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Dynamical and reversible control of topological spin textures
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Recent observations of topological spin textures brought spintronics one step closer to new magnetic mem-
ories. Nevertheless, the existence of Skyrmions, as well as their stabilization, require very specific intrinsic
magnetic properties which are usually fixed in magnets. Here we address the possibility to dynamically control
their intrinsic magnetic interactions by varying the strength of a high-frequency laser field. It is shown that dras-
tic changes can be induced in the antiferromagnetic exchange interactions and the latter can even be reversed to
become ferromagnetic, provided the direct exchange is already non-negligible in equilibrium as predicted, for
example, in Si doped with C, Sn, or Pb adatoms. In the presence of Dzyaloshinskii-Moriya interactions, this
enables us to tune features of ferromagnetic Skyrmions such as their radius, making them easier to stabilize. Al-
ternatively, such topological spin textures can occur in frustrated triangular lattices. Then, we demonstrate that a
high-frequency laser field can induce dynamical frustration in antiferromagnets, where the degree of frustration
can subsequently be tuned suitably to drive the material toward a Skyrmionic phase.

In the 1960s, Skyrme solved the equation of motion for a
linear sigma model Lagrangian and reported static classical
solutions which are now referred to as Skyrmions [1]. Re-
markably, the boundary conditions they satisfy allow them
to be characterized by a topological charge. The elementary
particles they described were identified as three-quark-made
objects, namely, baryons, the family to which belong pro-
tons and neutrons. Skyrmions were later predicted in con-
densed matter physics too, as nontrivial spin textures [2].
Importantly, this prediction has recently been confirmed ex-
perimentally by neutron scattering in three-dimensional he-
lical magnets MnSi [3] and Fe1−xCoxSi [4], by electron mi-
croscopy in two-dimensional helical magnet Fe0.5Co0.5Si [5],
and by spin-polarized scanning tunneling microscopy in Fe
films deposited onto the Ir(111) surface [6]. The obser-
vations of such topological magnetic structures have been a
decisive step forward in the perspective of Skyrmion-based
data storage in spintronics [7–10]. From a fundamental view-
point, skyrmions arise from different mechanisms. They ap-
pear in thin films under perpendicular magnetic field due to
the competition between an easy-axis anisotropy and dipo-
lar interactions that, respectively, favor out-of- and in-plane
magnetizations [11–13]. If they were also observed as a re-
sult of four-spin exchange interactions [6], this is within the
context of frustrated exchange interactions (FEI) [14–17]
and Dzyaloshinskii-Moriya interactions (DMI) [18–28] that
Skyrmions are mainly discussed nowadays. In noncentrosym-
metric ferromagnets DMI compete with the exchange inter-
actions to yield a helical spiral phase which, under an exter-
nal magnetic field, may lead to a Skyrmionic phase [29–34].
Nevertheless, DMI-based Skyrmions have a broad size, basi-
cally 5–100 nm, which makes them hard to stabilize [30, 35].
In frustrated magnets, FEI-based Skyrmions may also arise
from the competition between ferromagnetic (FM) nearest-
neighbor (NN) and antiferromagnetic (anti-FM) next-NN ex-
change interactions [14–17]. However, the Skyrmionic phase
additionally requires very special strengths for these two in-
teractions. Thus, the main difficulty with controlling FEI- and
DMI-based Skyrmions relies on the intrinsically fixed mag-

netic properties of materials. Tuning and controlling FEI and
DMI then becomes extremely challenging. Research in this
direction has recently been undertaken, thus reporting the pos-
sibility to tune DMI via anisotropy [22–28], hydrostatic pres-
sure [36–38], or mechanical strain [39].

Here, we report the possibility to dynamically control
the intrinsic magnetic interactions by varying the strength
of a high-frequency laser field, and subsequently tune the
Skyrmionic features they are responsible for. The idea simply
relies on the fact that DMI and FEI are both based on hopping
processes, and that time-periodic fields renormalize the elec-
tronic tunneling, leading to phenomena such as dynamical
Wannier-Stark localization [40], symmetry-protected topo-
logical transitions [41–46], or ultrafast control of magnetism
[47–50]. Here, we show that drastic changes can be induced
in the antiFM exchange interactions that can even be switched
to FM, provided the direct exchange interaction is already
reasonable in equilibrium. This dynamical anti-FM – FM
phase transition is predicted in Si(111) doped with Sn or
Pb adatoms under infrared light. Moreover, DMI are also
renormalized by the laser field, which allows to dynamically
tune features of FM Skyrmions such as their radius, making
them easier to stabilize. In the case of FEI in triangular
lattices, anti-FM Skyrmions have been predicted too, but no
suitable magnets are available for experimental realizations
so far. Then we suggest a possible route to induce dynamical
frustration in antiferromagnets, and subsequently drive the
degree of frustration until the material enters a Skyrmionic
phase. Possible applications of this prescription are finally
discussed in materials such as C2F and Si(111) doped with C
adatoms.

Skyrmion model with DMI – Let us start with the following
tight-binding Hamiltonian

H =
∑
〈i j〉, σσ′

c∗iσ
(
t δσσ′ + i∆i j σσσ′

)
c jσ′ +

∑
i

U00 ni↑ni↓ (1)

+
1
2

∑
〈i j〉, σσ′

U〈i j〉 niσn jσ′ −
1
2

∑
〈i j〉, σσ′

JD
〈i j〉 c

∗
iσci,σ′c

∗
j,σ′c jσ,

ar
X

iv
:1

61
1.

05
07

5v
2 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
8 

A
pr

 2
01

7



2

where t denotes the NN hopping amplitudes of electrons
on a triangular lattice. Vector ∆i j =

(
∆

x
i j ,∆

y
i j, 0

)
= −∆ ji

describes the Rashba spin orbit and lies perpendicularly to
the bond between NN sites i and j, while σσσ′ = (σx, σy, σz)
is a vector of Pauli matrices. Besides, U00 and U〈i j〉 refer to
onsite and NN Coulomb interactions, and JD

〈i j〉 is the NN FM
direct exchange interaction. The latter can be comparable
to the anti-FM kinetic exchange interaction in LiCu2O2,
SrCu2(BO2)2 and Si(111) with adatoms [51–53], and even
compensate it in C2F [54, 55]. The direct DMI is usually
small and may even vanish in some 2D materials due to
symmetry arguments [52]; thus, it is disregarded here.

High-frequency description – Now we aim to provide
an effective description of the system when electrons are
rapidly driven by a time-periodic laser of frequency Ω.
The vector potential it leads to in the temporal gauge is
A =

(
Ax a0 cos (Ωt) , Ay a0 sin (Ωt − φ) , 0

)
, where a0 is the

lattice constant and c = ~ = 1. It is described via Peierls sub-
stitution k → k − eA(t) in the momentum representation of
the Hamiltonian, where e denotes the electron charge. Phase φ
characterizes the light polarization that is elliptic for φ = 0 and
linear for φ = π/2. The Hamiltonian becomes time periodic
and its quantum nonequilibrium steady states obey the time-
dependent Schrödinger equation i∂τΨ(λ, τ) = 1

Ω
H(τ)Ψ(λ, τ),

where τ = Ωt. Here, we have introduced a dimensionless
parameter λ = δE/Ω that compares a certain energy scale
δE to the field frequency. For simplicity, we chose δE as
the largest energy scale involved in Hamiltonian (1) among
ti j, |∆i j|, Ui j, and JD

i j . Then, the Schrödinger equation reads
i∂τΨ(λ, τ) = λH(τ)Ψ(λ, τ), where the Hamiltonian is now
renormalized as H(τ) = H(τ)/δE. In the high-frequency limit,
λ is small and we can look for a unitary transformation de-
fined as Ψ(λ, τ) = exp{−i∆(τ)}ψ(λ, τ), which removes the
time dependence of the Hamiltonian [56, 57]. By construc-
tion we also impose ∆(τ) =

∑+∞
n=1 λ

n∆n(τ), with ∆n(τ) a 2π
periodic function that averages at zero. Such a transforma-
tion leads to i∂τψ(λ, τ) = 1

Ω
Hψ(λ, τ) = λHψ(λ, τ), where

H =
∑+∞

n=0 λ
nH̃n. Then H̃n and ∆n are determined itera-

tively in all orders in λ (see, e.g., Refs. [45, 58]). Here, we
restrict the analysis to the second order in λ. The effective
time-independent Hamiltonian it leads to is

H =
∑
〈i j〉, σσ′

c∗iσ
(
t′ δσσ′ + i∆′i j σσσ′

)
c jσ′ +

∑
i

U00 ni↑ni↓ (2)

+
1
2

∑
〈i j〉, σσ′

U〈i j〉 niσn jσ′ −
1
2

∑
i j, σσ′

J′D〈i j〉 c
∗
iσci,σ′c

∗
j,σ′c jσ.

Kinetic hopping and the Rashba spin orbit are both NN hop-
ping processes, so they are both renormalized in the same way
by the laser field: t′ = tJ0(Z) and ∆′i j = ∆′i jJ0(Z), where
J0 is the 0th order Bessel function, the polarization is as-
sumed to be circular (φ = 0), and Z = eAxa0 = eAya0 =

eE0a0/Ω with E0 the laser field strength. The explicit ex-
pression of the renormalized direct exchange interaction J′D

〈i j〉

is provided in Ref. [58]. Importantly, the effective Hamil-
tonian derived above from the high-frequency expansion re-
mains a good approximation of the dynamics over a time scale
Theating ∼ exp[O(λ−1)] that is exponentially long with the fre-
quency [59, 60], and during which heating can be neglected.
Indeed, the time scale after which the heating of the system
becomes crucial is much larger than the measurement time
Theating � mT . Here, m is the number of driving periods
T = 2π/Ω [61].

In the strong localization regime (ti j � U00), one can
construct a Heisenberg Hamiltonian in terms of spin opera-
tors Ŝi and superexchange as proposed by Anderson [62] and
Moriya [19]

Hspin = −
∑
〈i j〉

Ji j Ŝi Ŝ j +
∑
〈i j〉

Di j [Ŝi × Ŝ j]. (3)

Here, Di j = 4t′∆′i j/Ũ, where Ũ = U00 − U〈i j〉 [63]. It charac-
terizes DMI, namely, antisymmetric anisotropic interactions
that are responsible for the weak ferromagnetism of some anti-
ferromagnets [18, 19, 64]. This interaction scales withJ2

0 (Z).
Importantly, no additional contribution to DMI can be effec-
tively induced by the high-frequency light [58] and, therefore,
DMI cannot change signs when varying the field strength. Be-
sides, there may be a third term in Eq. (3) which, as intro-
duced in Moriya’s seminal paper [19], describes symmetric
anisotropic interactions. Nevertheless, it scales with ∆′2i j and
since ∆′2i j � t′i j∆

′
i j, this term can safely be neglected for all

strengths of the laser field [58]. Note that, finally, a Zeeman
magnetic field h could also be included in Hamiltonian (3)
through

∑
i Ŝ z

i h as in Refs. [17, 31]. However, it would neither
be renormalized by the high-frequency field, nor be respon-
sible for any correction up to the second order in the high-
frequency expansion [58]. This is the reason why it is dis-
regarded here. The isotropic symmetric exchange interaction
between two spins satisfies J = JD + JD

ind − JK . Here, JD de-
notes the direct exchange interactions which takes place in the
material in equilibrium, i.e., in the absence of the laser field.
The anti-FM kinetic exchange interaction JK = 2t2J2

0 (Z)/Ũ
already exists in equilibrium, but it is renormalized by the field
strength. Finally JD

ind ' 4t2ŨJ2
1 (Z)/Ω2 is a FM field-induced

correction to the direct exchange and is a purely nonequilib-
rium effect.

If the Hubbard Hamiltonian that leads to Eq. (3) lies in an
anti-FM phase in equilibrium, it is remarkable that it under-
goes a dynamical phase transition to become FM when vary-
ing the field strength out of equilibrium. This is illustrated by
the positive values of exchange interaction J in Fig. 1. Be-
cause of field-induced correction JD

ind, this dynamical tran-
sition is even predicted to occur when the direct exchange
JD is absent in equilibrium, as in iron oxides [65]. When
JD = 0, the transition roughly requires Ũ ∼ Ω and, addition-
ally, eE0a0 ∼ 2Ω according to Fig. 1. Since Ũ ' 5 eV in iron
oxides [65], the laser strength of eE0a0 ' 10 eV/Å involved at
the transition would burn the material. A fortiori, reasonable
strengths in iron oxides imply Z � 1, so that corrections to
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FIG. 1. (color online) Magnetic properties of the Si(111):{Sn, Pb}
systems as functions of the laser field strength Z for different frequen-
cies Ω = 3Ũ, 5Ũ: exchange interactions J (top left), DMI (bottom
left), ratio J/D, which is proportional to a Skyrmion radius (bottom
right). Dashed black curve corresponds to the case of zero direct
exchange and shows the important role that JD plays in a phase tran-
sition and manipulation of the Skyrmionic structure. Top right panel
shows NN and next-NN exchange interactions of Si(111):C, where
we take “unrealistic” case of t1 = t2 = t3 to make the difference in
anti-FM – FM transition more visible. All units are given in meV.

JD are too small to induce the phase transition and can only
yield negligible changes, in agreement with Refs. [48, 49].

Importantly, our work shows that the presence of exchange
interaction JD in equilibrium is crucial to induce stronger
changes in the exchange interaction J with realistic laser
strengths. Therefore, light control of magnetism looks more
likely in p-block materials than in d-block transition metals.
For example, the Si(111) surface doped with Pb or Sn adatoms
is characterized by t ' 41.3 or 43.5 meV, ∆ ' 16.7 or 5.5 meV,
JD ' 7.3, or 5.4 meV and Ũ ' 0.4 or 0.5 eV [53], respec-
tively. There, a laser field of frequency Ω ' 1.2 and strength
eE0a0 ' 0.75 eV (a0 ∼ 4 Å) would completely suppress the
exchange interaction, thus inducing the anti-FM – FM phase
transition dynamically, as shown in Fig. 1. Note that, if the di-
rect exchange were null in equilibrium (JD = 0), the situation
would be similar to what happens in iron oxides.

The competition between exchange interaction and DMI
may yield Skyrmions whose radius scales with J/D [29, 66,
67]. Figure 1 shows that one can dynamically change this
ratio by varying the laser strength. Thus, it becomes pos-
sible to engineer skyrmions of arbitrary small sizes, which
usually makes them easier to stabilize in experiments. Im-
portantly, with the absence of direct exchange DMI scales in
the same way as exchange interaction and the ratio J/D re-
mains almost unchanged, which is again in agreement with the
Refs. [48, 49]. Skyrmion stabilization can be achieved under
a perpendicular magnetic field. In the case of FM Skyrmions,
this occurs for magnetic fields with a strength B satisfying
Xmin < BJ

D2 < Xmax [30, 32]. The stable Skyrmionic phase
as a function of the laser field and magnetic field strengths
is illustrated in Fig. 2, where the values of Xmin and Xmax
are the ones obtained in Ref. 30. The left-hand side of the

FIG. 2. (color online) Stable Skyrmionic phase for the Si(111):Sn as
a function of laser field amplitude Z and magnetic field B̃ = B/JA=0

given in units of the initial exchange interaction JA=0, Ω = 4Ũ.

plot shows that the high-frequency laser can help to stabilize
Skyrmions by drastically enlarging the range of suitable mag-
netic fields. Anti-FM Skyrmions [68, 69], however, are stabi-
lized under high magnetic fields. For example, in Si(111):Pb,
the Skyrmionic state was predicted to be stabilized under a
250 T magnetic field [53]. Actually, it has been shown that
the strength of the magnetic field scales linearly with the ex-
change interaction and in particular B ∼ 4J. Therefore, shin-
ing the material with a high-frequency laser may be relevant to
significantly reduce the exchange interaction and, thus, to di-
minish the stabilizing magnetic field down to experimentally
realistic strengths.

Finally, the possibility to undergo anti-FM – FM phase
transition by varying the laser strength allows one to generate
two different types of Skyrmions in one system and observe
the anti-FM Skyrmionic – FM Skyrmionic phase transition.
Indeed, one can stabilize the anti-FM Skyrmions, for ex-
ample, obtained in Si(111):Pb [53], under the influence of
the high-frequency light by applying a weak perpendicular
magnetic field in the antiferromagnetic phase. After driving
the system toward the FM phase the exchange interac-
tion changes sign and one can then stabilize the new FM
Skyrmionic structure by adjusting the magnetic field.

J1 − J2,3 skyrmion model – Now let us consider another in-
teresting model that describes a frustrated magnetic system. It
consists of an isotropic Heisenberg model on a triangular lat-
tice where Skyrmions appear as a result of the competition be-
tween strong ferromagnetic NN and weak antiferromagnetic
next-NN exchange interactions. In order to obtain Skyrmions,
these interactions must obey special conditions that originate
from the lattice structure [14–17]. Thus, for the J1 − J2 model
the exchange interactions should satisfy −1 < J1/|J2| < 3,
whereas they should satisfy J1/|J3| < 4 in the J1 − J3 model.
Designing such a frustrated system is of course a nontrivial
problem experimentally. Nevertheless, we subsequently show
that frustration can be realized by shinning an antiferromagnet
with a high-frequency laser.

We consider the single-band extended Hubbard Hamilto-
nian (1) on a triangular lattice but with NN and next-NN hop-
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ping processes and Coulomb interactions

H =
∑
〈i j〉, σ

t1 c∗iσ c jσ +
∑
〈〈i j〉〉, σ

t2,3 c∗iσ c jσ +
∑

i

U00 ni↑ni↓ (4)

+
1
2

∑
i j, σσ′

(
U〈i j〉 + U〈〈i j〉〉

)
niσn jσ′ −

1
2

∑
i j, σσ′

JD
〈i j〉 c

∗
iσci,σ′c

∗
j,σ′c jσ.

Using the high-frequency expansion introduced above, one
can obtain an effective Hamiltonian which, for circularly po-
larized fields, is

H =
∑
〈i j〉, σ

t′1 c∗iσ c jσ +
∑
〈〈i j〉〉, σ

t′2,3 c∗iσ c jσ +
∑

i

U00 ni↑ni↓ (5)

+
1
2

∑
i j, σσ′

(
U〈i j〉 + U〈〈i j〉〉

)
niσn jσ′ −

1
2

∑
i j, σσ′

J′D〈i j〉 c
∗
iσci,σ′c

∗
j,σ′c jσ,

where the renormalized hopping amplitudes are t′1 = t1J0(Z),
t′2 = t2J0(

√
3Z), and t′3 = t3J0(2Z). The explicit expression of

the renormalized exchange interaction is detailed in Ref. [58].
When the system lies in the strong interaction regime, one

can write an effective Heisenberg model,

Hspin = −
∑
〈i j〉

J1 Ŝi Ŝ j −
∑
〈〈i j〉〉

J2,3 Ŝi Ŝ j (6)

with NN exchange interaction J1 = J′D
〈i j〉 − 2t′21 /Ũ〈i j〉 and next-

NN exchange interaction J2,3 = J′D
〈〈i j〉〉 − 2t′22,3/Ũ〈〈i j〉〉. Top right

panel in Fig. 1 shows that, for vanishing laser fields, the sys-
tem lies in the antiferromagnetic phase. When turning on
the laser field and increasing its strength, the system under-
goes a transition toward a ferromagnetic phase. Importantly,
the nearest-neighbor and the next-NN exchange interactions,
namely, J1 and J2,3, become ferromagnetic for different values
of the field, meaning that one can engineer a frustrated mag-
net. Here we took the “unrealistic” case of t1 = t2 = t3 just
to make the anti-FM – FM transition more visible in the fig-
ure. Fig. 3 shows the phase diagram based on conditions −1 <
J1/|J2| < 3 and J1/|J3| < 4, as a function of t2,3/t1 and laser
strength Z. Thus, the initial antiferromagnet may be dynam-
ically driven toward the frustrated magnetic system predicted
in Ref. 14 with suitable values of anti-FM and FM exchange
interactions to obtain Skyrmions. In the case of Si(111) with C
adatoms, it is estimated that t01 ' 35.1 meV, t02 ' −13.5 meV,
JD ' 1.67 meV, Ũ01 ' 0.9 eV, Ũ02 ' 1.1 eV [53], so that fields
with frequency Ω ' 2.7 eV and amplitudes eE0a0 ' Ω would
induce suitable values of J1,2 to obtain Skyrmions, according
to the left panel in Fig. 3. Similar effects are predicted in C2F,
where t01 ' −232.8 meV, t03 ' −21.3 meV, JD ' 20 meV and
Ũ01 ' 2.7 eV, Ũ03 ' 3.7 eV [54] (see right panel of Fig. 3).

So far we have only considered the case of a circular polar-
ization. For example, in the case of the square lattice under
the influence of the noncircular polarized fields, the hopping
amplitude and spin-orbit coupling vector are renormalized
by the Bessel functions J0(eAx(y)a0), where the labels x(y)
correspond to the direction of the vector that connects two
lattice sites. This allows us to change DMI and the Skyrmion

FIG. 3. (color online) Hopping amplitudes t2(3)/t1 as the function of
the amplitude Z of the laser field for the values J1/|J2(3)| that cor-
respond to the Skyrmionic phase. Frequency of the laser field is
Ω = 3Ũ.

radius J/D in an anisotropic way. This case was recently
investigated in Ref. 39, where DMI are tuned by strain forces,
which changes the Skyrmion shape from circular to elliptic.

To summarize, we have reported the possibility to dy-
namically control the intrinsic magnetic interactions of
two-dimensional materials. This can induce drastic changes
in the anti-FM exchange interaction that can even be switched
to FM, provided the direct exchange interaction in equilibrium
is non-negligible. Additionally, the high-frequency laser field
also renormalizes the DMI, so that Skyrmion features such
that their radius can be tuned too, thus making them easier
to stabilize under perpendicular magnetic fields. Besides, it
has been shown that a high-frequency laser field can also
induce dynamical frustration in antiferromagnetic triangular
lattices, where the degree of frustration can be tuned suitably
to experience Skyrmions. Importantly, the dynamical effects
we have discussed within the high-frequency limit rely on
laser strengths and frequencies that remain reasonable for
realizations in solid state physics. In particular, we expect
them to be relevant when irradiating sp and p materials like
C2F and Si(111):{C, Sn, Pb}.
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7, 713 (2011).
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SUPPLEMENTAL MATERIAL FOR “DYNAMICAL AND REVERSIBLE CONTROL OF TOPOLOGICAL SPIN TEXTURES”
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Fourier transform of the kinetic part of the Hubbard-like Hamiltonian with DMI

The Fourier transform of the time-dependent part of the Hamiltonian that accounts for the effects of the high-frequency laser
field can be obtained with the use of the followgin well-known relations which arise from the definition of the Bessel function
of the m-th order Jm(Z): ∫ +π

−π

dt
2π

e−iZy sin(t−φ)eimt =

∫ +π

−π

dt
2π

e−iZy sin t′eim(t′+φ) = eimφJm(Zy),∫ +π

−π

dt
2π

e−iZx cos t−iZy sin(t−φ)eimt = eimθJm

√
Z2

x + Z2
y − 2ZxZy sin φ,

where cot θ =
Zy cos φ

Zy sin φ−Zx
. This results in the following expression for the Fourier transform of the hopping amplitude and the

spin-orbit coupling

εk,m = 2tJm(Z)
[
cos(kx − mπ/2) + cos(kx/2 + ky

√
3/2) eim5π/6 + cos(kx/2 − ky

√
3/2) eimπ/6

]
,

f x
k,m =

√
3i∆Jm(Z)

[
sin(kx/2 − ky

√
3/2)eimπ/6 − sin(kx/2 + ky

√
3/2)eim5π/6

]
,

f y
k,m = i∆Jm(Z)

[
2 sin(kx − mπ/2) + sin(kx/2 − ky

√
3/2)eimπ/6 + sin(kx/2 + ky

√
3/2)eim5π/6

]
, (7)

where we consider the case of the circularly polarized light (Z = eAxa0 = eAya0, φ = 0) for simplicity. Then, the full Hamiltonian
in the frequency space can be written as

Hm =
∑

k, σσ′
c∗kσ

(
εk,mδσσ′ + i f k,mσσσ′

)
ckσ′ + Vδm0, (8)

where the time-independent interaction term transforms as Vδm0.

High-frequency description

As it was mentioned in the main text, the time-periodic Hamiltonian obey the time-dependent Schrödinger equation

i∂τΨ(λ, τ) =
1
Ω

H(τ)Ψ(λ, τ), (9)

where τ = Ωt. One can introduce a dimensionless parameter λ = δE/Ω which compares a certain energy scale δE to the typical
field energy. For simplicity we chose δE as the largest characteristic energy involved in the initial Hamiltonian among ti j, Ui j

and JD
i j , so that no resonant processes with the applied laser field will occur. Then, the Schrödinger equation can be rewritten as

i∂τΨ(λ, τ) = λH(τ)Ψ(λ, τ), (10)
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where the Hamiltonian is renormalized on the same energy scale as

1
Ω

H(τ) = λ
H(τ)
δE

= λH(τ). (11)

In order to obtain the effective Hamiltonian of our model we look for a unitary transformation defined as

Ψ(λ, τ) = exp{−i∆(τ)}ψ(λ, τ), (12)

which would remove the time dependence of the Hamiltonian. By construction we also impose

∆(τ) =

+∞∑
n=1

λn∆n(τ) (13)

with ∆n(τ) a 2π periodic function that averages at zero. Such a transformation leads to

i∂τψ(λ, τ) =
1
Ω
Hψ(λ, τ) = λHψ(λ, τ) (14)

with effective Hamiltonian

H = ei∆(τ)H(τ) e−i∆(τ) − iλ−1ei∆(τ)∂τe−i∆(τ) , (15)

or equivalently

H = ei∆(τ)H(τ) e−i∆(τ) − iΩei∆(τ)∂τe−i∆(τ) . (16)

The partial time-derivative satisfies the following relation

∂τe−i∆(τ) =

∞∑
n=0

{(
− i∆(τ)

)n
,− i∂τ∆(τ)

}
(n + 1)!

e−i∆(τ) , (17)

where the repeated commutator is defined for two operators X and Y by {1,Y} = Y and {Xn,Y} = [X, {Xn−1,Y}]. The square
brackets denote the usual commutator. Then, one can write

H = ei∆(τ)

H(τ) − iλ−1
∞∑

n=0

{(
− i∆(τ)

)n
,− i∂τ∆(τ)

}
(n + 1)!

 e−i∆(τ) , (18)

Using the series representation

H =

∞∑
n=0

λnH̃n, (19)

together with Eqs. (17) and (15), one can then determine operators H̃n and ∆n iteratively in all orders in λ. Here, we restrict
ourselves to the case of the high-frequency laser field, which allows us to consider the effective Hamiltonian representation
up to the second order correction in λ: H = H̃0 + λH̃1 + λ2H̃2. These effective time-independent Hamiltonians describe the
stroboscopic dynamics of the system, whereas its evolution between two stroboscopic times is encoded into the time-dependent
function ∆n(τ) [45].

As it was showed in the Ref. [45], the first term in this representation is given by the time-average H̃0 =
〈
H(τ)

〉
= H0, where

Hm =

∫ +π

−π

dτ
2π

eimτH(τ). (20)

Since in the initial problem the interaction term was time-independent, the time-averaging procedure changes only the single-
particle terms of the Hamiltonian Hm, which results in the renormalization of the hopping amplitude and spin-orbit coupling
with respect to the time-independent problem as

H ' H̃0 δE =
∑
〈i j〉, σσ′

c∗iσ
(
t′ δσσ′ + i∆′i j σσσ′

)
c jσ′ +

∑
i

U00 ni↑ni↓ +
1
2

∑
〈i j〉,σσ′

U〈i j〉 niσn jσ′ −
1
2

∑
〈i j〉, σσ′

JD
〈i j〉 c

∗
iσciσ′c

∗
jσ′c jσ,

where

t′ = tJ0(Z) and ∆′ = ∆J0(Z). (21)



8

First-order correction H̃1 to the time-averaged Hamiltonian in the high-frequency expansion

The first-order in λ term in the effective Hamiltonian is given by the following equation

H̃1 = −
∑
m>0

[Hm,H−m]
m

. (22)

Since m , 0 does not contribute to the first-order term H̃1, one can rewrite the time dependent part of the Hamiltonian as follows

Hm>0 =
∑

k

εk,m

(
c∗k↑ck↑ + c∗k↓ck↓

)
+ i

∑
k

f
x
k,m

(
c∗k↑ck↓ + c∗k↓ck↑

)
+

∑
k

f
y
k,m

(
c∗k↑ck↓ − c∗k↓ck↑

)
, (23)

where we use the same notations for the renormalized variables εk = εk/δE and f
x,y
k = f x,y

k /δE.
Let us compute the general commutator [Hm,Hn] (m, n > 0) that in our case splits into the three different terms

εk1,mεk2,n

[(
c∗k1↑

ck1↑
+ c∗k1↓

ck1↓

)
,
(
c∗k2↑

ck2↑
+ c∗k2↓

ck2↓

)]
, (24a)

εk1,m f
i
k2,n

[(
c∗k1↑

ck1↑
+ c∗k1↓

ck1↓

)
,
(
c∗k2↑

ck2↓
∓ c∗k2↓

ck2↑

)]
, (24b)

f
i
k1,m f

j
k2,n

[(
c∗k1↑

ck1↓
∓ c∗k1↓

ck1↑

)
,
(
c∗k2↑

ck2↓
∓ c∗k2↓

ck2↑

)]
. (24c)

Let us start from Eq. (24a). Using the commutation relations one can obtain that

c∗k1↑
ck1↑

c∗k2↑
ck2↑

= − c∗k1↑
c∗k2↑

ck1↑
ck2↑

+ δk1,k2
c∗k1↑

ck2↑
= − c∗k2↑

c∗k1↑
ck2↑

ck1↑
+ δk1,k2

c∗k1↑
ck2↑

= c∗k2↑
ck2↑

c∗k1↑
ck1↑
− δk1,k2

c∗k2↑
ck1↑

+ δk1,k2
c∗k1↑

ck2↑
= c∗k2↑

ck2↑
c∗k1↑

ck1↑
,

c∗k1↓
ck1↓

c∗k2↑
ck2↑

= c∗k2↑
ck2↑

c∗k1↓
ck1↓

. (25)

Making the same transformations with other remaining terms, one can see that commutator in Eq. (24a) is equal to zero.
The result of Eq. (24b) can be obtained in the same style.

c∗k1↑
ck1↑

c∗k2↑
ck2↓

+ c∗k1↓
ck1↓

c∗k2↑
ck2↓

= − c∗k1↑
c∗k2↑

ck1↑
ck2↓

+ δk1k2
c∗k1↑

ck2↓
− c∗k1↓

c∗k2↑
ck1↓

ck2↓
(26)

= − c∗k2↑
c∗k1↑

ck2↓
ck1↑

+ δk1k2
c∗k1↑

ck2↓
− c∗k2↑

c∗k1↓
ck2↓

ck1↓

= c∗k2↑
ck2↓

c∗k1↑
ck1↑

+ δk1k2
c∗k1↑

ck2↓
+ c∗k2↑

ck2↓
c∗k1↓

ck1↓
− δk1k2

c∗k2↑
ck1↓

= c∗k2↑
ck2↓

c∗k1↑
ck1↑

+ c∗k2↑
ck2↓

c∗k1↓
ck1↓

.

Obtaining the second term with the similar transformations, one obtains that commutator in Eq. (24b) is also equal to zero.
The last commutator given by Eq. (24c) is zero as well. Indeed, since

c∗k1↓
ck1↑

c∗k2↑
ck2↓

+ c∗k1↑
ck1↓

c∗k2↓
ck2↑

= − c∗k1↓
c∗k2↑

ck1↑
ck2↓

+ δk1k2
c∗k1↓

ck2↓
− c∗k1↑

c∗k2↓
ck1↓

ck2↑
+ δk1k2

c∗k1↑
ck2↑

(27)

= − c∗k2↑
c∗k1↓

ck2↓
ck1↑

+ δk1k2
c∗k1↓

ck2↓
− c∗k2↓

c∗k1↑
ck2↑

ck1↓
+ δk1k2

c∗k1↑
ck2↑

= c∗k2↑
ck2↓

c∗k1↓
ck1↑
− δk1k2

c∗k2↑
ck1↑

+ δk1k2
c∗k1↓

ck2↓
+ c∗k2↓

ck2↑
c∗k1↑

ck1↓
− δk1k2

c∗k2↓
ck1↓

+ δk1k2
c∗k1↑

ck2↑

= c∗k2↑
ck2↓

c∗k1↓
ck1↑

+ c∗k2↓
ck2↑

c∗k1↑
ck1↓

,

c∗k1↑
ck1↓

c∗k2↑
ck2↓

= c∗k2↑
ck2↓

c∗k1↑
ck1↓

, (28)

the commutator in Eq. (24c) is equal to zero. So, if [Hm,Hn] = 0 for all m, n > 0, the first-order correction term H̃1 of the
effective Hamiltonian is identically zero.

Second-order term H̃2 of the Hamiltonian in the high-frequency expansion

Since [Hm,Hn] = 0 as it was shown above, the second-order term H̃2 of the effective Hamiltonian can be simplified as

H̃2 =
∑
m>0

[[Hm,H0],H−m]
m2 =

∑
m>0

[[Hm,V],H−m]
m2 . (29)
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It should be mentioned, that we consider the high-frequency description of the effective Hamiltonian until the second order in
λ. In general, one can stop at the first-order term H̃1, because the second order term H̃2 describes only the corrections to the
interactions, that will be λ2 times smaller than the interactions already described by the time averaged term H̃0. Therefore, they
are negligibly small and a priori not important for the magnetic properties of the system. Nevertheless, according to the Ref. [57],
the high-frequency field generates new types of interaction terms that were not present in the initial problem. In particular, there
is one important correction, namely JD

ind, to the direct exchange interaction term JD that comes from the Coulomb interaction
and appears exactly in the second-order correction H̃2 in the effective Hamiltonian. After taking this contribution into account,
the next-order terms are negligible because they will again be λ2 times smaller than the already accounted terms. This allows us
to choose λ3 � 1 and stop at the second-order in λ term H̃2 while constructing the effective Hamiltonian of considered problem.
Also, since JD � U in every magnetic system, and because they are renormalized by the same Bessel functionsJm(Z), it allows
us to simplify the commutation in Eq. (29) as

H̃2 =
∑

q
m>0

∑
k1,k2,k3,k4
σ1,σ2,σ3,σ4

[[
Hm(k1, σ1), 1

2 Uqc∗k2,σ2
ck2+q,σ2

c∗k3,σ3
ck3−q,σ3

]
,H−m(k4, σ4)

]
m2 . (30)

Although in the many systems the spin-orbit coupling is much smaller than the hopping amplitude ∆ � t, we will not neglect
it in the Eq.(30) and will show that contrary to the case of exchange interaction, the effective DMI interaction is not induced by
the high-frequency laser field.

Let us study the general commutator
[
c∗k1,σ1

ck1,σ2
, c∗k2,σ3

ck2+q,σ4
c∗k3,σ5

ck3−q,σ6

]
c∗k1,σ1

ck1,σ2
c∗k2,σ3

ck2+q,σ4
c∗k3,σ5

ck3−q,σ6
= − c∗k1,σ1

c∗k2,σ3
ck1,σ2

ck2+q,σ4
c∗k3,σ5

ck3−q,σ6
+ δk1,k2

δσ2,σ3
c∗k1,σ1

ck2+q,σ4
c∗k3,σ5

ck3−q,σ6

= − c∗k2,σ3
c∗k1,σ1

ck2+q,σ4
ck1,σ2

c∗k3,σ5
ck3−q,σ6

+ δk1,k2
δσ2,σ3

c∗k1,σ1
ck2+q,σ4

c∗k3,σ5
ck3−q,σ6

= c∗k2,σ3
ck2+q,σ4

c∗k1,σ1
ck1,σ2

c∗k3,σ5
ck3−q,σ6

+ δk1,k2
δσ2,σ3

c∗k1,σ1
ck2+q,σ4

c∗k3,σ5
ck3−q,σ6

− δk1,k2+qδσ1,σ4
c∗k2,σ3

ck1,σ2
c∗k3,σ5

ck3−q,σ6

= − c∗k2,σ3
ck2+q,σ4

c∗k1,σ1
c∗k3,σ5

ck1,σ2
ck3−q,σ6

+ δk1,k2
δσ2,σ3

c∗k1,σ1
ck2+q,σ4

c∗k3,σ5
ck3−q,σ6

− δk1,k2+qδσ1,σ4
c∗k2,σ3

ck1,σ2
c∗k3,σ5

ck3−q,σ6
+ δk1,k3

δσ2,σ5
c∗k2,σ3

ck2+q,σ4
c∗k1,σ1

ck3−q,σ6

= − c∗k2,σ3
ck2+q,σ4

c∗k3,σ5
c∗k1,σ1

ck3−q,σ6
ck1,σ2

+ δk1,k2
δσ2,σ3

c∗k1,σ1
ck2+q,σ4

c∗k3,σ5
ck3−q,σ6

− δk1,k2+qδσ1,σ4
c∗k2,σ3

ck1,σ2
c∗k3,σ5

ck3−q,σ6
+ δk1,k3

δσ2,σ5
c∗k2,σ3

ck2+q,σ4
c∗k1,σ1

ck3−q,σ6

= c∗k2,σ3
ck2+q,σ4

c∗k3,σ5
ck3−q,σ6

c∗k1,σ1
ck1,σ2

+ δk1,k2
δσ2,σ3

c∗k1,σ1
ck2+q,σ4

c∗k3,σ5
ck3−q,σ6

− δk1,k2+qδσ1,σ4
c∗k2,σ3

ck1,σ2
c∗k3,σ5

ck3−q,σ6

+ δk1,k3
δσ2,σ5

c∗k2,σ3
ck2+q,σ4

c∗k1,σ1
ck3−q,σ6

− δk1,k3−qδσ1,σ6
c∗k2,σ3

ck2+q,σ4
c∗k3,σ5

ck1,σ2
. (31)

First, let us focus on the contribution from the hopping amplitude t. Therefore, one can take εk1,mc∗k1,σ1
ck1,σ1

instead of Hm(k1, σ1)
in Eq. (30), put σ2 = σ1, σ4 = σ3, σ6 = σ5 in the previous calculations and obtain for the first commutator

∑
q

m>0

∑
k1,k2,k3
σ1,σ3,σ5

εk1,mUq

2

[
c∗k1,σ1

ck1,σ1
, c∗k2,σ3

ck2+q,σ3
c∗k3,σ5

ck3−q,σ5

]
=

∑
q

m>0

∑
k2,k3
σ3,σ5

Uq

2

(
εk2,m − εk2+q,m + εk3,m − εk3−q,m

)
c∗k2,σ3

ck2+q,σ3
c∗k3,σ5

ck3−q,σ5
.

(32)

One can see, that the structure of the interaction part did not change after the commutation operation. Indeed, since the Coulomb
interaction in our case has the density×density form 1

2 Uqnqnq, where nq =
∑

kσ c∗k,σck+q,σ. Therefore, the commutation with the
hopping term εkc∗k,σck,σ will not change the density× density structure of interaction, because it also has the form of the density
for q = 0 even if it has the k–dependent term εk in front of fermionic operators. This important consequence will be very useful
for the further calculations.

Then, it is straightforward to see that the contribution to the the second order correction described by Eq. (30) from hopping
amplitude t is equal to

H̃2 = −
∑

q
m>0

∑
k2,k3
σ3,σ5

Uq

2m2

(
εk2,m − εk2+q,m + εk3,m − εk3−q,m

) (
εk2,−m − εk2+q,−m + εk3,−m − εk3−q,−m

)
c∗k2,σ3

ck2+q,σ3
c∗k3,σ5

ck3−q,σ5
, (33)
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and again has the density × density structure with the two summations
∑

k2,σ3
and

∑
k3,σ5

. Here Uq is the Fourier transform of
Coulomb interaction

Uq = U00 + 2U01

cos qx + 2 cos
qx

2
cos

√
3qy

2

 . (34)

Now, let us transform this Hamiltonian back to the real space. For simplicity we use the following notation

F(k2,k3,q) =
Uq

2

(
εk2,m − εk2+q,m + εk3,m − εk3−q,m

) (
εk2,−m − εk2+q,−m + εk3,−m − εk3−q,−m

)
. (35)

Then, transformation looks as (R = {r, r′, r′′, r1, r2, r3, r4})

H̃2(R) = −
∑

R

∑
m

∑
k2,k3,q

F(r, r′, r′′)
m2 c∗r1,σ2

cr2,σ2
c∗r3,σ3

cr4,σ3
eik2r+ik3r′+iqr′′eik2r1−i(k2+q)r2+ik3r3−i(k3−q)r4

= −
∑

R

∑
m

∑
k2,k3,q

F(r, r′, r′′)
m2 c∗r1,σ2

cr2,σ2
c∗r3,σ3

cr4,σ3
eik2(r+r1−r2)eik3(r′+r3−r4)eiq(r′′−r2+r4)

= −
∑

R

∑
m

F(r, r′, r1 + r − r3 − r′)
m2 c∗r1,σ2

cr1+r,σ2
c∗r3,σ3

cr3+r′,σ2
, (36)

where

F(r, r′, r′′) =
∑

k2,k3,q

F(k2,k3,q)e−ik2r−ik3r′−iqr′′ . (37)

Since, in general, the Coulomb potential decays as 1/r and the Fourier transform of the function FU(k2,k3,q) also rapidly
decays with the distance, we consistently restrict ourselves to the one-site and nearest-neighbour two-site approximation in the
same way as it was done in [57]. These terms give the main contribution to the interaction, so these approximation is sufficient.
Therefore, there are four possibilities to obtain such terms:
a) r1 = r3 + r′ = r1 + r = r3 = i, so r = r′ = r′′ = 0,
b) r1 = r1 + r = i and r3 = r3 + r′ = j, so r = r′ = 0 and r′′ = r1 − r3 = a0,
c) r1 = r3 = i and r1 + r = r3 + r′ = j, so r = r′ = a0 and r′′ = 0,
d) r1 = r3 + r′ = i and r1 + r = r3 = j, so r = −r′ = a0 and r′′ = r = a0.
Then, the second-order term H̃2 for the all four cases is given by (for all possible values of m)

H̃a
2 = −

∑
i

∑
m>0

∑
k2,k3,q
σσ′

F(k2,k3,q)
m2 c∗i,σci,σc∗i,σ′ci,σ′ = −

∑
i

∑
σσ′

∑
m>0

8 t2
J2

m(Z)
(U00 − U〈i j〉)

m2 ni,σni,σ′ , (38)

H̃b
2 = −

∑
〈i j〉

∑
m>0

∑
k2,k3,q
σσ′

F(k2,k3,q)
m2 c∗i,σci,σc∗j,σ′c j,σ′ e−iqa = −

∑
〈i j〉

∑
σσ′

∑
m>0

2 t2
J2

m(Z)
(4U〈i j〉 − U00)

m2 ni,σn j,σ′ , (39)

H̃c
2 = −

∑
〈i j〉

∑
m>0

∑
k2,k3,q
σσ′

F(k2,k3,q)
m2 c∗i,σc j,σc∗i,σ′c j,σ′ e−ik2a−ik3a = −

∑
〈i j〉

∑
σσ′

∑
m>0

2 t2(−1)mJ2
m(Z)

(U00 − U〈i j〉)
m2 d∗i d j , (40)

H̃d
2 = −

∑
〈i j〉

∑
m>0

∑
k2,k3,q
σσ′

F(k2,k3,q)
m2 c∗i,σc j,σc∗j,σ′ci,σ′ e−ik2a+ik3a−iqa = −

∑
〈i j〉

∑
σσ′

∑
m>0

2 t2
J2

m(Z)
(U00 − U〈i j〉)

m2 c∗i,σci,σ′c
∗
j,σ′c j,σ, (41)

where we considered the case of circularly polarized laser field (Z = eAxa0 = eAya0, φ = 0) for simplicity. Here, the first
and the second terms H̃a

2 and H̃b
2 give a correction to the local and nearest-neighbour Coulomb interaction respectively. These

corrections come with the factor λ2 and therefore are negligibly small with respect to the Coulomb interactions that are already
presented in the main term H̃0 of the effective Hamiltonian. Contrary to them, the fourth term H̃d

2 induced by the laser field gives
a very important contribution JD

ind to the direct exchange that comes from the Coulomb interaction as we stressed in the beginning
of this Section, and therefore, is much larger then a correction that might appear directly from JD. It is worth mentioning, that
the term described by Eq. (40) is new and this type of interaction does not exist in the initial Hamiltonian. This term describes
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kinetics of doublons, where d∗i = c∗i,σc∗i,−σ and di = ci,−σci,σ are the creation and annihilation operators of doublons. As it is
shown in the Ref. 57, this term does not contribute to the exchange interaction, and we will not consider it here.

It is not surprising, that exactly the εk1,mc∗k1,σ1
ck1,σ1

part of Hm(k1, σ1) in Eq. (30) generates an effective exchange interaction
JD

ind. As it was discussed above, the commutation with the hopping term that has the density structure does not change the
density × density structure of interaction, and the final result for the Eq. (30) in this case has the density × density structure
as well. The exchange interaction enters the Heisenberg Hamiltonian as Ji jŜiŜ j. The Ŝ2 operator, that also can be written as
Ŝ xŜ x + Ŝ yŜ y + Ŝ zŜ z is proportional to the density × density term nn, therefore the obtained result was expectable.

Now let us study whether it is possible to induce the anisotropic DMI interaction by the laser field similarly to the case of
the exchange interaction. DMI enters the Heisenberg Hamiltonian as Di j [Ŝi × Ŝ j] and can be rewritten as Dx

i j (Ŝ y
i Ŝ z

j − Ŝ z
i Ŝ

y
j) +

Dy
i j (Ŝ z

i Ŝ
x
j − Ŝ x

i Ŝ z
j), since the Di j is determined by the ∆i j that has only x and y components. Therefore, the DMI has the

structure of Ŝ z operator that couples to the x or y component of the spin operator Ŝ. One can see that similarly to the hop-
ping term, the spin-orbit term i

∑
k, σσ′ f k,mc∗kσσσσ′ckσ′ in the initial Hamiltonian (8) has the form of spin operators Ŝ x(y)

q=0

(Ŝ x(y)
q = 1

2
∑

k,σσ′ c∗k,σσ
x(y)
σσ′ck+q,σ′ ), even if there is again a k–dependent coefficient f k in front of fermionic operators. Since

the kinetic part of DMI is determined as D = 4t∆
U and according to the structure of DMI discussed above, one could expect, that

the only one possibility to induce a direct DMI is described by the following contribution to the second order correction H̃2

H̃2 =
∑

q
m,0

∑
k1,k2,k3,k4

σ1,σ3,σ5,σ,σ
′

[[
εk1,mc∗k1,σ1

ck1,σ1
, 1

2 Uqc∗k2,σ3
ck2+q,σ3

c∗k3,σ5
ck3−q,σ5

]
, i f k4,−mc∗k4σ

σσσ′ck4σ′

]
m2 . (42)

Let us study the case of x component i
∑

k,σ f
x
k,mc∗k,σck,−σ of the spin-orbit term (for the y component the calculations are similar).

Using the Eq. (31) and the fact that the commutation of the interaction with the hopping term does not change the interaction,
one can get the following result

H̃2 = −
∑

q
m,0

∑
k2,k3
σ3,σ5,

Uq

2m2

(
εk2,m − εk2+q,m + εk3,m − εk3−q,m

) (
f

x
k2,−mc∗k2,−σ3

ck2+q,σ3
c∗k3,σ5

ck3−q,σ5
− f

x
k2+q,−mc∗k2,σ3

ck2+q,−σ3
c∗k3,σ5

ck3−q,σ5

+ f
x
k3,−mc∗k2,σ3

ck2+q,σ3
c∗k3,−σ5

ck3−q,σ5
− f

x
k3−q,−mc∗k2,σ3

ck2+q,σ3
c∗k3,σ5

ck3−q,−σ5

)
.

(43)

Unfortunately, the obtained result has the form of x component Ŝ x of the spin operator that is coupled to the density n, but not
to the Ŝ z operator. Therefore, this term does not contribute to the DMI interaction and does not affect the exchange interaction.
This result is consistent with the logic presented above. Indeed, the commutation of the density-like term εk with interaction and
with spin-like term f k will produce only density × Ŝ x(y) contribution, but not an Ŝ z × Ŝ x(y)-like terms. Therefore, an anisotropic
DMI interaction can not be induced by the laser field.

Finally, the effective Hamiltonian can be written as

H = HδE '
(
H̃0 + λ2H̃2

)
δE =

∑
〈i j〉, σσ′

c∗iσ
(
t′ δσσ′ + i∆′i j σσσ′

)
c jσ′ +

∑
i

U00 ni↑ni↓+ (44)

1
2

∑
〈i j〉, σσ′

U〈i j〉 niσn jσ′ −
1
2

∑
〈i j〉, σσ′

J′D〈i j〉 c
∗
iσci,σ′c

∗
j,σ′c jσ,

where direct exchange interaction is also renormalized by the laser field and is equal to J′D
〈i j〉 = JD

〈i j〉 + JD
ind, where

JD
ind =

4 t2

Ω2

∑
m>0

J2
m(Z)

(U00 − U〈i j〉)
m2 , (45)

The renormalized hopping amplitude and the spin-orbit coupling vector were determined above.
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Effective time-independent Hamiltonian in the high-frequency representation for t1 − t2,3 model

Performing the similar transformations, one can get the Fourier transform of the kinetic part of the initial time-dependent
Hamiltonian as εk,m = ε1

k,m + ε2(3)
k,m , where

ε1
k,m = 2t1Jm(Z)

[
cos(kx − mπ/2) + cos(kx/2 + ky

√
3/2) eim5π/6 + cos(kx/2 − ky

√
3/2) eimπ/6

]
, (46)

ε2
k,m = 2t2Jm(

√
3Z)

[
cos(ky

√
3 + mπ/2) e−imπ/2 + cos(kx3/2 + ky

√
3/2) eim2π/3 + cos(kx3/2 − ky

√
3/2) eimπ/3

]
, (47)

ε3
k,m = 2t3Jm(2Z)

[
cos(2kx − mπ/2) + cos(kx + ky

√
3) eim5π/6 + cos(kx − ky

√
3) eimπ/6

]
. (48)

Here t1 is the nearest-neighbor hopping amplitude, t2,3 are the nearest-NN hoppings, and we again consider the case of the
circularly polarized light (Z = eAxa0 = eAya0, φ = 0).
Similarly to the case presented above, there is only one correction (41) that matters for the magnetic properties of the considered
model. Then the correction H̃3 for the effective Hamiltonian reads

H̃d
2 = −

∑
〈i j〉

∑
m>0

∑
k2,k3,q
σ2,σ3

F(k2,k3,q)
m2 c∗i,σ2

c j,σ2
c∗j,σ3

ci,σ3
e−ik2ri+ik3ri−iqri . (49)

Since in the t1 − t2,3 model we additionally included the next-NN hopping processes, we will also consider the next-NN two-site
contributions r2 =

√
3a0, r3 = 2a0 here in addition to the nearest-neighbor case of r1 = a0, and we again define

F(k2,k3,q) =
Uq

2

(
εk2,m − εk2+q,m + εk3,m − εk3−q,m

) (
εk2,−m − εk2+q,−m + εk3,−m − εk3−q,−m

)
(50)

and the Fourier transform of Coulomb interaction as

Uq = U00 + 2U01

cos qx + 2 cos
qx

2
cos

√
3qy

2

 + 2U02

cos
√

3qy + 2 cos
3qx

2
cos

√
3qy

2

 + 2U03

(
cos 2qx + 2 cos qx cos

√
3qy

)
.

(51)

The final effective Hamiltonian now reads

H =
∑
〈i j〉, σ

t′1 c∗iσ c jσ +
∑
〈〈i j〉〉, σ

t′2,3 c∗iσ c jσ +
∑

i

U00 ni↑ni↓ +
1
2

∑
i j, σσ′

(
U〈i j〉 + U〈〈i j〉〉

)
niσn jσ′ −

1
2

∑
i j, σσ′

J′Di j c∗iσci,σ′c
∗
j,σ′c jσ, (52)

where the renormalized hopping amplitudes are t′1 = t1J0(Z), t′2 = t2J0(
√

3Z), t′3 = t3J0(2Z), and the renormalized direct
exchange interaction can be obtained from the Eq. (49) as

J′D01 = JD
01 +

4 t2
1

Ω2

∑
m>0

J2
m(Z)

(U00 − U01)
m2 , (53)

J′D02 =
4 t2

2

Ω2

∑
m>0

J2
m(
√

3Z)
(U00 − U02)

m2 , (54)

J′D03 =
4 t2

3

Ω2

∑
m>0

J2
m(2Z)

(U00 − U03)
m2 . (55)
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