.2 5.7
V1,2 Fe-Fe 2.50 5.8 5.8
V4,5 O-O 2.73 5.4 5.3
V4,6 O-O 3.40 4.5 5.1
V1,4 Fe-O 3.45 4.4 5.3

A similar behavior can be observed for Fe3O4 and
Fe4O6. Their results for the bare and fully screened av-
erage Coulomb interaction parameters for the Fe-3d and
O-2p orbitals are shown in Tables 3 and 5. The par-
tially screened average Coulomb interaction parameters
for the Fe-3d orbitals are presented in Tables 4 and 6.
In Fe3O4 iron atoms 1, 2, 3 and oxygen atoms 4, 6, 7
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TABLE 4. The same as in Table 2 for the Fe3O4 cluster. Note
that due to symmetry only one onsite and intersite interaction
is presented.

U/V Bare (eV) cRPA (eV)
U1 22.2 8.6
V1,2 5.8 5.5

are equivalent due to symmetry. Therefore, only sym-
metry unequivalent onsite and intersite interactions are
shown in Tables 3 and 4. From Table 3 it can again
be observed that the onsite Coulomb interaction is very
well screened, while the intersite Coulomb interaction is
almost constant throughout the cluster. Furthermore,
anti-screening is again present although it starts to oc-
cur at a larger intersite distance.

From a comparison of Tables 3 and 4 it is also observed
for this cluster that the screening contribution of the Fe
3d → 3d channel to the onsite Coulomb interaction is
small, 1.2 eV, compared to that of the Fe(3d) → O(2p)
screening channel, 13.6 eV. Further, it appears that
there is an anti-screening contribution of 0.3 eV of the
Fe 3d → 3d channel to the iron-iron intersite interaction.

For the Fe4O6 cluster the iron atoms 1, 3 and 2, 4 are
related by symmetry, while for oxygen 5, 7, 8, 10 and
6, 9 are related. Also for this cluster it can be observed
from Table 5 that the onsite Coulomb interaction is very
well screened, while the intersite Coulomb interaction is
almost constant in the cluster. The anti-screening in this
cluster is a bit different. It occurs between two irons at
intersite distances of 2.90 and 2.94 Å , while it is absent
between two oxygen atoms until an intersite distance of
4.13 Å. Between iron and oxygen anti-screening starts at
an intersite distance of 3.43 Å.

As for the other clusters, the screening contribution of
the Fe 3d → 3d channel to the onsite Coulomb interac-
tion is small, 1.0 eV (see Table 6), compared to that of
the Fe(3d) → O(2p) screening channel, 15.4 eV. How-
ever, in contrast to the other clusters it appears from
Table 6 that there is no anti-screening contribution from
the Fe 3d → 3d channel.

Previous studies have shown that anti-screening
strongly manifest itself in low-dimensional semiconduc-
tors and insulators.5,30 Using a point-dipole interac-
tion model van den Brink and Sawatsky calculated the
screened intersite Coulomb interaction for finite size sys-
tems like molecules (benzene, naphtaline, C60, etc.) and
one-dimensional atomic chains.5 The authors found that,
in contrast to three-dimensional bulk semiconductors,
in low-dimensional systems the local field effects play
a very important role in screening of the Coulomb in-
teraction. It turns out that the Coulomb interaction is
strongly r-dependent, i.e., at short distances it is strongly
screened, at intermediate distances it is anti-screened,
and at large distances it is unscreened. The occurrence of
anti-screening in low-dimensional systems was attributed

TABLE 5. The same as in Table 1 for the Fe4O6 cluster.
Note that due to symmetry the iron atoms 1, 3 and 2, 4 are
equivalent, while for oxygen atoms 5, 7, 8, 10 and 6, 9 are
equivalent.

U/V Atom Distance (Å) Bare (eV) RPA (eV)
U1 Fe 0 22.3 5.9
U3 Fe 0 22.3 5.9
U5 O 0 18.1 6.8
U6 O 0 18.0 7.0
V1,5 Fe-O 1.80 8.0 5.1
V1,6 Fe-O 1.83 7.8 5.0
V1,3 Fe-Fe 2.90 5.1 5.3
V5,7 O-O 2.92 5.1 4.8
V1,2 Fe-Fe 2.94 5.0 5.2
V5,6 O-O 3.00 5.0 4.8
V5,9 O-O 3.00 5.0 4.8
V1,7 Fe-O 3.43 4.4 5.0
V1,9 Fe-O 3.54 4.3 4.9
V5,10 O-O 4.13 3.8 4.7
V6,9 O-O 4.34 3.7 4.7

TABLE 6. The same as in Table 2 for the Fe4O6 cluster. Due
to symmetry iron atoms 1, 3 and 2, 4 are equivalent.

U/V Bare (eV) cRPA (eV)
U1 22.3 6.9
U3 22.3 6.9
V1,2 5.0 5.2
V1,3 5.1 5.4

to the sign change of the induced polarization around
the test charge with distance. In three-dimensional in-
sulators and semiconductors the induced polarization is
negative over all space, while in low-dimensional sys-
tems it can change sign with distance resulting in an
anti-screening. The critical distance rc, where the tran-
sition from screening to anti-screening takes place, de-
pends very much on the dimensionality and polariza-
tion of the system. For instance, in zero-dimensional
molecules (benzene, naphthalene) rc is rather small, 3-
4 Å5, while in quasi-one dimensional single-wall carbon
nanotubes it is around 20 Å.30 For the FexOy clusters
considered in the present work the critical distance rc
can be even shorter than the zero dimensional systems
studied in literature. For Fe2O3 and Fe3O4 the critical
distance is respectively about 2.45 and 3.40 Å. The crit-
ical distance for Fe4O6 is a bit unambiguous. Namely
anti-screening is first observed at an intersite distance of
2.90 Å, then both screening and anti-screening are ob-
served until an intersite distance of 3.43 Å. Note that
even in three-dimensional bulk materials the non-local
anti-screening takes place within the sub-space of the cor-
related electrons as recently shown by Nomura et al., for
the case of SrVO3.

31

It is interesting to compare these cluster results with
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TABLE 7. The bare, partially screened (cRPA) and fully
screened (RPA) average Coulomb interaction parameters for
the Fe-3d orbitals of magnetite obtained from ab-initio cal-
culations. Here the first column shows on or between which
sublattice the interaction is considered and the second column
contains the distance between these sublattices (a zero refer-
ring to an onsite interaction). For the sublattices the same
nomenclature is adopted as in Ref. 25.

r(Å) Bare (eV) cRPA (eV) RPA (eV)
A1 0 22.9 4.3 1.53
A2 0 22.9 4.3 1.51
B1a 0 22.9 4.8 0.75
B1b 0 22.9 4.8 0.77
B2a 0 22.9 4.7 0.82
B3 0 22.9 4.6 0.81
A1-A2 6.93 2.4 0.01 0.01
B1a-B2a 5.10 3.0 0.09 0.02
B1a-B1b 2.97 4.9 0.35 0.02
B1b-B3 2.86 5.1 0.37 0.04

their bulk counterpart magnetite. In Table 7 the cal-
culated results are shown for magnetite. Here the first
column shows on or between which sublattices the inter-
action is considered and the second column contains the
distance between these sublattices (a zero indicates an
onsite interaction). For the sublattices the same nomen-
clature is adopted as in Ref. 25. From Table 7 it can be
observed that the intersite Coulomb interaction is almost
completely screened, which is in strong contrast with the
zero-dimensional cluster results. The onsite Coulomb in-
teraction is also more screened than for the clusters. Fur-
thermore, the cRPA calculations reveal that the effect of
the screening due to the iron 3d states is quite substantial
in magnetite.

Finally we would like to comment on the strength
of the electronic correlations in three-dimensional mag-
netite Fe3O4 and zero-dimensional FexOy clusters. The
short range nature of the Coulomb interaction with large
gradient in magnetite makes it a correlated material and
thus electronic structure methods which go beyond the
standard DFT are necessary for an accurate description
of the electronic structure of magnetite. For instance,
the experimentally observed charge order in magnetite
cannot be captured in DFT. From Ref. 25 it is known

that an additional treatment of the onsite correlations
between the Fe 3d electrons is needed. It was found that
the DFT+U approach, a static mean-field treatment of
onsite correlations, gives a charge ordering in agreement
with experiment. On the other hand, due to the almost
constant Coulomb interaction in zero-dimensional FexOy

clusters, DFT calculations employing standard function-
als can be expected to capture the essential physics. For
example, from a comparison of the experimental vibra-
tional spectrum with the theoretical spectra of different
isomers and magnetic structures, the geometric and mag-
netic structure are obtained in good agreement with the
experiment.12,14

V. CONCLUSION

We have performed RPA and cRPA calculations for
the effective Coulomb interaction in the Fe2O3, Fe3O4

and Fe4O6 clusters and their bulk counterpart magnetite.
It has been demonstrated that both in the clusters and
bulk the onsite Coulomb interaction is very well screened.
Here the main screening contribution stems from the
Fe(3d) → O(2p) channel. On the other hand the in-
tersite Coulomb interaction is barely screened or even
anti-screened in the clusters, while in the bulk it is al-
most completely screened. In Fe2O3 and Fe3O4 the anti-
screening starts at a certain intersite distance, 2.45 and
3.40 Å respectively. For Fe4O6 the anti-screening nature
is a bit more complex. It first occurs at a distance of
2.45 Å , then both screening and anti-screening can be
observed until a distance of 3.43 Å from which on it is of
anti-screening nature only. The important consequence
is that in the clusters the Coulomb interaction is almost
constant, while in the bulk it has a large gradient. There-
fore, a proper treatment of correlations are expected to
be more important for the bulk than the clusters.
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