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     he human brain is a complex system. It contains a huge amount of neurons 

between 1010 and 1012 neurons (Williams and Herrup, 1988; Azevedo et al., 2009; 

Lent et al., 2012) with synaptic connections in the range between 1013 and 1016 

(Kandel, 2013). How do the billions of individual neurons interact to produce 

behavior and cognitive states, and how is the activity of this huge network influenced 

by the environment to respond to changes in the environment, for example in case 

of danger or when looking for food? Attempts to answer these questions began in 

the early 19th century when Franz Joseph Gall proposed that neurons in the cerebral 

cortex could be grouped into at least 27 distinct regions, each controlling specific 

functions related to for example perception, action, emotion, and the ability to 

evaluate causality (Gall, 1835). The current dominant view on brain function is based 

on the work by Ramón y Cajal (y Cajal, 1892) who championed the view of brain 

function called cellular connectionism. According to this view single neurons are the 

signaling units of the brain; they are arranged in functional groups and connect to 

one another in a precise fashion. Wernicke’s work (Wernicke, 1910) revealed that 

different behaviors are produced by different interconnected brain regions. 

Fortunately, new tools for the empirical study of behaviors became available, and 

significant progress was soon made in cellular analyses of the neural mediation of 

vision, touch, and action in intact primates engaged in ordinary behavior. Single-

neuron recording (cf. Fig. 1-1D as an example) and noninvasive neuro-imaging have 

allowed researchers to describe how neural activity in different sensory and motor 

pathways encodes sensory stimuli and plans actions. One of widely-used 

noninvasive imaging techniques is the electroencephalogram (EEG), cf. Fig. 1-1A 

as an example of measuring-EEG setups. EEG activity represents the electrical 

activity that is the result of the weighted activity of a large number of neurons. The 

electrical activity is recorded by electrodes on the human scalp (Berger, 1929), cf. 

Fig. 1-1B as an example of the recorded EEG signal obtained by one electrode. The 

scalp EEG provides large-scale and robust measures of neocortical dynamic 

function. Depending on the mental state of the subject, the frequency distribution of 

EEG activity can be broad (corresponding to noisy fluctuations in the EEG activity) 

or can reveal a peak in the frequency spectrum, which results from synchronized 

oscillations of many neurons (Jia et al., 2013), cf. Fig. 1-1C as an example of 

synchronized neuronal activity. In the past scientists identified various oscillatory 

patterns that are particularly obvious during rest (Barry et al., 2007), sleep (Siegel, 
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2005; Vyazovskiy and Harris, 2013), and epilepsy (Misulis and Abou-Khalil, 2014). 
These observations have led to many new scientific questions regarding the 
functional role of various brain rhythms and about the neuronal mechanisms that 
underlie these brain rhythms. 

Figure 1-1. Measuring brain activity. A typical setup to measure the 

electroencephalogram activity (EEG) is illustrated in A (reproduced from Nunez 

(2002)). This setup contains 128 electrodes fixated on a well-defined set of positions 

on the scalp. B shows an EEG signal obtained by one electrode (reproduced from 

Nunez and Srinivasan (2006)). The EEG signal reflects synchronized firing activities 

of neurons (see C as an example reproduced from Buzsáki et al. (2003)), in which the 

action potentials of a neuron (D reproduced from Nowacki et al. (2011)) are 

synchronized with the oscillatory activity in C. 
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1.1 Neurons and their interactions 
To explain how interactions between neurons may lead to synchronized oscillations, 
we will first give a short description of a typical neuron, cf. Fig. 1-2 for the 
schematic. The neuron is a cell that, like all eukaryotic cells (Hardin et al., 2012), 
contains a nucleus surrounded by cytoplasm. Unlike other cells, the neuron contains 
physical extensions called dendrites that receive incoming electrical signals, and 
combine them with others from different neurons (Jan and Jan, 2010). The neuron 
also possesses an axon that is an output channel that conveys electrical signals called 
action potentials to other neurons (y Cajal, 1892). The action potentials are initiated 
at a specialized trigger region near the origin of the axon known as an axon hillock. 

Figure 1-2. The neuron. Schematic overview of a typical neuron (Kandel (2013), 
Purves (2012), and graphics created by Mariana Ruiz Villarreal). The neuron contains 
a nucleus surrounded by cytoplasm and has physical extensions, called dendrites, for 
receiving signals from other neurons. Furthermore, it has an axon for transporting 
action potentials to other neurons. 

                                                                                                                           4 Introduction



Many (not all!) vertebrate axons are surrounded by a myelin sheath, which 

electrically insulates the segments of the axon except at regular intervals at the nodes 

of Ranvier (Hartline, 2008; Debanne et al., 2011). Axons can be very long up to 

several thousand times longer than the diameter of the cell body. For example, a 

motor neuron that innervates a muscle in the human leg has its cell body in the spinal 

cord, and its axon extends approximately a meter down to the human leg (Kandel, 

2013). The myelin sheet enhances the propagation velocity of action potentials along 

the axon from a few meters per second to about 50 m/s (Purves, 2012). Axons 

terminate in structures called synaptic boutons that contact other neurons at 

specialized zones of communication known as synapses. For neuron-to-neuron 

connections, synapses usually occur between an axon and a dendrite (Gray, 1959; 

Walberg, 1965), but they can also occur between two dendrites (Famiglietti, 1970). 

The neuron is capable of receiving action potentials from other neurons and 

initiating an action potential to be sent from the cell body of the neuron along its 

axon since its membrane is electrically and chemically excitable. Mechanisms that 

allow the membrane to be excitable are the following: At rest the extracellular 

surface of the membrane has an excess of positive charge relative to the cytoplasmic 

surface, cf. Fig. 1-3A. The charge separation gives rise to a difference of electrical 

potential or voltage across the membrane, called the membrane potential (Vm), 

defined as 

m in out ,V V V  (1-1) 

where Vin is the potential at the inside of the cell and Vout the potential outside. The 

membrane potential of a neuron at rest is called the resting membrane potential. 

Since by convention Vout is defined as zero, the resting membrane potential is equal 

to Vin. Its usual range is between -60 mV and -70 mV. All electrical signaling 

involves brief changes in the resting membrane potential that are caused by electrical 

currents across the cell membrane. A reduction or reversal of charge separation, 

leading to a less negative membrane potential, is called depolarization; an increase 

of charge separation is called hyperpolarization. 

Electrical currents across the cell membrane are created by net movement of 

the charges across the membrane. The charges can move through the cell membrane 
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through ion channels, which are a class of membrane proteins found in all cells. The 

ion channels of neurons open and close in response to specific electrical (voltage-

gated channels by changes in membrane potential), mechanical (mechanically gated 

channels by pressure or stretch), or chemical (ligand-gated channels by chemical 

transmitters) signals. The flow of ions relies on the thermodynamic concentration 

and electrical gradients of ions. Such ion movements hence are termed passive 

transport. The flow of ions through the ion channels is very fast, up to 100 million 

ions passing through a single channel each second. This causes the rapid changes in 

Figure 1-3. Membrane potential and action potential. A illustrates a schematic 

overview of the ion distribution resulting in the membrane potential of a neuron. The 

membrane potential is caused by the separation of net positive and net negative charges 

on either side of the membrane. When the neuron is excited such that its membrane 

potential voltage exceeds a threshold, the neuron will generate an action potential. B 

shows schematically the propagation of the action potential along the axon. Panels 

reproduced after Kandel (2013). 
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the membrane potential required for signaling. Moreover, the charges can also move 

through the cell membrane through proteinaceous ion pumps. Each time a pump 

moves an ion or a group of ions across the membrane, it must undergo a series of 

conformational changes. As a result, the active rate of ion flow through pumps is 

100 to 100,000 times slower than the passive flow through ion channels. Ion-pump 

proteins do not participate in rapid neuronal signaling (generation of action 

potentials) but rather are important for establishing and maintaining the 

concentration gradients of physiologically important ions between the inside and 

outside of the neuron. This kind of ion movements is termed active transport because 

ion pumps require energy to transfer ions against electrical and/or concentration 

gradients. 

To understand how neurons create and use action potentials to transmit 

signals, we must first examine how neurons generate a resting membrane potential 

and how the membrane potential changes during an action potential. Ions tend to 

diffuse from an area with a higher concentration to an area with a lower 

concentration. For instance, neurons usually have a high concentration of potassium 

ions inside and a low concentration of potassium ions outside, cf. Table 1-1 for 

Table 1-1. Distribution of the major ions across a neuronal membrane of 

squid neuron at rest (Purves, 2004; Kandel, 2013). 

Ion 

Concentration (mM) 

Cytoplasmic side Extracellular side 

Potassium (K+) 400 20 

Sodium (Na+) 50 440 

Chloride (Cl-) 52 560 

Calcium (Ca2+) 0.0001 10 

Organic anions (A-) 385 none 

Ion 
Concentration (mM) 

Cytoplasmic side Extracellular side 

Potassium (K+) 

Sodium (Na+) 

Chloride (Cl-) 

Calcium (Ca2+) 

Organic anions (A-) 

400 

50 

52 

0.0001 

385 

20 

440 

560 

10 

none 
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details of typical ion concentrations inside and outside of the squid neuron. We refer 

to this uneven distribution of potassium ions as a potassium ion gradient. Given the 

large potassium concentration gradient, potassium ions will tend to diffuse out of the 

cell. 

The membrane of the neurons is permeable to sodium Na+, chloride Cl-, and 

potassium K+ but not for organic anions A-. How are the concentration gradients for 

the three permeant ions (Na+, K+, and Cl-) maintained across the membrane of a 

neuron and how do these three gradients interact to determine the neuron’s resting 

membrane potential? To answer these questions, we start with the diffusion of K+, 

i.e. with a membrane that only allows permeation of K+ ions. Potassium ions diffuse

out of the cell due to the higher K+ concentration in the cytoplasmic side (cf. Table

1-1). When the positively charged potassium ions leave the cytoplasmic side, the

membrane potential will decrease. Diffusion of K+ out of the cytoplasmic side

continues to a point where the outflow of K+-ions due to the concentration gradient

balances the inflow due to the membrane potential. This type of equilibrium, in

which a chemical gradient is balanced with an electrical potential, is referred to as

an electrochemical equilibrium. The membrane potential at the point of equilibrium

is known as the equilibrium (reversal) potential. The same principles apply to sodium

Na+ and chloride Cl-. The balance of all ions inside and outside the neuron

determines the resting membrane potential.

The mechanism for action potential propagation along an axon without 

myelin sheath is illustrated in Fig. 1-3B. When an action potential is generated at the 

axon initial segment (Clark et al., 2009), it will depolarize its adjacent point. The 

depolarization at this adjacent point is sufficient to bring the membrane potential of 

the point above the threshold potential, triggering the inward rush of sodium ions 

through voltage-gated Na+ channels, followed in time by a high permeability for 

potassium ions. As potassium ions rush out of the cell through voltage-gated K+ 

channels, that portion of the membrane returns to its resting state. In this way, an 

action potential does not fade away as it travels because it activates nearby 

membrane sides anew, as an all-or-none event, at each successive point along the 

axon. With addition of a myelin sheath around the axon (cf. Fig. 1-2), an action 

potential spreads faster than it would along a nonmyelinated axon in a jump-like 

manner. 
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When the action potential travels along the axon and arrives at the synapse, 

the electrical signal is converted into a chemical signal carried by a neurotransmitter. 

An action potential arriving at the terminal causes secretion of the neurotransmitter 

into the synaptic cleft. The neurotransmitter molecules then bind to either ionotropic 

(ligand-gated ion channels) or metabotropic receptors embedded within the 

membrane of the postsynaptic neuron. When neurotransmitter molecules bind to 

ionotropic receptors, the corresponding ion channels will open and ions flow through 

them. In case of metabotropic receptors, transmitter binding indirectly regulates a 

channel by activating second messengers. Neurotransmitter binding is converted 

back into electrical signals, setting in motion a sequence of events that create either 

excitatory (increase of the membrane potential) or inhibitory (decrease of the 

membrane potential) responses in the postsynaptic neuron. 

When a neurotransmitter molecule binds to its receptor, the properties of the 

receptor are altered, and the postsynaptic neuron responds accordingly. The effect of 

a synaptic potential - whether it creates excitatory or inhibitory responses - is 

determined not by the type of neurotransmitter released from the presynaptic neuron 

but by the type of ion channels in the postsynaptic cell activated by the 

neurotransmitter. Although some transmitters can produce both excitatory and 

inhibitory postsynaptic potentials, by acting on distinct classes of ionotropic 

receptors at different synapses, most transmitters produce a single predominant type 

of synaptic response; that is, a neurotransmitter induces inhibition or excitation. For 

example, in the vertebrate brain neurons that release glutamate typically act on 

receptors called glutamate receptors that produce excitation; neurons that release γ-

aminobutyric acid (GABA) or glycine act on receptors that produce inhibition. 

1.2 Brain rhythms 

Oscillations in neuronal networks are assumed to serve various physiological 

functions, from coordination of motor patterns to perceptual binding of sensory 

information. In the case of the perceptual binding problem, the shape of an apple, 

for example, is encoded by neurons in one portion of the visual cortex, its color in 

another portion, and its smell in yet another portion of the cortex. The problem how 

neuronal activity in these widely distributed processing areas is combined to form 

the percept of the apple amid other neuronal activity, e.g. coding for the apple tree, 
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the sky, and birds in the sky, is called the perceptual binding problem. One of the 

leading hypotheses is that the solution to the binding problem may lie in 

synchronized neuronal oscillations, which become synchronized whenever distinct 

regions are encoding the same object, in this case the apple (Engel et al., 1992; Singer 

and Gray, 1995). 

In general, the benefits of particular neuronal oscillations are thought to 

depend on the function of the brain system that supports it. Nevertheless, there are a 

few universal principles, some of which are independent of the physical substrate. 

First, neuronal oscillations may encode the representation of phase information. 

Second, neuronal oscillations may be appropriate for binding neuronal assemblies, 

defined as distributed networks of neuronal groups that are transiently synchronized 

(Engel et al., 2001; Varela et al., 2001). Information in the brain has been 

hypothesized to be processed, transferred, and stored by flexible neuronal 

assemblies. The ability of neuronal assemblies to synchronize depends on the 

coupling strength and the distribution of natural frequencies (Mirollo and Strogatz, 

1990; Winfree, 2001). As long as the frequencies of the coupled oscillating assembly 

of neurons remain similar, synchrony can be sustained even with very weak synaptic 

links (Mirollo and Strogatz, 1990; Buzsáki et al., 2004). This inherent feature of 

oscillations allows activated neuronal groups in distant cortical regions with sparse 

interconnections to become temporally linked and then activate unique sets of 

downstream assemblies. 

1.2.1 Brain rhythms and their functional roles 

Neuronal networks in the mammalian brain can reveal oscillatory activity in a range 

of frequency bands at least covering frequencies from approximately 0.007 Hz to 

200 Hz (Penttonen and Buzsáki, 2003; Noachtar et al., 2004), cf. Fig. 1-4 as 

examples of brain rhythms: infraslow oscillations (0.007-0.1 Hz) (Vanhatalo et al., 

2004; Hiltunen et al., 2014), slow oscillations (0.1-1.5 Hz) (Compte et al., 2003), 

delta rhythm (1.5-4 Hz) (Nacher et al., 2013), theta rhythm (4-8 Hz) (Song et al., 

2014), alpha rhythm (8-13 Hz) (Klimesch, 2012), beta rhythm (14-30 Hz) (Engel 

and Fries, 2010), gamma rhythm (30-80 Hz) (Fries, 2009), and high-gamma ripple 

frequencies (80-200 Hz) (Buzsáki et al., 1992). Neighboring frequency bands within 

the same neuronal network are typically associated with different brain states and 

may compete with each other (Klimesch, 1999; Kopell et al., 2000; Engel et al., 
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2001; Csicsvari et al., 2003). On the other hand, several rhythms can temporally 
coexist in the same or different structures and interact with each other (Steriade, 
2001; Csicsvari et al., 2003). 

As a general rule, the neuronal excitability is larger in a particular phase of 
the oscillation period, e.g. neurons hardly respond to arriving inputs when the inputs 
arrive during the absolute refractory period of the neurons (Kandel, 2013). This then 
defines a temporal window for integration of inputs of a neuron, during which 

Figure 1-4. Examples of brain rhythms.  Raw data of local field potential (LFP) in A 
top was recorded from the CA1 dorsal of rodents’ hippocampus during exploratory 
activity of the animal. In the raw data, there are theta oscillations (A middle) that are 
superimposed by gamma oscillations (A bottom). Different brain rhythms dominate 
during their slow wave sleep. B top illustrates LFP recorded from hippocampus during 
slow wave sleep. LFP composes of gamma oscillations and sharp waves, i.e. relatively-
large negative-voltage deflections in the raw data, which are associated with brief 
trains of high-frequency oscillations termed ripples (O'Keefe and Nadel, 1978) shown 
in B bottom. Panels reproduced from Maier et al. (2013). 
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receiving signals are effectively summated. Because the intervals between these 

activation phases and the temporal window for integration of inputs vary in 

proportion to the length of the oscillation period, lower frequency oscillations allow 

for an integration of neuronal effects with longer synaptic delays, larger variability 

in the delays, e.g. between hemispheres or between frontal and posterior regions (von 

Stein and Sarnthein, 2000; Varela et al., 2001), due to larger temporal windows for 

integration of inputs (Contreras and Llinas, 2001). In contrast, high frequency 

oscillation bands allow for a more precise and spatially limited representation of 

information by incorporating synaptic events from closely located regions with short 

synaptic delays and limited variability (Contreras and Llinas, 2001; Patel et al., 

2013). This demonstrates that rhythms with different frequencies may have different 

functional roles. 

Infraslow oscillations (0.007-0.1 Hz) with a period greater than 15 sec. have 

been demonstrated in conscious and lightly anesthetized cats (0.01-0.025 Hz; Norton 

and Jewett (1965)), unanesthetized rabbits (0.007-0.02 Hz; Aladjalova (1957)), and 

in drowsy and sleeping humans (≈0.05 Hz; Moiseeva and Aleksanian (1986)). 

Oscillations in the range of 0.07-0.2 Hz have been proposed to reflect changes in 

cortical excitability (Vanhatalo et al., 2004; Hiltunen et al., 2014) and are thought to 

be related to the emergence of conscious awareness (He and Raichle, 2009). Intra- 

and extracellularly recorded increases of activation occur with a frequency of 0.3-1 

Hz during natural sleep and under anesthesia in the cat cortex (Steriade et al., 1993) 

and under anesthesia in the cat thalamus (Timofeev and Steriade, 1996). Oscillations 

in the delta band (1.5-4 Hz) have been extensively described for the neocortex, 

thalamus, and basal ganglia in the cat under urethane anesthesia (1-4 Hz; Amzica et 

al. (1992); Nunez et al. (1992)) and rabbit (Rappelsberger et al., 1982) as well as 

during decision making in monkey (Nacher et al., 2013) and in human (Saleh et al., 

2010). The slow and delta oscillations appearing during sleep are hypothesized to 

play a role for memory consolidation, during which memory traces are gradually 

translated from short-term hippocampal to longer-term neocortical stores (Siapas 

and Wilson, 1998; Gais et al., 2000; Stickgold et al., 2000; Maquet, 2001; Huber et 

al., 2004), while the delta oscillations during awake are thought to be related to the 

coordination between neural activity in large-scale, distant cortical networks 

(Nacher et al., 2013). 
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Theta (4-8 Hz) oscillations have been demonstrated in hippocampal areas in 

cats, rabbits, and rats (Bland, 1986; Vertes and Kocsis, 1997; Buzsáki, 2002) as well 

as in the frontal area of the human brain (Griesmayr et al., 2010) with memory load. 

Whishaw and Vanderwolf (1973) showed that theta oscillations frequently begin 

several hundred milliseconds before the onset of movement, and that they are 

associated with the intention to move rather than with feedback produced by 

movement. During large movements (run and jump) the amplitude of theta 

oscillations is up to 6 times greater than during small movements (head turn, lever 

press) (Whishaw and Vanderwolf, 1973). It has been speculated that theta 

oscillations might support information transfer from neocortex to hippocampus 

(Buzsáki, 1996) by enhancing long-term potentiation, which is considered to be 

critical for hippocampal memory formation (Otto et al., 1991; Hasselmo, 2005). 

However, the idea is controversial (Vertes, 2004). 

Oscillations in the alpha/beta band (8-30 Hz) are present in cat, rat, monkey, 

and man (Kandel and Buzsáki, 1997; Niedermeyer, 1997; Rougeul-Buser and Buser, 

1997; Palva and Palva, 2007; Haegens et al., 2011; Klimesch, 2012). Sleep spindles 

at 7-18 Hz occur in the neocortex and thalamus of the cat (Steriade and Deschenes, 

1984), while in the sleeping rat spindles occur in the 12-18 Hz band (Buzsáki, 1991; 

Kandel and Buzsáki, 1997; Siapas and Wilson, 1998). In humans, the frequency 

band of sleep spindles is quite similar to that in cat and rat (12-18 Hz; Steriade et al. 

(1990)). Studies show that sleep-related spindle oscillations are essential for memory 

formation (Gais et al., 2000) and demonstrate short- and middle-term synaptic 

plasticity (Steriade and Timofeev, 2003). In the active rat, beta oscillations occur 

spontaneously and in response to noxious olfactory stimulation in the olfactory bulb, 

piriform cortex, entorhinal cortex, and dentate gyrus in the 15-35 Hz band with a 

mean frequency of 19 Hz (Chapman et al., 1998; Vanderwolf and Zibrowski, 2001). 

The coherent burst with a peak frequency at 19 Hz propagates from the olfactory 

bulb to the dentate gyrus for the transmission of olfactory signals to the hippocampal 

formation. Engel and Fries (2010) hypothesized that beta-band activity and/or 

coupling in the beta-band are expressed more strongly when the maintenance of the 

status quo is intended or predicted, than when a change is expected (cf. Fig. 3 in 

Engel and Fries (2010)). 
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Gamma oscillations (30-80 Hz) are common in all mammals (Gray, 1994; 

Engel et al., 2001). In the active rat and mouse, gamma frequency is usually in the 

40-70 Hz range in the hippocampus (Bragin et al., 1995; Buzsáki et al., 2003; 

Csicsvari et al., 2003), in olfactory structures (Woolley et al., 1966; Eeckman and 

Freeman, 1990; Chapman et al., 1998), and in neocortex (Maloney et al., 1997). 

Larger animals such as cats and monkeys display slower gamma oscillations with a 

modal frequency near 40 Hz during sensory binding in cortical areas (Bouyer et al., 

1981; Singer and Gray, 1995) and during sniffing in the olfactory bulb (Bressler and 

Freeman, 1980). Gamma oscillations have been well documented in the human 

neocortex as well (Joliot et al., 1994). It has been suggested that gamma oscillations 

are involved in feature binding and associational memory (Miltner et al., 1999; 

Rodriguez et al., 1999), but consensus about these hypothetical functions has not 

been reached yet. The functional significance of evoked (phase-locked with the 

stimulus (Swettenham et al., 2009)) and induced (not phase-locked with stimulus 

(Swettenham et al., 2009)) gamma oscillations still remains unclear. However, it has 

been suggested that the evoked gamma band response may reflect synchronously 

active neural assemblies for feature binding or may signal the precise temporal 

relationship of concurrently incoming stimuli (Tallon-Baudry and Bertrand, 1999). 

Gamma oscillations are thus pivotal. However, there are several hypotheses about 

the function role of gamma oscillations. In this work, we thus investigated the 

properties of gamma oscillations from a theoretical point of view. 

1.3 Gamma oscillations in local networks 

Network oscillations appearing in LFP (Fig. 1-4) reflect synchronized activity of 

large sets of neurons (Cooper et al., 1965; Whittingstall and Logothetis, 2009). An 

important step in understanding the role of neurons in network oscillations is to 

examine their spiking patterns during these oscillations. Due to a plethora of 

experimental studies of gamma rhythmogenesis in hippocampus, a major component 

of the brain, we concentrate on the firing patterns of neurons in hippocampus during 

gamma oscillations. We focus on two neuron classes that actively participate in 

gamma oscillations (Cutsuridis et al., 2010): pyramidal cells and interneurons. 
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1.3.1 Firing activity of pyramidal cells 

Analysis of firing properties of pyramidal cells participating in gamma oscillations 

in vitro (Fisahn et al., 1998; Hajos et al., 2004; Gloveli et al., 2005a; Gloveli et al., 

2005b) in the CA3 area of hippocampus reveals low-frequency, <5Hz, firing of the 

cells. These results agree with in vivo observations demonstrating similar low-

frequency firing of pyramidal cells (Csicsvari et al., 2003). Moreover, firing of 

pyramidal cells is phase-locked to the local field oscillations. In some gamma 

oscillations, pyramidal cells fire action potentials around the negative peak of the 

local field potential recorded in the pyramidal cell layer (Hajos et al., 2004). Both in 

vivo and in vitro observations suggest that during gamma oscillations, pyramidal 

cells of the CA3 area drive local interneurons in a feedback manner (Fisahn et al., 

1998; Csicsvari et al., 2003; Hajos et al., 2004; Palhalmi et al., 2004), i.e. the 

pyramidal cells send signals to the interneurons that transfer signals back to 

themselves. If pyramidal cell–interneuron interactions generate gamma oscillations, 

the firing of pyramidal cells should precede interneuron discharges so that pyramidal 

cells can recruit interneuron activity in the next gamma cycle (Oren et al., 2006). 

Consistent with this suggestion, interneuron firing was indeed preceded by firing of 

pyramidal cells (Hajos et al., 2004). 

1.3.2 Firing activity of interneurons. 

During gamma oscillations in vivo and in vitro, different classes of interneurons fire 

action potentials at different times and inhibit distinct subcellular domains of 

pyramidal cells (Gloveli et al., 2005b). 

During pharmacologically induced gamma oscillations in vitro, basket cells 

(a class of interneurons) generate a predominantly gamma frequency output and are 

tightly coupled to the oscillations (Hajos et al., 2004; Gloveli et al., 2005b). 

Bistratified cells (another class of interneurons) discharge at a high frequency, 

phase-locked to the local field potential of the gamma oscillations (Hajos et al., 2004; 

Gloveli et al., 2005b; Tukker et al., 2007). Therefore, they are thought to be involved 

in the generation of the gamma oscillatory activity. However, the most prominent 

interneuronal output seen during pharmacologically induced gamma oscillations in 

vitro was associated with trilaminar interneurons (Hajos et al., 2004; Gloveli et al., 

2005b). Axon collaterals of trilaminar interneurons were seen projecting into area 
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CA1, the subiculum, and possibly other brain areas as well (Somogyi and 
Klausberger, 2005). Their axonal arborization indicates that trilaminar interneurons 
innervate somatic and dendritic compartments of pyramidal cells locally as well as 
distant regions. Thus, via these cells, gamma rhythms generated locally in area CA3 
could be efficiently transmitted to distal sites “downstream” in the hippocampal 
processing pathway. 

1.3.3 Mechanisms of gamma oscillations 

Gamma oscillations have been observed in several cortical areas, e.g. neocortex 
(Gray et al., 1989; Jones and Barth, 1997; Buhl et al., 1998; Cunningham et al., 2004) 
and hippocampus (Bragin et al., 1995; Whittington et al., 1995; LeBeau et al., 2002; 
Csicsvari et al., 2003), in which common denominators are the presence of inhibitory 
interneurons and their actions through GABAA (inhibition through GABA type A 
receptor) synapses. From these considerations, it is reasonable to assume that a key 
ingredient of gamma oscillations is GABAA receptor–mediated inhibition. Based on 
this speculation, several theories have been proposed for the generation of gamma 
oscillations (Jefferys et al. (1996) for a review). The two main mechanisms that 
underlie gamma oscillations are interneuron network gamma (ING), cf. Fig. 1-5A, 

Figure 1-5. Schematics of mechanisms to generate ING and PING. A illustrates a 
schematic of mechanism of ING generation, in which interneurons ( I cells) interact to 
create gamma oscillations and impose the oscillations onto pyramidal cells ( E cells). 
B shows a schematic of mechanism of PING generation,  in which interaction between 
E cells and I cells as well as interaction among I cells  are important to generate gamma 
oscillations. Panels reproduced after Bartos et al. (2007). 
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in which rhythmogenesis is based solely on interneurons, and pyramidal-interneuron 

network gamma (PING), cf. Fig. 1-5B, in which rhythmogenesis is based on 

interactions between pyramidal cells and interneurons. Apart from these two main 

mechanisms, gamma oscillations may possibly arise from others as well (Wang, 

1993; Gray and McCormick, 1996; Wang, 1999; Minlebaev et al., 2011). In this 

section, we will explain ING and PING in more detail. 

ING 

In vivo and in vitro experiments provided support for the role of mutual inhibition 

among interneurons, essentially basket cells, for the generation of gamma rhythms 

(Whittington et al., 1995; Hajos et al., 2000; Fisahn et al., 2004; Bartos et al., 2007). 

ING is caused when a subset of interneurons begins to discharge in synchrony and 

generates synchronous inhibitions in the partner neurons. In turn, the inhibited 

neurons will spike again with increased probability when GABAA receptor–

mediated hyperpolarization has decayed, and the cycle repeats. Based on 

experimental and modeling studies, the three most important requirements for ING 

to emerge are (Wang and Rinzel, 1992; Whittington et al., 1995; Traub et al., 1996a; 

Wang and Buzsáki, 1996): mutually connected inhibitory interneurons, the 

magnitude and kinetics of the GABAA receptors, and a sufficient drive to induce 

spiking in the interneurons. We will elaborate on each of these requirements in more 

details in the following. 

Wang and Buzsáki (1996) demonstrated that minimal connectedness among 

GABAergic interneurons is required for the emergence of ING. To be precise, large-

scale network synchronization requires a critical (minimal) average number of 

synaptic contacts per cell, which is not sensitive to the network size. This 

requirement is satisfied by a high degree of mutual interconnectivity among 

GABAergic interneurons in different cortical areas (Sik et al., 1995; Tamas et al., 

1998; Gulyas et al., 1999; Ascoli and Atkeson, 2005). 

Second, the magnitude of the synaptic inhibition between interneurons 

determines the frequency of ING. It is influenced by either the absolute magnitude 

changes in the postsynaptic response or the kinetics of the response itself. A broad 

range of chemical agents can modify the GABA receptor-mediated inhibition, and 

many of these have been shown to alter the frequency of gamma oscillations in 
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experimental models (Whittington et al., 2000a). These agents include anesthetics 

(Halothane, MacIver et al. (1991)), hormones (Insulin, Wan et al. (1997)), and other 

neuromodulators (Siarey et al., 1995). Some agents, e.g. diazepam (Traub et al., 

1996b), cause a marked decrease in ING frequency to an extent that high 

concentrations reduce the frequency to a point where ING is no longer supported. 

On the other hand, some agents, e.g. morphine (Whittington et al., 1996; Whittington 

et al., 1998), increase the frequency of ING. These observations demonstrate the 

nature of ING and highlight the role played by inhibition in generating and 

controlling the oscillation frequency. From this a prediction can be made that any 

pharmacological agent or neuromodulator substance that affects the kinetics of the 

GABA response, the amount of GABA released at inhibitory terminals, or the 

excitability of interneurons themselves will affect the rhythmicity and frequency of 

gamma oscillations generated by inhibitory neuronal networks. 

Finally, the tonic driving force causing the excitation of the interneuron 

networks has to be of sufficient magnitude: it must be large enough to activate a 

majority of the interneurons to fire in synchrony in the gamma frequency range 

despite the inhibitory actions between the interneurons. When the driving force 

decreases from optimal, a decrease in the frequency of the population oscillation can 

be seen until the population oscillation is no longer manifested (Traub et al., 1996b). 

As the driving force increases, the oscillation frequency can also increase up to 

approximately 80 Hz but the dependence of frequency on the drive can be non-linear 

(Whittington et al., 2011). 

PING 

Gamma oscillations can also be induced in vitro by activation of muscarinic 

acetylcholine receptors (mAChRs, which mimic cholinergic input to pyramidal cells 

(Fisahn et al., 1998; Fellous and Sejnowski, 2000; Hajos et al., 2004; Palhalmi et al., 

2004)) using carbachol or application of a potassium-rich solution (LeBeau et al., 

2002). Oscillations in the CA3 region induced by the cholinergic agonist carbachol 

have different pharmacological properties. They are blocked by GABAA receptor 

antagonists bicuculline and by AMPA receptor antagonists (Fisahn et al., 1998; 

Mann et al., 2005b). Potassium-induced oscillations in both the CA1 and CA3 

regions have intermediate properties, as they are completely blocked by GABAA 

receptor antagonists, but only partly inhibited by AMPA receptor blockers (LeBeau 
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et al., 2002). The induced gamma oscillations rely on both fast inhibition mediated 

by GABAA receptors and excitatory synaptic connections from pyramidal cells to 

interneurons. Because the induced gamma oscillations involve both pyramidal cells 

and interneurons, the oscillations in this scheme are referred to as PING. 

A mechanism causing PING requires that the pyramidal cells recover from 

inhibition before the interneurons do. The resultant firing of the recovering 

pyramidal cells then causes the interneurons to fire. The involvement of pyramidal 

cells in the rhythm makes the network less vulnerable to a loss of coherence when 

there is heterogeneity in driving forces (Traub et al., 1996b; Wang and Buzsáki, 

1996; White et al., 1998b). In simulations of networks involving both pyramidal cells 

and interneurons, assuming that the drive to the interneurons is narrowly dispersed, 

e.g. under 10%, the drive to the excitatory neurons can vary as much as twofold and

still can generate coherence with approximate synchrony (Traub et al., 1997).

An appealing property of PING over ING is that the temporal difference 

between pyramidal-cell spikes and interneuron spikes is a prominent characteristic 

both in vivo and in vitro (Bragin et al., 1995; Csicsvari et al., 2003; Hasenstaub et 

al., 2005; Mann et al., 2005b; Hájos and Paulsen, 2009; Tiesinga and Sejnowski, 

2009). The delay between the pyramidal cells and interneurons (~5 ms or up to 90o) 

is caused by axonal conduction and synaptic delays from pyramidal cells to 

interneurons, cf. Fig. 1-6. Additionally, having reciprocal dynamic interactions 

Figure 1-6. Firing activity of pyramidal cells (E cells) and interneurons (I cells) 

during gamma oscillations. The firing of CA3 pyramidal cells (red, E cells) at the 

negative peak of local field potentials (LFP) was followed by the discharge of 

interneurons (blue, I cells) by around 90o (reproduced after Hájos and Paulsen (2009)). 
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between interneurons and pyramidal cells has at least three important consequences 

for network dynamics. First, compared to the ING frequency, the PING frequency 

is more robust in the face of changes in network excitation and GABAA receptor 

kinetics (Whittington et al., 1997). Second, allowing principal projection neurons to 

modulate interneuron spike timing provides a robust mechanism for establishing 

long-range synchrony between spatially separate gamma-generating local circuits 

(Traub et al., 1996a; Traub et al., 1996b). Finally, the nature of synaptic plasticity at 

excitatory synapses onto interneurons provides a powerful means of modulating and 

stabilizing distributed network activity (Lamsa et al., 2007; McBain and Kauer, 

2009). 

In vitro experimental evidence (Whittington et al., 1995; LeBeau et al., 2002; 

Fisahn et al., 2004; Palhalmi et al., 2004) showed that ING and PING could co-exist 

in the same neuronal network (Csicsvari et al., 2003; Hájos and Paulsen, 2009). In 

Chapter 2, we investigate how ING and PING interact and how they give rise to 

oscillations of the network using mathematical modeling and scientific computing. 

We use realistic parameter values for the neurons and their connections belonging to 

the CA1 neuronal network of hippocampus. Furthermore, we provide a 

mathematical analysis of the stable modes of oscillatory activity based on a 

simplified version of the neural network in Chapter 3. 

1.4 Long-range synchronization of gamma oscillations 

Although gamma oscillations typically arise locally, patches of distant gamma 

networks can interact with each other and result in zero-lag synchrony (Roelfsema 

et al., 1997; Rodriguez et al., 1999; Varela et al., 2001; Gregoriou et al., 2009b; 

Gregoriou et al., 2009a). The synchrony between distant gamma networks is referred 

to as long-range synchronization. Long-range synchronization concerns gamma 

networks that are far apart in the brain, i.e. distance > 1 cm or with transmission 

delays > 8–10 ms (Girard et al., 2001), such as synchronization across hemispheres 

(Konig et al., 1995a; Roelfsema et al., 1997; Rodriguez et al., 1999; von Stein et al., 

2000; Soteropoulos and Baker, 2006; Witham et al., 2007), cf. Fig. 1-7. Roelfsema 

et al. (1997) recorded local field potential (LFP) from multiple electrodes implanted 

in cat cortex. Cats were presented with a grating that signals onset of a trial. When 

the orientation of the grating changed, cats had to press a key to obtain a food reward. 
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Analysis of LFP demonstrated that a coherent pattern in the gamma band appeared 
as soon as the cats focused their attention on the stimulus. This pattern further 
increased until the task was completed. This is a direct evidence showing that large-
scale synchrony emerges as the underlying basis for an attentive behavior. Long-
range synchronization was also reported in human subjects. Lachaux et al. (1999; 
2000) studied patients implanted with multiple electrodes in preparation for surgical 
resection for epilepsy. They observed long-range synchronization between temporal 

Figure 1-7. Long-range synchronization.  A top shows an overview of measurements 
from left (LH) and right (RH) primary visual cortex of the anesthetized cat showing 
almost zero time lag at gamma frequency in A bottom (Engel et al., 1991). B top 
illustrates an example of local field potential traces from the left (L) and right (R) CA1 
of mouse hippocampus during running, while B bottom shows coherence spectra, an 
indication of resemblance of the signals at each frequency, between the traces d uring 
running (orange) and REM sleep (blue) (Buzsáki et al., 2003). Panels reproduced after 
Buzsáki and Wang (2012). 
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and frontal lobes appearing only during execution of a discrimination task. Similarly, 

Aoki et al. (1999) provided evidences of long-range synchronization in the gamma 

band obtained from grids implanted over the motor cortex of patients who performed 

various visuomotor tasks. All patients showed an increase in gamma oscillations 

during performing the tasks. Long-range synchronization in the gamma band also 

appeared in healthy humans. Rodriguez et al. (1999) studied the perception of high-

contrast human faces in healthy humans. A consistent pattern of gamma-band 

synchrony between occipital, parietal, and frontal areas appeared during face 

recognition. The synchrony was absent when the faces were presented upside down 

and not easily recognized. 

Long-range synchronization is a surprising phenomenon since signal 

transmission times between involving brain regions can be up to several tens of 

milliseconds. A question is then how, despite such relatively long time delays, the 

reciprocal interactions between two brain regions can lead the associated neural 

populations to fire in synchrony at zero phase lag. Long-range synchronization 

cannot be based on local cytoarchitecture but must instead reside in distant 

connections, either cortico-cortical fibers or thalamocortical reciprocal pathways 

(Bressler, 1995; Llinas et al., 1998; Sherman and Guillery, 2002). One promising 

explanation that agrees with this conjecture is that long-range synchronization can 

be established via dynamical relaying (Vicente et al., 2008), cf. Fig. 1-8. Vicente et 

al. (2008) showed that two populations of neurons can become synchronized if they 

are coupled reciprocally to a third population. In this scheme, synchrony is 

maintained even when the conduction delays of the connections are up to several 

tens of milliseconds. The most important requirement for the dynamic relaying to 

Figure 1-8. A schematic overview of dynamical-relaying motif. Distant populations 

of neurons 1 and 3 connect reciprocally with the relay population 2. Picture reproduced 

after Vicente et al. (2008). 
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work is that the relay population of neurons occupies a temporally equidistant 

location from the pools of neurons to be synchronized. Nevertheless, latency from 

the thalamus to a cortical cell is remarkably constant across the cortex (typically ≈2 

ms difference) (Salami et al., 2003). Thus, in this scheme, thalamic nuclei occupy a 

central position for the mediation of zero phase solutions. 

In Chapter 4, we investigate long-range synchronization using a simplified 

network for reasons of mathematical tractability. Our aim is to study the effect of 

various parameter values of a neuronal network on long-range synchronization. The 

most relevant parameters are the strengths of the synaptic contacts and the 

conduction delays. We find gamma oscillations generated in distant networks based 

on the dynamical-relaying motif will be in synchrony at zero phase lag as long as the 

conduction delays between the distant networks and the relaying network are the 

same. In general, temporal mismatch of the relative phase of gamma oscillations in 

distant networks is proportional to the difference of the conduction delays. We 

extend the studies in Chapter 4 to Chapter 5 by incorporating different types of 

oscillators and synaptic plasticity to study their effect on long-range synchronization. 
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2.1 Introduction 

Neuronal oscillations in the gamma band (30–80 Hz) have been found in many 

cortical areas and have been associated to various sensory, motor, and cognitive tasks 

(see e.g. Schoffelen et al. (2005); Uhlhaas and Singer (2006); Fries (2009)). They 

have been linked to input selectivity (Börgers and Kopell, 2008), reference signals 

for temporal encoding (Buzsáki and Chrobak, 1995; Hopfield, 1995), feature binding 

of sensory information into a coherent percept (Gray and Singer, 1989), as well as 

storage and retrieval of information (Lisman and Idiart, 1995; Lisman, 1999). 

Numerous reviews discuss the biological processes (Gray, 1994; Whittington et al., 

2000b; Laurent, 2002; Traub et al., 2002) and the synaptic mechanisms (Bartos et 

al., 2007; Buzsáki and Wang, 2012) underlying gamma oscillations as well as 

possible diseases that may be due to their malfunction (Llinas et al., 1999; Spencer 

et al., 2003; Lewis et al., 2005; Uhlhaas and Singer, 2006). We note that although 

gamma oscillations can be found in many cortical areas (Gray and Singer, 1989; 

Buzsáki and Draguhn, 2004), they have been particularly well studied in the 

hippocampus (Buzsáki et al., 1983; Bragin et al., 1995; Csicsvari et al., 2003) 

because of their prominent appearance (Forster et al., 2006) and their explicit role in 

exploratory behavior (Bragin et al., 1995). 

The two major mechanisms that have been suggested to underlie gamma 

oscillations (Buzsáki and Wang, 2012) are interneuron network gamma (“ING”), 

which is thought to be related to tonic excitation of reciprocally coupled inhibitory 

interneurons (Lytton and Sejnowski, 1991; Friesen, 1994; Cobb et al., 1995; 

Whittington et al., 1995; Traub et al., 1996a; Whittington et al., 2000b), and 

pyramidal-interneuron network gamma (“PING”), which is mediated by coupled 

populations of excitatory pyramidal cells and inhibitory interneurons (Whittington 

et al., 2000b; Tiesinga et al., 2001; Börgers and Kopell, 2003). Gamma oscillations 

generated by different mechanisms may serve different biological functions. In this 

chapter we therefore investigate which mechanism will dominate the dynamics of a 

network that could in principle generate oscillations according to different 

mechanisms and how the dominant mechanism may switch. 

The coupling between interneurons, which yields synchronized oscillations 

of interneuronal networks in the gamma frequency range (Tamas et al., 2000; 
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Whittington et al., 2000b; McBain and Fisahn, 2001; Bartos et al., 2002; Kopell and 

Ermentrout, 2004; Bartos et al., 2007), includes both synaptic coupling and gap 

junctions. Both theoretical and experimental studies have shown that inhibitory 

synapses alone may be sufficient for generating gamma oscillations (e.g. van 

Vreeswijk et al. (1994); Bartos et al. (2007)). However, gap junctions are sometimes 

required (Deans et al., 2001; Hormuzdi et al., 2001; Kopell and Ermentrout, 2004) 

and may also induce oscillations in the absence of chemical synapses (Gibson et al., 

1999; Mann-Metzer and Yarom, 1999; Kopell and Ermentrout, 2004). Some studies 

reported that gap junctions impede synchrony of neuronal activity (Bou-Flores and 

Berger, 2001; Pfeuty et al., 2003). Since both gap junctions and chemical synapses 

are abundant in many brain areas (Fukuda and Kosaka, 2000; Galarreta and Hestrin, 

2002), they should be both taken into account in order to understand ING. Gap 

junctions and inhibitory synapses between interneurons may be supportive or 

hindering, as they may contribute to both in-phase and antiphase oscillations (Long 

et al., 2002; Bem and Rinzel, 2004; Bem et al., 2005; Pfeuty et al., 2005). When 

GABA-mediated inhibition is strong, addition of a small electrical conductance can 

increase the degree of synchronization more than a larger increase in inhibitory 

conductance (White et al., 1998b; Kopell and Ermentrout, 2004). 

The above studies indicate that the impact of electrical and chemical synapses 

on oscillatory activity is complicated and can depend on the details of the network 

setup and the type of oscillation. This motivated us to investigate this impact on the 

ING and PING oscillations in networks that are modeled according to 

neurobiological knowledge on hippocampal networks. 

Most theoretical studies on ING rhythms have investigated oscillations in 

networks of interneurons with a tonic excitatory drive to the interneurons without 

reciprocal connections with pyramidal cells and without the input from these 

pyramidal cells to the interneurons. In contrast, theoretical studies on PING 

oscillations have mainly investigated networks with external input to pyramidal 

cells, which are reciprocally coupled to interneurons that do not fire on their own; 

thus the drive to the interneurons in these PING rhythms is weak. ING oscillations 

with only external input to interneurons on the one hand, and PING oscillations with 

a strong drive to pyramidal cells and weak input to interneurons on the other hand, 

are presumably two extremes of more common situations with variable amounts of 
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comparable input to both interneurons and pyramidal cells. We name these two 

extremes “pure” ING and “pure” PING and use them as reference to study how ING 

and PING interact in networks that could in principle generate both kinds of rhythms. 

In vitro studies have addressed this topic by adding drugs that modify the 

excitability of pyramidal cells or interneurons or that modify the synaptic 

interactions between pyramidal cells and interneurons (see, e.g., Fisahn et al. (1998); 

Fisahn et al. (2004); Hajos et al. (2004); Palhalmi et al. (2004); Gloveli et al. 

(2005b)). Theoretical analyses of interactions between ING and PING rhythms are 

scarce. Börgers and Kopell (2003, 2005) and Börgers and Walker (2013) studied 

transitions from PING to irregular oscillations (e.g., the "walkthrough transition"), 

to asynchronous activity with or without suppressed E cells (with suppressed E cells: 

"suppression transition"), and to ING oscillations with suppressed E cells as another 

variant of the suppression transition. Most closely related to our work, Börgers and 

Walker (2013) studied different forms of the suppression transition, from PING to 

asynchronous or oscillatory activity, both with suppressed E cells. 

We study the transition from PING to ING with active E cells for networks 

with type I interneurons and type II interneurons: For type I interneurons an 

excitatory input always advances their spiking, while the same input arriving soon 

after spiking of type II interneurons delays their next spiking (see Hansel et al. (1995) 

for this definition of type I and type II neurons). Considering both types of 

interneurons allows us on the one hand to make contact with the many network 

oscillation studies that have used type I interneurons. On the other hand, it accounts 

for the literature that suggests that interneurons relevant for gamma oscillations often 

belong to the class of type II neurons (see Erisir et al. (1999); Tateno et al. (2004); 

Tateno and Robinson (2007); Tikidji-Hamburyan et al. (2015)). Furthermore, it 

allows to draw conclusions on the robustness of the observed effects. 

The transition between PING and ING with active pyramidal cells as 

considered in our study may be a biologically highly relevant one: It may allow 

switching between rhythms of neuronal activity related to different cognitive 

functions, keeping the pyramidal cells active, which are able to provide information 

transfer to more distant brain areas through their long-range connectivity. Indeed, 
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excitatory neurons are experimentally found to be active during ING oscillations 

(e.g., Cardin et al. (2009); Sohal et al. (2009); Whittington et al. (2011)). 

As a first step toward understanding the behavior of a full network where 

ING and PING rhythms interact, we analyze the properties of pure ING in a reduced 

network that cannot generate PING and pure PING oscillations in a reduced network 

that cannot generate ING. To make the model biologically plausible and to facilitate 

experimental validation of our results, we have modeled a network of the 

hippocampal region CA1 using data and biologically plausible parameter values 

from the literature. We use CA1 as a paradigmatic region where different kinds of 

gamma oscillations can be generated, at least in vitro (Bartos et al., 2007). By 

eliminating the projections from the pyramidal cells to the interneurons, we create 

networks only generating ING oscillations (pure ING). By removing the external 

input to the interneurons, we create networks only allowing for PING (pure PING). 

With the complete model, including projections from pyramidal cells and with a 

constant drive to the interneurons, we investigate the interactions between ING and 

PING oscillations. To explain the results of the extensive computer simulations, we 

present a theoretical model that allows for a full theoretical analysis of the stable 

states of network oscillations when ING and PING interact. This model qualitatively 

reproduces and explains the results of the computer simulations. 

2.2 Methods 

2.2.1 Single-compartment Hodgkin-Huxley type model 

In our computer simulations we use a single-compartment Hodgkin-Huxley type 

model for CA1 pyramidal (E) cells as suggested in Nowacki et al. (2011), with 

transient 
TNaI  and persistent 

PNaI Na currents, T-type  
TCaI  and high-voltage-

activated  
HCaI 2Ca  currents, a delayed rectifier  

DRKI , an M-type  
MKI  K

current, and a leak current  LI . The free dynamics of the membrane potential obeys 

the differential equation , T P T H DR Mm E Na Na Ca Ca K KC dV dt I I I I I I      
LI , 

with the membrane capacitance 
,m EC . The seven ionic currents follow

 M NI g m h V E      , where   stands for , , , , ,T P T H DR MNa Na Ca Ca K K or L  
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with different nonnegative integer exponents M  and N ; g  stands for the maximal 

conductance, m  for the activation gating variable, h  for the inactivation gating 

variable, and E  for the reversal potential. The parameters for the CA1 pyramidal 

cell model in Nowacki et al. (2011) yield a passive time constant 
0,E =

,m E LC g ≈50 

ms. Note that 
HCag  in Table 2 of Nowacki et al. (2011) should be 2.6 mS/cm2 instead 

of the value 0.74 mS/cm2, which was used in that paper. 

We model the fast-spiking interneurons (I cells) in CA1 hippocampus either 

as type I neurons, where excitatory input always gives a phase advance of the 

neuronal oscillator (see Krogh-Madsen et al. (2012)), or as type II neurons, where 

excitatory input in the early phase of the firing cycle causes a phase delay and a 

phase advance in later phases of the firing cycle (Ermentrout, 1996; Izhikevich, 

2007). For the networks with type I interneurons, we use Wang-Buzsáki (WB) 

neurons (Wang and Buzsáki, 1996). These WB neurons have a transient Na current 

 
TNaI , a delayed rectifier K  current  

DRKI , and leak  LI . The differential

equation describing the membrane potential is given by 

, T DRm I Na K LC dV dt I I I    . Figure 2-1 shows the voltage trace as a function of 

time, the firing rate as a function of the input current, and the phase response curve 

(PRC). We display the standard infinitesimal PRC, i.e. the phase lead or phase lag 

in response to an infinitesimal positive instantaneous input, normalized by the input 

strength, as a function of the phase in the cycle. We adopt the standard parameter 

values suggested in Wang and Buzsáki (1996). With these parameter values, the time 

constant 0,I =
, ,m I L IC g  equals 10 ms. 

For the interneuron network with type II neurons, we use the Hodgkin-

Huxley-type model proposed by Erisir et al. (1999), but modified as described by 

Börgers and Walker (2013). We refer to this neuron model as the Börgers-Walker 

neuron. Figure 2-1 shows the voltage trace as a function of time, the firing rate as a 

function of the input current, and the PRC for this neuron. In early stages of the firing 

cycle, the PRC has negative values, corresponding to a phase delay, which is typical 

for type II neurons. With the standard parameter values given in Börgers and Walker 

(2013), the passive time constant of this interneuron model is 2 ms. To facilitate a 
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comparison of the results for both types of interneurons, the mean external input 

current was adjusted in our simulations to produce the same intrinsic firing frequency 

for the network of inhibitory type I and type II interneurons (i.e., an input near 

1μA/cm2 for the WB neuron and near 7μA/cm2 for the Börgers-Walker neuron to 

produce oscillations near 65 Hz; see Fig. 2-1B). 

E and I cells are connected by AMPA synapses ( E E  and E I ), 

GABAA synapses ( I E  and I I ), and gap junctions ( I I ). The synaptic 

input by the AMPA and GABAA–receptor-mediated synapses for cell i  are modeled 

by   i k l i revgs t t V E    , where g , is , kt , l , and revE  are the synaptic 

conductance, the time course of the conductance, the time of the thk  presynaptic 

action potential, latency, and the reversal potential. For AMPA synapses, 0revE 

mV (Cutsuridis et al., 2010) with E Ig g   or E Eg g  . For GABAA synapses 

75revE    mV (Cutsuridis et al., 2010) with I Ig g   or I Eg g  . The time course 

of the conductance is  is modeled by the normalized difference between two 

exponential functions (Gerstner and Kistler, 2002) with rise time r  and decay time 

d . For E E  connections, l =2.5 ms (see Debanne et al. (1995)), r =0.5 ms,

and d =2.5 ms with a peak conductance of 2.3 nS (see Memmesheimer (2010) and 

references therein for this and subsequent peak conductances). For E I  

connections the parameter values are l =1.3 ms, r =0.45 ms, and d =1.0 ms 

(Geiger et al., 1997; Brunel and Wang, 2003) with a peak conductance of 3.2 nS. 

For I E , l =0.95 ms, r =0.25 ms, and d =4.0 ms (Bartos et al., 2002) with a 

peak conductance of 5 nS. For I I , l =0.6 ms, r =0.3 ms, and d =2.0 ms 

(Bartos et al., 2002) with a peak conductance of 4 nS. Hence, with a typical total 

surface area of 21,590 µm2 for a CA1 pyramidal cell (Routh et al., 2009) and 18,069 

µm2 for a CA1 basket cell (Cutsuridis et al., 2010), EEg  =0.04 mS/cm2, IEg 

=0.034 mS/cm2, I Eg  =0.11 mS/cm2, and I Ig  =0.062 mS/cm2. The gap junctions  

between I cells are modeled by  i jg V V   with conductance GJg =0.01 mS/cm2 

(Bartos et al., 2002). 

                                                                                                                           31Competition of gamma oscillation mechanisms



Figure 2-1. Dynamics of the Wang-Buzsáki and Börgers-Walker interneuron. A, 

Example of voltage traces of the Wang-Buzsáki (solid line) and Börgers-Walker 

(dashed line) interneuron for 0, 1.1II   μA/cm2 for the Wang-Buzsáki interneuron and 

0, 7.1II   μA/cm2 for the Börgers-Walker interneuron. B, Firing rate versus the 

external current for the Wang-Buzsáki (solid line) and Börgers-Walker (dashed line) 
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interneuron. C, Infinitesimal phase response curves of the Wang-Buzsáki (solid line) 

and the Börgers-Walker (dashed line) interneuron are of type I and type II, 

respectively. 

We assume a ratio of excitatory and inhibitory neurons EN / IN =4 with 5,000 

neurons in total. Synaptic connectivity is random and sparse. We adopt connection 

probabilities reported for the CA1 region (Ascoli and Atkeson, 2005), E E : 

0.0067, E I : 0.3, I E : 0.67, and I I : 0.3. I cells are connected by gap 

junctions with probability 0.004 (Bartos et al., 2002). See sec. 2.4 for a careful 

interpretation of these choices. 

E cells receive external currents ,app EI = 0,EI +    , 0,E m E EC t   , where

0,EI  is the mean excitatory current,   is independent Gaussian white noise (zero 

mean, unit variance), ,m EC  denotes the membrane capacitance, 0,E  the passive time 

constant, and E the standard deviation of stochastic fluctuations. Similarly, I cells

receive external inputs ,app II = 0,II +    , 0,I m I IC t   .

We solve the differential equations for the membrane potential of the E and 

I cells using the Euler-Maruyama method with t =0.01 ms (Goldwyn and Shea-

Brown, 2011), well below all relevant time scales in the model. At the start of each 

simulation, neurons that are driven above their spiking threshold are initialized at a 

uniformly drawn random point on their firing limit cycle; the remaining neurons are 

initialized at their resting state. After a time interval of 500 ms (to eliminate the effect 

of initial network conditions), we collect firing activities of the E and I cells in the 

time interval from 500 to 2,000 ms to calculate the oscillation frequency of the 

network, the mean firing rates, and the coherence   among cell activity as defined 

in Wang and Buzsáki (1996). To estimate  , we average the pairwise coherences 

(cf. Eq. 2.5 of Wang and Buzsáki (1996)) between all neurons in a randomly chosen 

set of 100 neurons. In our study, dynamics with 0.08   are classified as showing 

a rhythm. To calculate the oscillation frequency, the firing activities of the E and I 

cells are used to construct the corresponding population activity with a 1-ms time 

resolution (see Gerstner and Kistler (2002)). Next we remove the nonzero DC 

average of the population activity by subtracting the mean population activity. The 
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power spectral density of the resulting population activity is calculated with Welch’s 

method (Welch, 1967) with 50% overlapping. The power spectral density is then 

normalized in order to have unit energy in the frequency domain. The frequency of 

the oscillation is determined as the frequency corresponding to the peak power in the 

power spectral density. All results, except for the spike raster diagrams, are averaged 

over 10 independent runs. 

2.2.2 Phase model 

To substantiate the results based on the single-compartment Hodgkin-Huxley-type 

models, we investigate the dynamics of a pair of interacting simplified E and I cells 

representing the dynamics of synchronized E and I neuron populations, respectively. 

The model allows a full analytical solution. For this simple model we assume two 

pulse-coupled neurons: an excitatory (E) neuron with excitatory projection E I  to

an inhibitory (I) neuron, which reciprocally inhibits the E neuron with coupling 

strength I E  . Since the I neuron represents the synchronous activity of a population

of coupled inhibitory neurons, it has self-inhibitory coupling I I  . All couplings

have a delay  . The synapses are assumed to be instantaneous, in the sense that the 

membrane potential is incremented by an amount   when the input arrives   after 

the spike generation in the presynaptic neuron. 

We use a phase representation, where  E t  and  I t  represent the phases

of the E and I neurons at time t . Without input, the phases increase linearly as 

 Ed t dt  =  Id t dt  = 1 until they reach the phase thresholds E  and I  and 

are reset to zero. We analyze the stable states of 1:1 phase-locked firing for the case 

where the E neuron and the I neuron are represented by leaky integrate-and-fire (LIF) 

neurons (model 1) and for the case where the I neuron is a so-called sine neuron 

(model 2), which is a paradigmatic neuron of type II (Hansel et al., 1995; Ermentrout 

et al., 2001; Brown et al., 2004; Izhikevich, 2007). 

Model 1 In model 1 the E and I neurons are both LIF neurons. The dynamics of the 

membrane potential LIFV  are given by 

   
( )

,LIF
LIF

dV t
V t I t

dt
   (2-1) 
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where we use the standard form for the dynamics of the LIF neuron (Gerstner and 

Kistler, 2002),   is equal to 1  , with the time constant of the LIF neuron  . For 

simplicity, we assume that   is the same for the E and I neurons; without loss of 

generality its value is set to one. Additionally, we assume that when LIFV  of a neuron 

reaches a voltage threshold defined to be 1, the neuron sends a spike, which arrives 

after a time delay  . When the voltage reaches the voltage threshold, it is 

instantaneously reset to zero. The voltage threshold corresponds to the phase 

thresholds (and free periods) E  of the E neuron and I  of the I neuron where 

 ,LIF E EV   =  ,LIF I IV  = 1. The external current applied to the E and I neurons is

then  1 1 e  with   referring to E or I for the E or I neuron, respectively.

The LIF neuron represented by Eq. 2-1 is a type I neuron and an analytical expression 

for its PRC can be found in the literature (van Vreeswijk et al., 1994; Lewis and 

Rinzel, 2003; Izhikevich, 2007; Canavier et al., 2013). 

The transfer function  , ;LIFH    , which gives the new phase of the LIF 

neuron after arrival of a spike at the synapse with coupling strength   when the 

phase of the LIF neuron is    , is given by 

 
   ln , for 1,

, ;
0 otherwise,

LIF LIF

LIF

e V
H

 


 


           


(2-2) 

where    , 1LIF e     .

In Eq. 2-1,  I t  represents the time-dependent total input to the neuron. This 

implies that for pure ING oscillations, the input  I t  to an interneuron gathers the 

external input (which is constant in our simulations) plus the time-dependent 

inhibitory input from the other inhibitory neurons in the network, represented by the 

self-inhibition after firing. For pure PING, the input to the E neuron gathers the 

external (constant) input to the E neuron plus the time-dependent inhibitory input 

from the interneuron. 
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Model 2 Motivated by experimental findings suggesting that interneurons relevant 

for typical gamma oscillations belong to the category of type II neurons, we also 

performed phase analysis for the case where the E neuron is represented by a LIF 

neuron and the I neuron by a sine neuron, i.e. a neuron that has an infinitesimal PRC 

(iPRC) given by 

 sine

2
siniPRC


 

 
   

 
(2-3) 

(cf., e.g., Winfree (1967); Goel and Ermentrout (2002)). Note that the neuron 

belongs to the category of type II neurons: The iPRC in Eq. 2-3 is negative in the 

first half of the cycle, such that a positive input generates a phase delay when 

0 2   , and it is positive for the second half of the cycle, i.e. a positive input 

generates a phase advance when 2     . The iPRC does not fully specify the 

neural dynamics as it only determines the derivative of the transfer function at 0,   

 
 sine

sin

0

e

,
.

H
iPRC



 









 (2-4) 

We characterize the transfer function by the requirement that the response of 

the neuron to a large input equals the linear summation of responses of the neuron 

to a number of small ones that arrive separately within a short time interval. This 

leads to the defining differential equation 

 
  sine

sine sine .
,

,
H

iPRC H
 

 



  (2-5) 

Note that for 0  , Eq. 2-5 reduces to Eq. 2-4 since  sine ,0H   . The explicit 

expression for  sine ,H    and the analytical expressions for the firing frequencies 

in various conditions can be found in Appendix 2.5. Further details and the 

derivations will be given in Chapter 3. 
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2.3 Results 

2.3.1 Role of gap junctions and chemical synapses in ING oscillations 

How do gap-junctional coupling and recurrent chemical connectivity interact to give 

rise to synchronous oscillations in our networks? To address this question, we focus 

on the interneuron networks, which possess electrical coupling, and on the resulting 

ING oscillations. We reduce the topology of the network described in sec. 2.2 by 

eliminating the projections from the excitatory pyramidal cell population (E cells) to 

the I cells (Fig. 2-2A). This prevents the network from generating PING oscillations. 

We first study the ING oscillations in a network of WB type I neurons. 

Depending on the strengths of chemically synaptic and gap-junctional coupling, the 

network of I cells may or may not reveal oscillatory activity. The overall picture is 

shown in Fig. 2-2. When recurrent inhibition I Ig   is very small, there is no or only 

weak synchronization in the I cells (Fig. 2-2B, a and b) depending on the strength 

of the gap-junctional coupling, which is in agreement with previous findings (Wang 

and Rinzel, 1992; Abbott and van Vreeswijk, 1993; Brunel and Hakim, 1999; Chow 

and Kopell, 2000; Traub et al., 2001; Bem and Rinzel, 2004). This is because in 

order to create ING, interneurons require a certain minimal amount of inhibition 

from other interneurons (Wang and Buzsáki, 1996). When I Ig   increases, e.g., from 

b to c in Fig. 2-2B, firing becomes more synchronous and the firing rate decreases 

because of the increasing amount of inhibition (Fig. 2-2Bc) (see Kopell and 

Ermentrout (2004)). The mean firing rate and the coherence between firing of I cells 

are shown in Fig. 2-2C, left and right, respectively. We note that the coarse scaling 

of the coherence in Fig. 2-2C, right, obscures a gradual increase in coherence for 

increasing values of gap-junctional coupling for small values of I Ig  . An increase 

of I Ig   from c to d in Fig. 2-2B first decreases the oscillation frequency. However, 

at some point a transition occurs to a higher frequency of the ING network 

oscillations. This higher oscillation frequency co-occurs with a lower mean firing 

rate of the I cells, which can be explained by alternating firing of two clusters into 

which the I neuron population has dissociated (Fig. 2-2Bd and point d in Fig. 2-2C). 

We note that such a state may be biologically irrelevant since it is sensitive to 

                                                                                                                           37Competition of gamma oscillation mechanisms



Figure 2-2. ING oscillations for a reduced network with type I interneurons 

coupled by inhibitory synapses and gap junctions. A, Schematic overview of the 

network with reduced topology to focus on ING oscillations. E cells receive inhibitory 

inputs from I cells, but connections from E cells to I cells are removed. B, Oscillation 

frequency in the network of interneurons for various gap-junctional  GJg   and synaptic

strengths  IIg  . Ba-e, Raster plots illustrating the different modes of firing
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corresponding to the combinations of I Ig   and GJg  labeled a-e: (a) no oscillation, (b) 

weak gamma-range oscillations generated by gap junctions, (c-e) strongly synchronous 

ING-based oscillations where neurons spike (c) once per cycle, (d) alternatingly, and 

(e) in changing synchronously firing groups. Parameter values corresponding to the

spiking activities (a-e) are highlighted in the main panel in B by asterisks/gray sphere.

The white area corresponds to parameter values where significant oscillatory activity

was absent (sec. 2.2). The gray sphere marked e indicates the parameter values found

in experiments in the CA1 region. Parameter values: 0,II =1.1 μA/cm2, I =0.5 mV. 

Panels Ba – Be:  ,I I GJg g =  410 ,0 ,  410 ,0.02 ,  310 ,0.02 ,  33.6 10 ,0.02 , and

 0.062,0.01  mS/cm2. Panel C shows the mean firing rate of the interneurons (left

panel) and the coherence of firing (right panel).

heterogeneity in the external currents to the neurons. Increasing I Ig   even further 

at the same value of the gap-junctional coupling (for GJg  below approximately 0.02 

mS/cm2) yields asynchrony (see Fig. 2-2B). Stronger gap-junctional coupling seems 

to counteract the desynchronization such that the transition from the high oscillation 

ING synchrony to asynchrony occurs at larger values of I Ig  . Interestingly, we find 

that when the strength of the chemical synapses increases further, ING reappears. 

Experimentally found values (see sec. 2.2) for chemically synaptic coupling and gap-

junctional strengths are illustrated by the letter “e” in Fig. 2-2B. 

Figure 2-3 shows the results for ING oscillations when the type I WB neuron 

is replaced by the type II Börgers-Walker neuron. One of the characteristics of type 

II neurons is that the frequency-current relation is discontinuous; if the neuron starts 

firing, it will do so with a firing rate significantly above zero (see Fig. 2-1B). 

Moreover, type II neurons have a PRC with a phase delay for excitatory input 

arriving shortly after firing (Fig. 2-1C) and, which is equivalent, a phase advance for 

inhibitory inputs after firing. The phase advance accelerates the neuron in its cycle, 

reducing the interval to the next spike. This mechanism explains why the network 

and thus individual neuron firing frequencies for type II neurons in Fig. 2-3A do not 

decrease as much as for type I neurons (see Fig. 2-2B) when I Ig   increases. (Note 

that the color code for ING oscillation frequency is different in Fig. 2-2B and Fig. 

2-3A). 
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As for the type I neurons, the firing frequency of oscillations in the network 

of interneurons (Fig. 2-3A) and the coherence of synchronous firing in the ING 

network increases (Fig. 2-3B, right, and Fig. 2-3A, a and b) when the gap-junctional 

coupling strength increases for small values of I Ig  . Qualitatively similar to Fig. 2-

2, increasing I Ig   at a constant value of the gap-junctional coupling gives rise to a 

decrease of the firing frequency in the network of interneurons (see Fig. 2-3A, b and 

c). As already mentioned, this decrease is much smaller than for type I neurons, since 

inhibitory input after firing of the interneuron gives rise to a phase advance or a 

phase delay for type II neurons, rather than only a phase delay as for type I neurons. 

Furthermore, we find that the increase of weak synaptic coupling has a de-

synchronizing effect on the synchronization by gap junctions: Synchronization 

disappears when weak synaptic coupling becomes stronger (transition into the white 

region in Fig. 2-3A, bottom left). In the region of parameter space where the gap-

junctional coupling is not strong enough to maintain synchronization for all values 

of I Ig   (for GJg  below approximately 0.017 mS/cm2), the network synchronizes 

again as I Ig   increases further to higher values. The region without synchronization 

can be related to a region with coexistence of stable in-phase and antiphase 

synchronization in simulations of two-neuron systems with inhibitory and gap-

junctional coupling (cf. Bem and Rinzel (2004) for the general setup), where the 

parameters are adapted to match those of our large networks. When the value of 

I Ig   is at about 10-3 mS/cm2 (condition c), a further increase (e.g., from c to d in 

Fig. 2-3A) gives rise to a decrease of the oscillation frequency of the ING network 

followed by an increase (see Fig. 2-3A). The decrease in ING frequency and mean 

firing rate of I cells (see Figs. 2-3, A and B) for increasing (small, b to c) values of 

I Ig   is due to the increasing inhibitory input for larger values of I Ig  . When I Ig 

increases to larger values, the stable mode of firing of the network changes from in-

phase to antiphase. This is in agreement with previous results in two-neuron systems 

by Bem and Rinzel (2004) and with our own simulations of two-neuron systems with 

parameters adapted to match those of our large networks. The change of mode leads 

to an increase in network oscillation frequency. In contrast to the case of type I 

neurons (see Fig. 2-2B with I Ig   values in the range between about 36 10  mS/cm2
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and 110  mS/cm2), the border between the white region of asynchrony and the 

colored regions of synchronized firing is largely independent of the gap junctional 

strength (see Fig. 2-3A for I Ig   values between about 310  mS/cm2 and 33 10  

mS/cm2), indicating that gap junctions do not play a major role for it. This may be 

dependent on the chosen parameters, e.g. gap junctions may be more supportive 

when introducing heterogeneity in the constant inputs to the neurons. For the type I 

WB neurons in Fig. 2-2, the transition to a higher firing frequency of the network is 

abrupt because of a sudden change to alternating firing of the I neurons, i.e. the type 

I interneurons spike once per two oscillatory cycles, causing a discrepancy between 

network oscillations and mean firing rate of the I cells. For the type II Hodgkin-

Huxley-type neurons in Fig. 2-3, this transition is gradual, since type II interneurons 

do not switch to a mode of alternating firing, although firing gets sparser. In contrast 

to the network with type I interneurons, we do not find a region of desynchronization 

for strong inhibitory synapses. 

The set of parameter values that correspond to data from the experimental 

literature about CA1 (condition e in Fig. 2-3A) reveals coherent, synchronous 

spiking of variable subgroups of the I cells. Figure 2-3C, left, shows the mean firing 

rate of the E cells. In the current setup generating pure ING oscillations, there is no 

projection from the E cells to the interneurons (see Fig. 2-2A), and the E cells receive 

a constant external input, in addition to the inhibitory input from the network of 

interneurons. The coherence (Fig. 2-3C, right) and the mean firing rate of the E cells 

(Fig. 2-3C, left) increase with increasing values of I Ig  . Because of the inhibition 

by the I cells, E cells fire before or near the firing of the I cells but not thereafter 

(Fig. 2-3A, d and e): The pure ING oscillations illustrate that the observation that 

the peak of spiking of the E cells precedes that of the I cells should not be interpreted 

as evidence for PING. When I Ig   increases, the mean firing rate of the I cells 

decreases because of the temporal extension and shape of the postsynaptic currents, 

which leads to more delay than advance despite the type II PRC (Fig. 2-3B, left). 

When the mean firing rate of the I cells decreases, the inhibitory input to the E cells 

decreases as well, which explains the higher mean firing rate of the E cells for larger 

values of I Ig   in Fig. 2-3C, left. 
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Figure 2-3. ING oscillations for a reduced network with type II interneurons 

coupled by inhibitory synapses and gap junctions. The network topology is as in 
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2.3.2 PING rhythms and the firing rate of E cells 

In our ING simulations, we found that E cells can spike at a low firing rate during 

rhythmic activity in the I cells (see in particular Fig. 2-3Ae and Fig. 2-3C, left), in 

agreement with experimental findings (Fisahn et al., 1998). In contrast, for PING 

oscillations in typical neural network models the firing rates are often implausibly 

high, reaching the network oscillation rate. We will now explore for our networks 

how excitatory neurons may spike during PING oscillations at a rate that is much 

lower than the network oscillation rate, even for highly synchronized PING rhythms. 

To focus on PING rhythms, we remove the constant input to the interneurons (Fig. 

2-4A), which disables ING-related oscillations. 

Börgers and Kopell (2003) have shown that the PING mechanism can yield 

perfect synchronization if the E I  synapses are sufficiently strong. In agreement 

with their results, our network gives almost perfect synchronization (not shown) for 

the biologically plausible values for E I  synapses near E Ig   = 0.034 mS/cm2 

(see sec. 2.2) without noise input to the E and I cells. In this regime, the firing rates 

of E and I cells agree with the frequency of the network oscillations (defined as the 

oscillation frequency of the population of E cells) both for type I interneurons and 

for type II interneurons. However, observations both in vivo (Csicsvari et al., 2003) 

Fig. 2-2A. A, Frequency of network oscillation vs. gap-junctional  GJg   and synaptic

strengths  IIg  . Aa-e, Raster plots illustrating the different modes of firing in A: (a)

no oscillations, (b) gamma-range oscillations generated by gap junctions, (c) strongly 

synchronous ING-based oscillations and (d, e) in changing synchronously firing 

groups. Red vertical bars display spiking of pyramidal neurons, blue vertical bars 

display spiking of interneurons. In some parts of the parameter space, the E cells do 

not fire (as in a) or fire at a low rate (as in b and c; spiking not shown due to low rate). 

B and C show the mean firing rate (left panels) and the coherence of firing (right 

panels) in the network of the interneurons and of the pyramidal cells, respectively. 

0,II  = 7.1 μA/cm2, I 0,EI  = 5.8 μA/cm2, EParameter values:    = 0.5 mV,   = 60 mV.

Panels Aa – Ae:  II GJg , g = 104 ,0 , 104 ,0.02 , 103 ,0.02 , 3102 ,0.02 , and

0.062,0.01  mS/cm2.
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Figure 2-4. Relation between PING rhythm and mean firing rate in a reduced 

network of E and type I I cells. A, Schematic overview of the recurrent network with 

reduced topology to simulate PING oscillations. There is no external input to the I 

cells. B, Frequency of PING rhythm as a function of current 0,EI  and noise E . Insets: 

Raster plot (red for E cells and blue for I cells) showing the spiking activity for the 

same noise E and low (a) and high (b) driving current 0,EI  . Parameter settings: E

= 20 mV and 0,EI  = 0 μA/cm2 and 2.3 μA/cm2 for insets a and b, respectively. C, Mean 

firing rate of E and I cells are shown in left and right panels, respectively. The white 

areas in B and C correspond to parameter values without rhythmic firing. 

and in vitro (Gloveli et al., 2005b) studies have shown that the firing rate of E cells 

is much lower than that of I cells during gamma oscillations. Orienting at the work 

of Börgers and Kopell (2005) and Economo and White (2012) (who investigated the 

effect of noise on PING rhythms) and the work of White et al. (1998a) (who 

proposed a role for channel noise in shaping interspike interval distributions of the 

pyramidal cells), we check this and investigate how our simpler Gaussian white 

noise input to the E cells reduces the E cell firing rate in both networks with type I 

and type II interneurons while still allowing for strongly synchronous PING 

oscillations. 

For this we investigate the frequency of PING rhythms and the corresponding 

mean firing rates of the E and I cells as a function of the mean current 0,EI  and the 

noise amplitude E . When 0,EI  and E are too small, the network fails to generate

periodic oscillations for type I interneurons (cf. the white region in Fig. 2-4, B and 

C, bottom left) as well as for type II interneurons (Fig. 2-5) since the small input is 

not sufficient to drive the E cells above their spiking threshold. If the noise increases, 

more E cells are activated (see Figs. 2-4C and 2-5B), thereby eliciting PING rhythms 

(Figs. 2-4B and 2-5A). The lower the value of 0,EI , the higher the value of E that

is required to generate PING rhythms (boundary between the white and colored 

regions in Figs. 2-4B and 2-5A). When the constant input 0,EI  increases, the mean 

firing rate of the E cells increases (Figs. 2-4C and 2-5B for type I and type II 

interneurons, respectively). When 0,EI  increases, passing the value of 0.5 μA/cm2, 

we observe relatively sharp transitions of frequency (Figs. 2-4B and 2-5A), of the 
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mean firing rate of the E cells (MFRE) (Figs. 2-4C, left, and 2-5B, left), and of the 

mean firing rate of the I cells (MFRI) (Figs. 2-4C, right, and 2-5B, right). The 

transitions are caused by the transition of the E cells to the intrinsically oscillatory 

regime at this value of driving current. When 0,EI  increases further, so does the 

frequency of the PING rhythm and the firing rate of the I cells (Fig. 2-4, B and C, 

and Fig. 2-5, A and B, for type I and type II interneurons, respectively). For small 

values of noise E  the firing rate of the E cells is slightly less than that of the I cells 

(Figs. 2-4C and 2-5B). Increasing the noise to the E cells reduces the firing rate of 

the E cells but increases the firing rate of the I cells and the PING frequency. This 

can only be observed for relatively large values of 0,EI . For small values of 0,EI  we 

are in the fluctuation-driven regime where the E cell firing rate slightly increases 

with E  (Brunel, 2000). As the external current 0,EI  increases, the coherence among 

the E cells increases. For small values of 0,EI  (E cells in the fluctuation-driven 

regime), the coherence weakly increases with noise; for larger values of 0,EI  (E cells 

in the mean-driven regime), the coherence generally decreases with noise. For low 

noise and larger 0,EI , the coherence is near 1. The results in Figs. 2-4 and 2-5 show 

that PING rhythms depend on 0,EI  and E in a very similar way for both types of

interneurons. The increase of firing of the E cells as a function of the drive 0,EI  to 

the E cells will come back in Figs. 2-6 and 2-7, where we show the firing rate of the 

E cells, when ING and PING interact. 

2.3.3 Interactions between ING and PING 

In the previous sections, we have considered networks with a reduced topology to 

study ING and PING oscillations separately. We now focus on the interaction 

between ING and PING rhythms. More precisely, we ask the question: If according 

to its connectivity the network is in principle able to generate PING as well as ING 

rhythms, which of the two will it generate, or will it generate a mixture? To answer 

this question, we study the oscillation characteristics of the complete network (Fig. 
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Figure 2-5. PING rhythms and mean firing rate in a reduced network of E and type II 

I cells. The network topology is as displayed in Fig. 2-4A. A, Frequency of PING rhythm as 

a function of current 0,EI  and noise E . Aa and Ab show raster plots (red for E cells, blue 

for I cells) as in Fig. 2-4B. B, Mean firing rate of E and I cells in left and right panels, 

respectively. The white area in A and B corresponds to parameter values without rhythmic 
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firing. Parameter settings: E = 20 mV and 0,EI  = 0 μA/cm2 and 2.3 μA/cm2 for insets a and 

b, respectively. 

2-6A) and compare the results with the results obtained above for ING and PING 

rhythms in reduced networks. In other words, we investigate whether the network 

oscillations change when one of the mechanisms is disabled by eliminating the 

projections from the pyramidal cells to the inhibitory neurons (ING) or by 

eliminating the input to the interneurons (PING). In particular, if network 

oscillations are left unchanged when disabling one mechanism, and they are affected 

when disabling the other, we may conclude that only the other mechanism is 

responsible for the network oscillations in the full network. 

Figure 2-6 shows the results for the network with type I WB neurons. The 

full model is schematically displayed in Fig. 2-6A. Figure 2-6B shows the frequency 

of network oscillations as a function of the external constant drive 0,EI  to the E cells 

and the external constant input 0,II  to the I cells for 1) the ING-generating network 

as in Fig. 2-2A (blue surface), 2) the PING-generating network as in Fig. 2-4A (red 

surface), and 3) the full network as in Fig. 2-6A (green surface). The green surface 

in Fig. 2-6B is always equal to or slightly above the higher of the ING and PING 

surfaces. For small values of 0,II , the oscillation frequency of the full network is 

slightly higher than the oscillation frequency of the PING mechanism. This is 

illustrated in detail in Fig. 6C, left, which shows the oscillation frequency for ING 

(blue line), PING (red line), and the full network (green line) as a function of the 

input 0,II  to the I cells for a constant input 0,EI  =2 μA/cm2 to the E cells, while the 

mean firing rate of the pyramidal cells (MFRE, dark green line) and of the 

interneurons (MFRI, light green line) corresponding to the full network (green line) 

are illustrated in Fig. 2-6C, right. The slightly higher frequency for the full model 

can be explained by the fact that the input from the E cells to the I cells due to the 

projections E Ig   is not suprathreshold and does not generate a spike immediately 

after arrival of the input spike. Larger inputs 0,II  increase the excitability of the I 

cells, such that the interval between arrival of the spike volley from the E cells to the 

I cells and spiking of the I cells decreases. If the interval between firing of the E cells 
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and I cells decreases, the inhibition from the I cells to the E cells comes earlier in the 

firing cycle of the E cells and thus has a smaller impact. The earlier start and end of 

the inhibition explain the reduced interval between subsequent spikes for the E cells 

for the full network and the corresponding higher frequency. We note that we 

interpreted the relation between 0,II  and the pure PING network (red) as follows: 

There is no external input to the I cells, so the value of this parameter does not 

influence the PING dynamics. An alternative interpretation is to assume 0,II  = 0 

μA/cm2 for pure PING. Then, the continuation of the red surface in Fig. 2-6B and 

the red lines in Fig. 2-6C, left, to nonzero values of 0,II  should be viewed as 

reference for comparison. 

When 0,II  increases in Fig. 2-6C, left, the oscillation frequency of the full 

network approaches that of the pure ING oscillations, while the corresponding MFRE 

monotonically decreases (Fig. 2-6C, right). The transition from PING-dominated 

responses to ING-dominated responses is gradual for the network with the type I 

interneurons, in agreement with earlier results by Börgers and Walker (2013). 

Although the full network generates ING-dominated oscillations for higher values 

of 0,II , the pyramidal cells are still active (see Fig. 2-6C, right). The higher 

oscillation frequency for the full network at the transition of the blue and red curves 

is explained by the fact that the interneurons receive input from the pyramidal cells 

in the full model, and thereby receive more excitation for the same value of 0,II  than 

for the ING condition. This larger amount of excitation causes a higher oscillation 

frequency in the network of interneurons and thereby also a higher oscillation 

frequency for the full network. 

Note that although MFRE is low for high values of 0,II  (Fig. 2-6C, right), 

we observe clear gamma rhythms in the pyramidal cells. The MFRI in Fig. 2-6C, 

right, varies in a more complicated way with changes in 0,II  than the mean firing 

rate of the pyramidal cells (MFRE). First MFRI slightly increases, then decreases, 

and increases again as 0,II  increases. This can be understood as follows: For small 

values of 0,II , many E cells recover from the inhibition sooner than the I cells do 
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Figure 2-6. Oscillations in a full network of reciprocally coupled pyramidal cells and 

type I interneurons. A, Network topology of the full network. B, Frequency of ING rhythm 
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generated by the network in Fig. 2-2A (blue surface), PING rhythm generated by the network 

in Fig. 2-4A (red surface), and rhythms generated by the full network (green surface) as a 

function of mean current to E cells 0,EI , and to I cells 0,II . When the green and blue surfaces 

closely overlap (for large values of 0,II  and small values of 0,EI ), only the blue surface is 

shown. C and D, Left-hand panels show cross sections of B along the 0,II  (C) and 0,EI  (D) 

axes for fixed 0,EI  (C) and fixed 0,II  (D). Right-hand panels show the corresponding mean 

firing rates of the interneurons (pale green color) and of the pyramidal cells (dark green 

color). Parameter values: E = 20 mV and I  = 0.5 mV.

and start spiking to elicit spiking of the I cells. We observe a PING rhythm. The I 

cells spike once in each oscillatory cycle and their mean firing rate increases like the 

frequency of the full network as 0,II  increases. As 0,II  increases further, the 

increased excitation to the I cells lets some I cells recover sooner from the inhibition 

than the E cells. These inhibit the E cells, in particular the E cells in the population 

that tend to fire late. This leads to less excitation given to the I cells from the E cells 

and therefore to a lower mean firing rate of the I cells. We checked that the higher 

the noise I , the more I cells recover early and the stronger the effect. When 0,II  

increases even further, the I cells receive more excitation and further inhibit the E 

cells until the excitation from the E cells is so low that the full network behaves like 

pure ING, i.e. the mean firing rate of the I cells increases and the I cells skip a lower 

number of the oscillatory cycles as 0,II  increases. 

Figure 2-6D, left, shows the oscillation frequency for ING (blue line), PING 

(red line), and the full network (green line) as a function of the input 0,EI  to the E  

cells for a constant input 0,II  = 0.85 μA/cm2 to the I cells, while Fig. 2-6D, right, 

shows the mean firing rate of the pyramidal cells (MFRE, dark green line) and of the 

interneurons (MFRI, light green line) corresponding to the full network (green line 

in Fig. 2-6D, left). For small values of 0,EI  the oscillation frequency for the full 

network is close to the ING oscillation frequency, while the pyramidal cells show 

clear gamma rhythms although MFRE is low (see Fig. 2-6D, right). For larger values 

of 0,EI  near the intersection of the red and blue lines, the oscillation frequency of the 
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full network (green line in Fig. 2-6D, left) exceeds that for ING and PING rhythms 

for the same reasons as for Fig. 2-6C, left. For larger values of 0,EI , the oscillation 

frequency of the full model increases with the pure PING oscillation frequency (and 

so does the mean firing rate of the pyramidal cells and of the interneurons) but 

always remains somewhat higher than the pure PING frequency. The latter is in 

agreement with results by Börgers and Walker (2013), who reported that increase of 

input to the E cells in a network of reciprocally coupled E and I cells advances firing 

of the I cells in each cycle when their phase response is of type I. 

Summarizing, our results show that the oscillation frequency of the full 

network is equal to (or somewhat higher than) the higher of the pure ING and pure 

PING oscillation frequency. The reason for this is that the higher-frequency 

mechanism recruits the vast majority of available neurons in the two populations, 

such that the other mechanism cannot exist. For example, when the PING frequency 

is higher than the ING frequency, the E neurons recover before the I neurons; they 

spike and recruit the I neurons into the PING rhythm by near-suprathreshold 

excitation. The ING rhythm then cannot develop because the I neurons cannot reach 

threshold because of their intrinsic drive. In contrast, when the ING frequency is 

higher than the PING frequency, the I neurons recover before the E neurons and are 

reset when the input from nonsuppressed E neurons arrives, such that they cannot be 

recruited into the PING rhythm. 

Figure 2-7 shows an analysis similar to Fig. 2-6 for the network with type II 

interneurons. As in the analogously structured Fig. 2-6, the blue, red, and green 

surfaces in Fig. 2-7A represent the firing frequencies for pure ING oscillations (

0E Ig    ms/cm2), for pure PING oscillations ( 0, 0II   μA/cm2), and for the full 

network, respectively, while the dark green and light green curves in Fig. 2-7B, 

right, represent the mean firing rate of the pyramidal cells and of the interneurons 

in the full network. The main difference between the results in Fig. 2-7A for type II 

interneurons and the results in Fig. 2-6B for type I interneurons is that the firing 

frequency of the full network can be between that of ING and PING for type II 

interneurons for intermediate values of 0,EI  and 0,II  (compare also Figs. 2-6C, left, 

and 2-7B, left). The explanation for this observation is that when the ING rhythm 
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dominates, the E cells can only fire just before firing of the I cells, i.e. before 

inhibition from the interneurons comes in. The action potentials from the E cells then 

arrive at the I cells just after their firing, which causes a phase delay because of the 

type II PRC, and therefore a lower frequency of the full network compared with the 

pure ING frequency. When the input 0,II  increases to larger values, the frequency 

of the full network becomes fully determined by the ING frequency (Fig. 2-7, A and 

B, left) while the mean firing rate of the pyramidal cells of the full network strongly 

decreases. In that case the blue and green surfaces (Fig. 2-7A) or curves (Fig. 2-7B, 

left) overlap. This holds even though the E cells are still active near the transition, 

albeit with reduced frequency (Fig. 2-6C, right, and Fig. 2-7B, right). The blue 

curve for ING in Fig. 2-7B, left, shows some abrupt variation, which may suggest 

an underlying bifurcation. 

When the I drive is even stronger, the E cells become suppressed (cf. Börgers 

and Kopell (2003, 2005); Börgers and Walker (2013)). In this sense, our transition 

for increasing I drive may be considered as a part of the suppression transition. Like 

Börgers and Walker (2013), in networks with type II interneurons we find a rather 

abrupt departure from PING oscillations when increasing the I drive (green curve in 

Fig. 2-7B, left). For different transition paths (increasing the E drive; see Fig. 2-7C), 

the transition is more gradual. Figure 2-7C, left, shows the oscillation frequency 

when the input to the interneurons is constant and when the input 0,EI  to the E cells 

is varied; for small values of 0,EI , the oscillation frequency of the full network (green 

curve) is slightly below that for the ING rhythm (blue curve), again because of the 

effective delaying of I cells through E cells as explained above. When 0,EI  increases, 

the oscillation frequency of the network (green line) decreases, approaching the pure 

PING oscillation frequency (red line) even when the pure PING oscillation 

frequency is lower than the pure ING oscillation frequency. From there the 

frequency of network oscillations follows the frequency of PING oscillations. 

The reason for the fact that in intermediate input ranges in Fig. 2-7A, left, 

and Fig. 2-7C, left, the full network approaches the pure PING oscillation frequency 

as 0,EI  increases even when the pure ING oscillation frequency is higher lies again 

in the phase delay in the PRC of type II interneurons: During the full network ING 
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Figure 2-7. Oscillations in a full network of reciprocally coupled pyramidal cells and 

type II interneurons. Network topology is as in Fig. 2-6A. A, Frequency of ING rhythm 
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generated by the network in Fig. 2-2A (blue surface), PING rhythm generated by the network 

in Fig. 2-4A (red surface), and rhythms generated by the full network (green surface) as a 

function of mean current 0,EI  to E cells and 0,II  to I cells. The raster plots show the firing of 

the E (red) and I (blue) neurons for the full network, the reduced PING, and the reduced ING 

networks, at the same point in parameter space. Left-hand panels of B and C show the 

frequency for ING (blue line), PING (red line), and for the full network (green line), while 

right-hand panels of B and C show the mean firing rate of the interneurons (light green color) 

and of the pyramidal cells (dark green color) for variations in 0,II  (B) and 0,EI  (C). Parameter 

values: E = 60 mV and I  = 0.5 mV.

rhythm, the E cells spike such that their input arrives early in the phase of the I 

neurons, so it has a delaying effect and reduces the frequency of the ING rhythm. In 

other words, when the oscillation frequency for the full network is between pure ING 

and pure PING, the type II nature of the interneurons causes a lower frequency for 

ING in the full network than in the reduced network, such that the higher frequency 

is in fact PING; this dominates the network oscillations in the full network. So, as in 

networks with type I interneurons, we have in fact the higher frequency generating 

mechanism winning. 

When the external input to the E cells increases, the mean firing rate of the E 

cells increases (see Fig. 2-7C, right). The higher mean firing rate of the E cells 

implies that the E cells provide more excitation to the I cells. This larger amount of 

excitation arrives at early phases in the firing cycle of the I cells and gives rise to a 

larger phase delay (lower firing rate) of the I cells due to their type II PRC. Because 

of the larger phase delay of the I cells, the interval of firing of the I cells decreases. 

This explains why the frequency of the full network (green line in Fig. 2-7C, left) 

decreases as 0,EI  increases. 

Given the decrease in the frequency of the full network, it may seem 

contradictory that the mean firing rate of the I cell increases as 0,EI  increases (Fig. 

2-7C, right). The explanation is that the increased firing of E cells provides more 

excitation to the I cells, such that more I cells fire in each cycle, which becomes 

longer. The frequency of the full network decreases till it approximately meets the 
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pure PING frequency (see Fig. 2-7C, left): At this point, 0,EI  increases the 

excitability of the E cells high enough such that the E cells recover from the 

inhibition from the I cells sooner than the I cells, and the full network generates 

PING-dominated oscillations. 

2.3.4 Analytical insights into the interactions between ING- and PING-

driven oscillations using a phase model 

The results of the computer simulations presented so far might raise the question of 

whether these results are generic and not due to a particular choice of parameter 

values in our model. To address this issue, we performed a mathematical analysis of 

a simple pair of neurons with an excitatory (E) and inhibitory (I) neuron (see sec. 

2.2). This simple model allows for analytical expressions for the firing rate of the 

system for various conditions (see Appendix 2.5). Since we want to investigate the 

interaction between ING and PING on network oscillations, we provide input to both 

the E and I neurons in our simulations. From the previous sections and from the 

literature (e.g. Börgers and Kopell (2003, 2005); Börgers and Walker (2013)), we 

know that PING will dominate the network dynamics for relatively large input to the 

E neuron and small input to the I neuron and that ING dominates when the input to 

the E neuron is relatively small and the input to the I neurons is large. We are 

interested in intermediate regimes of transition between PING and ING, far from 

these extremes. More precisely, we focus on regimes where both the E and the I 

neuron spike once in every cycle. In particular, also during ING-dominated 

oscillations the E neuron should not be suppressed but it should generate a regular 

spike rhythm with one-to-one locking. This restricts the ranges of admissible 

parameters. 

For an illustration of this case, see Fig. 2-8A, which shows the firing of the 

E neuron (red vertical lines) and I neuron (blue vertical lines) for the ING condition. 

The figure shows results for model 1 (see sec. 2.2), where the E and I neurons are 

both LIF neurons. If the E neuron (red trace in Fig. 2-8A) fires in this ING condition, 

either it fires just before the I neuron (blue trace) with a time lead smaller than the 

conduction delay   from the E neuron to the I neuron or the E neuron fires just after 

firing of the I neuron before the inhibition of the I neuron arrives at the E neuron. 

Figure 2-8A illustrates the latter case. The self-inhibition of the I neuron is reflected 
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by the inhibition in the blue trace at a time   (= 0.4 time units) after firing of the I 

neuron; similarly, the excitation from the E neuron to the I neuron is reflected by the 

small increment in the blue trace at time 0.4 after firing of the E neuron. 

Figure 2-8B shows the relative firing of the E and I neurons for the PING 

condition. After firing of the E neuron, the I neuron fires with a delay  , i.e. the 

Figure 2-8. Interactions between ING and PING oscillations for an LIF-LIF phase 

model. Examples of ING-dominated phase dynamics (A) and PING-dominated phase 

dynamics (B) as a function of time (arbitrary units) for a network with two LIF 

neurons, coupled by excitation and inhibition. The firing of the E (I) neuron is 

highlighted by red (blue) vertical lines. The time delay from the E neuron to the I 

neuron is equal to that from the I neuron to the E neuron (0.4 units; if the firing rate 

would be 40 Hz, the delay of 0.4 units would correspond to about 3 ms). C shows the 

firing frequency of the network as a function of the input to the I neuron, while the 

input to the E neuron is kept constant. The blue and red curves show the network 

oscillations for pure ING and pure PING, respectively. The green curve shows the 

frequency of network oscillations for the full two-neuron network; dark green indicates 

full-network PING and light green full network ING. D similarly shows the network 

oscillations as a function of the input to the E neuron, while the input to the I neuron 

is kept constant. For the full network the parameter values for the coupling strengths 

are I E   = -0.5, E I   = 0.1, I I  = -1.0, and   = 0.4; for the ING condition we set

E I   = 0, which eliminates any input from the E to the I neuron. The input to the I and 
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output from the E neuron raises the phase of the I neuron above the phase threshold 

I near the value 2. The I neuron will then send inhibitory output back to the E

neuron and to itself. This is illustrated by the decrease of the phase of the E and I 

neurons at the time 2  after firing of the E neuron. 

The frequencies of the ING and PING oscillations can be computed 

analytically. Figure 2-8C displays the results (Eqs. 2-A2, 2-A4, and 2-A5 with 2-A6 

as well as 2-A7) as a function of the free firing frequency of the I neuron. This firing 

frequency is a unique, monotonically increasing function of the constant input to the 

I neuron. The blue line shows the network oscillation frequency for the pure ING 

E neurons is 1 I = 0.495 and 1 E = 0.43 for A, 1 I = 0.495 and 1 E = 0.52 for

EB, 1  = 0.495 for C, and 1 I = 0.495 for D.

EIcondition (  0 , cf. Appendix 2.5). This increases linearly when the input to the 

Iinterneuron measured by 1   increases, in agreement with previous studies (Bartos 

I

et al., 2001; Bartos et al., 2007). The red line shows the network oscillation 

frequency for pure/ideal PING with suprathreshold excitation of the I neuron (cf. 

Appendix 2.5). For the full model, the frequency of rhythmic activity for different 

constant inputs to the I cell is illustrated by the green curve. For small inputs to the 

I cell, PING dominates the behavior of the model (dark green part of the green 

curve), which explains why the green and red lines superimpose at the left-hand side 

of Fig. 2-8C. When the input to the I cell increases such that the firing frequency of 

the I cell exceeds that of the E cell (near 1   0.53 ), ING takes over (i.e. the full 

network generates an ING rhythm, light green part of the curve) and the frequency 

of the rhythm of the full model increases, similar to that of pure ING. This happens 

because the I cell recovers from the inhibition before the E cell does, after which the 

I cell delays spiking of the E cell and determines the rhythm. The firing rate of the 

network exceeds that of pure ING because the I cell in the full network also receives 

additional excitatory input from the E cell. Figure 2-8 illustrates that the network 

oscillation frequencies approximately follow the firing frequencies of pure ING or 

PING, whichever is the largest of the two. This agrees with our results from the 

computer simulations for the model with the single-compartment Hodgkin-Huxley 

type I neuron model in Fig. 2-6C, left. The reason for this is that the higher- 
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frequency mechanism recruits both available neurons just as it recruits the majority 

of neurons in the large two-population networks, such that the other mechanism 

cannot exist. 

Interestingly, the theoretical analysis reveals a small region of bistability for 

Ivalues of 1  between about 0.52 and 0.53 (see Fig. 2-8C): When the constant

input to the I neuron gradually increases, the model generates the pure PING-firing 

frequency until the blue ING curve intersects the red PING curve (cf. the dark green 

curve). At that crossing, the model switches to ING and to the firing rates along the 

light green curve. When the input to the interneurons is gradually decreased starting 

from high values, the firing frequency follows the light green curve until it intersects 

the red curve. From there the firing frequency of the model follows the red pure 

PING curve (dark green curve). We do not observe such a region in the larger 

networks: this might be because effects of coupling inhomogeneity and noise do not 

allow a sufficient separation of the close-by frequencies. 

Figure 2-8D shows the changes in frequency of the rhythmic activity when 

the input to the E cell is varied while the input to the I neuron is kept the same. The 

frequency of the rhythmic activity is obtained from Eqs. 2-A2, 2-A4, and 2-A5 with 

2-A6 as well as 2-A7. The red line illustrates the increase of pure PING frequency

with increasing input to the E cell (note that the green curve superimposes the red

line for larger inputs). This is a direct consequence of the increase in firing rate of

the E cell when it receives increasing input. Pure ING oscillations are not affected

by changes in input to the E cell (blue line). For small input to the E neuron (with

E1  approximately less than 0.46) the full network generates ING-dominated

oscillations with a frequency that is approximately constant despite variations in 

input to the E cells (light green line); this happens when the firing frequency for the 

pure PING case (red line) is below that for the pure ING case (blue line). As in Fig. 

2-8C, the higher frequency “wins.” The frequency of the full model ING exceeds 

the frequency of the reduced-network ING rhythm, because the full model has 

projections from the E to the I cell, which provide excitatory input in addition to the 

constant input to the I cell. When the network frequency for reduced-network PING 

exceeds that of reduced-network ING, the full network adopts the PING rhythm 

(dark green line superimposed on red line in Fig. 2-8D). In between there is again a 

small region of coexistence. These results are in good agreement with the results of 
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the simulations of larger networks with single-compartment Hodgkin-Huxley type I 

neurons (cf. Fig. 2-6D, left). 

Figure 2-9 shows the results for the network where the I neuron are 

represented by a type II sine neuron. As in Fig. 2-8, Fig. 2-9A shows the firing of 

the E (red) and I (blue) neurons for ING-dominated firing of the network. The firing 

of the E neuron precedes the firing of the I neuron, but the interval between their 

spikes is less than the time delay   from the E to the I neuron (0.4). Therefore, firing 

of the I neuron is due to its intrinsic firing and not an immediate consequence of 

excitation by the E neuron. In fact, the excitation of the I neuron by spike input from 

the E neuron is hardly visible because of the nature of the sine neuron: An excitatory 

input arriving just after the I neuron's reset causes a rather small delay in firing, not 

a marked depolarization. The inhibition of the E neuron after firing of the I neuron 

is clearly visible, simultaneous with the increase of the phase of the I neuron by self-

inhibition, which, because of the type-II PRC of the sine neuron, leads to a phase 

advance (i.e. an increase of the membrane potential). Figure 2-9B shows the same 

results for a PING rhythm in the circuit. 

Figure 2-9, C and D, shows the frequency of ING (blue line), PING (red line), 

and the full model (green line) according to Eqs. 2-A3, 2-A4, 2-A9, and 2-A11. In 

I to the I neuron with fixed input 1 EFig. 2-9C we vary the input 1    to the E

E to the E neuron is varied, while the input 1 Ineuron. In Fig. 2-9D the input 1   

to the I neuron is kept constant. In both Fig. 2-9, C and D, the frequency of the full 

network is between the frequencies of the pure ING and pure PING rhythms. 

Nevertheless, the full network generates either ING or PING depending on which 

mechanism (pure ING or pure PING) yields the higher-frequency oscillations in the 

reduced networks (cf. dark and light green parts of the green curve highlighting 

PING and ING oscillations in Fig. 2-9, C and D, respectively). Already for inputs to 

the I neuron that are smaller than those to the E neuron, the frequency of the PING 

rhythm exceeds that of the ING rhythm, i.e. the red curve lies above the blue curve 

[see the results for 1 I E E < 0.5 (1   0.75 ) in Fig. 2-9C and 1  > 0.74 

(1   0.50I ) in Fig. 2-9D]. We see from the detailed dynamics of the full network 

in Fig. 2-9B that in this case the E neuron recovers from reset and inhibition before 

the I neuron does, and it excites the I neuron to spiking, i.e. the full network generates 
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PING oscillations. The oscillation frequency is nevertheless between those of pure 

PING and pure ING. This can be understood from the fact that we assumed an "ideal" 

PING rhythm for the comparison, in the sense that the input from the E neuron to 

the I neuron is practically suprathreshold, causing the I neuron to fire immediately 

after arrival of the E spike. Our type II neuron does not allow for strictly 

suprathreshold input, i.e. our type II neuron requires an infinitely strong input pulse 

to immediately reach threshold. For the full model, the I neuron will spike shortly 

Figure 2-9. Interactions between ING and PING oscillations for the LIF-sine 

phase model. Examples of ING-dominated phase dynamics (A) and PING-dominated 

phase dynamics (B) as a function of time (arbitrary units) for a network with a LIF-

type E neuron and a sine neuron as I cell. The firing of the E (I) neuron is highlighted 

by red (blue) vertical lines. The time delay from the E neuron to the I neuron is equal 

to that from the I neuron to the E neuron (0.4 units as in Fig. 2-8). C shows the firing 

frequency of the network when the input to the E neuron remains constant. The blue 

and red curves show the network oscillation frequencies for pure ING and pure PING, 

respectively. The green curve shows the frequency of network oscillations for the full 

two-neuron network; dark green indicates full-network PING, and light green for full-

network ING. D is similar to C, except for the fact that the input to the I neuron is 

constant, while the input to the E neuron varies. For the full network, the parameter 

values for the strengths of the couplings are I E   = -0.2, E I   = 0.1, I I  = -0.42,

and   =0.4; input from the E to the I neuron was eliminated to obtain ING by setting 
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but not immediately after arrival of the E spike. The small delay in firing causes a 

delay in arrival of inhibition at the E neuron, a larger impact of the inhibitory input, 

and therefore a delay in the next spike of the E neuron. The frequency of the rhythm 

of the full network is then below that of the pure PING rhythm. The observation that 

the frequency of the full network is higher than the frequency of the pure ING rhythm 

may be understood from the fact that the frequency of pure PING is higher than the 

frequency of pure ING: This implies that during the full-network PING rhythm, the 

E neuron reaches the threshold for firing faster than the I neuron. When the threshold 

for firing of the E neuron is reached, the spike from the E neuron arrives at the I 

neuron in the second half of its phase cycle. This causes a phase advance for the I 

neuron, causing a higher firing rate for the I neuron than for the pure ING case. 

For relatively large inputs to the E neuron (or small inputs to the I neuron), 

the phase model with type II I neuron yields results (Fig. 2-9, C and D) that are 

qualitatively different from the results for the network with Hodgkin-Huxley type II 

cells shown in Fig. 2-7: For the phase model, the frequency of the full network is 

lower than the frequency of PING (see Fig. 2-9, C and D), whereas it is slightly 

higher for the Hodgkin-Huxley-type model (see Fig. 2-7, B and C, left). This 

discrepancy stems from the fact that for the phase model with type II I neuron, the 

synaptic strength E I  from the E to the I neuron for pure PING is assumed to be

larger than that for the full network to generate the “ideal” PING rhythm with 

practically suprathreshold input. However, the synaptic connectivity E I  is the

same for pure PING and for the full network for the Hodgkin-Huxley-type model. 

When E I  is larger for pure PING than for the full network in the phase model, the

I neuron will spike at shorter latencies after a spike by the E neuron for PING than 

for the full network. As a consequence, the firing rate will be higher for PING than 

for the full network. However, in case of the Hodgkin-Huxley-type model where the 

effective strength of outputs from the pyramidal cells to interneurons in PING and 

in the full network is approximately the same, the interval between spiking of the E 

and I cells is approximately the same. Frequency differences between pure PING 

EI = 0. The input to the I and E neurons was 1 I = 0.5 and 1 E = 0.71 for A,

1 I = 0.5 and 1 E = 0.77 for B, 1 E = 0.75 for C, and 1 I = 0.5 for D.
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and full-network PING are a consequence of the additional external inputs to 

interneurons. Because interneurons in the full network receive additional constant 

inputs 0,II  that are not present or negligible in case of pure (reduced network) PING, 

the frequency of the Hodgkin-Huxley full network is higher. 

For small input to the E neuron (or large input to the I neuron), the frequency 

of pure ING oscillations exceeds that of pure PING oscillations (see Fig. 2-9, D and 

C, left and right, respectively). In these cases, the full network generates ING 

oscillations. Again, this is because the I neuron recovers faster from the reset and 

excitation-inhibition than the E neuron does. The frequency of the full network is 

nevertheless lower than that of pure ING. This can be understood as follows. During 

the full-network ING rhythm, the excitatory output from the E neuron arrives at the 

I neuron in an early phase of the I neuron, which causes a phase delay for the type II 

I neuron (see, e.g., Fig. 2-9A). The period of the full network is then longer than the 

period of pure ING, or in other words, the frequency of the full network is lower 

than the frequency of pure ING. Furthermore, when the I neuron spikes, inhibition 

from the I neuron arrives at the E neuron at a phase less than 2  for the full network 

but at the phase 2  of its cycle for pure PING. Because of the shape of the PRC of 

the E neuron, inhibition generated by the I neuron then delays the spiking of the E 

neuron in the full network less than in case of the reduced network generating pure 

PING, and the E neuron in the full network recovers from the inhibition sooner than 

the E neuron in the pure-PING reduced network does. The period of the full network 

is then shorter than the period of PING, i.e. the frequency of the full network exceeds 

that for PING. This agrees with the studies based on the Hodgkin-Huxley-type model 

(see Fig. 2-7). 

2.4 Discussion 

We have investigated the interactions between gamma oscillations generated by ING 

and PING mechanisms, using a model inspired by neural networks in hippocampal 

region CA1. Usually ING oscillations have been studied in networks with input to 

interneurons without drive to pyramidal cells (if present at all in the network). 

Similarly, PING oscillations have usually been studied in networks of mutually 

coupled pyramidal cells and interneurons with external input to the pyramidal cells 

but without external input to the interneurons. In this study we have investigated 
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network oscillations when both ING and PING can in principle be generated because 

of the network connectivity and the external input to both the pyramidal cells and 

the interneurons. We have investigated PING and ING oscillations and oscillations 

in the full network where ING and PING interact. In our study we considered both 

networks with type I and networks with type II interneurons. Our results are derived 

using computer simulations of networks with pyramidal cells and interneurons, as 

well as analytical considerations for simple two-neuron circuits. Analyzing the 

similarities and differences between the dynamics of the two setups allows a better 

understanding of the dynamics. Furthermore, the approach demonstrates that the 

simulation results reflect a general behavior of networks with pyramidal cells and 

interneurons, rather than a particular behavior that is specific for a small niche in 

parameter space used in the computer simulations. 

The results in Figs. 2-2 and 2-3 show that gap-junctional coupling may be 

sufficient to generate ING oscillations in our networks of coupled interneurons, for 

both type I and type II interneurons, well in agreement with previous observations 

(Chow et al., 1998; Galarreta and Hestrin, 1999; Gibson et al., 1999; Chow and 

Kopell, 2000; Galarreta and Hestrin, 2001a, b; Kopell and Ermentrout, 2004; Gibson 

et al., 2005). We find a richer dependence of the oscillations on the inhibitory 

coupling than previously reported: For type I interneurons the frequency of ING 

oscillations decreases when the inhibition increases, while the coherence increases 

(Fig. 2-2, B and C, right). At some value, the ING oscillation frequency abruptly 

increases before the oscillation disappears and reappears for larger values of synaptic 

strength I Ig   (see Fig. 2-2B). Studies on two-neuron systems (see van Vreeswijk et 

al. (1994); Ernst et al. (1995); Ermentrout (1996); Terman et al. (1998); Di Garbo et 

al. (2002); Lewis and Rinzel (2003); Nomura et al. (2003); Bem and Rinzel (2004); 

Jeong and Gutkin (2005); Merriam et al. (2005); Nomura and Aoyagi (2005); Pfeuty 

et al. (2005); Di Garbo et al. (2007a); Di Garbo et al. (2007b); Meyrand et al. (2009); 

Oh and Matveev (2009); Terman et al. (2011); Canavier et al. (2013)) have not 

reported such findings, likely because they did not consider self-inhibition. 

Nevertheless, there are some similarities between our results and their results for 

intermediate values of I Ig  : Lewis and Rinzel (2003) reported bistability for 

interneurons coupled by gap junctions and chemical synapses without self-

inhibition. We also find in two-neuron simulations with self-inhibition and 
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parameters adapted to describe the two neuron populations in our large networks that 

in-phase and antiphase firing coexist for intermediate values of I Ig  , related to the 

region without oscillations (white area) in the full network with I Ig   = 

3 14 10 10    mS/cm2 in Fig. 2-2B. Furthermore, we verified that a system of two 

inhibitory coupled WB neurons with self-inhibition reveals behaviors similar to 

those in larger networks not only for intermediate values of I Ig   (range I Ig   = 

3 14 10 10    mS/cm2 in Fig. 2-2B) but also for small ( I Ig  < 34 10  mS/cm2 in 

Fig. 2-2B) and large ( I Ig  > 110  mS/cm2 in Fig. 2-2B) values of I Ig  , where in-

phase firing between the two neurons is preferred compared to antiphase firing. In 

agreement with the two-neuron systems with self-inhibition, the large networks 

generate synchronized firing activities for small and large values of I Ig  , only when 

I Ig   is too small, e.g. on the order of 410  mS/cm2, the large networks cannot 

generate synchronized firing because of noise. A pair of two inhibitorily-coupled 

Hodgkin-Huxley-type neurons with self-inhibition was also studied by White et al. 

(1998b). For the parameters used in their study, White et al. (1998b) always observe 

in-phase synchronization between the two neurons regardless of the choices of the 

external drive, the strength of the inhibitory chemical synapse, and the decay time 

constant of the synapse. We speculate that the discrepancy (no antiphase observed) 

might be due to the relatively long decay time constant of the synapse used in White 

et al. (1998b). In this context it is interesting to point out a resemblance to the results 

in the work by Achuthan and Canavier (2009). The authors report that full synchrony 

in networks of WB interneurons can fall apart into clusters of neurons that fire in 

antiphase, followed by asynchrony when the strength of synaptic coupling increases 

to large values. In addition, our simulations show that the range of values for I Ig   

where stable oscillations are absent becomes smaller for increasing values of gap-

junctional coupling. This illustrates that synchronization by gap-junctional coupling 

can support oscillations by synaptic coupling, in agreement with previous results by 

Kopell and Ermentrout (2004) as well as Lewis and Rinzel (2003). 

In sec. 2.3 we used the argument that in order to create ING, interneurons 

require a certain minimal amount of inhibition from other interneurons (Wang and 

Buzsáki, 1996) and that the role of inhibition might be to erase the “history” of the 
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interneurons (see also Kopell and Ermentrout (2004)). Since a population of 

uncoupled neurons can be synchronized by a single inhibitory pulse, this has been 

the general view in the research community for a while, and this mechanism is 

thought to underlie ING-like oscillations in the gamma frequency range (30–80 Hz) 

in hippocampus and neocortex. In this context, it is worth noting that Börgers et al. 

(2010) showed that synchronization by an inhibitory pulse may fail for populations 

of classical Hodgkin–Huxley neurons, more likely when the hyperpolarizing 

inhibitory pulse is strong or long-lasting. Recently, Tikidji-Hamburyan et al. (2015) 

demonstrated that synchronization in resonator neurons can be robust even when the 

hyperpolarizing inhibition is strong, as long as the time constant of the inhibitory 

synapse is short enough. Both results are consistent with our study, which finds for 

type II neurons and hyperpolarizing inhibition variations in synchronization and 

coherence as a function of the strength of the inhibitory coupling, cf. Fig. 2-3. 

For networks with type II interneurons, the dependency of ING oscillations 

on I Ig   and GJg  is quantitatively and qualitatively different from that in a network 

with type I interneurons. The first quantitative difference is that ING oscillations 

occur at smaller values of gap-junctional coupling in networks with type II 

interneurons than in networks with type I interneurons when chemical synapses are 

weak or absent (see Figs. 2-2B and 2-3A). Exploratory simulations indicate that 

these and following observations of loss of synchrony are related to coexisting stable 

in-phase and antiphase oscillatory states in corresponding two-neuron systems. 

Another difference is that chemical synapses compete with the gap junctions to 

generate stable ING oscillations for type II neurons (Fig. 2-3) when the chemical 

synaptic coupling strength is small. More specifically, when the synaptic coupling 

increases, the value required for gap-junctional coupling to obtain ING oscillations 

increases. 

The dynamics of PING oscillations has been addressed in many studies. 

Variations in external drive can create or abolish PING rhythms (see Börgers and 

Kopell (2003); Börgers et al. (2005); Börgers and Kopell (2005); Börgers and 

Walker (2013)). The set of parameter values taken from experimental data on CA1 

networks yields stable PING oscillations in our model for both type I and type II 

interneurons. Moreover, the raster plots in Fig. 2-4B and Fig. 2-5A show that for 

sufficiently noisy conditions the population of pyramidal cells reveals a clear gamma 
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rhythm, whereas each pyramidal cell fires once every few cycles, in agreement with 

experimental observations. The explanation for the finding that the firing rate of 

pyramidal cells in biological neural networks is considerably lower than the 

oscillation frequency of PING has not yet been set unambiguously. Various 

explanations have been suggested: Kopell and LeMasson (1994) showed that in a 

network with coupled excitatory and inhibitory neurons, hyperpolarization-activated 

inward currents can help to produce population rhythms in which individual cells 

participate sparsely and randomly. A shift in the activation curve of such a current 

changes the fraction of the cells participating in any given cycle of the population 

rhythm. Conceptually related approaches assume cholinergic modulation, by 

variations in adaptation currents to produce intermittent spiking of pyramidal cells 

in PING rhythms (Kilpatrick and Ermentrout, 2011; Krupa et al., 2014). This 

mechanism is related to the long-lasting afterhyperpolarization observed in 

pyramidal cells (Mann et al., 2005a). Another suggestion was that noise can cause 

low and intermittent spike discharges in pyramidal cells that interact with 

interneurons in PING-like rhythms (see Börgers et al. (2005); Börgers and Kopell 

(2005)). In the present study we have used a model belonging to the second class of 

explanations, using Gaussian white input current noise, to yield firing rates of E cells 

well below the frequency of the PING rhythm. This noise input can be considered 

as the arguably simplest approximation to the effects of random external spike trains 

and as an implementation of other noise sources such as channel noise (Goldwyn 

and Shea-Brown, 2011). 

Since the main focus of our study was on the interaction between ING and 

PING rhythms, we showed the characteristics of ING and PING oscillations 

separately only for some network parameters, such as gap-junctional coupling, 

synaptic coupling strength, connection heterogeneity, and time-dependent input 

noise. A full analysis of ING and PING responses for other network parameters, 

such as variability in the constant drive to I and E cells, would be outside the scope 

of this study. However, it is relevant to mention that ING rhythms are sensitive to 

variations in the constant drive to the I cells and in the number of synaptic inputs. 

Our exploratory simulations show that the straightforward ING rhythm disappears 

when the variability in constant drive becomes too large. This happens more easily 
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in the full than in the reduced network and provides another path of transition 

between ING and PING. 

In our study we assumed connection probabilities between I cells and 

between E and I cells as reported in anatomical and neurophysiological studies (see 

sec. 2.2). This requires some attention, since it is important to realize that connection 

probabilities per se are not useful. What matters more is the number of synaptic 

inputs per cell (see for instance Golomb and Hansel (2000); Tiesinga et al. (2002); 

Börgers and Kopell (2003)). In most computer simulations, the number of neurons 

in the network is much smaller than in the neurophysiological substrate. Previous 

studies (see e.g. Golomb and Hansel (2000); Börgers and Kopell (2003)) have shown 

that a minimum number of synaptic inputs per cell is required to obtain 

synchronization. In particular, synchronous firing becomes unstable when the 

number of inputs per cell is below a threshold value, which is independent of 

network size. If the number of neurons in the simulated network is relatively small, 

the number of synaptic inputs to a cell may become small and may fall below the 

critical value for synchrony (which can be about 100 synaptic inputs or more, see 

Golomb and Hansel (2000)). To compensate for the small network, one has to 

increase the connectivity probabilities to unrealistically high values. Since we 

obtained clear ING and PING oscillations with the connection probabilities from the 

literature (see sec. 2.2), we did not modify the values for connectivity probability 

since unrealistically high values might raise new questions about the proper values 

that should have been used in this study. 

It is a long-standing question to what extent gamma oscillations in networks 

with coupled excitatory and inhibitory neurons are determined by the ING or PING 

mechanism or by mixtures of both, e.g. during spatial visual attention (Buia and 

Tiesinga, 2006; Tiesinga and Sejnowski, 2009). Our results show that for highly 

synchronous oscillations only one mechanism, the one with the higher frequency, 

determines the network oscillation frequency. This is because the higher frequency 

mechanism recruits the vast majority of available neurons in the network, such that 

the other mechanism cannot exist. In sec. 2.3 we analyzed this behavior for networks 

with type I and type II interneurons, using both computer simulations for a network 

with many neurons (Figs. 2-6 and 2-7) and theoretical analyses for simple networks 

with two interacting neurons (Figs. 2-8 and 2-9). 
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While in both types of networks the dominating rhythm will be the one of 

ING or PING that generates the higher frequency, the results of our study also reveal 

a clear difference for the behavior of a network with coupled pyramidal cells and 

interneurons for type I and type II interneurons: For type I interneurons, the 

frequency of network oscillations will be slightly above the higher of the reduced-

network ING and reduced-network PING oscillation frequencies, whereas for type 

II interneurons the frequencies of the network oscillation can be between the 

frequencies for reduced-network ING and reduced-network PING. Figure 2-6C, left, 

for the network with type I interneurons shows that for increasing drive to the 

interneurons, ING suppresses the PING-driven oscillation in the network and takes 

over for larger input values to the interneurons. The opposite occurs for increase of 

drive to the E cells (Fig. 2-6D). In both cases, the oscillation frequency smoothly 

increases. For a network with type II interneurons (Fig. 2-7, B and C, left) the 

transition is more complex with a rapid transition from PING-driven oscillations to 

ING-driven oscillations (green line in Fig. 2-7B, left) or nonmonotonous changes of 

frequency (Fig. 2-7C, left). The more rapid transition from PING to ING in networks 

with type II interneurons is in agreement with results presented by Börgers and 

Walker (2013) for the suppression transition from PING to ING with suppressed E 

neurons. They find that the transition tends to be both narrower and more orderly for 

networks with type II interneurons than when the I cells are of type I. 

Our results suggest possible approaches to experimentally distinguish 

between ING and PING oscillations with active E cells in in vitro studies. In the first 

approach, the external drive to the E cells should be kept constant while the external 

drive 0,II  to I cells is varied. When the oscillations are dominated by PING, the rate 

of change in the frequency of the rhythm will increase when the external drive 0,II  

to the I cells increases (cf. Fig. 2-6C, left, and Fig. 2-7B, left). In contrast, the rate 

of change of the oscillation frequency decreases with increasing 0,II  when the 

oscillations are dominated by ING. Note that the oscillation frequency itself 

increases in both cases with 0,II , so an observation of frequency increase cannot be 

used to distinguish PING and ING. If the PING rhythm dominates the network 

dynamics and the interneurons are of type I, the frequency varies similarly with 

changes in 0,EI . In networks with type II interneurons, the nonmonotonic 
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dependence near the ING-PING transition may be a characteristic hallmark to detect 

the oscillation character: Decrease of the frequency when increasing 0,EI  indicates 

ING; increase indicates PING. If the variation range of the driving current covers 

the transition region itself, it will be marked by a strong change in the E-cell firing 

frequency (cf. also Börgers and Walker (2013)). Some experimental evidence is in 

line with these predictions. For example, Craig and McBain (2015) reported that 

optogenetic silencing of pyramidal cells in CA3, where the dominant form of gamma 

observed in vitro is PING, led to a significant increase in the peak frequency of the 

oscillation, as predicted by our results (cf. the curves in Fig. 2-7C, left, at 

intermediate values of 0,EI ). With the newly developed step-opsins (Prakash et al., 

2012), one could selectively apply currents to neurons from specific populations 

over longer times. Thereby results as in Fig. 2-6, B-D, and Fig. 2-7, A-C, could be 

obtained experimentally. This will allow a test of our simulation results and 

predictions in this chapter, and it may reveal how ING and PING oscillations 

interact. 

2.5 Appendix 

In this appendix we will give a summarized derivation of the oscillation frequency 

of the phase model described in sec. 2.3, with an excitatory and inhibitory neuron. 

The text in this appendix is an extension of the description provided in sec. 2.2: 

further details are given in Chapter 3. 

Integrating Eq. 2-5 in the case of sineiPRC  given in Eq. 2-3 yields the transfer 

function for our sine neuron, 
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Since we are interested in the relative firing of the E and I neurons, the relevant 

variable is the relative phase E I      between the E and I neurons. We derive 

the transition from   to the phase difference    in the next cycle of firing. In 

particular, we derive an analytical expression for the firing frequency for the periodic 

state of the model, i.e. when    equals  . We do so for three conditions for each 

of the two models: 1) for the dynamics of the I neuron without input from the E 

neuron (i.e. 0E I   ) (oscillations of the I neuron in this condition will henceforth 

be referred to as “pure” ING oscillations) and 2) for the dynamics of the E neuron 

with suprathreshold excitation of and feedback from an otherwise (nearly) silent I 

neuron. This condition is referred to as “pure” PING. The third condition refers to 

the dynamics of the full network. 

The firing frequencies of the model for various conditions follow directly 

from the transfer functions, cf. Eq. 2-2 for the LIF neuron in sec. 2.2 and Eq. 2-A1 

for the sine neuron. For pure ING, the expression for the firing frequency of the 

interneuron is given by 
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where LIF is defined in Eq. 2-2, for the LIF-LIF model (model 1) and
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for the LIF-sine model (model 2). 

When we refer to the network oscillations for pure PING and for the full 

network, we refer to periodic firing of the E neuron. For pure PING we assume a 

rather “ideal” rhythm with (effectively) suprathreshold excitation of the I neuron. 

We note that in case of a LIF I neuron, we can have real suprathreshold excitation: 

When the membrane potential exceeds the threshold, the neuron is reset immediately 

(second line in Eq. 2-2). In case of a sine I neuron, the membrane potential can get 

arbitrarily near to the threshold in response to an input spike and can exceed it almost 

immediately after input due to external drive, such that we have effective 
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suprathreshold excitation. The firing frequency of the pure PING network (in 

particular of its E neuron) is given by 

 
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(2-A4) 

both for the LIF-LIF model (model 1) and the LIF-sine model (model 2). In this 

expression 2  corresponds to the time delay of neuronal activity of the E neuron in 

the loop from the E to the I neuron and from the I neuron back to the E neuron. The 

term  ;2 ,LIF I E EH      in Eq. 2-A4 represents the transfer function of the E neuron

(see Eq. 2-2) in response to the inhibition from the interneuron, which arrives at time 

2  after firing of the E neuron. The firing frequency only depends on the transfer 

function for the E neuron since the input to the I neuron is (practically) supra-

threshold, which immediately initiates a spike in the I neuron.  

In the full models, different modes of firing are possible for different 

parameter settings. Below we highlight those occurring for the parameter range 

covered by our figures. 

For the LIF-LIF model, an ING rhythm occurs with frequency ,LIF Fullf  given 

by 

   ,
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where   is defined as E I  . The relevant phase difference   between the E

and I neurons for a periodic ING rhythm in Eq. 2-A5 is given by 
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The rhythm with this relative phase   is found when       . 

However, if the relative phase   is such that      , we get another 

ING rhythm with frequency ,LIF Fullf  given by also Eq. 2-A5 but the closed form of 

  is given by
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 (2-A7) 

Finally, for a PING rhythm where the excitatory input to the I neuron is 

suprathreshold, the firing frequency is described by ,LIF PINGf  (Eq. 2-A4), with   

given by 
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where   is in the range given by  , ;E LIF I E I IH             .

For the LIF-sine model, the firing frequency sine,Fullf  of the occurring ING 

rhythm is given by 
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where   is a solution of the equation 

 

 sine sine

0 ,

,

;

, ; , ;

LIF I E E

E I I I I IH H

H   

    



 

      

     



     
(2-A10) 

subject to the constraint      . For the PING rhythm, the firing 

frequency of the LIF-sine model is given by 
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where   is a solution of the equation 
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and the phase difference   must satisfy  sine , ;E I E I IH         and

2     sine , ;E E I IH         .

                                                                                                                           74 Competition of gamma oscillation mechanisms



3 
3 Analyzing the competition of 
gamma rhythms with delayed 

pulse-coupled oscillators in 
phase representation 

Atthaphon Viriyopase 

Raoul-Martin Memmesheimer 

C.C.A.M. Gielen

Submitted to Physical Review E 

 

                                                                                                                           75



Many processes in biology, physics, chemistry, and engineering have an oscillatory 

character. Regular oscillations on a limit cycle can be described by a single variable, 

the phase, which characterizes the time needed to reach the current state due to free, 

unperturbed dynamics when starting from some specified “reset” point on the limit 

cycle (e.g. Winfree (1967); Izhikevich (2007)). If an oscillator receives inputs in 

form of pulses and an input-induced perturbation from the limit cycle relaxes back 

sufficiently quickly (i.e. before the next input arrives), the system's dynamics can be 

characterized by the phase together with a function telling how the phase changes in 

response to an input pulse: the phase response curve (PRC) or the phase transition 

curve/transfer function (Mirollo and Strogatz, 1990; Izhikevich, 2007; Smeal et al., 

2010). This phase representation has been widely used to investigate network 

dynamics, synchronization and locking phenomena in areas of science as diverse as 

neural circuits (Goel and Ermentrout, 2002; Memmesheimer and Timme, 2006b; 

Jahnke et al., 2008; Viriyopase et al., 2012), technical networks (Nishimura and 

Friedman, 2011; Brandner et al., 2016) and insect behavior (Mirollo and Strogatz, 

1990; Forrest et al., 1998). 

A particularly simple type of oscillators are hybrid dynamical systems whose 

state variable follows some one-dimensional, possibly nonlinear continuous 

dynamics, periodically reaches a threshold and is then reset (Goebel et al., 2012). A 

rich source of such oscillators is the reduction of spiking neurons to integrate-and-

fire type neuron models (Lapicque, 1907; Abbott and Kepler, 1990; Kistler et al., 

1997): Biological neurons possess a complicated branched structure with protrusions 

of different function and many slow and fast degrees of freedom associated to the 

resulting compartments. In integrate-and-fire type neuron models, this spatial 

structure is reduced to a single compartment “point neuron” and the high-

dimensional dynamics are reduced to one degree of freedom, interpreted as the 

membrane potential (Dayan and Abbott, 2001; Izhikevich, 2007). Integrate-and-fire-

type neurons interact with pulses, mimicking spikes/action potentials; these are sent 

when the neuron is reset and are received by postsynaptic neurons often after some 

delay. In this chapter, we consider networks of two integrate-and-fire type neurons 

in phase representation to investigate the competition between mechanisms that are 

widely assumed to underlie oscillations in biological neural networks. Each 

3.1 Introduction
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integrate-and-fire type neuron thereby represents a synchronized population of 

neurons. 

Oscillations in biological neural networks may be important for information 

processing (Buzsáki, 2006; Thut et al., 2012). One hypothesis is that they may 

coordinate precise spike sending of neurons and in particular lead to synchronous 

spiking of neural populations (Buzsáki and Chrobak, 1995). Indeed, experiments 

have found examples of highly synchronous spiking associated with strong 

oscillations (Buzsáki et al., 1992), and the timing of individual spikes relative to a 

global oscillation's phase can carry important information (O'Keefe and Recce, 

1993; Buzsáki and Chrobak, 1995; Arabzadeh et al., 2006; Wang et al., 2007; Luczak 

et al., 2015). Receiving neurons, in turn, can be highly sensitive to coincident input, 

in particular types of synaptic plasticity depend on the timing of spikes (Caporale 

and Dan, 2008). Under high-input conditions the spike-generating mechanism can 

adaptively enhance the sensitivity to synchronous input, while simultaneously 

decreasing the sensitivity to temporally uncorrelated inputs (Azouz and Gray, 2003). 

Furthermore, oscillatory modulation of the membrane potential, for example by 

input from a synchronously firing population of neurons, can provide a precise 

temporal window for the integration of synaptic inputs, favoring inputs arriving 

precisely at certain times (Volgushev et al., 1998; Jacobs et al., 2007). The 

“communication through coherence” hypothesis suggests that this promotes 

information transmission between coherently oscillating neuron populations in 

different brain areas and allows to focus on attended stimuli (Fries, 2005; 

Womelsdorf et al., 2007; Bastos et al., 2015; Fries, 2015). Higher frequency 

oscillations may support propagation and selection of information within areas 

(Jahnke et al., 2014a, b). Oscillation coordinated synchronous spiking across 

different neuron populations may also allow to bind different features of a stimulus 

into a coherent percept (Eckhorn, 1994; Singer and Gray, 1995; Singer, 1999; 

Tallon-Baudry and Bertrand, 1999; Palva et al., 2005) and generally parse and 

separate information into chunks of different length (Lisman and Idiart, 1995; 

Giraud and Poeppel, 2012; Luczak et al., 2015). 

In the current chapter, we will focus on gamma (30 - 80 Hz) oscillations. 

These are prominent oscillations, which have been linked to input selectivity (Fries, 

2005; Börgers and Kopell, 2008), spike-phase encoding (Buzsáki and Chrobak, 
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1995; Hopfield, 1995), feature binding (Singer, 1999), as well as to storage and 

retrieval of information (Lisman and Idiart, 1995; Giraud and Poeppel, 2012). 

Mainly two mechanisms have been proposed to underlie gamma oscillations (Colgin 

and Moser, 2010; Whittington et al., 2011; Buzsáki and Wang, 2012). Both involve 

populations of excitatory pyramidal cells (E cells) and inhibitory interneurons (I 

cells). Tonic excitation of the interneurons, e.g. due to averaging slow excitatory 

input, can give rise to interneuron network gamma (“ING”) (Lytton and Sejnowski, 

1991; Cobb et al., 1995; Whittington et al., 1995; Traub et al., 1996a; Whittington 

et al., 2000b; Bartos et al., 2007): Imagine, by chance at some point more I cells 

spike and send the inhibition to the other I cells. This hinders the latter to spike before 

the spiking neurons have recovered, and recruits them into synchrony such that a 

rhythm emerges (Kopell and Ermentrout, 2004). The I cells undergo a cycle of 

enhanced spiking activity, resulting recurrent inhibition within the population and 

decreased network activity, subsequent recovery from inhibition and enhanced 

spiking. The resulting periodically increased inhibition generates rhythmic spiking 

in connected E cells. Pyramidal-interneuron network gamma (“PING”) is mediated 

by interacting populations of E cells and I cells (Whittington et al., 2000b; Tiesinga 

et al., 2001; Börgers and Kopell, 2003). Imagine, by chance at some point more E 

cells spike. The I cells respond to the increased excitatory input from the E cells by 

increased spiking. The resulting increased inhibitory input in turn hinders spiking in 

the E cells, such that their activity goes down. The lack of excitatory input leads to 

a decrease of I cell activity, such that the E cells can recover from inhibition and 

generate increased spiking, which completes the cycle. In model networks, there can 

be a sharp boundary in parameter space between the regime in which the I cells have 

weakly enough drive for PING, and the ING-regime in which the drive to the I cells 

is so large that they fire without being prompted by the E cells (Börgers and Kopell, 

2005). However, recent studies have shown that this sharp transition may be a 

simplification (Börgers and Walker, 2013) and that there is a range in parameter 

space where ING and PING can co-exist (see Chapter 2.) 

Using computer simulations, Chapter 2 has shown that in the range of 

parameter space where ING and PING may in principle be expected to exist, both 

mechanisms compete such that the mechanism generating the higher oscillation 

frequency “wins”, i.e. the mechanism with the higher frequency determines the 
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frequency of the network oscillation and suppresses the other one. In the current 

chapter, we provide a theoretical analysis of the finding, using simplified networks 

of two oscillating integrate-and-fire type neurons. The simplified system allows to 

analytically study the interactions between ING and PING and to better understand 

their consequences for oscillations in networks of interacting E cells and I cells. The 

analytically tractable model consists of an E neuron, which belongs to the category 

of type I neurons, and an I neuron, which can be either type I or type II; for type I 

neurons an excitatory input always advances the next spike, the PRC is entirely 

positive. In contrast, an excitatory input arriving at a type II neuron can also delay 

the next spike, the PRC is partially negative (Hansel et al., 1995; Izhikevich, 2007). 

Indeed, there is experimental evidence that I cells involved in gamma oscillations 

may belong to the category of type II neurons (Erisir et al., 1999; Tateno et al., 2004; 

Tateno and Robinson, 2007). 

We consider current-based integrate-and-fire neurons, where the currents 

have infinitesimally short temporal duration. The latter implies that the membrane 

potential responds in jump-like manner to the input, the former that the height of the 

jump is independent of the membrane potential. Note that also some conductance-

based and more general models can be cast into this form by a transformation of 

variables (van Vreeswijk, 1996; Timme et al., 2003). For type I neurons, where an 

excitatory jump (towards the membrane potential threshold) always advances the 

phase, a phase representation has been derived in Mirollo and Strogatz (1990) as 

well as Memmesheimer and Timme (2006a). We adopt this phase representation for 

our type I neurons since the linearization of the free dynamics strongly simplifies the 

analytical study of the system and since the phase representation allows for simple 

and fast event based numerical simulations. To be able to study networks with type 

II interneurons likewise, we derive a generalized phase representation, which is 

applicable to neurons of this type. For this, we assume that an infinitesimal phase 

response curve (iPRC) of type II is given, and we derive the corresponding 

membrane potential dynamics as well as the PRC. 

This chapter is structured as follows: Part two is dedicated to the standard 

phase representation of a one-dimensional oscillator, its derivation from the free 

dynamics and its application to the leaky integrate-and-fire (LIF) neuron, the type I 

neuron model that we use in the article. In part three, we derive the phase 

                                                                                                                           79Analyzing competition of gamma oscillation mechanisms



representation of one-dimensional oscillators of type II, where the iPRC can change 

sign. We apply the scheme to derive the “sine-neuron”, the type II neuron model that 

we use throughout the article. Appendix 3.8.1 compares this neuron with the radial 

isochron clock, an oscillator model that has the same iPRC. In part four and 

Appendix 3.8.2, we consider delayed pulse-coupled networks of two model neurons 

and show the ways in which they interact depending on their phase difference. This 

yields a representation of the dynamics in terms of iterative maps whose fixed points 

yield the regular oscillations that we study in part five. Part six is dedicated to the 

competition and coexistence of the ING and PING oscillation mechanisms. We 

conclude with a discussion in part seven, which puts our findings in context to the 

existing literature and our previous larger scale simulation studies in Chapter 2. 

3.2 Phase representation of type I one-dimensional 

oscillators 

3.2.1 General theory 

In the following, we review the standard phase representation of one-dimensional 

oscillators coupled by infinitesimally short pulsed interactions proposed in Mirollo 

and Strogatz (1990) as well as Memmesheimer and Timme (2006b), as needed for 

the purposes of the present article. For a more general derivation and discussion, see 

Memmesheimer and Timme (2006a). 

A one-dimensional neural oscillator is generally characterized by a voltage-

like state variable V . We assume that without arrival of fast inputs, V  is strictly 

increasing up to a spike threshold 0V  . When reaching the threshold at a time t

,   VV t   , V  is reset to zero, i.e.   0V t  , and starts increasing again. These

free dynamics have period T . We note that when the dynamics  V t  are specified 

by an autonomous differential equation (the function specifying the rate of change 

of V  does not depend on time) with unique solutions, trajectories cannot cross or 

overlap, and furthermore the oscillatory behavior forbids fixed points. This implies 

strict monotonicity of V  except where V  is being reset. 
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We now introduce a so-called phase variable ( )t , which increases with 

slope one in absence of fast input, 

( )
1,

d t

dt


 (3-1) 

and has a phase threshold  . When reaching threshold at a time t ,  t   , the 

phase is reset to zero,   0t   . Note that Eq. 3-1 implies that the free period of the

phase is  . Since we want to map  t  to  V t , we choose the free periods 

identically, T  . The strict monotonicity of  V t  then implies that there is a 

strictly monotonic, bijective so-called rise function U , mapping phase   to voltage 

V , i.e. at time t  

    .V t U t (3-2) 

In particular, V and   are related by

( ).V U    (3-3) 

For the LIF neuron, the type I neuron we use in our study, : , ,] ] ] ]VU     

(depending on the neuron model domain and codomain are different). U  can be 

derived directly from free membrane potential dynamics: Consider free voltage 

dynamics V  that start at the reset potential at 0t  , i.e.   00V  . V  can be 

continued for negative times towards   (or a possible lower bound) and for 

positive times to V . The analogous dynamics of   run from   (or a possible 

lower bound) to T   with   00  . We can then define    :U V   , since 

time equals phase for the considered piece of dynamics. 

When   reaches the phase threshold, it is reset and a spike is emitted. After 

a delay time  , the spike arrives at post-synaptic neurons at, say, time at . We assume 

that they respond with an instantaneous jump in their membrane potential. The 

strength   of the coupling from the pre- to the postsynaptic neuron specifies the 
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height of the jump. The corresponding phase jump is computed using a transfer 

function H , 

    , .a at H t    (3-4) 

For convenience, we will omit at  and use   instead of  at . If an input of strength

 is subthreshold, i.e.   VU     , the transfer function is given by 

    1, .H U U     (3-5) 

We may understand this formula as follows: We take   and change to the membrane 

potential domain using U  given in Eq. 3-2. Here we know the impact of an input of 

strength  , it additively changes the membrane potential  U   by  . We compute 

the corresponding phase, i.e. the phase after the input, using 1U  . The composition 

of the steps,   1U U    , maps the phase before the interaction to the phase after

the interaction. We note that  ,H    is strictly monotonically increasing, both as a 

function of   and of  , since U  and thus 1U   are strictly monotonically increasing. 

Since suprathreshold input leads to immediate spiking and reset of the neuron, we 

need to extend the definition of the transfer function to 

 
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V
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for + ,
,

0 for + .
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 
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 ,H    yields the new phase of a neuron when it receives an input   at phase   

(cf. Eq. 3-4). It is thus closely related to the phase response curve  ,PRC    (e.g. 

Smeal et al. (2010)) which yields the phase change induced by an input   received 

at phase  , 

   , , .PRC H       (3-8) 

(3-6) 

(3-7) 
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The infinitesimal phase response curve  iPRC   characterizes the phase shift of a 

neuron around 0  , i.e. an infinitesimal input d  generates an infinitesimal phase 

shift 

  .d iPRC d    (3-9) 

This is, for small   around 0 we have d   and    ,PRC d iPRC      ; 

   ,H iPRC      .  iPRC   and  ,H    are thus related by 

0

( , )
( ) .

H
iPRC



 


 





 (3-10) 

As mentioned above, 1U   is strictly increasing in  . Equations 3-6 and 3-8 then 

imply that so are H  and PRC . Because  ,0PRC   equals 0,  , 0PRC     for 

0  : In other words, the PRC has to be of type I, the formalism is thus applicable

to type I neurons only. 

3.2.2 The LIF neuron in phase representation 

We now derive the phase representation for the type I neuron model employed in 

our study, the LIF neuron (Lapicque, 1907), using the methods described in sec. 

3.2.1 (cf. also Memmesheimer and Timme (2006a)). The dynamics of the membrane 

potential  LIFV t  of the LIF neuron are given by 

 
  ,LIF

LIFV t I
dV t

dt
   (3-11) 

where   represents the inverse of the membrane time constant and where I  captures 

the external driving current. When the membrane potential reaches its threshold V

, the neuron spikes and the membrane potential is reset to zero. A spike arriving at 

time t  at a synaptic connection with strength   induces an instantaneous change in 

the membrane potential, i.e.    LIF LIFV t V t    . We assume that slow external 

inputs add up to a constant current, which drives the neurons continuously over the 

threshold, such that in absence of fast synaptic input the neurons oscillate. This 
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allows us to define the phase     , which increases with slope 1 and is reset 

to zero when it reaches  , where also a spike is emitted. 

The rise function U  linking the phase   of the spiking cycle to the membrane 

potential description V  can be determined as described in sec. 3.2.1 as 

   1 ,LIF LIFU e
I

V 


  (3-12) 

(Mirollo and Strogatz, 1990; Memmesheimer and Timme, 2006a), yielding the 

inverse 

 1 l
1

n .L

F

F IF

I

I

L

L

I
U V

I V 
 




 
 

  (3-13) 

LIFU  is a monotonically increasing function of  . Figure 3-1, B and C, shows the 

rise function LIFU  and its inverse 1
LIFU  , respectively. The phase threshold is 

explicitly given in terms of the voltage threshold V by

 1 ln
1

LIF V

V

I
U

I 
  

    
 




. (3-14) 

LIFU  and 1
LIFU   yield the transfer function of the LIF neuron 

 
 

 

1
for ,

0 for

,

 

;

,

ln LIF V

LIF V

LIF V

Ue
IH

U

 
 

 

 

 
  

  




 




 
 

cf. Eqs. 3-6 and 3-7. It is displayed in Fig. 3-2, B and C. 

Note that the phase   can assume all values within  ,  , where negative

phases correspond to the phase after inhibitory input, which causes hyperpolarization 

of the membrane potential. Since we use the convention that the phase   is reset to 

zero when it reaches the threshold  , at the time of spiking     rather than 0.   

Since 0  , we can set 1   and 1V   after appropriate scaling of time and

(3-15) 

(3-16) 
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voltage, without loss of generality for a single neuron. For simplicity, we assume 

that in networks with two type I neurons the membrane time constants are the same, 

such that the scaling is possible. The driving current I  to the neuron, which gives 

  1LIFU   , follows in a straightforward way from Eq. 3-12, 

.
1

1
I

e



(3-17) 

The rise function Eq. 3-12 and its inverse Eq. 3-13 are then given by 

 

   1

,

ln 1

1

1

1 .

LIF

LI LIF LIFF

e
U

e

U V e V








 



  










Equations 3-15 and 3-16 yield the transfer function 

(3-18) 

(3-19) 

Figure 3-1. Infinitesimal phase response curves iPRC  , rise functions U  , and 

inverse rise functions U 1   for the type I leaky integrate-and-fire neuron and the type

II sine neuron. Upper panels show (A) the iPRC, (B) the rise function, and (C) the inverse 

rise function for the leaky integrate-and-fire neuron. Corresponding data are shown in the 

lower panels (D, E, and F, respectively) for the sine neuron (type II) with the two branches 

of the inverse rise function (blue: k 1 , red: k  2 ). Parameter setting:  1 , V 1, and

 1.
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 
   

 

1 for ln

0 for 

1,
, ;

1,

LIF

LIF

LIF

e

U

e U
H

   
 

 

    
 



 
 



and, according to Eq. 3-10, the iPRC is given by 

   ; 1LIFiPRC e e    , (3-22) 

which is shown in Fig. 3-1A. 

Figure 3-2. Free dynamics  V  and transfer functions  H  for the type I leaky 

integrate-and-fire neuron and the type II sine neuron. Upper panels show (A) the free 

membrane potential dynamics, (B) the transfer function as a function of the coupling strength 

 for different constant values of the phase   at input arrival (blue, red, black, green, cyan:

0, 0.25, 0.5, 0.75  , and 1), and (C) the transfer function as a function of   for different

constant   (blue, red, and black: 0.5, 0   , and 0.5) for the type I LIF neuron. Lower 

panels (D-F) show the corresponding plots for the sine neuron (type II). Parameter setting: 

1  , 1V  , and 1  .

(3-20) 

(3-21) 
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3.3 Phase representation of type II one-dimensional 

oscillators 

3.3.1 General theory 

The phase representation sec. 3.2 is only valid for one-dimensional neurons of type 

I, such as the LIF neuron. In the following we generalize it to neurons of type II, 

whose iPRC has negative and positive parts. We assume that our type II neuron is a 

current-based one-dimensional oscillator, which receives current inputs of 

infinitesimally small temporal extent. These generate jump-like responses in the 

membrane potential, the height of the jump is independent of the voltage. We further 

assume that the membrane dynamics are at first unknown, and the neuron dynamics 

are instead specified by an infinitesimal phase response curve, which specifies the 

phase response to input pulses of infinitesimally small strength. We then derive the 

free membrane dynamics as well as the full phase representation. They turn out to 

follow nearly uniquely from the iPRC for the considered class of oscillator models. 

The domain of the iPRC can be divided into several intervals, in which the 

iPRC has the same sign, positive or negative. As an example, for a type I iPRC that 

is everywhere larger than zero, we have only one interval ] , [  , cf. the LIF 

neuron sec. 3.2.2. For a sine-like type II iPRC, cf. sec. 3.3.2 below, there are two 

subintervals  0, / 2 , ] / 2, [   and the iPRC becomes zero at the ends of the

intervals. We aim to construct rise functions for each subinterval and combine them 

to obtain the transfer function H . 

Restricted to a single interval i , the iPRC is either completely positive or 

negative. A strictly increasing free voltage implies a positive iPRC: a small upward 

jump in the voltage maps the current state to a state, which would be reached in the 

future by free evolution, cf. sec. 3.2. A strictly decreasing free voltage implies a 

negative iPRC, as an upward jump in the voltage maps the current state to an earlier 

state. In turn, a positive/negative iPRC implies monotonically increasing/decreasing 

free voltage dynamics. We note that this implies that a differential equation 

specifying V  must switch between intervals with different signs of the iPRC (cf. 

sec. 3.3.2 below). In interval i  we can define a monotonically increasing/decreasing 
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transfer function iU , which maps phase to voltage, cf. Eq. 3-2. For given  , there 

are sufficiently small inputs   such that the voltage and phase stay within the 

interval even if i  is the interval neighboring the threshold. Then, the transfer 

function is given by Eq. 3-5 and  

 
   ' 1

1,
.i

i i i

H

U U U

 

  




 
 (3-23) 

By setting   to 0 (see Eq. 3-10), we obtain for all   in the interval the slope of 

 iU    

 
 

     '' 1

0

1,
.

1i

ii i i

H
iPRC

UU U U


 


 




  


(3-24) 

Its slope specifies  iU   up to a constant,  iU   is basically the antiderivative 

( )iF   of  1/ iPRC   in interval i , 

 
1

( ) .i d
iP

F
RC

 


   (3-25) 

We obtain  iU   from ( )iF   by specifying the voltage at some phase. When 

approaching an interval boundary where the iPRC has a zero,  iU   and thus the 

voltage will usually tend to  , which we then take as the value assumed by the 

rise function there. We note that the voltage can tend to   even if the phase is not 

in the interval neighboring the threshold. Then the phase does not reach the phase 

threshold and the neuron does not spike. Models with this property may be 

interpreted as having a history dependent voltage spike threshold. We note that our 

formalism allows to construct oscillator models from the iPRC for which  iU 

does not have a reasonable biological interpretation in terms of a voltage. As an 

example, an iPRC that is negative in the interval adjacent to the phase threshold can 

give rise to a  iU   that reaches   as the phase approaches the phase threshold 

and the neuron spikes. 
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If   does not lead the dynamics out of interval i , the transfer function is 

given by 

    1, .i i iH U U     (3-26) 

It is uniquely determined by the iPRC, since adding a constant to iU , i.e. using 

, ( ) ( )
ii c i iU U c    to define iH , does not change it, 

          1 1 1
, ,, .
i ii i c i c i i i i i iH U U U U c c U U                 (3-27) 

We can derive the rise function also in more intuitive manner as follows: An 

input to our neuron models should have the same effect whether we apply it at once 

or in small pieces, which we may imagine to be separated by small temporal 

differences. Indeed, in the membrane potential representation, the input is simply 

additive, so this is certainly satisfied. In phase representation, it should be satisfied 

as well. An input d  arriving at phase   leads in linear approximation to a new 

phase ( )iPRC d       . If the change due to an input piece d  does not depend 

on the total input  , we should get the same change, if the previous phase has been 

reached due to a previous piece   of an input. Denoting the phase before the arrival 

of d  by    , we find that the input d    leads to the phase 

      d iPRC d              . Note that     is the exact non-approximated

phase after receiving  , while the impact of d  is covered up to first order. 

Knowing the impact of an additional input d  up to first order (equivalently the 

impact of an infinitesimal input) allows to write the phase change in form of a 

differential equation, 

 
  .

d
iPRC

d

 
 








(3-28) 

Since the impact of an input piece does not explicitly depend on the previously 

received input, the right-hand side does not explicitly depend on the independent 

variable  , but only via    . In other words, the phase change     is 

characterized by an autonomous ordinary differential equation. In Appendix 3.8.1, 
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we highlight that general phase oscillators do not have this property, using the radial 

isochron clock. Note that Eq. 3-28 can also be derived by discretizing the time-like 

variable   into many small steps of size d , expanding the PRC around zero 

coupling strength by its Taylor series, and taking the limit of 0d  . 

Solving Eq. 3-28 by separation of variables, we obtain 

  0

1
,d d

iPRC

 


  





     (3-29) 

where   and   are the phases before and after arrival of the total subthreshold 

input  . By the first fundamental theorem of calculus, we have    i iF F    

, where again    1 /iF iPRC d    . Since on the other hand

    ,i iU U     (3-30) 

iF  equals iU  up to an additive constant, and iU  is basically the antiderivative of 

 1/ iPRC   in the interval i . 

Equation 3-28 and its property of being autonomous can also be directly 

derived from the fact that idV  (the change of the voltage due to d ) does not 

explicitly (not even implicitly) depend on already applied subthreshold input: While 

receiving an input, iV  may be seen as a function  iV   of the already applied piece 

of input  , with initial value  0i iV V  and   running from 0 to  .  iV   then 

satisfies the autonomous differential equation   / 1idV d    . This implies 

   / 1idU d      and, after application of the chain rule, the differential equation 

    '/ 1 / id d U       . Since for 0   the left-hand side equals  iPRC   and 

the differential equation is autonomous, we have    '1 / iU iPRC   for all phases. 

This implies that     satisfies Eq. 3-28 and it implies Eq. 3-30. 
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Equation 3-28 also allows to directly derive the transfer function and thus 

the complete phase representation from the iPRC. We note that    ,iH      and

rewrite Eq. 3-28 as 

 
  

,
, ,i

i

H
iPRC H

 
 












 (3-31) 

which reduces to Eq. 3-10 for 0  . Solving the differential equation yields the 

transfer function in interval i . 

Phases   where the iPRC is zero are fixed points of the dynamics Eqs. 3-

28 and 3-31. Thus, under weak conditions on Eq. 3-28 (the iPRC is globally 

Lipschitz continuous such that the differential equation has a unique solution 

existing for all  ), such a   will not be changed by input,  , constiH     ; 

furthermore, no finite input will lead beyond the borders of an interval i  where the 

iPRC gets zero. 

3.3.2 The sine neuron in phase representation 

Typical type II neurons show a phase delay in response to excitatory input 0 

arriving at small phases (early in the spiking cycle, shortly after a spike) and a phase 

advance when such input arrives at larger phases (Smeal et al., 2010; Börgers and 

Walker, 2013). With these characteristics in mind, we define our type II neurons as 

“sine-neurons” by an iPRC 

 sine

2
sin ,iPRC


 

 
   

 
 (3-32) 

where  0,   (see Fig. 3-1D) and T   is the period and the phase threshold of

the neuron. We use the sinusoidal function as iPRC of our type II neurons also 

because neuron models such as the Hodgkin-Huxley neuron can undergo Hopf 

bifurcations (Hodgkin and Huxley, 1952; Ermentrout, 1996). The normal form 

oscillator of Hopf bifurcating systems and thus general Hopf bifurcating systems 

with appropriate parameters have near the bifurcation for suitable inputs a sinusoidal 

iPRC Eq. 3-32 (Brown et al., 2004). To facilitate the analytical study of two-neuron 

networks that include type II neurons, we want to apply the phase oscillator 
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formalism to the sine neuron. Since the iPRC changes sign, we use the methodology 

derived in sec. 3.3. 

We split the interval domain  0,  of sineiPRC  into two, i.e.  0, / 2  and

 / 2,  , and treat  sineU   at  0, / 2,    separately. Using Eqs. 3-25 and 3-

32, the rise functions for the first subinterval     sine,1 , 0, / 2U     and for the

second subinterval     sine,2 , / 2,U     are 

   sine,k ln tan / / 2 kU c        , where kc   and  1,2k . From the 

first subinterval, we compute the value of the rise function at 0   and / 2   , 

   sine sine,1
0

0 limU U





   ,    sine sine,1
/2

/ 2 limU U





    . Compatibly,

 sine,2
/2

lim U





  . Finally, at    ,    sine sine,2limU U





    . In

summary, the rise function of the sine neuron is given by 

 

 

sine 1

2

for 0, ,

for = /2,

ln tan for 0, ,
2 2

ln tan for , .
2 2

cU

c






 




 



  

 
      
            
                   

(3-33) 

Figure 3-1, E and F, illustrates the rise function  sineU   and its inverse  1
sineU V

for the sine neuron with 1 2 0c c  . 

Since the membrane potential of our sine neuron satisfies 

    sine sineV t U t , it reaches   in finite time (see Fig. 3-1E), so the spike 

threshold can be set to  . In this respect, the sine neuron resembles the theta or 

quadratic integrate-and-fire model (see, e.g., Izhikevich (2007)). However, the sine 

neuron is not reset to  . When it reaches threshold, the membrane potential 

decreases from   to   half way through the cycle by its intrinsic dynamics. In 

this regime, excitatory input yields a phase delay. After switching to  , the phase 
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progresses and the membrane potential increases gradually to   in a regime where 

excitation yields a phase advance. The dynamical regime thus depends on the last 

“event”. If the last event was sending a spike  sineV   , we are in regime 1k  ,

where excitation delays the phase. If the last event was reaching the reset potential 

 sineV   , we are in regime 2k  , where excitation advances the phase. Note that 

this is an extension to the dynamics of standard integrate-and-fire models, where 

neurons are only in one dynamical regime and reset in infinitesimally short time after 

they reach threshold. In contrast to the “spike response” extension (see Gerstner and 

Kistler (2002)), the dynamical regime in our extension does not only depend on the 

time after a spike that has been sent, but also on the full dynamics of the neuron. A 

stronger asymmetry between spiking and reset or a more rapid onset of spikes can 

be easily achieved by modifying the sinusoidal shape of  sineiPRC   in Eq. 3-32. 

Interestingly, the membrane potential of our sine neuron obeys the simple 

nonlinear differential equation 

     sine sine

sine

2
cosh ( )

dV t dU d t
V t

dt d dt

  



 
     

(3-34) 

Figure 3-3. Vector field of the sine neuron defined by Eqs. 3-34 and 3-35. The solid curves 

represent     sine sinet UV t  for 1 2 0c c  . The vector field switches when sineV  reaches 

  or  .
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in the regime 1k  , i.e. if the previous event was a spike, and it obeys 

 
 sine

sine

2
cosh

dV t
V t

dt

 
   

(3-35) 

in the regime 2k  , i.e. if the previous event was a reset, cf. Fig. 3-3. 

Using Eq. 3-33, we can define an inverse function 1
sineU   with two branches. 

For the branch 1k   the inverse function 1
sineU   maps the state variable  sine ,V   

to the phase  0, / 2   by

 
 1sine

sine sine

2
1 arctan .

V c

U V e




 
 

 
  

 
 (3-36) 

For the branch 2k  , the inverse function 1
sineU   maps the membrane potential sineV

in the range  ,   to  / 2,  ,

 
 sine 2

sine sine

2
1 arctan .

V c

U V e




 
 

 
   

 
 (3-37) 

Using these branches, we can now construct the transfer function  sineH  . For this, 

we first consider the membrane potential dynamics and note that an input   cannot 

bring sineV  above   or below  . As a consequence, inputs do not alter the 

dynamical regime k . To compute the phase after an input we therefore have to use 

Eq. 3-36 if the original phase   is within  0, / 2  (regime 1k  ) and Eq. 3-37 if

 / 2,    (regime 2). Further taking into account that the transfer function is the

identity for any input at  0, / 2,    (the zeros of the PRC, see sec. 3.3), we 

arrive at  sine ,H  

                                                                                                                           94 Analyzing competition of gamma oscillation mechanisms



 

    

    
 

 

 

 

1
sine,1 sine

1
sine sine,2 sine

2

2

for ,

, for

0, 2

2,

2,

,

for 0, ,

arctan tan for ,

arctan tan for ,

f

0

or 0, .

, 2

2,

2,

U

U

e

e

U

H U





  

    

 


 




 



 











   


    


  

    
    

   


   
        

  
   




Figure 3-2, E and F, shows the transfer functions as a function of synaptic 

increment   and as a function of phase  , respectively. The panels illustrate in 

particular that   can assume values in  0, , that the neuron cannot be excited

suprathresholdly and that inputs do not give rise to transitions between the regimes 

1k   and 2k  . We note that in phase representation, we do not have to keep track 

of the type of the last event to execute the dynamical evolution since this information 

is contained in the current phase. 

3.4 Interaction scenarios, iteration map and phase-

locking equations 

3.4.1 Interaction scenarios 

In this section, we start to consider networks of two neurons, an excitatory 

(henceforth E) and an inhibitory (henceforth I) neuron (cf. Fig. 3-4A). They 

represent two synchronized coupled neuron populations, an excitatory and an 

inhibitory population, by one representative neuron for each population. The 

couplings between the neuron populations are accounted for by couplings between 

the two representative neurons. We aim at setting up an event-based iteration map in 

the phase variables, which fully describes the network dynamics. Its fixed points and 

periodic orbits correspond to periodic oscillations in the phase dynamics (cf., e.g., 

Ermentrout and Kopell (1998)). To derive the map, we consider the phase difference 

(3-38) 

(3-39) 
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Figure 3-4. Network of two neurons and illustrations of the five possible scenarios for 

interactions between them. A displays the neurons (E: excitatory neuron, I: inhibitory 

neuron) and the couplings between them; their responses to inputs are governed by  ,EH    

and  ,IH   , respectively. B shows the phase dynamics for E (red) and I  (blue) in 

scenarios 1-5. The scenarios are arranged according to the initial value of the phase difference 

  (Eq. 3-42), starting from large magnitude negative values.

between the phases of the two neurons and describe how they change when the 

neurons send and receive spikes. We assume that the E and I neurons spike at most 

once per cycle in periodic oscillations and that the inhibition always induces a phase 
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delay in the E neuron. We will then argue which fixed points or periodic orbits in 

the dynamics correspond to ING and PING rhythms, and explore when they are 

generated and how they give way to each other. 

We incorporate couplings from E to I (strength E I  ), from I to E ( I E  ),

and self-inhibition from I to itself ( I I  ). For simplicity, we do not consider self-

excitation from E to itself, as it is not critically involved in PING or ING rhythms. 

We choose the conduction delay between sending and receiving a spike to be   for 

all existing connections to reduce the number of free parameters. Furthermore, we 

assume that the neurons do not oscillate with too high frequencies (intrinsic period 

is 2  or longer to ensure that a spike does not arrive in the next cycle). Due to the 

finite delay  , spikes of the two neurons can overlap in the sense that one neuron 

spikes, while a spike sent by the other neuron has not yet arrived. To deal with this, 

we setup our iteration map in terms of non-overlapping interaction scenarios where 

one or both neurons may send spikes, rather than in terms of single spike sending 

and receiving. This allows us to define pieces of an event-based iteration map G , 

which acts on a single variable  , a remaining phase difference of the two neurons 

taking into account the differences in intrinsic period. 

Under the assumptions made, there are five oscillation-relevant interaction 

scenarios in which each neuron spikes at most once, cf. the five panels in Fig. 3-4B. 

Each interaction scenario gives rise to an iterative map G , which maps the 

remaining phase difference   before the scenario to the remaining phase 

difference    thereafter. In scenario 1, the I neuron spikes and the spike is received 

before any other event, in particular before the E neuron spikes. Similarly, in 

scenario 5 the E neuron spikes and the spike is received before any other event, in 

particular before the I neuron spikes. In regular rhythms, scenario 1 must be followed 

by scenario 5 and vice versa. We note that if scenario 1 follows shortly after scenario 

5, the corresponding rhythm is PING, since the E input nearly generated the spiking 

of the I neuron. In scenario 2 the I neuron spikes, followed by the E neuron before 

the inhibitory input from the I neuron arrives and can hinder it. Since the I neuron 

spikes due to its own drive and the E input arrives shortly thereafter, this scenario 

gives rise to an ING rhythm. In scenario 3, the E neuron spikes, followed by the I 

neuron, which spikes before the spike from the E neuron arrives. Although the 
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sequence of spiking of the E and I neurons is reminiscent of PING, this scenario also 

gives rise to an ING rhythm, since the I neuron does not spike due to excitatory input 

from the E neuron, but again due to its own drive, while the E input arrives shortly 

thereafter. In scenario 4, again first the E neuron spikes, followed by the I neuron. 

However, the I neuron now spikes due to the excitatory input from the E neuron, 

which lets the I neuron exceed the spike threshold. This scenario is thus typical for 

PING. To explain the derivation of the equations that describe the dynamics of 

spiking of the pair of neurons in each of the scenarios, in the following we give a 

derivation for scenario 2 (ING) and scenario 4 (PING), while the other scenarios are 

explained in detail in Appendix 3.8.2. 

3.4.2 Phase dynamics 

We will now consider the interaction scenarios and their impact on the phases in 

detail. To identify quantities related to the E and I neurons, we endow them with an 

index E  and I , in particular E and E are phase and phase threshold of the E

neuron, and I  and I are phase and phase threshold of the I neuron. To study

neurons with different intrinsic periods  E I   , we introduce new, shifted phase

variables E and I , which describe the remaining phase of the E and I neurons to

the threshold, 

: ,

: .

E E E

I I I

 

 





 

The neurons spike at phases 0E   and 0I  , they are reset to E  and I .

The remaining times to the next spiking generated by purely intrinsic dynamics (no 

synaptic inputs) are given by 0E   and 0I  . We denote the differences 

between the new phase variables, the standard phase variables, and the phase 

thresholds (periods) of the neurons by 

,

.

:

:

,:

E I

E I

E I

  

  

  

 

  





 

Equations 3-40 and 3-41 yield the relation 

(3-40) 

(3-41) 

(3-42) 

(3-43) 

(3-44) 
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.      (3-45) 

We will now derive the transition from   before to    after the sequence of 

interactions for scenarios 2 and 4. For an analysis of the other scenarios, see 

Appendix 3.8.2. Without loss of generality, we assume 0t   at the start of each 

scenario. 

In scenario 2 the I neuron spikes, followed by the E neuron within time interval  , 

cf. Fig. 3-4B. This happens if before the interaction 

0.      (3-46) 

The phase I  of the I neuron (henceforth “I phase”) and the phase E of the E

neuron (henceforth “E phase”) at the start of the interaction sequence at 0t   are 

0,

.

I

E



 



 

The interaction sequence consists of the sending and receiving of an I and an E spike. 

First, at 0t  , the I neuron sends a spike and resets, then the E neuron spikes and 

resets, before the I spike arrives. The reset of the I neuron implies that I   equals   

when it receives its own (self-inhibition) spike, cf. Eq. 3-1. Since the E spike has a 

conduction delay   as well, but was sent the time duration E     after the I 

spike, the E spike arrives at the I neuron at    , i.e.   after the self-inhibitory 

spike from the I neuron. The I phase thus proceeds for   after the processing of 

the self-inhibitory I spike before the E spike arrives. This arrival also marks the end 

of the interaction sequence. Taken together, the phase I  directly after the 

interaction sequence (i.e. directly after receiving the E spike) reads with the 

interaction function IH  of the I neuron 

  , ,I I I I I E IH H       , (3-49) 

thus 

(3-47) 

(3-48) 

3.4.3 Scenario 2 (An example of ING) 
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  , ,I I I I I I I II EH H             . (3-50) 

We may assume   , ,I I I I E I IH H         , i.e. the I neuron does not spike

upon arrival of the E spike, since a regular oscillation where scenario 2 begins again 

at its very end would require the E neuron to have intrinsic period smaller or equal 

to 2 , which we excluded (the duration of scenario 2 is at most 2  and the E neuron 

needs to reach its original phase again after its reset despite the inhibitory input). The 

E neuron is reset at t    after the time of the I neuron's spike at 0.t   It 

therefore has the phase           when the input from the I neuron 

arrives. The I spike changes the phase of the E neuron to  ,E I EH      , where 

EH  is the transfer function of the E neuron. Thereafter, the E neuron evolves freely 

(since 0E E   ) for a duration   until the end of the interaction sequence at

 t  


   . The phase E  and the remaining phase E  then read 

 

 

, ,

, .

E E I E

E E E E I E E

H

H

    

     





   

    



   



 

Taken together, 

    
 :

, , , .E I E I I I I E I

G

HH H



          

 

          


 (3-53) 

Our considerations resulted in an iteration map G , which maps the remaining phase 

difference before the interaction sequence to the remaining phase difference 

thereafter. 

Scenario 2 can repeat to give rise to regular oscillations (synchronization 

between neurons of order 1:1 (Pikovsky et al., 2001)). The underlying phase 

dynamics then satisfy 

  .G      (3-54) 

Solving for   allows to determine the dynamics. If the E and I neurons are both 

LIF neurons, Eqs. 3-54 and 3-20 yield 

(3-51) 

(3-52) 
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  




 







  




    
 





  

 


 



      
 

  





 (3-55) 

where  ,   is defined as 

   1, : .e    (3-56) 

If the I neuron is the sine neuron, Eq. 3-39 has to be inserted for IH  in Eq. 3-54. We 

note that the I spike arrives at the I neuron at the phase   , which is in the first 

branch   0, / 2    , i.e. the input advances the phase and the first line of Eq.

3-39 will be used to write out  ,I I IH    . However, the E spike can arrive at a 

phase of the I neuron either in the first branch  0, / 2  or in the second branch

 / 2,  , so it either delays or advances the phase and the first or second line of

Eq. 3-39 apply to the outer IH  in   , ,I I I I E IH H       , depending on the 

value of  ,I I IH      .

If a (real-valued) solution   of Eq. 3-54 exists, the network can generate 

a regular oscillation characterized by repeated occurrence of scenario 2. The 

oscillation frequency can be determined directly from the dynamics of the E neuron 

in terms of  . We start at the time when the E neuron spikes and is reset. After a 

time duration     the inhibitory input from the I neuron arrives, cf. Eqs. 3-51 

and 3-52 and the paragraph preceding them. The phase of the E neuron is changed 

to  , ;LIF I E EH       and it takes the E neuron the time duration of

 ;,E LIF I E EH         to spike again and complete the period. Summing the

two durations up yields the oscillation period and the frequency of scenario 2, 
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   
1
., ;E LIF I E Ef H     



          (3-57) 

In scenario 4, the E neuron spikes first, followed by the I neuron, which spikes due 

to suprathreshold excitatory input from the E neuron (cf. Fig. 3-4B). We note that 

the scenario does not occur if the I neuron is a sine neuron because sine neurons 

cannot be suprathresholdly excited as the required input strength would be infinite 

(cf. derivation of Eqs. 3-38 and 3-39). In scenario 4 the E neuron spikes at 0t  , so 

the I and E phases at the start of the interaction sequence, at 0t  , read 

For scenario 4,   must satisfy 

 , .I I I E IH          (3-60) 

The left-hand side inequality guarantees that the I neuron does not spike before the 

E spike arrives. The right-hand side inequality guarantees that I  at the time of 

arrival of the excitatory input from the E neuron is sufficiently near the threshold to 

allow for suprathreshold excitation: The E spike arrives at time t   where the I 

neuron has phase I      equivalent to ΘI I      . The condition that 

the received input is suprathreshold is then 

    , .I I E I I I V IU U            (3-61) 

We assume that  IU   is strictly increasing in the relevant range near the threshold, 

such that 1
IU
  exists and is strictly increasing. We can then apply it to Eq. 3-61 

maintaining the direction of the inequality: 

Isolating   yields 

(3-58) 

(3-59) 

(3-62) 

,

0.

I

E





 



  
 ,

,

.

I I I I EI

I I EI

U 1 U

H



 

      



3.4.4 Scenario 4 (An example of PING) 

                                                                                                                           102 Analyzing competition of gamma oscillation mechanisms



( ),,I I I E IH          (3-63) 

which is the right-hand side inequality of Eq. 3-60. 

The scenario now unfolds as follows: The E neuron sends its spike and resets 

and the I neuron receives the E spike at t  . The excitatory input brings the I 

neuron suprathreshold, such that it spikes and resets subsequently. At 2t   both 

neurons receive the I spike. Due to the suprathreshold excitation the precise value of 

the I phase when the E spike arrives is irrelevant for the final phase. The I phase 

when it receives the self-inhibitory I spike at the end of the interaction sequence is 

always  , so 

( , ),

) .( ,

I I I I

I I I I I

H

H

  

  






 





Since the E neuron was reset at 0t   and evolves freely until it receives the I spike 

at 2t  , 

(2 , ),

(2 , ) .

E E I E

E E I E E

H

H

  

  












The phase difference    after the interaction sequence thus reads 

 :

(2 , ) ( , ) .E I E I I I

G

H H



    



 



    


 (3-68)

Scenario 4 can also repeat to give rise to regular oscillations. The underlying 

phase dynamics then satisfy 

  .G      (3-69) 

Solving for   allows to determine the dynamics. Equation 3-69 yields 

 
 2

,
ln .

,

I I I

E I E

e

e
















   
    

    
 (3-70) 

(3-64) 

(3-65) 

(3-66) 

(3-67) 
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(both neurons are LIF neurons for the scenario to occur). If a real-valued solution 

  exists, the network can generate the oscillation. The oscillation period can be

determined directly from the dynamics of the E neuron. At the beginning of the

scenario, the E neuron sends a spike and is reset. The I spike arrives after a duration

2  at the E neuron. The E phase at this point is 2 , which changes to  2 ,E I EH   

. The E neuron will thus spike next after a duration of  2 ,E E I EH     . Summing 

the two durations up yields the oscillation period and the frequency 

 
1

2 2 , .E E I Ef H  


       (3-71) 

(3-72) 

where   is defined in Eq. 3-56. We note that due to the suprathreshold excitation of 

the I neuron, the frequency is independent of   in contrast to oscillations 

generated by other scenarios. 

3.5 Regular oscillations 

In this section we consider the regular oscillations generated by the different 

scenarios. In a comparably straightforward ING condition, the constant drive to the 

I neuron largely exceeds the constant drive to the E neuron. This gives rise to a 

periodic spike sequence by the I neuron, which completely inhibits spiking of the E 

neuron. This type of ING rhythm has been described extensively in the literature (cf., 

e.g., Börgers and Kopell (2003); Kopell and Ermentrout (2004); Börgers and Kopell

(2005)). Alternatively, we can consider networks without E I  coupling, they

generate the same I dynamics even if the E neuron continues to spike. Similarly well

studied (cf., e.g., Börgers and Kopell (2003); Börgers et al. (2005); Börgers and

Kopell (2005)) is the straightforward PING condition, where a relatively large drive

to the E neuron causes it to spike periodically. These spikes generate spikes in the I

neuron, which has small drive and would remain rather inactive without the input

from the E neuron. In this chapter, we will focus on situations where ING and PING

are in competition since both the E and I neurons have comparably strong drives and

  
1

2 - ,E IEe-2


Inserting Eq. 3-20 yields 

f  E  ln   ,  
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all relevant couplings are present. However, we will consider the abovementioned 

straightforward “pure ING” and “pure PING” rhythms for comparison. As described 

in sec. 3.4 and Appendix 3.8.2, there are 5 possible scenarios for relative spiking of 

the E and I neurons. These can – alone or in combination – give rise to regular 

oscillations, more precisely to ING and PING rhythms. Scenarios 2 and 3, in which 

the I neuron spikes due to its intrinsic dynamics before the E input arrives, generate 

an ING rhythm. Scenario 4, in which the spike of the I neuron is generated by the 

input from the E neuron instantaneously upon its arrival, generates a PING rhythm. 

An oscillation generated by scenarios 5 and 1 in alternation should be interpreted as 

a PING rhythm, if the spike of the I neuron is generated shortly after the input of the 

E neuron, i.e. if the input from the E neuron basically generates the I spike. If the I 

spike occurs with larger distance from the E spike, the character of the oscillation is 

less clear. The I spike cannot shortly precede the E spike due to its inhibitory effect. 

We denote all scenario 5, 1-generated oscillations as PING in the following. 

3.5.1 Global iteration map 

To analytically identify regular oscillations, we gather the local iteration maps 

derived in sec. 3.4 and Appendix 3.8.2 into a global, piecewise defined iteration map 

G , which maps the remaining phase difference   to the remaining phase 

difference after the next occurring interaction scenario. The global iteration map 

consists of several sections, since the next interaction scenario and thus the 

applicable map depends on the current phase difference (Fig. 3-4B). Equations 3-

A12, 3-46, 3-A24, 3-60, and 3-A35 specify the ranges in which the different 

scenarios occur and thus the domains of the individual map segments constituting 

G . Equations 3-A21, 3-53, 3-A31, 3-68 and 3-A43 give the corresponding maps. 

The regular oscillations are reflected by fixed points of G  (scenarios 2,3, and 4) and 
2G  (scenarios 5,1 in alternation). 

3.5.2 Phased locked oscillations in networks with type I E and I neurons 

Figure 3-5A shows an example of an ING rhythm (scenario 2) in a network of two 

type I LIF neurons in standard phase representation (cf. sec. 3.2). In this scenario, 

the I neuron (blue trace) spikes just before spiking of the E neuron (red trace) such 

that the inhibition from the I neuron to the E neuron arrives after spiking of the E 

neuron. Figure 3-5C shows the global iteration map G  for the same network 
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parameters. The panel displays the segments of the graph of G  in different colors to 

highlight the five scenarios (see Fig. 3-4B for the color labels). The relative phases 

  that satisfy  G      are fixed points, which may be stable (if the absolute

value of the slope of the iteration map at the fixed point is less than 1) or unstable (if 

the absolute value of the slope is larger than 1). The only stable fixed point for G  in 

Fig. 3-5C corresponds to the intersection of the magenta segment (scenario 2) with 

the diagonal (black, slope 1) near 0.2   . Figure 3-5E shows the iteration map 

after two periods, i.e.     2 : GG G    . The thick segment coloring of the

curve indicates the scenarios occurring in the first iteration (same as in panel C), 

while the thin curves highlight the scenarios in the second iteration. In both maps 

Fig. 3-5, C and E, the fixed point near 0.2    (repeated scenario 2) is the only 

one. It is stable and corresponds to the ING rhythm displayed in panel A. This fixed 

point is robust against variations in the drive to the E and I neurons and to changes 

in parameter values for synaptic connectivity. 

Figure 3-5B shows an example of a PING rhythm (scenario 4) in a network 

with two type I LIF neurons in standard phase representation. The spike from the E 

neuron causes excitation of the I neuron above its spiking threshold, followed by a 

spike and reset of the I neuron. The global iteration map G  is shown in Fig. 3-5D. 

There is a fixed point near 0.6   where the red segment (scenario 4) crosses the 

diagonal. The segment is horizontal (slope zero). This means that the entire range of 

initial phase differences   between roughly 0.4 and 0.9 is mapped to the same 

value  G   near 0.6. This can also be directly seen from Eq. 3-68: The right-hand 

side is independent of  , such that the piece of iteration map maps any initial 

relative phase in its domain to the same value. The double iteration map is shown in 

Fig. 3-5F. Both for the first and second iterations, we find the same stable fixed 

point. 

3.5.3 Phased locked oscillations in networks with type I E and type II I 

neurons 

We observe for the considered networks with an excitatory type I LIF neuron and an 
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Figure 3-5. ING and PING dynamics in a network of two type I (leaky integrate-and-

fire) neurons. A, ING dynamics (scenario 2) in phase representation. The panel shows E

(red) and I  (blue) versus time. B, PING dynamics (scenario 4) with suprathreshold 

excitation. C, Iteration map G  with network parameters as in A. Pieces of the map 

originating from different scenarios are highlighted by different colors (scenario 1: yellow, 

2: magenta, 3: cyan, 4: red, 5: green, cf. frame colors in Fig. 3-4B). There is a stable fixed 

point near 0.2    corresponding to the ING rhythm in A. D, Iteration map G  with 

network parameters as in B. The stable fixed point near 0.7   corresponds to the PING 

rhythm in B. E and F show the double iteration maps 2G , where the thick coloring of the 

segments indicates the first iteration also appearing in C and D and the thin coloring indicates 

the second. Parameter settings: 0.5I E    , 0.1E I   , 1.0I I    , and 0.4  ; the 
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drive to the E and I neurons is 01 495/ .I   and 3/ .41 0E   for A and 1/ 0.495I   and 

2/ .51 0E   for B. 

inhibitory type II sine neuron, scenario 2 does not give rise to stable oscillations; the 

absolute value of the slope of the iteration map at the fixed point is greater than 1, 

cf. Fig. 3-6C near 0.2    and Fig. 3-6D near 0.3   . This is a difference 

to our networks with two type I LIF neurons. Another difference is that for type II I 

neuron scenario 4 does not occur, cf. sec. 3.4.4. We therefore illustrate the dynamics 

of a network with an excitatory type I LIF neuron and an inhibitory type II sine 

neuron for other scenarios than for the network with two type I LIF neurons. We 

choose a scenario 3 ING rhythm and a scenario-5,1 PING rhythm. 

Figure 3-6A shows the ING dynamics generated by scenario 3: the E neuron 

spikes just before spiking of the I spike. However, as argued above, this scenario 

does not belong to the class of PING, because spiking of the I neuron is not triggered 

by the E spike. The results for the iteration map are illustrated in Fig. 3-6C, which 

shows a stable fixed point near 0.3   for scenario 3 (intersection of the cyan 

curve with the diagonal). The results for the double iteration map are shown in Fig. 

3-6E with the same stable fixed point near 0.3   (repeated scenario 3). 

Figure 3-6B shows phase dynamics that are generated by alternation of 

scenarios 5 and 1. We can clearly classify this pattern as PING, since excitation from 

the E neuron brings the I neuron close to the spiking threshold, which results in 

spiking of the I neuron shortly thereafter. Figure 3-6D depicts the first iteration map 

G , which does not have a stable fixed point: The fixed point near 0.3    is 

unstable. In contrast, the double iteration map 2G  (Fig. 3-6F) has two stable fixed 

points, reflecting the period 2 orbit that generates the PING oscillation. They are 

located near 0.6   and 0.7    and correspond to alternating scenarios 5 and 

1 and the phase dynamics Fig. 3-6B. 

3.6 PING-ING interactions in networks of two oscillators 

We saw in the previous section that for suitable parameter values, our networks can 

generate either ING or PING rhythms. In the following, we analyze how PING and 
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Figure 3-6. ING and PING dynamics in a network of a type I (leaky integrate-and-fire) 

E neuron and a type II (sine) I neuron. A and B, ING (scenario 3) and PING (combination 

of scenarios 5 and 1) dynamics in phase representation, respectively. C and D, Iteration maps 

G  for the same network parameters as used in A and B, respectively. The stable fixed point 

near 0.3   in C corresponds to the ING rhythm in A. The other fixed point near 

0.2    is unstable and corresponds to an unstable scenario 2 ING rhythm. (D) There is

no fixed point of the first iteration map G  corresponding to the PING dynamics shown in 

panel B, since they consist of a sequence of two scenarios and thus appear as a period 2 orbit 

in the iterations of G . The unstable fixed point near 0.3    corresponds to an unstable 

scenario 2 ING rhythm. Pieces of the map generated by different scenarios are highlighted 

by different colors as in Fig. 3-5, C and D. E and F, The second iterates 2G . The period 2 

orbit of the PING rhythm in B is reflected by two fixed points in the double iteration map F, 

in the domains of scenarios 1 and 5. Parameter settings: 0.2I E    , 0.5E I   ,
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0.42I I    , and 0.4  ; the drive to the I and E neurons is 1/ 0.5I   and 1/ 0.63E   

for A and 1/ 0.5I   and 1/ 0.85E   for B. 

ING rhythms compete to generate the network oscillation and how networks may 

switch from one rhythm to another when the values of the external drives change. 

We use “pure ING” and “pure PING” rhythms generated by reduced two-neuron 

networks, which do not allow for the generation of the other rhythm as reference. 

This allows to better understand the competition of PING and ING rhythms in the 

full network, which could in principle generate both rhythms. We express the 

external drive given to each neuron both for the LIF and sine neuron by the inverse 

of the period, i.e. by 1 / E and 1 / I , since – in contrast to the LIF neuron – the

sine neuron does not have an explicit external driving current variable. 

3.6.1 Pure PING and pure ING networks 

In "pure ING" networks the only excitatory input to the I neuron is the external drive, 

the synaptic strength of the projection from the E to the I neurons is set to zero (cf. 

also Chapter 2). The frequency of the pure ING rhythm is determined by the I drive 

and the self-inhibitory input with strength I I  arriving a time duration   after reset

of the I neuron; the frequency is explicitly given by Eq. 3-A23. 

In "pure PING" networks, the I drive is sufficiently small such that the I 

neuron has a much lower intrinsic period than the E neuron. The circuit has a 

sufficiently strong projection from the E to the I neuron, such that each E spike brings 

the membrane potential of the I neuron above the threshold and elicits a spike just 

as in scenario 4. The frequency of the pure PING rhythm is determined by the E 

drive and the inhibitory input I E  that arrives after an interval 2  after reset of the

E neuron. The frequency is explicitly given by Eq. 3-72. 

3.6.2 Analysis of PING-ING interactions in networks with type I E and 

I neurons 

We will first study interactions between PING and ING rhythms for networks with 

two type I neurons. The drives to the I neuron (I drive expressed by 1 / I ) and to

the E neuron (E drive expressed by 1 / E ) vary, see Fig. 3-7. The blue surface in
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Fig. 3-7A shows the frequency of rhythmic spiking of the I neuron in pure ING 

networks. The red surface in Fig. 3-7A represents the frequency of rhythmic spiking 

of the E neuron in pure PING networks as a function of the E drive. The green surface 

in Fig. 3-7A shows the frequency of rhythmic spiking for the full network 

schematically drawn in Fig. 3-4A, as a function of the E and the I drives. The 

frequencies of the pure ING (blue surface) and of the full network (green surface) 

are not shown for some combinations of 1 / I and 1 / E ; these combinations do

not elicit rhythmic spiking for any of the five scenarios, including alternation of 

scenarios 5 and 1 for the displayed network type. The intersection of the surfaces in 

Fig. 3-7A with a plane of constant E drive (1 /  0.495E  ) is shown in Fig. 3-7B 

and with a plane of constant I drive (1 /  0.495I  ) in Fig. 3-7C. 

Figure 3-7B shows that for the range of smaller I drive 1 / I the rhythm of

the full network is PING (scenario 4, dark green curve in Fig. 3-7B). The spiking 

pattern of the rhythm is the same as the spiking pattern of the pure PING rhythm, cf. 

Fig. 3-5B for an example; the red curve (pure PING) and the green curve (PING for 

the full network) in Fig. 3-7B thus overlap. The rhythm of the full network is PING, 

because the E neuron recovers from the inhibition sooner than the I neuron does and 

the E spike elicits spiking of the I neuron at its arrival. This also implies that when 

the full network generates PING, its frequency is higher than the frequency of full 

network ING; otherwise the I neuron will spike by its own dynamics and 

consequently the full network generates ING. Equation 3-72 shows that the 

frequency of this PING rhythm (and the PING fixed point of the iteration map) does 

not depend on the I drive 1 / I as long as it is sufficiently small. When the I drive

increases, there is a bifurcation and a (stable) scenario-3 ING solution appears near 

5/ . 21 0I   (light green curve): This ING solution lasts till near 5/ . 61 0I  , after 

which it switches to (stable) scenario-2 ING. The frequency of full-network ING 

increases with 1 / I . It stays higher than the frequency of pure ING because the

nonzero E I  provides an additional excitatory input to the I neuron and increases

the frequency of the rhythm. Interestingly, we find coexistence of PING and ING 

and bistability, cf. the range 1 /0. . 352 0 5I   in Fig. 3-7B. As 1 / I increases

further, the PING rhythm (dark green curve) vanishes. If the network was oscillating 
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in PING mode before, it will change to ING rhythm and the oscillation frequency 

will increase in jump-like manner. 

The reason for the vanishing of the PING mode is as follows: With 

increasing I drive, I  (the phase distance to the threshold I ) at arrival of the E

spike becomes smaller until the I neuron reaches I by its intrinsic dynamics at E

spike arrival. Beyond this point, there is no PING rhythm, as the I neuron spikes 

before E spike arrival. The bifurcation point is at the crossing of the pure PING (red) 

and the pure ING curves (blue): Since the I neuron reaches threshold from its own 

drive simultaneously with the E spike arrival, the value of E I  becomes irrelevant.

At this bifurcation point, any input will generate suprathreshold excitation and be 

completely canceled due to the I neuron's reset such that also the oscillation 

frequencies of pure PING (large E I  ) and pure ING ( 0E I   ) agree.

Taken together, we observe that the PING frequency is insensitive to 

changes in 1 / I , while the ING frequency increases with the drive. The PING 

rhythm vanishes when its frequency drops below that of the pure ING rhythm and 

the ING rhythm vanishes when its frequency drops below that of the PING rhythm. 

Since the ING rhythm of the full network has higher frequency than the pure ING 

rhythm, we have a region of coexistence. When the full network generates ING, its 

frequency is always higher than the frequency of full network PING. This is due to 

the fact that, in ING, the inhibition arrives at the E phase less than 2 .We note that 

the slope of the light green curve is larger than the slope of the dark green curve. In 

other words, the ING frequency is more sensitive to a change of the I drive 1 / I  

than the insensitive PING frequency. 

Figure 3-7C shows the frequency of rhythms as we fix 1 / I and vary

1/ .E  For small E drive (e.g. 1 /0. . 642 0 4E   in Fig. 3-7C), the ING rhythm 

governs the dynamics of the full network: With our network parameters, it is the 

scenario-2 ING rhythm for 1 /0. . 442 0 4E   and the scenario-3 ING rhythm for 

1 /0. . 744 0 4I  . As in Fig. 3-7B, in Fig. 3-7C the full network ING rhythm (

0E I   , light green) has a higher frequency than the pure ING rhythm ( 0E I   ,

blue line) since the nonzero excitatory input from the E neuron advances the spiking 
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Figure 3-7. Transitions between PING and ING in a network of two type I (leaky 

integrate-and-fire) neurons. The blue and red surfaces or lines show the oscillation 

frequencies of pure ING and pure PING rhythms, respectively. The green surfaces or lines 

show the frequency of oscillations in the full two-neuron network. A displays the frequency 

of network oscillations versus the E and I drives (measured by intrinsic period-1). Termination 

of a surface in A occurs at parameters 1/ E  and 1/ I  where the highlighted network type 

does not yield any regular rhythm anymore. Panels B and C show cross sections of the 

surfaces given in A. The drive at the I neuron (B) or at the E neuron (C) increases from left 

to right, the other drive is kept fixed. Light green lines show the frequency of the full network 

ING rhythm, while dark green lines show the frequency of the full network PING rhythm. 

                                                                                                                           113Analyzing competition of gamma oscillation mechanisms



Parameter settings: 0.5I E    , 0.1E I   , 1.0I I    , and 0.4  ; the drive to the I

and E neurons is 1/ 0.495E   for B and 1/ 0.495I   for C. 

of the I neuron. The higher the E drive, the earlier does the E spike arrive in the 

period of the I neuron and the smaller is its excitatory effect due to the I neuron's 

PRC and transfer function (Fig. 3-2C). The frequency of the ING rhythm thus 

slightly decreases with increasing E drive. 

The absence of a PING rhythm for small E drive, where the pure ING 

frequency is higher than the pure PING frequency can be understood from Eqs. 3-

72 and 3-A23, which specify the pure PING and pure ING frequencies, respectively. 

Equation 3-72 implies that the pure PING frequency is determined by the interval 

between spikes of the E neuron, which is subject to the inhibition I E  arriving at

E phase 2 . According to Eq. 3-A23, the pure ING frequency is determined by the 

interval between spikes of the I neuron subjected to the inhibition I I  . In a full

network generating PING, the inhibition arrives at E phase 2  or later, if the 

excitation of the I neuron is not suprathreshold. Since the delaying effect of the 

inhibition increases, the larger the E phase is at its arrival, the spiking interval of the 

full network E neuron is larger or equal to that in the pure PING network. For the 

full network to generate PING, the spiking interval of the E neuron subjected to 

inhibition I E  must at least to be shorter than the spiking interval of the I neuron

subjected to inhibition I I  (the spiking interval in the pure ING network), since the

additionally arriving excitation E I  further decreases the spike interval of the I

neuron. When already the frequency of pure ING is higher than that of pure PING, 

this necessary condition is violated and the PING rhythm is excluded. 

As the E drive increases, the pure PING frequency starts to exceed the pure 

ING frequency (in Fig. 3-7C near 4/ . 61 0E  ) and the full network becomes able 

to generate a PING rhythm. During the transition, the full network can generate 

either PING or ING depending on the initial state of the neurons. As the E drive 

increases further, the ING rhythm disappears (near 4/ . 71 0E   in Fig. 3-7C). This 

is because the phase advance of the I neuron due to the E spike becomes too small 

compared to the decreasing interval between spikes of the E neuron (Fig. 3-7C: the 
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light green curve meets the dark green one). We note that the (negative) slope of the 

light green curve is smaller in absolute value than the (positive) slope of the dark 

green curve. In other words, the PING frequency is more sensitive to a change of the 

E drive 1 / E than the ING frequency.

3.6.3 Analysis of PING-ING interactions in networks with type I E and 

type II I neurons 

We will now analyze interactions between PING and ING rhythms for networks with 

type I E and type II sine I neurons for varying I and E drives, see Fig. 3-8. Similar 

to Fig. 3-7, the blue surface or curves in Fig. 3-8 represent the frequency of the pure 

ING rhythm, red stands for pure PING rhythm, and green for full network rhythms. 

As before, the frequency of the pure ING rhythm is given by Eq. 3-A23. The pure 

PING rhythm assumes spiking of the I neuron at time   after spiking of the E neuron. 

The frequency of the pure PING rhythm is thus again given by Eq. 3-72. As 

mentioned above (sec. 3.3.2), the sine I neuron without an external constant drive 

cannot reach the threshold for finite value of E I  , it can nevertheless get close,

such that the temporal distance between E and I spike is approximately  . We need 

to keep this point in mind when comparing pure PING and full network PING. 

In contrast to the case of networks with type I E and I neurons, the full 

network with type I E and type II I neurons generates a stable oscillation with a 

frequency between those of pure ING and pure PING rhythms. Furthermore, our 

analysis reveals an unstable oscillation (scenario 2) generated by the full network, 

with a frequency that is much higher than the stable one for our parameters. For 

smaller I drive (lower 1 / I , see Fig. 3-8B) the full network generates a PING

rhythm (alternating scenarios 5 and 1, dark green curve in Fig. 3-8B). Its frequency 

is higher than the stable scenario-3 ING frequency; this is due to the fact that with 

scenario-3 ING the E spike has an inhibitory effect. Since the E spike brings the I 

neuron only close to its threshold I , the next spike time still depends on the I drive:

The larger the drive, the shorter the time that the I neuron needs to reach the threshold 

after the E spike arrival. Since this time is always at least slightly larger than zero, 

the full network PING frequency is lower than the pure PING frequency. 
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As we increase the I drive further, the full network switches from operating 

in PING mode to ING mode (scenario 3, light green curve) (near 1 / 0.5I   in Fig. 

3-8B). As for networks of two type I neurons (cf. Fig. 3-7B), the rate of change of 

ING frequency is higher than that of PING frequency; the ING frequency is more 

Figure 3-8. Transitions between PING and ING in a network of a type I (leaky 

integrate-and-fire) E neuron and a type II (sine) I neuron. The blue and red surfaces or 

lines show the oscillation frequencies of pure ING and pure PING rhythms, respectively. The 

green surfaces or lines show the frequency of oscillations in the full two-neuron network. A 

displays the frequency of network oscillations versus the E and I drives (measured by 

intrinsic period-1). Panels B and C show cross sections of the surfaces given in A: The drive 
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of the I neuron (B) or of the E neuron (C) increases from left to right, while the other drive 

is kept fixed. The light green (B) or the dark green (C) lines are continued by black dashed 

lines to allow a better comparison to the slope of the respective other line. The light green 

surface with comparably high frequencies in A and the related light green curves with high 

frequencies in B and C correspond to a scenario-2 unstable ING rhythm, while light green 

colored lower frequencies represent a scenario-3 stable ING rhythm. Dark green shows the 

frequency of the full network PING rhythm (scenarios 5,1 in alternation). Parameter settings: 

0.2I E    , 0.5E I   , 0.42I I    , and 0.4  ; the drive to the I and E neurons is

1/ 0.74E   for B and 1/ 0.5I   for C. 

sensitive to change of the I drive 1 / I than the PING frequency (cf. the light green

with the black dashed line in Fig. 3-8B). The ING rhythm (light green curve in Fig. 

3-8B) appears in contrast to the case of two type-I neurons at the same point where 

the PING rhythm vanishes, when the frequency of the pure ING rhythm is higher 

than that of the pure PING rhythm. The latter can be understood as in case of two 

type I neurons, since the excitatory input in full network PING also advances the 

phase of the type II I neuron. The full network ING frequency is smaller than the 

pure ING frequency because in the full network there is an additional input from the 

E neuron. This causes a phase delay since the E spike arrives at an early phase in the 

spiking cycle of the type II sine neuron. 

The frequency of the full network at the transition point where it switches 

from PING to ING is the same as the intersecting pure ING (blue curve) and pure 

PING (red curve) frequencies. This is because at the transition point, the I neuron 

spikes just before the E spike arrives and the E spike meets the I neuron at a phase 

near zero. It therefore has a negligible effect on the phase of the sine I neuron (cf. 

Fig. 3-1D) and the full network behaves like the reduced ING network. Furthermore, 

the I neuron’s spiking and thus its effect on the E neuron is the same as in the pure 

PING network. So the frequencies of the full and the pure PING network are also 

the same. 

For decreased E drive (see Fig. 3-8C), the I drive imposes an ING rhythm, 

which governs the dynamics of the full network, just as for networks of two type I 

neurons. However, as in the case of large I drive (Fig. 3-8B), for the network with 
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type II I neuron, we observe that the ING frequency is lower than the pure ING 

frequency, since the E spike has a phase delaying effect on the I neuron. The full 

network ING frequency is higher than the full network PING frequency, since the I 

spike always arrives at an E phase less than 2 . When increasing the E drive, there 

is again a transition without a coexistence region. Beyond it, the full network 

assumes a PING rhythm (alternation of scenarios 5 and 1). The slope of the light 

green curve (ING frequency) is lower than that of the dark green curve (PING 

frequency) (cf. light green curve and black dashed line in Fig. 3-8C); that is, as for 

networks of two type-I neurons, the PING frequency is more sensitive to change of 

the E drive 1 / E than the ING frequency. Near the right-hand side of the transition

point, the E spike arrives when the I neuron is near threshold. The effect of the E 

spike on the phase of the I neuron is therefore small, which explains why the 

frequency of the PING rhythm is close to the frequency of the pure PING rhythm. It 

always lies below, since it takes some time for the I neuron to reach threshold after 

input from the E neuron. Thus, its inhibition does not arrive at the E neuron’s phase 

2  but later and has a larger delaying impact. 

3.7 Summary and discussion 

In this study, we investigate the interaction between ING and PING oscillations 

using an analytical approach for a simple neuronal network. In this network, two 

neural oscillators, an excitatory (E) and an inhibitory (I) neuron, are reciprocally 

connected and, additionally, the I neuron has self-inhibition. The E neuron mimics a 

synchronized group of pyramidal cells, while the I neuron represents a synchronized 

group of interneurons. An important aspect of this model is the type of neurons (type 

I versus type II). Most results on the type of firing and on the PRC of pyramidal cells 

in the literature suggest that pyramidal cells in different brain areas belong to the 

category of type I neurons (Reyes and Fetz, 1993b; Netoff et al., 2005; Wang et al., 

2013) (see, however, Galan et al. (2005); Lengyel et al. (2005); Stiefel et al. (2008)). 

We adopt this view and represent the E neuron by a (type I) leaky integrate-and-fire 

model. We review the derivation of the phase representation for this model, in 

particular the derivation of the transfer function H , which maps the phase of the 

neuronal oscillator before synaptic input to the phase after synaptic input. A full, 

general derivation of the phase representation for type I neurons was provided in a 
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previous study (see Memmesheimer and Timme (2006a)). The appropriate choice of 

interneuron phase response curve type is less clear. Oscillation-relevant interneurons 

can be either of type I (Mancilla et al., 2007) or type II (Tateno and Robinson, 2007) 

depending on the brain area. Therefore, we consider both options in our study: We 

model the I neuron as type-I leaky integrate-and-fire model or as type II sine neuron. 

The interactions between the neurons are modeled by Dirac delta pulses, 

which induce a jump in the voltage of the receiving neuron by an amount that is 

described by the strength of the synaptic connection and independent of the voltage. 

In the present study, we provide the theoretical derivation of the phase dynamics for 

such neural oscillators if they have an iPRC of type II. In particular, for our type II 

sine I neuron, we derive the voltage dynamics and the full phase representation. The 

chosen infinitesimal phase response curve shows a change from negative to positive 

as typical for type II neurons. Concretely, we use the (inverted) sine iPRC of a 

normal form oscillator of the Hopf bifurcation (cf. Brown et al. (2004)). Using the 

phase description, we could provide a full theoretical analysis of the dynamics of a 

network model with an E neuron and an I neuron of arbitrary type. 

Our results are also relevant for single oscillator studies, since they allow to 

investigate how different an oscillator model is from a model expressible by one-

dimensional voltage dynamics with voltage-independent inputs. As an example, we 

consider the classical radial isochron clock (Glass and Mackey, 1988; Goel and 

Ermentrout, 2002; Izhikevich, 2007). In this model, a point circulates on its attractor 

cycle in the x,y-plane. Synaptic inputs cause deviations from the stable attractor 

cycle. Assuming that the radial deflection after an input quickly relaxes back while 

the change in the angular variable remains, this model reduces to a phase oscillator. 

For infinitesimal inputs, the resulting phase response is given by a sine iPRC. 

However, comparing the PRC with that in our study reveals a difference in the series 

expansion of the synaptic strength   from second order on, see Appendix 3.8.1. 

To theoretically investigate oscillations in our two-neuron networks, we first 

provide a basic framework by deriving the five relevant scenarios for the change of 

phase differences upon interactions of the E and I neurons (see Fig. 3-4). This allows 

to construct various modes of synchronization (Pikovsky et al., 2001) between the 

two oscillators by concatenating scenarios and determining whether the 
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concatenations result in fixed points. For example, scenarios 5 and 1 can be 

concatenated in alternation to have 1:1 synchronization between the E and I 

oscillators. For our study, we are only interested in such 1:1 synchronization because 

both the population of interneurons and the population of pyramidal cells display 

increased activity only once per gamma cycle (Hajos et al., 2004; Gloveli et al., 

2005b). When our two-neuron network operates in the PING mode, an output of the 

E oscillator elicits spiking of the I oscillator, such as in scenario 4 and the alternating 

mode of scenarios 5 and 1. When the I oscillator controls the frequency of the 

network, the network operates in the ING mode (see scenario 2 for an example). We 

find that when the full network operates in PING-mode, its frequency is more 

sensitive to changes of the external drive to the E neuron than to changes of the 

external drive to the I neuron (see Fig. 3-7, B and C, and Fig. 3-6, B and C). When 

the full network operates in the ING-mode, the frequency more strongly depends on 

the external current given to the I neuron. 

Our theoretical study also shows that the qualitative relation of the frequency 

of the full network and the frequencies of pure ING oscillations  0   and of

pure PING oscillations (no/negligible I drive) depends on whether the I neuron 

belongs to the category of type I or type II. When the I neuron is of type I, the 

resulting frequency of the full network is above the pure ING frequency and the pure 

PING frequency. This can be understood from the fact that the excitatory output 

from the E neuron to the I neuron always advances the phase of a type I I neuron and 

therefore shortens the cycle and increases the frequency. However, when the I 

neuron is of type II, the frequency of the full network is between the frequencies of 

pure ING and pure PING. This can be understood from the fact that the excitatory 

input from the E neuron can delay the phase of the I neuron when the spike input 

from the E neuron arrives early in the phase of the I neuron. This increases the cycle 

duration and decreases the frequency. 

When we compare the results of the two-neuron network with simulations 

in a large network of pyramidal cells and interneurons, the latter show the same 

tendency (Viriyopase et al., 2016): The frequency of the full network with type I 

interneurons is slightly above the frequency of pure ING and of pure PING, while 

the frequency of the full network with type II interneurons could be in between. 

However, the full network PING frequency of the two-neuron network is 

EI
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intermediate between the pure ING and pure PING frequencies (cf. Fig. 3-6, B and 

C), while it is slightly above for the large networks (cf. Fig. 2-7, B and C). The key 

to understand this discrepancy is the net value of the excitatory output from the E 

neuron (the population of the pyramidal cells) to the I neuron (the population of the 

interneurons). In the pure PING two-neuron network the coupling is assumed to be 

so strong that the E spike excites the I neuron to spike immediately, while in the full 

network the I neuron phase still needs to increase a bit up to the threshold. This 

causes the frequency of pure PING to be higher than that of the full network. 

However, the net value of the excitatory output in both large-network topologies (the 

pure PING network and the full network) is approximately the same. With additional 

drive to the interneurons in the full network, the frequency of the full network is thus 

higher than that of the purely PING network. Another discrepancy between the 

results for the two-neuron network and the results for the larger networks in Chapter 

2 concerns network bistability. The phase iteration map of two-neuron networks with 

type I I neuron has two stable fixed points (one corresponding to ING and another 

one corresponding to PING) for parameter values near the crossing of the pure ING 

and pure PING frequencies, giving rise to bistability between ING and PING, see 

Fig. 3-7, B and C. In contrast, the simulations of the large network reveal only one 

oscillation frequency near the crossing. Presumably, this is due to noise added to the 

input to the neurons in the large network. This gives rise to slightly different firing 

frequencies of the network’s neurons, which together obscure the bistability into a 

gradual transition between ING and PING. A second fixed point also occurs for the 

phase iteration map of the two-neuron network with type II I neuron, cf. Figs. 3-6 

and 3-8. It is unstable and corresponds to an unstable oscillation with higher 

frequency. In contrast, the large network simulations again reveal only one 

frequency. An obvious explanation is that the employed simulations cannot generate 

unstable oscillations due to noise. Although the results based on the two-neuron 

networks and the large networks given in Chapter 2 yield differences in some 

details, the general picture is similar. In particular, the stable rhythm of the full 

network is usually realized by the one of ING or PING that generates the higher 

frequency. That is, the mechanism that generates the higher frequency “wins” in the 

sense that it determines the frequency of the full network. (In the two neuron network 

this is also the rhythm, which generates the higher frequency in the corresponding 

pure networks.) The rough explanation is that the higher frequency generating 
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mechanism absorbs the resources necessary to maintain a rhythm: A neuron will 

generally spike earlier due to recruitment into a higher frequency rhythm and is then 

not able to spike again to contribute to the lower frequency one. However, our 

analytical approaches in the present article allow for more detailed analyses, see sec. 

3.6. 

Most studies with a large impact on the field using two-neuron (oscillator) 

networks were conducted either for purely inhibitory networks (van Vreeswijk et al., 

1994; Sato and Shiino, 2002; Ermentrout, 2003; Leibold, 2004; Nomura and Aoyagi, 

2005; Di Garbo et al., 2007b; Oh and Matveev, 2009; Canavier et al., 2013) or purely 

excitatory networks (van Vreeswijk et al., 1994; Ernst et al., 1995; Neltner et al., 

2000; Sato and Shiino, 2002; Ermentrout, 2003; Dhamala et al., 2004; WANG et al., 

2008). Studies for two-neuron networks, in which one is excitatory and another is 

inhibitory, are less common and many of them are in different contexts (Jones et al., 

2000; Netoff et al., 2005; Börgers and Kopell, 2008; Kramer et al., 2008; Lee et al., 

2009). Börgers and Kopell (2005) presented a study related to ours, but without 

coupling delays and assuming that E I  is always suprathreshold. The article reports

that when the intrinsic frequency of the I neuron is higher than the frequency of the 

PING network rhythm, the latter is destroyed via phase walkthrough that results in 

an irregular oscillation (I neuron spikes more than once per cycle). 

Our study considers both type I and type II I oscillators as well as a finite 

conduction velocity. The consideration of the frequency aspect yields an intriguing 

dependence of the frequency changes when changing external drive, on the phase 

response curve of the oscillators as presented in sec. 3.6. 

Unlike other methods for studying the two-neuron network, our method does 

not focus on determining the mode of the phase locking directly but based on 

fundamental interaction scenarios that can be used to construct different modes of 

locking under the assumption that the phase difference between the two oscillators 

changes only when an input arrives; the assumption is valid in our study because the 

connections are modeled by Dirac delta pulses. By this, we consider fast post-

synaptic current (PSC) kinetics that ignores a PSCs rise and decay. van Vreeswijk et 

al. (1994) has shown that the duration of the PSCs relative to the interval of spiking 

is important. Since the time constant of the synapses relevant to gamma oscillations 
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is of the order of a few milliseconds (Geiger et al., 1997; Angulo et al., 1999; Bartos 

et al., 2002; Bartos et al., 2007), it may be reasonable to assume that their PSCs are 

short relative to the period of gamma oscillations, which is around 20 ms. 

Additionally, Bartos and collaborators (2002; 2007) analyzed ING and the impact of 

the inhibitory PSC kinetics on it. The studies indicate that probably inhibitory PSCs 

with fast kinetics underlie gamma oscillations. The assumption that the choice of 

Dirac delta pulses does not affect the central conclusions of our study is also 

corroborated by our comparisons with biologically more detailed, larger scale 

networks in Chapter 2. 

The results of this study are relevant for in vitro and in vivo experimental 

studies, since they imply that a seemingly straightforward interpretation of an 

observed rhythm as ING or PING has to be done with care. As pointed out in the 

theoretical section of this manuscript, frequent firing of the pyramidal cells does not 

necessarily imply that the network is dominated by PING. Similar spike patterns can 

be generated both by ING (cf. scenario 3 and scenario 4) and by PING rhythms 

(alternation between scenarios 5 and 1 in Fig. 3-6B). In particular, the network can 

be dominated by ING in a situation where the pyramidal cell fires before inhibition 

from the interneurons sets in. If so, the interval between spiking of the pyramidal 

cell and the interneurons should be less than the time necessary for spikes from the 

interneurons to reach and effectively inhibit the pyramidal cell. 

Various experiments show shifts of the frequency generated by cortical 

circuits when the influence of the excitatory input on the interneurons decreases via, 

for example, optogenetic silencing of the local pyramidal cells in vivo (Craig and 

McBain, 2015) or applying an antagonist of fast excitatory synaptic coupling in vitro 

(LeBeau et al., 2002). One might guess that if the cortical circuits produce 

oscillations whose frequency changes when one decreases the local excitatory input, 

the oscillations are likely to be PING because the oscillations depend on the 

excitation-inhibition loop. However, our studies in the two-neuron networks and in 

larger networks (Chapter 2) suggest that knowing only that the frequency changes 

when removing the local E I  inputs E I  (by silencing pyramidal cells or

disabling fast excitatory synaptic inputs) is not enough to determine whether the 

cortical circuits operate in either PING or ING mode. We also need to know the type 
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of the interneurons and the direction of change of the frequency to pinpoint whether 

the cortical circuits produce PING or ING oscillations. 

Overall, we provide a mathematical framework to construct phase 

oscillators that can be described by a single voltage variable with voltage-

independent input, based on basically any smooth infinitesimal phase response 

curve. Furthermore, we constructed iteration maps characterizing the dynamics of 

two-neuron networks. We used them to analyze how regular PING and ING 

oscillations in the two-neuron network interact. Our results show that the winning 

mechanism (either PING or ING) is the one with the higher frequency in the full and 

pure networks. Except for possible small coexistence regions, it will suppress the 

other one since it absorbs all “resources” (neurons ready to spike) available to 

maintain a rhythm. 

3.8 Appendix 

3.8.1 Comparison of our sine neuron with the radial isochron clock 

The radial isochron clock or Andronov-Hopf oscillator (e.g. Glass and Mackey 

(1988); Goel and Ermentrout (2002); Izhikevich (2007)) is the normal form of 

systems near Hopf bifurcations. It is a two-dimensional dynamical system with the 

unit cycle as attractor. The dynamical equations for the radial and angular state 

variables are  

 
2

1 ,

1,

dr
r r

dt

d

dt



  



with sufficiently large parameter   such that deflections in the radial direction are 

quickly eliminated and input pulses meet the system practically on the limit cycle. 

In contrast, Eq. 3-A2 implies that angular perturbations remain. The oscillator spikes 

and is reset when its angle reaches 2   from below. One can now posit that 

inputs cause a deflection into the direction of the x -coordinate,  

(3-A1) 

(3-A2) 
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(3-A3) 

(Glass and Mackey, 1988; Goel and Ermentrout, 2002). Note that by this definition 

an input cannot cause the oscillator to cross threshold, as it changes the state parallel 

to it. Assuming that we are and stay in the first quadrant, the angle changes as 

 
 

sin
arctan

cos




 
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. Since the angular deflection is conserved, while the radial 

variable relaxes to one, the phase after the input is 
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 If we do not stay within the first quadrant, we 

need to extend the definition, 
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with the appropriate continuations at the borders. The first derivative with respect to 

 reads
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 (3-A5) 

Equation 3-A5 specifies in linear approximation the change of the current phase 

 RIC ,H   , in terms of the already received input   and the initial phase  . This 

is in contrast to the differential equation Eq. 3-A5, which specifies the phase change 

in terms of the current phase. For 0   the initial phase equals the current phase, so 

Eq. 3-A5 yields the iPRC. Since  

(3-A4) 
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(3-A6) 

the neuron is a sine neuron. It is, however, not the same sine-neuron as ours, see sec. 

3.3.2. The transfer function of our sine-neuron can be obtained via the autonomous 

differential equation  
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 (3-A7) 

cf. Eq. 3-31. The right-hand side of the equation does not depend on   and is 

therefore uniquely specified by the iPRC. Solving Eq. 3-A7 using separation of 

variables yields for a neuron with period 2    
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(3-A8) 

with appropriate continuations, cf. Eq. 3-39. The first derivative (e.g. computed from 

Eq. 3-A7) then explicitly reads  

(3-A9) 

which agrees only for 0   with Eq. 3-A5. We may conclude that  RIC ,H    does 

not obey the autonomous differential equation Eq. 3-31, but a non-autonomous one, 

where the right-hand side depends explicitly on the independent variable   and 

which reduces to the iPRC at 0  . Graphically speaking: Consider a small input 

, 


2

2

sine

sinesin ,  ,

sin 2arctan  tan

2e tan
2  ,

tan

H
H

e

e












 

   
   

 2   

  
 
 
 

 
 2




,  

                                                                                                                           126 Analyzing competition of gamma oscillation mechanisms



piece d  of a total input  . d  arrives after the input piece   of   has already 

been received. Then the impact of d  does not only depend on the phase 

   RIC ,H      reached due to   but also explicitly on   itself.

The series expansions in   of  RIC ,H    and  sine ,H    around zero 

differ from second order on (they agree by definition up to first order), 
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Equations 3-31 and 3-A7 allow to compute expressions for the higher order 

derivatives and thus Taylor coefficients of its solution by differentiating both sides 

and replacing derivatives appearing on the right-hand side using the original 

equation. We note that as second derivative we obtain 
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, which implies a second order Taylor coefficient 
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sin cos sin 2
2 4

   as present in Eq. 3-A11 but not in Eq. 3-A10. Figure

3-A1 illustrates the increasing discrepancy of  RIC ,H    and  sine ,H    for 

increasing  . For 1  ,  RIC ,H    has a singularity (at   ) and beyond a 

discontinuity. 

3.8.2 Additional scenarios 

Scenario 1 

Scenario 1, where only the I neuron spikes, occurs for 

.    (3-A12) 

(3-A10) 

(3-A11) 
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Figure 3-A1. Comparison of  sine ,H    (green) with  RIC ,H    (blue) for different 

values of   ( 0.3,0.8,1  , and 1.1 in panels A, B, C, and D). 

The remaining I and E phases at the start of the interaction sequence are 

0,

.

I

E



 


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The interaction sequence in scenario 1 consists of sending and receiving of an I 

spike. The I neuron is reset after spiking. Thus, it receives its own spike while having 

the phase  

After input processing and thus directly at the end of the interaction sequence, the 

phase is  

(3-A13) 

(3-A14) 

(3-A15) 

(3-A16) 





 ,

.

I

I I

 

 



 
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 

 

, ,

, .

I I I I

I I I I I

H

H

  

  







 





The E neuron receives the I spike while having a phase  0E E         .

The E phase directly after the interaction sequence is thus 

 

 

, ,

, .

E E E I E

E E E I E E

H

H

   

   





    

     





Equations 3-A20 and 3-A18 yield the phase difference after the interaction, 

   
 :

, , .E E I E I I I

G

H H



      

 

        


 (3-A21) 

Scenario 1 can only generate regular oscillation with alternating firing of both 

neurons together with scenario 5 (see the related paragraph below). However, 

scenario 1 can repeat to give rise to a regular oscillation with suppressed E neuron. 

The I neuron has the same dynamics if the E I  connection is deleted, i.e. if we have

a “pure ING” rhythm, even if the E neuron still spikes. We compute its frequency 

for comparison purposes.   at the beginning and end of the scenario is given by 

the solution of  

  .G      (3-A22) 

If a real-valued solution of Eq. 3-A22 exists, the system can generate the oscillation. 

The oscillation's period can be determined directly from dynamics of the I neuron in 

terms of  . The I neuron spikes at the beginning of the scenario. The generated 

spike arrives the I neuron after the duration   and induces an instantaneous change 

of the phase from   to  ,I I IH    . To reach threshold and spike again, the I neuron 

needs the temporal duration of  ,I I I IH     . The period of the oscillation is the

sum of the two durations and the oscillation frequency is given by 

 
1

, .I I I If H  


      (3-A23) 

(3-A17) 

(3-A18) 

(3-A19) 

(3-A20) 
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Scenario 3 

In scenario 3, first the E neuron spikes and then the I neuron, before the spike from 

the E neuron arrives. This scenario occurs for  

0 .     (3-A24) 

The E neuron is leading, so the I and E phases at the start of the interaction sequence 

read  

The E neuron sends its spike and is reset at time 0t  , the I neuron is reset at time 

  , so the I neuron receives the E spike, while having a phase     at time  .

Processing of the E spike by the I neuron yields  ,I E IH       and subsequent 

time evolution until the receiving of the I spike by both the E and I neurons adds 

  to the phase. We may assume  ,I E I IH           and thus exclude

direct generation of a spike of the I neuron because of the arrival of the spike from 

the E neurons, since such a spike would break a regular oscillation. Accounting for 

the I spike that arrives at the E and I neurons at time     we obtain at the end of 

the scenario  

and 

We conclude 

    
 :

, , , .E I E I I E I I I

G

H H H



          

 

          


 (3-A31) 

(3-A25) 

(3-A26) 

(3-A27) 

(3-A28) 

(3-A29) 

(3-A30) 

,

0.

I

E











 
 

 , ,

 , ,

I I I EI  II

 I I I E I II I

H H

H H

   ,

   , 

  

   

 

 

,

.

E E I E

E E IE E

H

H

   ,

   ,



 
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Scenario 3 can repeat to give rise to regular oscillations. As before, if a real-valued 

solution of  

 G       

exists, the network can generate the oscillations and the solution   specifies the 

underlying phase dynamics. The oscillation's frequency can be determined directly 

from dynamics of the E neuron in terms of  . At the beginning of the scenario, 

the E neuron spikes, and at the end the E neuron’s phase is given by Eq. 3-A29. It 

thus spikes again after a time duration of  ;,E LIF I E EH         to complete

the oscillation cycle. The period of the oscillation is the sum of the durations     

of the interaction sequence and the time to complete the cycle, such that the 

oscillation frequency is given by  

   
1

- , ; .E LIF I E Ef H     


           (3-A33) 

When the E and I neurons are LIF neurons, Eq. 3-A32 yields 

 
 

     

 

- -

2- -

, -
ln

2 ,

- , - 4 , ,

2 ,

,

I I I

E I E

I I I E I E I E I

E I E

e e

e e e

 

 






  








 
  



  
  

 


         

 
  





   (3-A34) 

where  ,   is given by Eq. 3-56. Placing   given in Eq. 3-A34 into Eq. 3-

A33 yields the frequency of the oscillation. 

If the I neuron is the sine neuron, the E spike arrives at the I neuron at a 

phase that is always within the first branch, i.e. within  0, / 2 , because we assume

that the intrinsic period of the neurons should be longer than 2 .  ,I E IH       

in Eq. 3-A31 is then explicitly defined by the first line of Eq. 3-39 and the excitatory 

(3-A32) 
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input delays the phase of the I neuron. The I spike thus also always arrives at the I 

neuron at a phase within the first branch and advances the phase. 

Scenario 5 

Scenario 5 (cf. Fig. 3-4) is similar to scenario 1, with only the E neuron spiking. It 

occurs for  

 , ,I I I E IH         (3-A35) 

the phases of the I and E neurons at the start of the interaction sequence are 

,

0.

I

E

 









The E neuron sends a spike at the beginning of the sequence, which is received by 

the I neuron at t  . Since the I neuron does not spike, this marks the end of the 

scenario. The phase I  of the I neuron at receiving is  

.I I       (3-A38) 

After the receiving, at the end of the scenario it reads 

 

 

, ,

, .

I I I E I

I I I E I I

H

H

   

   





   

    





The condition  ,I I I E IH          implies  ,I I E I IH         

, such that the I neuron does not spike. The E neuron evolves freely after its reset at 

0t  , so  

,

,

E

E E

 

 



 





which yields 

 
 :

, .I I E I

G

H



     

 

        


 (3-A43) 

(3-A41) 

(3-A42) 

(3-A39) 

(3-A40) 

(3-A36) 

(3-A37) 
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Alternation between scenarios 5 and 1 

In scenarios 2, 3, and 4 both neurons spike such that regular oscillations with 

alternating firing must be generated by repeating a single scenario. In contrast, 

scenarios 1 and 5 have to alternate to generate a regular oscillation. Without loss of 

generality, we assume that the spiking pattern begins with scenario 5 and scenario 1 

follows.   at 0t   has to satisfy Eq. 3-A35 for scenario 5 to occur.    after 

scenario 5 given in Eq. 3-A43 has to satisfy Eq. 3-A12 for scenario 1 to occur. Thus, 

alternation between scenarios 5 and 1 occurs for  

 

 

, ,

2 , .

I I E I

I I E I

IH

H

  

   





      

      

Composing the maps Eqs. 3-A43 and 3-A21, we obtain 

  
 

 2:

2 , ,

, .

E I I E I I E

I I

I

G

I

H H

H



     

 

 



 

       

  





(3-A46) 

Note that now we have two iterations of the map G , which maps the remaining 

phase difference before scenario 5 to the remaining phase difference after scenario 

1. To determine the phase underlying the oscillation, we need to solve

 2G   

for  . If a real-valued solution   exists, the network can generate the 

oscillations. Its frequency can then be derived in terms of  : In the initial scenario 

5 (cf. Fig. 3-4B), the E neuron spikes at time 0t  . The E and I phases at the 

scenario’s end are given by Eqs. 3-A39 and 3-A41. The duration of the scenario is 

 . Initializing scenario 1, the I neuron spikes after the duration of

 ,I I I E IH          . The output from the I neuron arrives at the E neuron 

at the phase  2 ,I I I E IH           of the E neuron and causes its phase 

to jump to   2 , ,E I I I E I I EH H          . The duration of scenario 1

is   as well. The E neuron needs a temporal duration of 

(3-A45) 

(3-A44) 
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  2 , ,E E I I I E I I EH H             until it spikes again and 

completes the oscillation cycle. The period of the spiking pattern of alternation 

between scenarios 5 and 1 thus equals  ,2 E I I I E IH          

  2 , ,E I I I E I I EH H            and the frequency is 

   

  
1

2 ,

2 , , .

E I I E I

E I I E I E

I

I I

f H

H H

    

    





 

        

       

 (3-A47) 
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4.1 Introduction 

Coupling between different oscillators and pacemakers can generate a large 

range of different behaviors and has been a topic of study in many different 

conditions, for example in cardiac pacemaking and chemical oscillations (see 

also e.g. Goldbeter (1997); Koch and Segev (1998); Roxin et al. (2005)). A special 

case is the interaction between neurons that gives rise to neuronal oscillations in 

particular frequency bands. Neuronal gamma band synchronization has been 

reported in many species and in a large number of brain structures for a variety 

of sensory and motor tasks (Gray et al., 1989; Fries et al., 2001; Pesaran et al., 

2002; Schoffelen et al., 2005; Fries et al., 2008). This large-scale 

synchronization of multiple cortical areas has been postulated as a potential 

mechanism for integration and coordination of neuronal activity in cognitive 

tasks (Engel et al., 1992; Singer and Gray, 1995; Fries, 2005). 

The first studies on this topic presented experimental evidence that the 

relative phase of gamma oscillations in widely separated brain areas is near zero 

(Frien et al., 1994; Roelfsema et al., 1997; Castelo-Branco et al., 1998; 

Rodriguez et al., 1999; Gross et al., 2004). This result was remarkable since 

synchronization requires interactions between distant brain areas that come 

with considerable delays due to axonal conduction and synaptic transmission. 

Many further studies hence investigated how distant oscillatory brain regions 

can synchronize at zero-lag in spite of non-negligible delays. Several 

theoretical studies have argued that direct mutual pulse-coupling between two 

dynamical systems with delays and excitatory synapses cannot easily lead to 

zero-lag synchrony (Ernst et al., 1995, 1998; Goel and Ermentrout, 2002; 

Zeitler et al., 2009). Therefore, Fischer et al. (2006) and Vicente et al. (2008) 

suggested that zero-lag synchronization between brain areas might be mediated 

by a third (relay) oscillator. A potential candidate for this neuronal relay 

oscillator is the thalamus (Gollo et al., 2010; Theyel et al., 2010). 

To obtain a better understanding of the possibilities for zero-lag 

synchronization of distant brain areas, we have investigated the proposed 

network of neuronal oscillators coupled indirectly by a relay oscillator (Fischer 

et al., 2006; Vicente et al., 2008). We have investigated the model with both 
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type I Mirollo-Strogatz neurons as well as with type II Hodgkin-Huxley 

neurons. We focused in particular on the robustness of zero phase 

synchronization as a function of both the delay time between oscillators and 

the strength of synaptic coupling. Various types of synaptic coupling were 

investigated, including spike-timing dependent plasticity (STDP), since STDP 

has been suggested to contribute to efficient information transmission 

(Buonomano and Maass, 2009; Lindner et al., 2009; Hennequin et al., 2010). 

Our results show that zero-lag synchrony can occur, especially for models with 

Hodgkin-Huxley type II neurons. STDP facilitates zero-lag synchrony as STDP 

modifies synaptic strengths and thereby allows a larger range of initial synaptic 

strengths that may lead at zero-lag synchronization. 

4.2 Materials and methods 

The model consists of three coupled neuronal oscillators (see Fig. 4-1A). Each 

oscillator can be considered as a single neuron or as a population of neurons, where 

the activity of the neurons within each population is assumed to be homogeneous 

and highly synchronized. As illustrated in Fig. 4-1A, the “relay” or “inner” oscillator 

(oscillator 2) is coupled bi-directionally with two “outer” oscillators (oscillators 1 

and 3). The outer oscillators are only coupled with the relay oscillator but not directly 

to each other. As starting point we assume that all three oscillators are identical with 

the same intrinsic firing period 0T . 

We have used the Mirollo-Strogatz (MS) phase oscillator (Mirollo and 

Strogatz, 1990) and the classical Hodgkin-Huxley (HH) neuron (Hodgkin and 

Huxley, 1952) with parameters given in Vicente et al. (2008). For the MS phase 

oscillator, 0T  is chosen to be 25 ms and 0T  of the HH neuron is 14.66 ms with the 

parameters given in Vicente et al. (2008). In Fig. 4-1A ij represents the coupling

strength from presynaptic oscillator j  to postsynaptic oscillator i . All synaptic 

couplings in the model are excitatory. The delay time k represents the conduction

time for spikes along axons that connect oscillator k  with the relay oscillator. Here 

we make the simplifying assumption that delay times are constant and symmetric 

(i.e., the delay time from oscillator i  to j  is equal to that from oscillator j  to i ). 

These delay times are typically considerably shorter than the period of neuronal 
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oscillations (Fries, 2005). Therefore, in the following we will only consider 

conduction delays shorter than 0 2T , with k expressed as a fraction of the intrinsic

period 0T  and thus in the range between 0 and 0.5. 

Figure 4-1. Schematic of the model and its 1:1 phase-locked zero-lag synchrony 

mode. A, Sketch of oscillators 1 and 3 with bi-directional pulse coupling via relay 

oscillator 2. ij represents the excitatory synaptic weight from oscillator j  to

oscillator i , k the conduction delay between relay oscillator 2 and oscillator k . B,

An example of 1:1 phase-locked zero-lag synchrony mode. Vertical bars represent the 

spike times of the oscillators. 0T  is the intrinsic period of the oscillators, 0T T  the 

common period of the oscillators in the phase-locked mode, and T  the delay between 

the firing of the relay and the outer oscillators. spike
1,nt , spike

2,nt , and spike
3,nt  are the n -th spike 

times of oscillators 1, 2, and 3, respectively. 
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The MS phase oscillator (Mirollo and Strogatz, 1990) is characterized by a 

voltage-like state variable  0,1f  , which increases monotonically from 0 towards

the threshold value 1f  . Within a cycle, the state of the uncoupled neuronal 

oscillator is defined by a monotonically increasing concave function 

     : 0,1 0,1f   :

   1
ln 1 1 ,bf e

b
    

 
(4-1) 

0

1
,

d

dt T


 (4-2) 

with a phase variable  0,1  and a dissipation parameter b . 0T  is the intrinsic

firing period of the oscillator. When the threshold is reached, the oscillator fires, the 

state variable f  is reset to zero, and the cycle repeats. As in Ernst et al. (1995) and 

Zeitler et al. (2009), the setting 3b   is used throughout this study. The MS neuron 

is a so-called type I neuron (Izhikevich, 2007), where excitatory input always gives 

a phase advance of the neuronal oscillator. 

For the classical HH neuron the membrane potential V  is governed by the 

differential equation: 

     3 4 ,Na Na K K L L ext syn

dV
C g m h V E g n V E g V E I I

dt
         (4-3)

with the membrane capacitance C  and the maximal conductance of sodium Nag , 

potassium Kg , and leakage Lg . The corresponding reversal potentials 

 , ,Na K LE E E  and the external current extI  are as given in Vicente et al. (2008). The 

voltage-gated ion channels , ,m h and n  are described by first order differential 

equations. Note that the expression for n in Vicente et al. (2008) was not correct

and should be read as       55 100 1 exp 0.1 55n V V V            . The

excitatory synaptic current synI  is  ij S t V , where ij is the maximum synaptic

conductance and  S t  is the Dirac delta function (in case of an “instantaneous 
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synapse”) or an alpha function (in case of an “alpha synapse”). This classical HH 

neuron is a so-called type II neuron (Izhikevich, 2007), where excitatory input in 

early phases of the firing cycle causes a phase delay but a phase advance in later 

phases of the firing cycle. 

4.2.1 Synaptic coupling 

We investigate two models for pulse-coupling between the oscillators. For an 

instantaneous synapse with coupling strength ij , the neuronal state if  of the MS 

phase oscillator after arrival of a spike from oscillator j  is incremented 

instantaneously 

   new min ,1 ,i i i i ijf f      (4-4) 

with i  the phase of the postsynaptic oscillator i  at the time of the spike arrival. The 

phase i  for which the oscillator reaches the threshold after spike input (i.e. 

  1i i ijf    ) is called the critical phase c  (Zeitler et al., 2009) and is given by 

 
 1

1
.

1

ijb

c ij b

e

e










(4-5) 

If a spike arrives at i c  , if  will increase instantaneously by ij . The

instantaneous change of the state if by ij corresponds to a phase shift

1 ( )i i i i ij if f         , which yields

(4-6) 
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where i  is the phase of the postsynaptic oscillator just before arrival of the input 

spike. Note that      1 1c ij b ij b ij              .

Tsubo et al. (2007) measured the phase shifts of layer-5 and layer-2/3 

pyramidal neurons in rat motor cortex. The maxima of the averaged phase shifts 

were found to be in the second half of the oscillatory period for these neurons at all 

frequencies (including the gamma band; see their Fig. 4). Hence, we require here 

that the maximum of the phase shift i  is in the second part of the intrinsic cycle 

of the oscillator, and therefore 0.5c  . This restriction imposes an upper bound of 

 1 ln 1 2 0.21b
ij e b     

 
 for 3b   on the synaptic strength through Eq. 4-5. 

In case of 0.21ij  , a spike can cause an increase in the state variable f  of about 

21% of the difference between rest state 0f   and the threshold value 1f  . For 

the HH neuron, the upper bound for the maximum synaptic conductance is 
23.15 mS cm , which corresponds to an increase of 21% of  onset restV V , since the 

resting potential restV  and the onset of the action potential onsetV  are near -65 and -50 

mV, respectively. 

A more realistic synaptic coupling model is provided by the so-called alpha 

function. For an “alpha synapse”, the postsynaptic potential after arrival of a spike 

at time 0t  at the synapse with strength ij is described by

 
0

syn 0 0
02

syn syn

0 for ,

; ,
exp for ,ij

ij

t t

t t t t t
t t

  


 




   
    
 

(4-8) 

where syn 0   is the synaptic rise time of the input. Unless stated otherwise,

syn 2 ms   in this study. The numerical simulations are implemented using an Euler

scheme with a time step size equal to  4
02.5 μs 10 T . In our implementation, there 

is no current reset after spiking of the postsynaptic neuron, i.e. the “tail” of the alpha 

function is carried over into the next cycle. 
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4.2.2 Spike-timing dependent plasticity (STDP) 

In general, the synaptic coupling strength is not constant but varies depending on 

pre- and postsynaptic activity due to STDP (Hebb, 1949; Bi and Poo, 1998). We 

have implemented the additive STDP rule (Froemke et al., 2006) for both 

instantaneous and alpha synapses. For a presynaptic spike at arrival time arr
kt  and a 

postsynaptic spike at spike
lt , the fractional synaptic modification  W t  is given by

 

exp for 0,

: 0 for 0,

exp for 0,

t
A t

W t t

t
A t













  
   

 


   


       

 (4-9) 

with spike arr: l kt t t   .

The spike arrival time arr
kt  is defined as the time of the onset of the 

postsynaptic potential, as in the experimental protocol by Bi and Poo (1998). Unless 

stated otherwise, the time constants for potentiation   and depression   are 

,0 : 16.8 ms   and ,0 : 33.7 ms  , respectively. In this study the standard values 

for the maximum amplitude of potentiation A  and depression A  are ,0 : 0.78A   

and ,0 : 0.27A   , respectively. These standard parameter values for STDP were 

fitted to the data from Bi and Poo (1998), who determined the fractional synaptic 

modification W  as the relative change in synaptic strength after evoking an input 

and output spike pair 60 times. We assume that the change of the synaptic weight 

  caused by each input spike is constant and defined by  0 60W t     (Song

et al., 2000; van Rossum et al., 2000) with initial synaptic weight 0  and  W t  as

in Eq. 4-9. Therefore, the learning rule used here for a particular pair of pre- and 

postsynaptic spikes is given by  0 0 0 60W t     , in agreement with Lee et 

al. (2009). 

The simulation procedure of the network for STDP is as follows: The 

evolution of the state of the network is studied over 60 consecutive sessions. At the 
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start of each session, the initial phases of the three oscillators are chosen arbitrarily 

from a uniform random distribution. The first session starts with equal coupling 

strengths for all synapses, which then change due to STDP. All succeeding sessions 

start with the coupling strengths that resulted at the end of the previous session but 

with re-randomized phases of the oscillators to prevent that the system converges 

into a locally rather than a globally stable state. 

In order to be physiologically relevant for synchronization, convergence 

should not take too much time. Therefore, we assume that convergence to a stable 

relative phase between oscillators 1 and 3 in the model takes place within a session 

consisting of sess 15n   cycles. Thus, with STDP we typically run 60 sessions of 15 

cycles each to investigate convergence of the network into a stable synchronization 

state. Without STDP the couplings do not change, and a single session of 15 cycles 

is used. To avoid any spurious dependence on the random initial phases, we repeat 

each calculation 335 42,875  times. Thus, in the STDP case almost 40 million 

cycles are computed for every chosen setting of coupling strengths and delay times. 

4.2.3 Phase-locking equation and stability analysis 

Phase-locking equations are useful to determine the new period of a network and the 

relative phases of coupled oscillators (van Vreeswijk et al., 1994; Bressloff and 

Coombes, 1998). For the simple MS phase oscillator, the phase-locking equation can 

be derived analytically. A full analysis for our model is provided in Appendix 4.5, 

where we derive the relationships between synaptic weight, conduction delay, and 

the new period of the oscillators for zero-lag 1:1 phase-locked firing of the outer 

oscillators. Here we will just consider a simple example (see Fig. 4-1B). 

Without loss of generality, we set the time of the  1n  -th firing of the relay 

oscillator spike
2, 1 0nt    and call the period of the 1:1 phase-locked oscillators T . For 

zero-lag synchrony there is a  0,1   such that the outer oscillators fire at

spike spike
1, 1 3, 1n nt t T   , spike spike

1, 3,n nt t T T   , etc. For equal delays 1 3    , both

spikes from the outer oscillators arrive at the relay oscillator at the phase 0T T 

(if 0 0T T T T   ) with excitatory coupling strength  . The two synaptic inputs 

reduce the period of the relay oscillator from the intrinsic period 0T  to 
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 0 01 ;2 ,T T T T        (4-10) 

with   as defined in Eq. 4-6. Since the relay oscillator fires at T , the outer 

oscillators will each receive a spike at 0T T . The outer oscillators spiked at T

and hence their phase will be   01- T T   (if   0 01- T T T T   ) at the arrival 

of the spike from the relay oscillator. Therefore, the period of the outer oscillators is 

given by 

  0 01 1 ; .T T T T         (4-11) 

Equations 4-10 and 4-11 are the 1:1 phase-locking equations for the mentioned 

conditions. 

Assume now that both arrival phases exceed the critical phases  2c   and 

 c  , respectively. Then rewriting Eqs. 4-10 and 4-11 using Eq. 4-6 yields

 0 0 0 and 1   2 , 1 2.T T T T T T T T             (4-12)

Thus the period of all oscillators is twice the conduction delay and activity switches 

between inner and outer oscillators every half period. All oscillators immediately 

spike upon spike input. We will call this mode the “driven synchrony” (DS) mode 

(see Fig. 4-2B). Two other typical modes are also illustrated in Fig. 4-2: “slave 

synchrony”, where only the relay oscillator spikes directly after input, and 

“pacemaker synchrony”, where only the outer oscillators do so. 

To investigate the stability of DS, we assume small perturbations. Since we 

use the relay oscillator spikes as reference time, the perturbation affects the phase of 

the outer oscillators to  1 3,      at spike
2, 1nt  . DS is asymptotically stable, if there

is a 0   such that the phases of outer oscillators 1 and 3 will be closer to   at the 

next spike at spike
2,nt  for 2 2

1 3    . Since   2c   , we can define a value 

 : 2 0c      , and thus   2c     . The spike from the relay arrives when

the phase of oscillator 1 is in the range 12  2         that exceeds this critical 

phase  c  . Therefore, oscillator 1 will spike immediately after receiving 
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input from the relay oscillator, and the same is true for oscillator 3. Thus perfect 

synchronization is re-established as long as the perturbation was sufficiently small, 

proving that the DS mode is an asymptotically stable mode. To determine the 

stability of other synchrony modes, it is necessary to calculate the eigenvalues   of 

the Jacobian of the (phase) return map (Zeitler et al., 2009), see Appendix 4.5 for 

details. 

We now briefly consider the effect of STDP on slave synchrony. The 

coupling strengths from the outer oscillators to the relay oscillator remain unchanged 

for slave synchrony, since the relay oscillator immediately spikes upon input from 

the outer oscillators. In Appendix 4.5 we show that the coupling strengths from the 

relay oscillator to the outer oscillators increase with 1n n    for 0.25   using the 

STDP window  W t  of Eq. 4-9, since the spike from the relay oscillator arrives 

well before the outer oscillators spike. Hence synaptic weights increase to 

   1 2 1 ln 2 1 1b
c e b       

 
, at which point the outer oscillators also spike

immediately after input and STDP stops. Thus, STDP turns slave synchrony into DS. 

In the driven, pacemaker, and slave synchrony modes oscillators 1 and 3 

spike simultaneously. There are other, asynchronous stable modes where this is not 

the case. Figure 4-3, C and D, shows the dynamics of the oscillators for a typical 

asynchronous case. This mode will be referred to as a “pacemaker-slave” because 

the relay drives oscillator 1 and is driven by oscillator 3. 

4.2.4  Synchronization measures 

For a proper analysis of synchronized firing, a quantitative definition of synchrony 

is required. In experiments perfect synchrony will never be observed as noise causes 

small variations in the timing of action potentials. Instead we will define synchrony 

as firing of two oscillators within a small time window, where the time window 

should be sufficiently large to eliminate the effect of noise and sufficiently small to 

provide an accurate estimate of synchrony. While we could measure synchrony here 

to the limits of the numerical accuracy of our simulations, we define synchrony as 

the condition when the spikes of the outer oscillators occur within 

spike spike
1, 3, 00.02n nt t T   (Engel and Singer, 2001), which is 0.5 ms for simulations of
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the model with MS phase oscillators and 0.2932 ms for the model with the classical 

HH neurons. 

Synchronized firing of the outer oscillators does not only depend on the 

synaptic weights and delay times, but also on the initial phase of the three oscillators. 

Hence we have to consider the robustness of convergence to synchronous firing for 

variations in the initial relative phase of the neuronal oscillators. Therefore, we 

define “synchronization quality” (SQ) as the fraction of the number of initial phase 

combinations that leads to stable synchronous firing of the outer oscillators. SQ has 

a value between 0% and 100%, where 100% means that the outer oscillators will 

always converge to synchronous spiking within the simulation period, independent 

of their initial phases. This provides a measure of the attraction domain of the initial 

phases for reaching synchronization of the outer oscillators. To determine SQ, we 

repeat our simulations 335 42,875  times with randomly chosen initial phases. 

To investigate the impact of the various parameters of the STDP learning 

window, we wish to derive a single value for the SQ, rather than one value for each 

combination of synaptic weights and conduction delay. For this purpose we consider 

various synaptic weights in 100 evenly spaced steps in the range from 0.01 to 0.21 

and conduction delays in 100 evenly spaced steps in the range from 0.01 to 0.49. 

Then we average the SQ over these 10,000 pairs to obtain an “average SQ” for each 

parameter set of the learning window. Note that for an STDP run with 60 sessions, 

this means that we compute almost 400 billion cycles of the model for each change 

of the STDP parameters. 

For some combinations of the synaptic weights, delay times, and initial 

phases the state of zero-lag synchronization is reached faster than for other 

combinations. Therefore, we define a “convergence promptness” (CP) for the 

network to achieve zero-lag synchronization of the outer oscillators. This is 

calculated as  sync sessCP SQ 1- n n  , where syncn  is the average number of 

intrinsic periods 0T  needed to achieve zero-lag synchrony. When there is no zero-

lag synchrony established within sess 15n   cycles, CP equals to 0. Note that 

sync sessn n  with sess 15n   for the simulations in this study, and that the measure 
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is multiplied with the SQ to account for the readiness of the system to achieve zero-

lag synchrony at all. 

Finally, not only are we interested in synchrony of the outer oscillators, but 

also in the relative phase r  for stable modes in which oscillators 1 and 3 are not in 

synchrony. The relative phase between the outer oscillators is defined by 

 spike spike
3, 1, 0:r n nt t T    with a value between -1 and 1. Since values for r  of -1, 0, 

and 1 all refer to the same state, we report r  rescaled to the range 1 2  to 1 2  by 

periodically mapping  1, 0.5   to  0, 0.5  and  0.5,1  to  0.5,0 , respectively.

4.3 Results 

4.3.1 Equal delay times and coupling strengths 

Figure 4-2, A and C, shows simulation results for the SQ and the CP, respectively, 

as a function of the conduction delay   and the synaptic weight   for the MS model 

with instantaneous synapses, identical delay times  1 3    , and identical 

coupling strengths  12 21 23 32        . The three solid black curves show the 

analytically calculated boundaries between different modes of synchrony using the 

phase-locking equations, for details see sec. “Synchrony modes derived from the 

phase-locking equation” in Appendix 4.5.1. The upper right area, indicated by IV, is 

bounded by the curve 

 1
,

2

b 



 (4-13) 

where b  is defined in Eq. 4-7. For a detailed derivation see the discussion below 

Eq. 4-A12 in Appendix 4.5. Our simulations show that in region IV zero-lag 

synchronization occurs mainly when the relay oscillator spikes immediately upon 

arrival of synaptic input from the outer oscillators, but the outer ones do not after 

input from the relay one (Fig. 4-2B, middle). The period IVT  of this “slave 

synchrony” mode is given by Eq. 4-A12 “SS2” in Appendix 4.5. 
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Figure 4-2. Features of synchronization depending on delay time and coupling 

strength. A and C, Synchronization quality (SQ) and convergence promptness (CP) 

for model with instantaneous synapses respectively. Thick black curves in A and C 

indicate boundaries of dynamics calculated analytically using the phase-locking 

equation. B, Illustration of synchrony modes dominant in regions indicated by roman 

numerals in A and C. SQ is high in region I, low in regions II and IV, and intermediate 

in region III. Slave synchrony (regions II and IV) is not stable, whereas driven (region 

I) and pacemaker (region III) synchrony are asymptotically stable. CP is highest in

region I, indicating synchronization within about 4 cycles.

The curve separating regions I and II is given by  c   2 . In region I,

zero-lag synchronization occurs mainly when both the relay and outer oscillators 

spike immediately when synaptic input arrives (Fig. 4-2B, upper). This represents 
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“DS” with period IT  for all neurons: see Eq. 4-A7 in Appendix 4.5. The curve 

separating regions II and III is given by 

   
 

1 2
,

2 2

b c

b

  


 

 
  (4-14) 

where c , b , and b  defined in Eqs. 4-5 and 4-7, respectively. For a detailed 

derivation see the discussion below Eq. 4-A10 in Appendix 4.5. Region II shows 

mainly slave synchrony like region IV but with a different period IIT : see Eq. 4-A12 

“SS1”. In region III, zero-lag synchronization occurs mainly when the outer 

oscillators spike immediately upon arrival of synaptic input, while the relay 

oscillator does not. This “pacemaker synchrony” (Fig. 4-2B, lower) has period IIIT

according to Eq. 4-A10 “PS1” in Appendix 4.5. 

Figure 4-2A shows that the SQ changes from high (region I) to low (region 

II) and back to intermediate values (region III) when the conduction delay decreases

from 0.5 to 0. Stability analysis indicates that regions II and IV show poor SQ

because slave synchrony that dominates in these regions is unstable, whereas driven

and pacemaker synchrony that dominate in regions I and III are asymptotically stable

and robust against changes in the initial phases. Most combinations of delay and

synaptic weight yield a SQ that is below 50%. Figure 4-2C shows that the delay and

the synaptic weight in region I yield fast convergence to synchronization within

about 4 cycles. In the other regions, zero-lag synchrony is established much more

slowly or not at all.

Figure 4-3A shows a histogram of the relative phase r  for the stable 

pacemaker-slave  0r   and unstable slave synchrony  0r   modes of the 

model with a conduction delay 0.25   and a synaptic weight 0.1   (parameters 

in region II, see Fig. 4-2A). Two nonzero relative phases, corresponding to the stable 

pacemaker-slave mode, and one zero-lag phase, corresponding to the unstable slave 

synchrony mode, occur. The nonzero relative phases have the same absolute value 
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Figure 4-3. Dominance of nonzero relative phases. A, Normalized histogram of the 

relative phase r  for stable states with 0.25   and 0.1  . For about 90% of possible 

initial phases, the system converges to a nonzero relative phase. B, r  as a function 

of the conduction delay   and the synaptic weight   with averages projected into side 

panels. r  decreases when   increases and has a maximum for   near 0.2. C and D, 

dynamics of “pacemaker-slave” synchrony corresponding to nonzero relative phase. 

Solid lines represent spike times for parameter values 0.25   and 0.1  , dotted 

lines for a stronger synaptic weight 0.14   in C and longer delay time 0.35   in D, 

respectively. 

because of the symmetry of the network. For about 90% of the initial phases of the 

oscillators, the system converges to the two nonzero relative phases and for 10% to 

a state with zero-lag synchrony. For other values of the delay and the weight in 

region II, III, and IV, the histograms are qualitatively similar to that shown in Fig. 

4-3A, i.e., two nonzero and one zero-lag relative phases. Thus in general zero-lag 
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synchrony only occurs for a very limited set of initial phases in parameter regions II, 

III, and IV. 

To illustrate how the nonzero relative phase varies for different parameter 

values in the network, Fig. 4-3B shows the absolute value r  as a function of the 

conduction delay   and the synaptic weight  . The three black curves in Fig. 4-3B 

indicate the boundaries between regions I, II, III, and IV as in Fig. 4-2 calculated 

analytically using the phase-locking equation. To understand the results in Fig. 4-

3B, we consider the “pacemaker-slave” mode that corresponds to the positive 

relative phase illustrated in Fig. 4-3, C and D. Vertical solid lines represent the 

spiking times for 0.1   and 0.25  , and the dotted lines correspond to a stronger 

weight 0.14   in Fig. 4-3C and a longer delay 0.35   in Fig. 4-3D. When the 

synaptic weight increases in Fig. 4-3C, oscillators 2 and 3 will spike sooner after 

input from oscillator 1, whereas oscillator 1 always spikes immediately after input 

from oscillator 2. Hence the relative phase between oscillators 3 and 1 decreases 

when the coupling strength increases. At longer delay times in Fig. 4-3D, the 

synaptic inputs from oscillator 2 arrive later in time at oscillators 1 and 3 as indicated 

by the dotted arrows. The input causes oscillator 1 to spike immediately but not so 

for oscillator 3. For the longer delay time, oscillator 3 will be further in its natural 

cycle, and therefore it will spike sooner after the input. Thus oscillators 1 and 3 will 

both spike later, but their relative phase difference is reduced for longer delays. Fig. 

4-3B, left, shows the relative phase as a function of the delay, averaged over all 

values of synaptic coupling. The lower panel shows the relative phase as a function 

of coupling strength, averaged over all delays. 

Next, we study synchronization for a model with HH neurons. Figure 4-4, A 

and E, shows simulation results for the model with HH neurons for the SQ and the 

CP, respectively, as a function of the conduction delay   and the synaptic weight   

for instantaneous synapses. Comparing Fig. 4-4, A and E, with the same results for 

the MS oscillator in Fig. 4-2, A and C, shows that the model with HH neurons yields 

a high SQ and large CP for a larger range of   and   values than the MS neuron. 

Figure 4-4A also shows that perfect SQ is not possible when the delay time 

is shorter than approximately 0.05 of the intrinsic period, which roughly corresponds 

to half the refractory period of the HH neuron. If the time delay is 00.05T  or less, the 
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time interval from spiking of the outer oscillators and spike input from the relay 

oscillator to the outer oscillators is less or equal to the refractory period. In that case, 

Figure 4-4. Excellent synchronization for alpha synapses with short rise times. (Top 

row) Synchronization quality (SQ) and (bottom row) convergence promptness (CP) for a 

Hodgkin-Huxley based model with instantaneous synapses (A and E) and alpha synapses for 

various rise times (B-D, F-H). Comparing A and E with the results for the MS neurons (see 

Fig. 4-2, A and C) shows that SQ and CP clearly improve for HH neurons. Moreover, SQ 

and CP for short rise times of the alpha synapses (B and F) are better than for instantaneous 

synapses (A and E) but decrease for longer rise times. 

input from the relay oscillator to the outer oscillators arrives in the refractory period, 

which effectively reduces the coupling strength when the outer oscillators tend to 

synchronize and thereby disables the zero-lag DS mode when the delay time is short. 

Figure 4-4, B-D and F-H, shows the SQ and the CP, respectively, as a 

function of the conduction delay   and the synaptic weight   for the HH neuron 

model with alpha synapses of various synaptic rise times (left, middle, and right 

columns for syn 1, 2, and 3 ms  , respectively). Quite surprisingly, in the context 
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of the results in Fig. 4-4, A and E, the SQ is high for very small time delays for 

syn 1 ms   (Fig. 4-4B). This can be understood from the fact that the alpha synapse 

adds an effective delay such that spike input from the relay neuron to the outer 

neurons arrives after the refractory period when the outer oscillators fire in perfect 

synchrony. When the synaptic rise time increases, the range of time delays and 

synaptic strengths with high SQ decreases (Fig. 4-4, B-D). To understand this, 

assume that synaptic inputs from the relay oscillator arrive when the phase of 

oscillators 1 and 3 is 1  and 1  , respectively. If   differs from zero, then 

oscillators 1 and 3 will spike at different times, unless the input is strong enough to  

Figure 4-5. Optimal synchronization for moderately fast synaptic rise time. SQ at 

0.02   for three synaptic strengths   = 1 (red), 2 (green), and 3 (blue) mS/cm2 in a

model with alpha synapses and Hodgkin-Huxley neurons, shown as a function of the

synaptic rise time syn . Almost perfect SQ can be obtained when the synaptic rise time

is moderately fast, i.e., approximately between 0.5 and 1 ms. 

immediately initiate a spike in both oscillators. For larger rise times and the same 

synaptic strength  , less input per unit of time is received since the synaptic input 
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Figure 4-6. STDP improves long-range synchronization for instantaneous 

synapses and decreases the fraction of nonzero relative phases. A and B, SQ after 

the first and the 60-th session, respectively. C and D, Corresponding CP. For 

conduction delays 0.25  , synchrony improves due to an increase of initial weights 

  by STDP. E, r  as in Fig. 4-3B but after 60 learning sessions. F, Synaptic weights 

from the outer oscillators to the relay oscillator; G, Synaptic weights from the relay 

oscillator to the outer oscillators. Changes in r  relative to that in Fig. 4-3B are 

largely caused by an increase of the synaptic weights by STDP. To compare with the 

results without STDP, we show the solid black curves that separate regions with 

different dynamics in Fig. 4-2. 

is spread out over a longer time. Therefore, input from an instantaneous synapse 

(equivalent to “ syn 0  ”) or fast alpha synapse (small syn ) can more readily

synchronize the outer oscillators than a slow alpha synapse (large syn ).

High SQ is possible for short delay times  0.05  , if the synaptic rise time 

is short (Fig. 4-4B), but less so when the synaptic rise time increases (Fig. 4-4, C 

and D). This suggests that there is a range of synaptic rise times that favor a high SQ 

for short time delays. Figure 4-5 shows the SQ, as a function of the synaptic rise time 

syn , evaluated at 0.02   for   = 1 (red), 2 (green), and 3 (blue) mS/cm2. Perfect

SQ is obtained when the synaptic rise time is moderately fast, i.e., approximately 

between 0.5 and 1 ms, for a large range of synaptic coupling strengths. Therefore, 

moderately fast synaptic rise times favor zero-lag synchrony. 

STDP facilitates zero-lag synchronization 

We now investigate the effect of STDP on synchronization of the MS neuron, 

starting with the simple instantaneous synapses. Figure 4-6 shows the SQ and the 

CP with short (left column) and long STDP adaptation (right column), i.e., after the 

first and sixtieth session, respectively. To allow an easy comparison to the results 

without STDP in Fig. 4-2, we have drawn the same thick black curves in Fig. 4-6 

that separate regions with different dynamics as in Fig. 4-2. Note that the synaptic 

strength   along the horizontal axes in Fig. 4-6 represents the initial synaptic 

weight, not the final values after adaptation by STDP. The results in Fig. 4-6, A and 
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Figure 4-7. Time required to reach 100% SQ by STDP. A, Number of sessions to 

achieve 100% SQ according to direct simulations; B same but according to analytical 

calculations for converting slave into driven synchrony for the relevant part 

  2c c       of region II. Solid black curves in A and B separate regions with 

different dynamics as shown in Fig. 4-2. 

B, show that the effect of STDP is a gradual expansion of the range of coupling 

strengths that give rise to synchronization. With STDP, the weak coupling gradually 

increases to larger synaptic strengths that allow synchronous firing, corresponding 

to DS. Likewise, the CP increases, as shown in Fig. 4-6, C and D. 

The higher SQ and the faster CP in region II for large delay times in Fig. 4-

6, A-D, can be understood as follows: by increasing coupling strengths, STDP 

converts slave synchrony that is unstable and a dominant zero-lag synchronization 

mode in region II into DS that is asymptotically stable. For slave synchrony STDP 

increases the coupling strength from the relay oscillator to the outer oscillator. The 

sharp border is related to the maximum coupling strength max 0.21:   the slave to

drive synchrony conversion can only occur if   exceeds  max: 2 0.25c c     .

Notice that the fully improved domain of attraction for zero-lag synchrony is reached 

only after 60 sessions with STDP. This suggests that STDP can contribute to zero-

lag synchrony but generally only after many cycles of weight adaptation (here up to 

900 oscillations). 

Figure 4-7 shows the number of sessions for STDP required to obtain 100% 

SQ when the network begins with four equally strong coupling strengths in the range 

between 0 0.21   and delay times   2c c      , i.e., where STDP changes 

slave synchrony into DS as just discussed. The solid black curves in Fig. 4-7 separate 

the regions with different dynamics as in Fig. 4-2 (without STDP). Figure 4-7, A and 

B, is obtained from direct simulations and from analytical calculations, respectively. 

The analytical results are obtained using Eqs. 4-A26 and 4-A27 in Appendix 4.5 

iteratively. The simulated and analytical results are in good agreement. The network 

requires a slightly smaller number of sessions to reach a high SQ value in the 

analytical calculations because these start from the condition of slave synchrony, 

whereas the direct simulations start from random initial phases and reach the driven 
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state after achieving slave synchrony first. For smaller initial coupling strengths, it 

takes more time to converge to stable zero-lag synchronization with STDP: 20 cycles 

(about 0.5 seconds) or more. 

Figure 4-6E shows the absolute value of the nonzero relative phase r  as 

a function of the delay time   and the synaptic weight   after convergence of the 

network to a stable state by STDP. This result should be compared to the case 

without STDP in Fig. 4-3B. Note that the synaptic strength   along the horizontal 

axes in Fig. 4-6 represents the initial synaptic weight at the start of the simulations 

that is assumed to be equally strong for the four connections (cf. Fig. 4-1A) and will 

change during the simulations by STDP. The average values of final synaptic 

weights are shown as a function of the delay and the weight in Fig. 4-6F (connections 

from the outer to the relay oscillator) and Fig. 4-6G (connections from the relay to 

the outer oscillators). After training for 60 sessions, the values of r  for the stable 

states of the network, shown in Fig. 4-6E, significantly decrease in region II, while 

r  changes slightly in regions I, III, and IV as compared to the values before 

adaptation of the synapses by STDP (Fig. 4-3B). This is largely caused by STDP-

induced increase of the coupling strength in region II, as shown in Fig. 4-6, F and 

G. The final weights overall are quite similar in both directions in region II. In region

III they differ because pacemaker synchrony is dominant, which implies different

timing of pre- and postsynaptic firing for the relay and outer oscillators and therefore

different effects of STDP. The final weights in regions I, II, and IV in Fig. 4-6, F

and G, are similar because, after many learning sessions, DS is dominant here. In

DS, the firing behavior of the relay and outer oscillators is the same, i.e., a synaptic

input arrives at phase 2  and makes the neuron spike instantaneously. Since all

connections start with the same initial weight, the same weight adaptation is applied

to the connections from the relay to the outer oscillators and vice versa.

To investigate the robustness of our results for variations of the STDP 

parameter values, we return to the instantaneous synapses. We have varied the 

amplitudes A  and A  of the fractional synaptic modification W  (Eq. 4-9 and Fig. 
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4-8A). Figure 4-8, B and C, shows the SQ and the CP, respectively, for various 

values of A  and A  as a function of the number of learning sessions. The black 

curves in Fig. 4-8 show the results for the asymmetric learning window with our 

standard parameters of STDP obtained from the Bi and Poo data (Bi and Poo, 1998), 

while the red curves show results for smaller ( ,00.5A : dashed curve) and larger (

,01.5A : thick curve) values of potentiation amplitude A . The blue curves are for 

smaller ( ,00.5A : dashed curve) and larger ( ,01.5A : thick curve) values of depression 

amplitude A . 

When depression dominates over potentiation (dashed red and solid blue 

curves), the SQ is poor even after many sessions (Fig. 4-8B). Larger values for 

potentiation relative to depression give rise to faster and better synchrony (dashed 

blue and solid red curves). However, after about 25-40 learning sessions, the 

standard set of parameters (Bi and Poo, 1998) yields better results, i.e., higher values 

of average SQ and faster convergence to synchronization, as shown in Fig. 4-8, B 

and C. To explain this, we will consider why the average SQ in region III becomes 

higher for the standard set of STDP parameters than for the potentiation-dominated 

parameter sets (dashed blue and solid red curves in Fig. 4-8A). For the other regions 

(I, II, and IV), both parameter sets yield similar values of average SQ because there 

the system converges to the DS mode after several learning sessions. 

We first consider the effects of STDP on the coupling strengths of the 

network starting with initial coupling strength   and delay time   in region III just 

below the curve that separates regions II and III. STDP will increase the weights   

to larger values due to larger potentiation relative to depression. This moves  ,   

from region III to region II, where the zero-lag synchronization modes “SS1” of Eq. 

4-A12 in Appendix 4.5 and “NDS2” of Eq. 4-A13 in Appendix 4.5 are unstable.

Hence the average SQ in region III decreases because the initial weights   will be

increased to values that correspond to unstable zero-lag synchronization modes in
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Figure 4-8. Effects of changing the STDP learning window. A, Shapes of the 

learning windows for various amplitudes of A  and A . Black curves represent the 

standard parameter set (Bi and Poo, 1998), while red and blue curves indicate changing 

values of potentiation A  and depression A , respectively, by a factor 0.5 (dashed 

curves) or 1.5 (thick curves). B and C, Dependence of average SQ and CP, 

respectively, on the number of learning sessions. After about 25-40 sessions, the 

standard learning window (black curves) becomes optimal. 

region II. However, when the initial weights and the delay times are farther away 

from the curve separating regions II and III, the effects of STDP on the weights are 

different. To understand this, we focus on pacemaker synchrony, a stable 

synchronization mode in region III. The period of oscillations for pacemaker 

synchrony in region III becomes longer when the weights   become smaller since 

the delay between the arrival of spike input and firing increases, cf. formula “PS1” 

in Eq. 4-A10 in Appendix 4.5. Since the time window for depression is much larger 

than that for potentiation, longer delays suppress potentiation more, leaving 

depression dominant. Close to pacemaker synchrony, this concerns mainly the 

synapses from the outer oscillators onto the relay oscillator since the outer oscillators 

fire quickly after receiving input. A weakening of these synapses reinforces 

pacemaker synchrony. Overall then, increasing the strength of potentiation beyond 

the standard rule will shift more  ,   to region II without stable synchronization, 

leaving fewer  ,   that will achieve stable pacemaker synchrony. Hence the SQ 

and CP in region III eventually becomes higher for the standard STDP set than for 

the potentiation-dominated one; and the average over all regions follows this trend 

(Fig. 4-8, B and C). 

Results for different time constants for potentiation   and depression   

(not shown) are qualitatively similar to the results for changing the amplitudes A  

and A , i.e., a larger value of   relative to   gives rise to faster and better 

synchrony and the standard values for   and   yield better results for zero-lag 

synchrony when the number of the learning sessions is large. Our results are robust 

for decreases of depression (dashed blue curve) or increases in potentiation (solid 

red curve) but not vice versa (dashed red and solid blue curves). Figure 4-9 shows 
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the SQ and the CP for the model with STDP with HH neurons with instantaneous 

synapses (Fig. 4-9, A and C, respectively) and with alpha synapses (Fig. 4-9, B and 

D, respectively). Comparing Fig. 4-9A with Fig. 4-4A reveals hardly any 

improvement of the SQ by STDP. However, for alpha synapses STDP significantly 

improves the average SQ by increasing the synaptic coupling   (compare Figs. 4-

9B and 4-4C). 

Figure 4-9. STDP improves long-range synchronization for the model with HH 

neurons. A and B, SQ after the 60-th session for instantaneous synapses and the 2-ms-

syn alpha synapse, respectively. C and D, Corresponding CP. For conduction delays,

approximately 0.1  , synchrony improves due to STDP-mediated increase of 

synaptic strength  . 
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In summary, the conditions that contribute to zero-lag longe range 

synchronization are as follows. First, the delay times relative to the intrinsic 

frequency 0T  should be long enough, i.e., more than about 0.35 (8.75 ms for 

0 25 msT  ) for the model with MS phase oscillators with the instantaneous synapse 

(cf. Fig. 4-2, A and C) and 0.15 (2.2 ms for 0 14.66msT  ) for the model with HH 

neurons with the alpha synapse (cf. Fig. 4-4). Moreover, alpha synapses with short 

synaptic rise times are required for zero-lag synchronization for short delay times 

(cf. Fig. 4-5). Third, STDP facilitates the synchronization but generally only after 

many cycles of weight adaptation (cf. Figs. 4-6 - 4-9). 

4.3.2 When delay times from the relay oscillator to outer oscillators are 

not identical 

We now investigate the dynamics of the model in Fig. 4-1A when the delay times 

1  and 3  are different. Simulation results (not shown) show that zero-lag synchrony 

then is lost, in agreement with Fischer et al. (2006) and Vicente et al. (2008). 

Similar results (not shown) were found for the model with HH neurons. To 

understand why zero-lag synchronization disappears when the delay times are 

different, we consider the MS network with instantaneous synapses. Let us assume 

that oscillators 1 and 3 fire simultaneously. When oscillator 2 generates an action 

potential, the spikes arrive at oscillators 1 and 3 after delays 1  and 3 , respectively. 

When the spikes arrive at oscillators 1 and 3 at a phase exceeding the critical phase, 

oscillators 1 and 3 will spike immediately after arrival of the spike. This implies that 

oscillators 1 and 3 spike with a time difference spike spike
1, 1 3, 1 1 3 0n nt t T     . This 

illustrates that zero-lag synchrony is lost when the delay times 1  and 3 are

different. Qualitatively similar results (not shown) are obtained for asymmetric 

coupling strengths. 

Figure 4-10 shows a histogram of the relative phase r  for various stable 

modes for the synaptic weight 0.1   for five pairs of conduction delays: 

   1 3, 0.35,0.25    in Fig. 4-10A,  0.25,0.15  in 4-10B,  0.25,0.25  in 4-10C,

 0.25,0.35  in 4-10D, and  0.15,0.25  in 4-10E. Figure 4-10A shows two peaks of
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Figure 4-10. Effect of unequal delays on relative phase. A-E, Histograms showing 

the fraction of initial phases that converge to a particular relative phase 0.1   for 

different pairs    1 3, 0.35,0.25   ,  0.25,0.15 ,  0.25,0.25 ,  0.25,0.35 , and

 0.15,0.25 . When delays between the outer oscillator and the relay neuron become

asymmetric, one of the nonzero relative phases disappears and the zero relative phase

shifts to nonzero values, corresponding to a state where the outer oscillator with the

shorter delay spikes earlier.
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relative phases near -0.19 and -0.14, instead of the three peaks appearing in Fig. 4-

10C, which include one at zero. Figure 4-10, B, D, and E, also yields two nonzero 

peaks instead of three. Figure 4-10, A and B, are mirror images of D and E, 

respectively, because the delay times are exchanged and the outer oscillator with the 

shorter delay time spikes first. Essentially, the symmetric nonzero peaks in Fig. 4-

10C collapse into one for asymmetric delays, and the zero-lag peak shifts to a 

nonzero value, which is equal to the value of the zero-lag peak. Other combinations 

of the synaptic weight   and non-equal conduction delays 1  and 3 yield

qualitatively similar results. 

4.4 Discussion 

In this study we have investigated the conditions for zero-lag synchrony 

between two neuronal oscillators that interact via a relay oscillator. The main 

result of our study is that for the model with type II Hodgkin-Huxley neurons, 

synchronization is easier to achieve than for type I Mirollo-Strogatz neurons. 

Synapses with short rise times (typically less than 2 ms) are more suitable to achieve 

zero-lag synchronization than synapses with longer rise times. With STDP the 

network converges to zero-lag synchronization at a faster rate and for a larger range 

of synaptic strengths and time delays than without STDP. However, when the delay 

times between the two synchronizing oscillators and the relay oscillator are different, 

zero phase lag may easily get lost.  

The network used in this study is a simplified model for interacting neuronal 

populations. This obviously raises the question whether our results about zero-lag 

synchrony may be biased by the simplifications inherent in our model. We will argue 

in the next paragraphs below that this is not the case. Our choice of indirect 

interactions between oscillating neuronal populations, i.e., via a relay oscillator, was 

inspired by previous studies, which showed that pulse-coupled neuronal oscillators 

with direct excitatory coupling and signal delays in general do not oscillate at zero 

phase lag (van Vreeswijk et al., 1994; Ernst et al., 1995, 1998; Knoblauch and 

Sommer, 2003; Zeitler et al., 2009), unless the neurons are of type II with biphasic 

PRC’s (Goel and Ermentrout, 2002; Woodman and Canavier, 2011). Inhibitory 

coupling between directly interacting oscillators can cause near zero-lag synchrony 

(van Vreeswijk et al., 1994; Zeitler et al., 2009). However, the dominant connectivity 
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between cortical areas, such as V1, V2, V4, and FEF, is excitatory rather than 

inhibitory. These considerations led Fischer et al. (2006) and Vicente et al. (2008) to 

postulate a network model of oscillators interacting via a relay oscillator that 

supports zero-lag synchrony. Subcortical structures like the thalamus are good 

physiological candidates for such a mediating relay (Theyel et al., 2010). Our study 

elaborates on this relay network model. 

The most simplified version of our model assumes that the oscillators used 

to represent neuronal population activity are of the Mirollo-Strogatz type. The 

Mirollo-Strogatz oscillator corresponds to the type I neuron class (Izhikevich, 2007). 

Although there is evidence that cortical pyramidal cells can switch between type I 

and type II by means of cholinergic modulation (Ermentrout et al., 2001; Jeong and 

Gutkin, 2007; Prescott et al., 2008; Stiefel et al., 2008, 2009), the majority of 

pyramidal cells in neocortex seems to be type I neurons (Reyes and Fetz, 1993b, a; 

Kawaguchi, 1995; Erisir et al., 1999; Tateno et al., 2004). Our results show that 

synchronization is hard to achieve for the model with type I MS neurons for weak 

and strong synaptic coupling strengths, unless the delays are relatively long. To 

appreciate this result, one should realize that the literature on this topic is divided in 

studies assuming weak coupling using infinitesimal phase response curves and 

others assuming strong synaptic coupling. Our results are in agreement with the 

results of Ermentrout (1996), who used a perturbation method, which is equivalent 

to assuming weak coupling, for networks of type I neurons with excitatory coupling. 

However, Mirollo and Strogatz (1990) reported that for almost all initial conditions, 

a network with strongly coupled type I neurons (without delays!) evolves to a state 

with synchronous firing. When delays are involved, zero-lag synchrony is lost (Ernst 

et al., 1995, 1998). Recently, Wang et al. (2012) showed that synchrony in a network 

with strongly coupled type I oscillators is possible in the absence of delays or with 

delays greater than half of the network period. Although we did not study the model 

with delays exceeding 0.5, our results reveal the largest amount of synchrony for 

long delays, which is in agreement with the results by Wang et al. (2012). 

Replacing the Mirollo-Strogatz neurons by more realistic type II Hodgkin-

Huxley neurons allows for a broader range of synaptic strengths and time delays that 

is compatible with zero-lag synchronization. This result suggests a functional role 

for changes in neuronal properties from type I to type II, in agreement with 
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suggestions by Prescott et al. (2008). However, there are no experimental data 

available yet that can be used to test the hypothesis that the properties of pyramidal 

cells change from type I to type II when synchrony arises in neuronal populations, 

as far as we know. Another possibility might be that properties of pyramidal cells do 

not change from type I to type II, but that the activity of interneurons causes strong 

inhibition after firing of the pyramidal cells (see Börgers et al. (2010) for a more 

extended description of the effect of inhibition). In that case, the inhibition by the 

interneurons after firing causes effectively a biphasic PRC with phase delays early 

in the firing cycle and phase advances later in the cycle for the pyramidal 

cell/interneuron couple that contributes to synchrony both for direct coupling 

between two pyramidal cells as well as for a pyramidal cells interacting via a relay 

neuron. 

Delays in networks of interacting neurons can give a variety of complex 

behaviors with a wealth of bifurcations and a rich phase diagram, which includes 

oscillatory bumps, traveling waves, lurching waves, standing waves arising via a 

period-doubling bifurcation, aperiodic regimes, and regimes of multistability (Roxin 

et al., 2005). Synchronous firing is just one of these modes, which only occurs for a 

limited range of model parameters. A neuronal property that greatly contributes to 

synchrony is that the phase response curve of the neurons is biphasic with phase 

delays early in the firing cycle and phase advances later in the cycle, like for type II 

Hodgkin-Huxley neurons. This applies both to weakly coupled oscillators (see e.g. 

Hansel and Mato (1993); Hansel et al. (1993b, 1993a)) as well as for strongly 

coupled coupled ones (Bressloff and Coombes, 2000; Izhikevich, 2007). Their 

results are in agreement with the results in our study, which show that the model 

with type II Hodgkin-Huxley neurons more easily leads to zero-lag synchronisation 

than with type I MS neurons. 

Another assumption of this study, which requires some more discussion, is 

that all oscillators in the model have identical intrinsic properties with the same 

oscillation period. If the intrinsic periods of the outer oscillators differ, zero-lag 

synchrony may get lost. Whether synchrony will be lost depends on the neuron type. 

If the synaptic input to the outer oscillators that have different natural frequencies 

resets their oscillation periods to the same value, zero-lag synchronization is easily 

obtained. Synchronization of non-linear oscillators with different oscillatory 
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properties is feasible if the interactions between the oscillators (the synaptic 

strengths in our study) are sufficiently strong (Pikovsky et al., 2001). A special 

condition is the situation where the intrinsic period of the relay oscillator is different 

from that of the outer oscillators. This might not be unusual if the relay oscillators 

are thalamic cells and the outer oscillators cortical cells. In this case, the 

synchronization properties change quantitatively but not qualitatively. These results 

have been confirmed by simulations (not shown) but can be understood from the 

following: If we make the period of the relay oscillator different from that of the 

outer oscillators, the combinations of synaptic strength and delay where input can 

elicit spikes immediately after arrival change only slightly with adjustments of the 

period. Hence the boundaries of regions with driven, pacemaker, and slave 

synchrony will change quantitatively, but not qualitatively, unless the differences in 

the period become too large. 

If the periods of the two outer oscillators are different from each other and if 

input from the relay oscillator does not make the period of the outer oscillators the 

same, input from the relay oscillator to the outer oscillators will elicit spikes at 

different times. In that case, the spike input from the outer oscillators to the relay 

oscillator also arrives at different times. This is essentially equivalent to the situation 

with different delay times, which we have studied (see sec. 4.3.2), where we have 

shown that zero-lag synchrony is easily lost if the delay times become different (see 

also Fig. 4-10). Therefore, synaptic coupling strengths should be sufficiently strong 

to ensure zero-lag synchrony when the oscillation periods of the outer oscillators 

differ. 

In our study we have introduced “SQ” as a measure for the robustness 

of synchrony against variations in the initial phases of the oscillators. SQ was 

used together with the “ CP” to assess zero-lag synchrony between the two 

outer oscillators in our relay network. The time interval for “synchrony” was 

chosen as spike coincidence within 0.5 ms (Engel and Singer, 2001), which in 

experimental settings is long enough to take into account typical noise on spike 

timings but short enough to speak about “zero-lag”. Increasing the time interval 

to 1 ms did not affect the results qualitatively though quantitatively some minor 

differences were observed. 
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In agreement with Knoblauch and Sommer (2003), we found that if spike-

timing dependent plasticity (STDP) adapts synaptic coupling, the network state 

converges more easily to a stable state with zero-lag synchrony (see Figs. 4-6 and 4-

9). However, adaptation of the synapses by STDP often took quite some time (in 

general more than 500 cycles (one session corresponds to 60 cycles), see Fig. 4-7), 

which implies that STDP may not always play a dominant role for the rapid 

development of zero-lag synchronization. Vicente et al. (2008) reported that the 

mechanism of synchronization rests on the ability of an excitatory postsynaptic 

potential to modify the firing latencies of a postsynaptic neuron in a consistent 

manner. We agree with this conclusion, but our results show that the mechanism of 

STDP may take too much time (considerably more than the observed time range of 

200-250 ms in visual perception, see Rodriguez et al. (1999)) to generate zero-lag 

synchrony for oscillations in the gamma frequency range. 

Overall, our results demonstrate that gamma oscillations in various cortical 

areas can be synchronized at zero-lag in a network model where neuronal oscillators 

are coupled via a relay oscillator, in agreement with previous studies (Fischer et al., 

2006; Vicente et al., 2008). In addition, we show that STDP expands the range of 

parameter values that allow zero-lag synchrony. 

4.5 Appendix 

4.5.1 Detailed analysis of phase-locking and stability 

Analytical derivations of the various synchrony modes and their stability are 

provided. An overview of these results is provided by Fig. 4-A1. 

Synchrony modes derived from the phase-locking equation 

To investigate the existence of zero-lag synchrony as a function of   and  , we will 

derive the 1:1 synchronized phase-locking equation of the oscillators, cf. Fig. 4-1B. 

The firing of the relay oscillator spike
2, 1nt   is chosen as reference time, i.e., spike

2, 1 0nt   . For 

zero-lag synchrony there exists some value  0,1   such that the firing times spike
1, 1nt 
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Figure 4-A1. Synchronization regions in the parameter plane of delay time and 

coupling strength. Different combinations of possible synchrony modes divide the 

parameter plane of delay time   and synaptic weight   into ten distinct regions. These 

are shown separated by black curves and the corresponding synchrony modes are 

indicated by symbols referring to results listed in Appendix 4.5: driven synchrony – 

Eq. 4-A7 “DS” in Appendix 4.5; pacemaker synchrony – Eq. 4-A10 “PS1” and “PS2” 

in Appendix 4.5; slave synchrony – Eq. 4-A12 “SS1” and “SS2” in Appendix 4.5; and 

non-driven synchrony – Eq. 4-A13 “NDS1”, “NDS2”, and “NDS3” in Appendix 4.5. 
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and spike
3, 1nt  of both oscillators 1 and 3 are equal to T , and spike

1,nt  and spike
3,nt  are equal 

to T T  , with T  the period of the oscillations in the network. The spikes from the 

outer oscillators arrive at the relay oscillator at phase 0T T  , if   01- T T 

or at   01 T T   , if   01- T T  . The new period of relay oscillator 2 is hence 

given by 

 

   

0 0

0 0

0 0

0 0

;2 for 1- ,

1 ;2 for 1- ,

T T
T T

T T
T

T T
T T

T T

    

    





  
     

  
 

 
     

 

(4-A1) 

where   is defined in Eqs. 4-6 and 4-7 of the main text, repeated here for 

convenience: 

 
( ) ( ) for 0 ,

fo ,
;

1 r 1
b ij b ij i i c

i i ij

i c i

  
 

  

   


  
  

  
(4-A2) 

( )
( ) : , ( ) : 1.

(1)
bxb

b b

b

x
x x e


 


    (4-A3) 

The spike from oscillator 2 will arrive at oscillators 1 and 3 at phase   01- ,T T 

if 0T T  , or 0T T  , if 0T T  . The new period of outer oscillators 1 and

3 is hence given by 

 0 0

0 0

0 0

0 0

1 ; for ,

; for .

T T
T T

T T
T

T T
T T

T T

    

  



  

  
      

  
 

 
    

 

(4-A4) 

Equations 4-A1 and 4-A4 are the 1:1 phase-locking equations, which give a relation 

between the synaptic weight  , the conduction delay  , and the new period of the 

oscillators T . 
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Using Eqs. 4-A1 and 4-A4, we will derive four synchronization modes: 

driven, pacemaker, slave, and non-driven synchrony. In driven synchrony spikes 

from the outer oscillators immediately initiate a spike of the relay oscillator, and vice 

versa, cf. Fig. 4-2B, top. In pacemaker synchrony arrival of a spike from the relay 

oscillator at the outer oscillators immediately elicits a spike, but not vice versa, cf. 

Fig. 4-2B, bottom. When the relay oscillator spikes immediately after spikes from 

the outer oscillators, but not vice versa, we call this slave synchrony, cf. Fig. 4-2B, 

middle. Finally, non-driven synchrony occurs when neither the relay oscillator nor 

the outer oscillators spike immediately after input. 

First, we consider driven synchrony. In order for all input spikes to elicit a 

spike in the receiving oscillators, we must have the following: for the relay oscillator 

  02c T T      if   01- T T  , and     02 1c T T      if

  01- T T  ; and for the outer oscillators     01c T T       if 0T T  ,

and   0c T T      if 0T T  . Using Eqs. 4-A1, 4-A2, and 4-A4, we can then

rewrite the new period of the relay oscillator as 

   

       

0
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0
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      
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
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
 
       


(4-A5) 

and the new period of the outer oscillators as 

     
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      





     


     


 
    


(4-A6) 

We can now solve for   and T  by using one part of Eqs. 4-A5 and 4-A6 each, and 

combining them under the condition that the new periods T  of the relay and outer 

oscillators, respectively, must be identical to achieve synchrony. This yields four 

possible combinations: 
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   
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(4-A7) 

For biologically realistic conditions  0,0.5   and  0,0.21   and our choice

3b  , only the driven synchrony mode labeled “DS” turns out to be valid. The firing 

dynamics of “DS” is illustrated in Fig. 4-2B, top. For the other cases, the c  

conditions are not fulfilled and therefore these solutions are rejected. Moreover, the 

third solution also has a   value out of range for 1:1 phase-locking. We will 

similarly identify the valid modes of other solutions below. Since    2c c   ,

  2c    implies  2 2c    and the   2c    constraint is sufficient. This

constraint divides the   and   parameter space into two regions: driven synchrony 

is possible in the region where   2c    but not in the region where   2c   . 

These two regions are separated by the curve   2c    illustrated as the curve 

separating regions I and II in Fig. 4-2, A and C. 

Second, we investigate pacemaker synchrony. For pacemaker synchrony 

only the outer oscillators spike directly upon input but not the relay one. Thus for 

the relay oscillator, we must have   02c T T      if   01- T T  , and 

    02 1c T T       if   01- T T  . For the outer oscillators, we must have 

    01c T T       if 0T T  , and   0c T T      if 0T T  . Using

Eq. 4-A2 in Appendix 4.5, we can rewrite the new period of the relay oscillator given 

by Eq. 4-A1 as 
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(4-A8) 
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     : 1 ,b b bx x x      (4-A9) 

whereas the new period of the outer oscillators is given by Eq. 4-A6 in Appendix 

4.5. Solving for   and T  as before, we find the following four possibilities: 
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(4-A10) 

The two valid modes for pacemaker synchrony given our constraints are labeled 

“PS1” and “PS2” in Eq. 4-A10 in Appendix 4.5, respectively. Within our ranges of 

interest for   and  , one can check numerically for the “PS1” and “PS2” pacemaker 

synchrony that   0c T T    implies  2 2c    and   02 2c T T    , 

respectively. Hence, only the   0c T T    constraint is required. “PS1” pacemaker

synchrony is possible in the region         0, 0,0.21 0,0.5 c T T      , while

“PS2” is possible in the region         0, 0,0.21 0,0.5 andc T T     

  01 T T   , where   01 T T    refers to the condition given in Eq. 4-A1 

in Appendix 4.5. The equality   0c T T    of “PS1” gives the curve separating

regions II and III in Fig. 4-2, A and C. The firing dynamics for “PS1” pacemaker 

synchrony is illustrated in Fig. 4-2B. 

Third, in slave synchrony only the relay oscillator spikes upon input, i.e., in 

case of the relay oscillator, we must have   02c T T      if   01- T T  , and 

    02 1c T T       if   01- T T  . For the outer oscillators, we must have 

    01c T T       if 0T T  , and   0c T T      if 0T T  . The new

                                                                                                                           174 When long­range synchronization is feasible



period of the relay oscillator is given by Eq. 4-A5, and from Eqs. 4-A2 and 4-A4 we 

obtain the following expression for the new period of the outer oscillators 
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The four combinations are then: 
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The two valid slave synchronization modes will be called “SS1” and “SS2”, 

respectively. Within our ranges of interest for   and  , one can check numerically 

for the “SS1” slave synchrony mode that   2c    implies   02c T T   ;

whereas the constraints for “SS2” are always fulfilled in our ranges for   and   

Hence “SS1” slave synchrony, of which the firing dynamic is illustrated in Fig. 4-

2B, is possible in the region         , 0,0.21 0,0.5 2c       , while “SS2” is

possible in the region       0, 0,0.21 0,0.5 T T      , where 0TT 

refers to the condition given in Eq. 4-A4 in Appendix 4.5. The equality 0T T 

of “SS2” gives the curve separating regions I and IV in Fig. 4-2, A and C. 

Finally, for non-driven synchrony none of oscillators fires immediately after 

receiving a spike. This implies that for the relay oscillator   02c T T      if 

  01- T T  , and     02 1c T T      if   01- T T  . For the outer 
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oscillators     01c T T      if 0T T  , and   0c T T      if

0T T  . The new period is then given by Eqs. 4-A8 and 4-A11 in Appendix 4.5

for the relay and outer oscillators, respectively. The resulting combinations are:
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 (4-A13) 

with    ( ) (2 ) (2 ) ( )mnop b b b bm n o p            , where indices can take on

the values +1, 0, -1 as represented by the signs, and likewise 

       : 2 2m b b b bm           . The three valid non-driven 

synchronization modes will be called NDS1, NDS2, and NDS3, respectively. From 

the constraints of   and   for “NDS1” slave synchrony,   0c       

implies   02c       . For the “NDS2” slave synchrony, 

  0 0 0c        implies   0 0 02c       . But the constraints of “NDS3” 

fulfill automatically in our range of   and  . Hence the “NDS1” slave synchrony 

is possible in the region         0, 0,0.21 0,0.5 c            , while 

“NDS2” is possible in the region         0 0 0, 0,0.21 0,0.5 c          

  0and 1- T T   and “NDS3” in the region       , 0,0.21 0,0.5    

  01- T T , where   01- T T   refers to the condition given in Eq. 4-A1 in

Appendix 4.5. 

Based on different combinations of the synchronization modes DS from Eq. 

4-A7 in Appendix 4.5, PS1 and PS2 from Eq. 4-A10 in Appendix 4.5, SS1 and SS2
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from Eq. 4-A12 in Appendix 4.5, and NDS1, NDS2, and NDS3 from Eq. 4-A13 in 

Appendix 4.5, we can separate the parameter plane of time delay   and synaptic 

weight   into ten regions, see Fig. 4-A1. In summary, the regions in the   and   

parameter space, where the modes are possible, are given by 

        
        
          
        
      

        
 

0

0 0

0

0

, 0,0.21 0,0.5 2 for DS,

, 0,0.21 0,0.5 for PS1,

, 0,0.21 0,0.5 and 1 for PS2,

, 0,0.21 0,0.5 2 for SS1,

, 0,0.21 0,0.5 for SS2,

, 0,0.21 0,0.5 for NDS1,

, 0,

c

c

c

c

c

T T

T T T T

T T

    

   

     

    

   

      

 

  

  

  

    

  

  

   

        
        

0 0 0 0

0

0.21 0,0.5 and 1- for NDS2,

, 0,0.21 0,0.5 1- for NDS3.

c T T

T T

      

   

    

  

(4-A14) 

Stability analysis of synchrony modes 

To investigate the stability of driven synchrony, we assume that the fixed point Eq. 

4-A7 “DS” in Appendix 4.5 suffers from small phase perturbations

   1 3 1 3, ,         at time spike
2, 1nt  . Driven synchrony is asymptotically stable,

if there is a 0   such that the phases of the outer oscillators will be closer to   at 

the next spike time spike
2,nt  for 2 2

1 3    . Since   2c   , we can define 

 : 2 0c      , and by this definition   2c     . The spike from the relay

arrives when oscillator 1 has phase 12  2         that exceeds the critical 

phase  c  . Therefore, oscillator 1 will spike immediately after input. Since the 

same argument applies to oscillator 3, the outer oscillators will again spike in 

synchrony, proving asymptotic stability for small perturbations. Similar arguments 

can be made to show that the pacemaker synchrony of Eq. 4-A10 “PS1” and “PS2” 

in Appendix 4.5 is asymptotically stable. 
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Next we investigate the stability of the slave synchronization mode Eq. 4-

A12 “SS1” in Appendix 4.5. Here one has to calculate the eigenvalues   of the 

Jacobian of the return map near the fixed point of the outer oscillator phases (Zeitler 

et al., 2009). If all eigenvalues are within the unit circle  1  , then the fixed point

is asymptotically stable, otherwise it is unstable  ; 1    . Assume at time

spike
2, 1nt  that phases are perturbed away from the fixed point of Eq. 4-A12 “SS1” in

Appendix 4.5:    1 3 1 3, ,        . Thus synaptic inputs from oscillators 1

and 3 will arrive at oscillator 2 at slightly different times. Without loss of generality, 

we assume that the synaptic input from oscillator 1 arrives earlier. This first synaptic 

input can make the relay oscillator spike immediately if   0c T T     .

Assuming that the perturbation is small enough for the solution in Eq. 4-A12 “SS1” 

in Appendix 4.5 to remain applicable, we find   0c T T    

   1 2b b            1 2b c b           . For nonzero coupling this is

equivalent to  2 c  , which is biologically reasonable (Tsubo et al., 2007).

Therefore, we assume   0c T T     , and the spike from oscillator 1 will make

the relay oscillator spike instantaneously when it arrives. Define 1  as the phase of 

oscillator 1 at this relay spike time spike
2,nt , then obviously 1   , the conduction 

delay. 

To find the phase 3  of oscillator 3 when oscillator 2 spikes at spike
2,nt , we first 

derive the previous spike times of the outer oscillators spike
1, 1nt   and spike

3, 1nt  . The phase of

oscillator 1 is 1   when the relay oscillator fires at spike
2, 1 0nt   . After a delay 0T , 

the spike from the relay oscillator arrives at oscillator 1, thus at its phase 
old
1 12    . If 1  is small enough we can still assume 12 ( )c     , i.e.,

this input from the relay will not make oscillator 1 spike instantaneously. Instead its 

phase will jump to    new old old
1 1 1b b         , cf. Eq. 4-A2 in Appendix 4.5. 

After receiving the spike, it takes an amount of time  new
0 11T   until oscillator 1 

spikes at spike
1, 1nt  . Hence spike

1, 1nt   is obtained by adding the conduction delay 0T  between 
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oscillators 2 and 1 to the time  new
0 11T   that oscillator 1 still needs to evolve 

before spiking. Spike time spike
3, 1nt  can be obtained in a similar way, and thus one finds:

        spike
1, 1 0 11 1 ,n b b b
t T         

        (4-A15) 

        spike
3, 1 0 31 1 .n b b bt T                   (4-A16) 

The next spike of the relay oscillator occurs at spike spike
2, 1, 1 0n nt t T  , as explained above.

Since    spike spike spike spike
3 2, 3, 1 1, 1 3,0 1 0n n n nt t T t t T        , we find the following return map

for our local stability analysis 

1 ,   (4-A17) 

   3 1 31 1 .b b                   (4-A18) 

The corresponding Jacobian matrix is 

   

0 0
.

1 1b b   

 
 
      

 (4-A19) 

The eigenvalues of this matrix are 0 and  1 1b   . Consequently, this fixed point 

is not stable. Equation 4-A12 “SS2” in Appendix 4.5 can be shown to be unstable 

in a similar manner. 

Finally, we investigate the stability of non-driven synchronization Eq. 4-

A13 “NDS1” in Appendix 4.5. We will discuss the return map near the fixed point 

      1 3, 1 , 1T T       . At time spike
2, 1nt  , we assume a small perturbation

   1 3 1 1 3 3, ,        . The arguments used to derive Eqs. 4-A15 and 4-A16

in Appendix 4.5 hold here, except that the perturbed fixed point is 

1 1 1        and 3 3 3       , respectively. Without loss of

generality, we assume that the synaptic input from oscillator 1 arrives at oscillator 2

before that from oscillator 3. Thus when oscillator 1 spikes at spike
1, 1nt  , the spike input
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from oscillator 1 arrives at oscillator 2 at phase spike
1, 1 0nt T    and causes the phase of

oscillator 2 to change to     spike
1, 1 01b b nt T    

        . Then the spike

generated at pike
3, 1
s
nt  by oscillator 3 will arrive when oscillator 2 has phase

    spike
1, 1 01b b nt T    

         spike spike
3, 1 1, 1 0n nt t T   and this causes a change in

phase of oscillator 2 to 

     
    

new spike
2 1, 1 0

spike spike
3, 1 1, 1 0

: 1 1

,

b b b n

n n b

t T

t t T

      









 

             

  
(4-A20) 

 new
2 0: 1 ,t T   (4-A21) 

with oscillator 2 spiking after this additional time t  has passed. Hence, when 

oscillator 2 spikes, the phases of the outer oscillators at the time spike
2,nt  are 

spike spike
3, 1 1, 1

0 0

1 ,n nt tt

T T
   
    (4-A22) 

1

0

.
t

T



  (4-A23) 

The corresponding Jacobian matrix is 

          

     
2 2

1 1 1 1
,

1 1

b b b b b

b b b

         

     

               
          

 (4-A24) 

with resulting eigenvalues 

 
3

1 21 ( ),  1 ( ) .b bλ β λ β      (4-A25) 

This fixed point is not stable because these eigenvalues exceed the value one for 

 0,0.21  . In a similar manner one can show that Eq. 4-A13 “NDS2” and “NDS3”

in Appendix 4.5 are unstable.
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Impact of STDP on coupling in slave synchrony 

In slave synchrony, the coupling strengths from the outer oscillators to the relay 

oscillator remain unchanged by STDP since the relay oscillator instantly spikes upon 

input from the outer oscillators. How about the coupling from the relay oscillator to 

the outer oscillators? Say their strengths are 1n  just after the outer oscillators spike

at spike spike
1, 1 3, 1n nt t  . The relay spike arrives when the outer oscillators have phase 2  

since the relay oscillator fired at their phase  . Considering all prior spikes of the 

outer oscillators at times spike
1,lt , this new relay spike arriving at time spike

1, 1 02nt T 

changes the coupling strength by 

 
1

spike spike
1 1 1 1, 1, 1 0 1

0

2 60 .
n

n n n l n n
l

W t t T    


    


     
   (4-A26)

Note that this change is a decrease in coupling strength because spike spike
1, 1, 1 02l nt t T 

for 0,1,..., 1l n   and therefore  spike spike
1, 1, 1 02 0l nW t t T

   
 

. The input from the

relay oscillator also causes a phase shift  12 ; n    of the outer oscillators such

that their next spike occurs at  spike spike
1, 1, 1 0 0 12 ;n n nt t T T        . Hence the new relay 

spike arrival at the outer oscillators precedes the next outer oscillator spike by 

   0 0 11 2 2 ; nT T       , and the previous relay spikes arrive at the outer 

oscillators at spike spike
1, 1 1,n kt t   for 0,1,..., 2k n   earlier than the new relay spike arrival.

Therefore, all previous synaptic inputs considered as a whole lead to an increase of 

the synaptic weight by 

   
1

spike spike
1 1 0 0 1 1, 1 1,

0

1

1 2 2 ; 60,

.

n

n n n n n k
k

n

W T T t t      





   




        



 



 (4-A27) 

Under certain conditions, see main text, this leads to STDP turning slave synchrony 

into driven synchrony, and the transition time can be determined by numerically 

iterating the formulas for 1n 
  and n . 
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5 
5 Robustness of long-range 

zero-lag synchronization 
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5.1 Introduction 

Neuronal gamma-band synchronization has been reported in many species and in a 

large number of brain structures in sensory and motor tasks (Gray et al., 1989; Fries 

et al., 2001; Pesaran et al., 2002; Schoffelen et al., 2005; Fries et al., 2008). Although 

the first studies on this topic presented experimental evidence that the relative phase 

of gamma oscillations in widely separated brain areas is near zero (Frien et al., 1994; 

Roelfsema et al., 1997; Castelo-Branco et al., 1998; Rodriguez et al., 1999; Gross et 

al., 2004), later studies focusing on a more careful consideration of phase differences 

suggested that phase differences might not be zero. In particular, Gregoriou et al. 

(2009a) showed that neuronal oscillations in the frontal eye fields (FEF) and area V4 

in visual cortex are tightly coupled but not at zero-lag. These authors reported that 

attention to a visual stimulus in receptive fields of cells in FEF and V4 leads to 

enhanced oscillatory coupling between the two areas in the gamma frequency range, 

but the oscillations are shifted in time by 8 to 13 ms. Uhlhaas et al. (2009) reported 

that the activity of neurons in different parts of neocortex is rarely synchronized with 

exact zero lag. Instead, cross-correlation histograms usually reveal small but highly 

stable and significant delays (Konig et al., 1995b; Roelfsema et al., 1997; Schneider 

and Nikolic, 2006; Nikolic, 2007; Havenith et al., 2009). These new findings raise 

the question whether previously measured lags in synchrony of distal brain areas 

were really zero. They also raise the question whether zero-lag coupling between 

distal brain areas with considerable time delays in the connections is possible at all. 

To address this question, we have investigated whether zero-lag synchrony is 

possible and if so, which conditions regarding synaptic coupling strength and time 

delay may allow zero-lag synchrony. 

In Viriyopase et al. (2012) we have shown that a neural network with two 

neuronal oscillators coupled by a relay oscillator can reveal zero-lag synchronous 

activity. In that study we have explained several modes of synchronous firing, where 

some of the modes are stable and others are unstable. The results showed that 

synchrony can be achieved much easier with type II Hodgkin–Huxley neurons, 

which have a biphasic phase response curve, than with type I neurons in the network. 

Input from an instantaneous synapse or from a fast alpha synapse with short rise and 

decay time constants can more readily synchronize the outer oscillators than input 

from a slow alpha synapse with longer rise and decay time constants. Spike-timing 
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dependent plasticity (STDP) allows a larger range of coupling strengths to produce 

synchronization. This can be understood from the fact that by STDP a weak 

coupling, which is not strong enough to cause synchronous firing, gradually 

increases to larger synaptic strengths that allow synchronous firing. 

In this chapter, we will explore these results in more detail for a similar 

network architecture with neuronal oscillators coupled indirectly by a relay 

oscillator. First, we will investigate the role of the phase response curve on 

synchronization. In Chapter 4 (see also Viriyopase et al. (2012)), we have shown 

that a network with Hodgkin-Huxley neurons, which have type II phase response 

curves, is more suitable to obtain zero-lag synchrony than a network with Mirollo-

Strogatz (MS) neurons, which have type I phase response curves. The MS neuron 

has a peculiar phase response curve. Therefore, we will explore zero-lag synchrony 

for several variations of more realistic type I phase response curves, including a 

refractory period. 

Secondly, elaborating on our results in Chapter 4 (see also Viriyopase et al. 

(2012)), where we showed that STDP significantly contributes to zero-lag 

synchrony, we will explore the effect of changes in the potentiation and depression 

parts of STDP. The intuitive idea is that STDP requires a careful balance between 

potentiation, which strengthens synaptic connections, and depression, which has the 

opposite effect. We will investigate this both for instantaneous synapses and for 

alpha synapses. Finally, we will investigate the robustness of zero-lag synchrony 

when the time delays between various oscillators are not identical. Our results show 

that even small differences in the time delay between various oscillators is sufficient 

to eliminate zero-lag synchrony. 

5.2 Materials and methods 

5.2.1 Network model 

As in Chapter 4 (see also Viriyopase et al. (2012)), the model consists of three 

coupled neuronal oscillators, where each oscillator can be considered as a single 

neuron or as a population of neurons. A “relay” or “inner” oscillator is coupled bi-

directionally with two “outer” oscillators. The outer oscillators are only coupled with 

the relay oscillator but not with each other. Unless stated otherwise, all three 
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oscillators are identical with the same intrinsic firing period 0 25 msT  , 

corresponding to oscillations in the gamma frequency range. The coupling strength 

ij refers to the coupling strength from presynaptic oscillator j  to postsynaptic

oscillator i . All synaptic couplings in the model are excitatory. The delay times 

between inner and outer oscillators are constant and symmetric: that is, the delay 

time from oscillator i  to j  is equal to that from oscillator j  to i . These delay times 

k are typically considerably shorter than the oscillation period (Fries, 2005).

Therefore, in the following we will consider conduction delays shorter than 0 2T

with k  that is expressed as a fraction of the intrinsic period 0T  and thus in the range 

between 0 and 0.5. 

5.2.2 Neuronal model 

In this study we have investigated the dynamics of the network with neurons of the 

type I Mirollo-Strogatz (MS) phase oscillator (Mirollo and Strogatz, 1990), 

characterized by a voltage-like state variable  0,1f  , increasing monotonically

from 0 towards the threshold value 1f  . Within a cycle the state of the uncoupled 

neuronal oscillator is defined by a monotonically increasing concave function 

     : 0,1 0,1f   :

   1
ln 1 1 ,bf e

b
    

 
(5-1) 

0

1
,

d

dt T


 (5-2) 

with a phase variable  0,1  and a dissipation parameter b . 0T  in Eq. 5-2 is the

intrinsic firing period of the oscillator. When the threshold is reached, the oscillator 

fires, the state variable f  is reset to zero, and the cycle repeats. The value 3b   is 

used throughout this study. 

5.2.3 Instantaneous synaptic coupling 

We have used two types of synaptic coupling in the network. The first type of 

coupling is with instantaneous synapses. For an instantaneous synapse with coupling 
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strength ij , the neuronal state if  after arrival of a spike from oscillator j  is 

incremented instantaneously to 

   new min ,1i i i i ijf f      (5-3) 

with i  the phase of postsynaptic oscillator i  at the time of the spike arrival. The 

phase i  for which the oscillator reaches the threshold after spike input 

  1i i ijf     is called the critical phase c  (Zeitler et al., 2009) and is given by 
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If a spike arrives at i c  , if  will increase instantaneously by ij . The

instantaneous change of the state if  by ij corresponds to a phase shift i  given

by 1 ( )i i i i ij if f          , which yields

  b ( ) ( ) for 0 ,
;

1 for 1,
ij b ij i i c

i i ij

i c i

      
  

  

  
  

  
(5-5) 

b

( )
( ) : , ( ) : 1,

(1)
bxb

b

b

x
x x e


 


   (5-6) 

where i  is the phase of the postsynaptic oscillator just before arrival of the input 

spike. 

The phase shift i  depends on the phase i  when the spike input arrives. 

The maximum of the phase shift i  should be in the second part of the intrinsic 

cycle of the oscillator (Tsubo et al., 2007), and therefore 0.5c  . This restriction 

imposes an upper bound on the value of 0.21ij   through Eq. 5-4. 

                                                                                                                           187Robustness of long­range synchronization



5.2.4 Phase response curve 

The phase response curve (PRC) gives the phase change of the postsynaptic 

oscillator due to an excitatory input pulse as a function of the phase of input. The 

PRC is defined by 

 
 

0

;
; : 1

i ij

i ij

T
PRC

T


    (5-7) 

with  ;i ijT    representing the new period of postsynaptic oscillator i  after 

receiving input with strength ij at phase i . By Taylor expansion of the expression

for PRC  for infinitesimal inputs, the following expression for the PRC of the MS 

neuron is obtained 
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 (5-8) 

The shape of the PRC of the MS neuron (indicated by 1PRC  in Eq. 5-8) for 0.1ij   

(circles) and 0.05ij   (“+” symbols) is shown in Fig. 5-1. 1PRC  can be 

distinguished in two sections. When excitatory input arrives at the postsynaptic 

oscillator at a phase i  in the first part  0 i c   , the state of the postsynaptic 

oscillator is incremented by ij causing a phase advance. When excitatory input

arrives in the second part  1c i   , where the value of the slope of 1PRC  is -1,

the postsynaptic oscillator spikes immediately. 

Note that the phase increment for a synaptic input arriving at 0i   for 

1PRC  is not zero that is physiologically not plausible. Therefore, we have modified 

1PRC  by changing its slope between 0i   and i c   such that the value of 

1PRC  for phase 0i   is zero. Moreover, we have implemented an absolute 

refractory period with a duration 0r  . This gives the following 2PRC  
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Figure 5-1 shows an example of 2PRC  for 0.1r   and 0.1ij  .

Figure 5-1. Examples of various phase response curves. 1PRC , defined by Eq. 5-8, is 

shown for coupling strengths ij =0.1 (black circles) and 0.05 (black “+” symbols). Blue 

c i

conditions, a single synaptic input will not immediately elicit an action potential 

(Tsubo et al., 2007). Therefore, we have modified the slope of 2PRC  without the 

absolute refractory period to prevent instantaneous spiking. We define this new PRC 

as 3PRC  by 

crosses show an example of PRC2  with the absolute refractory period of length 0.1, while 

red diamonds show an example of PRC3  with the slope of the second part of PRC m   

-0.5.

PRC1 and PRC2  give rise to instantaneous spiking when the synaptic input 

arrives in the last part of the oscillatory cycle   1 . In most physiological 
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An example of 3PRC  with 0.1ij   and 0.5m   is shown in Fig. 5-1. Note that 

1PRC , 2PRC , and 3PRC  all belong to the category of type I PRCs. 

5.2.5 Temporally extended synaptic coupling 

In addition to instantaneous input, we will evaluate the dynamics of the network with 

a more realistic synaptic coupling model provided by the so-called alpha function. 

For an “alpha synapse”, the postsynaptic potential after arrival of a spike at time 0t  

at a synapse with strength ij is described by

 
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syn 0 0
02

syn syn

0 for ,

; ,
exp for ,ij

ij

t t

t t t t t
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  

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    
 

(5-11) 

where syn 0   is the synaptic rise time of the input. Unless stated otherwise,

syn 2  ms in this study. For the simulations with the alpha synapse, the numerical

simulation is implemented using an Euler scheme with a time step size equal to 2.5  

µsec.  4
010 T .

5.2.6 Spike-timing dependent plasticity (STDP) 

We have implemented the usual additive STDP rule that depends on the relative 

spike times for each pair of pre- and postsynaptic spikes (Froemke et al., 2006) for 

both instantaneous and alpha synapses. For a presynaptic spike at arrival time arr
kt  

and a postsynaptic spike at spike
lt , the fractional synaptic modification  W t  is 

given by 
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with spike arr: l kt t t   .

The spike arrival time arr
kt  is defined as the time of the onset of the 

postsynaptic potential, just as in the experimental protocol by Bi and Poo (1998). 

Unless stated otherwise, the time constant for potentiation   and depression   is 

 ,0 0: 16.8 ms  0.67T   and  ,0 0: 33.7 ms  1.35T   , respectively. In this

study the standard value for the maximum amplitude of potentiation A  and 

depression A  is ,0 : 0.78A   and ,0 : 0.27A   , respectively. These standard 

parameter values for STDP were fitted to the data from Bi and Poo (1998), who 

determined the fractional synaptic modification W  as the relative change in synaptic 

strength after evoking an input and output spike pair 60 times. We assume that the 

change of the synaptic weight   caused by each input spike is constant and defined 

by  0 60W t     (Song et al., 2000; van Rossum et al., 2000) with initial 

synaptic weight 0  and  W t  as in Eq. 5-12. Therefore, the learning rule used for 

a particular pair of pre- and postsynaptic spikes is given by  0 0 0 60W t    

, in agreement with Lee et al. (2009). The simulation procedure for modification of 

synaptic strengths by STDP has been described in detail in sec. 4.2.2 of Chapter 4 

(see also Viriyopase et al. (2012)). 

5.2.7 Synchronization measures 

The synchronization and convergence to synchronization were calculated using the 

phase-locking equations described in Chapter 4 (see also Viriyopase et al. (2012)). 

These phase-locking equations determine the oscillation period of a network and the 

relative phase of the oscillators for the stable state where the oscillators are phase-

locked to each other (van Vreeswijk et al., 1994; Bressloff and Coombes, 1998). The 

                                                                                                                           191Robustness of long­range synchronization



phase-locking equations can be used to determine whether synchrony exists for a 

particular set of parameter values. 

Synchronous firing is defined as firing of two oscillators within a small time 

window, where the time window should be sufficiently large to eliminate the effect 

of small amounts of noise and sufficiently small to provide an accurate estimate of 

synchrony. We define synchrony or synchronous firing as the condition when the 

spikes of the outer oscillators occur within a time interval of 

spike spike
1, 3, 00.02 0.5n nt t T   ms (Engel and Singer, 2001). “Synchronization quality”

(SQ) is defined as the fraction of the number of initial phase combinations that leads 

to stable synchronous firing of the outer oscillators. SQ has a value between 0% and 

100%, where 100% means that the outer oscillators always converge to synchronous 

spiking, independent of their initial relative phases. This provides a measure of the 

attraction domain of the initial phases for reaching synchronization of the outer 

oscillators. 

To investigate the impact of the various parameters of the STDP learning 

window, we wish to derive a single value for the SQ, rather than one value for each 

combination of synaptic weights and conduction delays. For this purpose we 

consider various synaptic weights in 100 equally spaced steps in the range from 0.01 

to 0.21 and conduction delays in 100 equally spaced steps in the range from 0.01 to 

0.49. Then we average the SQ over these 10,000 results to obtain an “average 

synchronization quality” (average SQ) for each parameter set of the learning 

window. 

For some combinations of the synaptic weights, delay times, and initial 

phases, the state of zero-lag synchronization is reached faster than for other 

combinations. Therefore, we define a “convergence promptness” (CP) for the 

network to achieve zero-lag synchronization of the outer oscillators. This is 

calculated as  sync sessCP: SQ 1- n n  , where syncn  is the average number of 

intrinsic periods 0T  needed to achieve zero-lag synchrony. Only simulations actually 

resulting in zero-lag synchrony are counted in that average. When there is no zero-

lag synchrony established within sess 15n   cycles, CP equals to 0. Note that 
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sync sessn n  with sess 15n   here, and that the measure is multiplied with the SQ to 

account for the readiness of the system to achieve zero-lag synchrony at all. 

Finally, not only are we interested in synchrony of the outer oscillators, but 

also in the relative phase r  for stable modes in which the outer oscillators oscillate 

in a stable state that does not correspond to synchrony. The relative phase between 

the outer oscillators is defined by  spike spike
3, 1, 0:r n nt t T    with a value between -1 and 

1. Since values for r  of -1, 0, and 1 all refer to the same state, we rescaled r  to

the range 1 2  to 1 2  by periodically mapping  1, 0.5   to  0, 0.5  and  0.5,1  to

 0.5,0 .

5.3 Results 

We will start with a short summary of the synchronization properties of the network 

with the MS neurons, of which the PRC is explicitly given by 1PRC  (Eq. 5-8), as 

reported in Chapter 4 (see also Viriyopase et al. (2012)). Figure 5-2A shows the 

simulation results after 15 cycles for the SQ as a function of the conduction delay   

and the synaptic weight   for the MS model with instantaneous synapses, identical 

delay times  1 3    , and identical coupling strengths  12 21 23 32 .       

The three solid black curves show the analytically calculated boundaries between 

different modes of synchrony. In the upper right area, indicated by IV, the dynamics 

is dominated by “slave synchrony”, which implies that the relay oscillator spikes 

immediately upon arrival of synaptic input from the outer oscillators, but the outer 

ones do not so after input from the relay one (Fig. 5-2B, right). In region I, zero-lag 

synchronization occurs mainly when both the relay and outer oscillators spike 

immediately upon arrival of synaptic input. This “driven synchrony” mode (DS) 

with period IT  for all neurons (Fig. 5-2B, left) is stable. Region II shows mainly 

slave synchrony like in region IV but with a different period IIT . In region III, zero-

lag synchronization occurs mainly when the outer oscillators spike immediately 

upon arrival of synaptic input while the relay oscillator does not (“pacemaker 

synchrony”). Since pacemaker synchrony is a stable mode with a slow convergence 
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Figure 5-2. Features of synchronization depending on delay time and coupling strength. 

A, Synchronization quality (SQ) for model with instantaneous synapses. Black curves 
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indicate boundaries of dynamics calculated analytically using the phase-locking equation. B, 

Illustration of synchrony modes dominant in regions indicated by roman numerals in A. SQ 

is high in region I, low in regions II and IV, and intermediate in region III. Slave synchrony 

(regions II and IV) is not stable, whereas driven (region I) and pacemaker (region III) 

synchrony are asymptotically stable. 

rate, zero-lag synchrony exists but is reached only after many cycles. For more 

details see Viriyopase et al. (2012). 

In summary, the SQ changes from high (region I) to low (region II) and back 

to intermediate values (region III) when the conduction delay decreases from 0.5 to 

0. A stability analysis indicates that regions II and IV show poor SQ because slave

synchrony that dominates in these regions is unstable, whereas driven and

pacemaker synchrony that dominate in regions I and III are asymptotically stable

and robust against changes in the initial phases. Most combinations of delay and

synaptic weight yield a SQ that is below 50%. The physiological interpretation of

this result is that if zero-lag synchrony exists for a particular set of parameter values

for the delay and the synaptic strength, the model only converges to zero-lag

synchrony for a limited set of initial relative phases of the neuronal oscillators. For

other initial relative phases, the system converges to a stable rhythm where the

relative phase between the outer oscillators is different from zero (see Fig. 4-3 in

Chapter 4).

The results in Fig. 5-2 were obtained using 1PRC . In order to explore the 

effect of other PRCs, Fig. 5-3, A and B, show the results for 2PRC   0.1r   and 

3PRC   0.5m   , respectively. Qualitatively, these results are very similar to the 

results in Fig. 5-2A. However, some quantitative differences exist. 

Figure 5-3A shows a lower SQ for small time delays (range from 0   to 

0.05 ) for 2PRC  than for 1PRC  in Fig. 5-2A. This is a consequence of the refractory 

period r  of 2PRC  phase oscillators in region III where pacemaker synchrony 

dominates. For pacemaker synchrony the synaptic inputs from the outer phase 

oscillators trigger a spike in the relay phase oscillator that arrives the outer ones 

when their phase is 2 . If the time delay is small such that 2 r  , the input from 
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the relay phase oscillator arrives in the refractory period of the outer phase 

oscillators. This eliminates the effective coupling between the relay phase oscillator 

and the outer phase oscillators and thereby eliminates synchrony. 

Figure 5-3. Synchronization quality (SQ) for the model in Fig. 5-2 with 2PRC  and 

3PRC . A shows SQ with 2PRC  with an absolute refractory period 0.1r  , i.e. 2.5 

ms for 40 Hz. B shows SQ for 3PRC  with a slope 0.5  in the last part of the PRC. 

Another quantitative difference with the results in Fig. 5-2A is found in 

region IV. Figure 5-3A shows almost perfect synchrony in region IV, whereas Fig. 

5-2A shows a SQ near 50% in region IV. The reason that Fig. 5-3A shows excellent 

synchronization in region IV is that slave synchrony (Fig. 5-2B, right) appearing in 

region IV with 1PRC  changes to driven synchrony with 2PRC  (Fig. 5-2B, left). 

The explanation for the change is as follows. In region IV the time delays are 

relatively long. For 1PRC  the main synchronization mode in region IV is slave 

synchrony where the relay oscillator spikes immediately upon arrival of synaptic 

input from the outer oscillators and spikes from the relay oscillator arrive at the outer 

ones early in the oscillation phase of their next cycle. It is important to realize that 

the outer oscillators have completed a full cycle before arrival of the spikes from the 

relay oscillator because 2  exceeds the oscillation period due to the relatively large 

value of the delay  . Therefore, the spikes from the relay oscillator arrive at the 

outer oscillators during their refractory period, and the outer oscillators will not 
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respond to the outputs from the relay oscillator. Because the outer oscillators lack 

the excitatory input from the relay oscillator, the outer oscillators have a longer 

interspike interval than the interval of the outer oscillators when they receive the 

excitatory inputs with 1PRC . Hence, the slave synchrony in region IV is not possible 

with 2PRC  and the slave synchrony mode will eventually be converted to the driven 

synchrony mode. This explains the excellent SQ for region IV in Fig. 5-3A. 

Figure 5-3B shows that the range of   and   values that give a high SQ for 

3PRC  increases compared to that for 1PRC  and 2PRC . This increased domain 

with high SQ values for 3PRC  in region III is a consequence of the lack of 

instantaneous spiking after synaptic input due to the larger slope (-0.5 instead of -1) 

at the end of 3PRC . The lack of instantaneous spiking will eliminate the pacemaker-

slave mode, which is a stable mode of asynchronous firing for 1PRC  (see Fig. 4-3, 

C and D, in Chapter 4 for the relative firing behavior of the oscillators in this mode), 

because the outer oscillators will no longer spike immediately upon arrival of the 

input from the relay oscillator nor does the relay oscillator upon arrival of the input 

from the outer oscillators. When we switch the PRC from 1PRC  to 3PRC , spikes 

from the relay oscillator arrive in the second part of 3PRC  of the outer oscillators, 

while outputs from the outer oscillators arrive in the first part of the relay oscillator. 

This gives rise to a new stable mode of synchrony, which will be explained below. 

Let us assume that the PRC is 1PRC  and that the network oscillates in the 

pacemaker-slave mode. When we switch the PRC from 1PRC  to 3PRC , oscillators 

1 and 2 in the pacemaker-slave mode (see Fig. 4-3, C and D, in Chapter 4) will not 

spike immediately upon arrival of the spike inputs because the phase increments are 

smaller for 3PRC  than for 1PRC . Therefore, the spiking interval of oscillators 1 

and 3 increases and so does the spiking interval of oscillator 2. Because oscillator 2 

receives two input spikes, the phase advance of oscillator 2 will be larger than that 

of oscillators 1 and 3. As a consequence, the next spike from oscillator 2 arrives at 

oscillators 1 and 3 earlier in the cycle. This process repeats itself until a new stable 

phase is reached where output from oscillator 2 arrives at oscillators 1 and 3 at a 

phase in the second part of 3PRC . Because, with 1PRC , about 50% of the initial 

phases of the oscillators in region III leads to the pacemaker-slave mode (see Fig. 4-

2A in Chapter 4), these 50% of the initial phases lead to the new stable synchrony 

                                                                                                                           197Robustness of long­range synchronization



                                                                                                                           198 Robustness of long­range synchronization



Figure 5-4. Increasing potentiation leads to better synchronization quality and 

convergence promptness for delay times 0.25  . Left (right) column shows 

synchronization quality (convergence promptness) for various values for potentiation 

and depression. Panels in the first and second row show the results for decreased and 

increased depression, respectively. Panels in the third and fourth row show results for 

decreased and increased potentiation, respectively. When the ratio between 

potentiation and depression increases relative to the ratio for the standard STDP 

parameter values, both the synchronization quality and convergence promptness 

increase for delay times 0.25  . This is because the synaptic weights are increased 

by STDP, when potentiation dominates depression. When depression dominates, the 

synchronization quality and convergence promptness deteriorate. Note that the 

synaptic strength   along the horizontal axes represents the initial synaptic weight, 

not the final values of the synaptic strength after modification by STDP. 

mode for 3PRC . Hence, the SQ in region III with 3PRC  is higher than the SQ with 

1PRC  for the same parameters provided that the number of cycles is large enough 

for convergence to the stable state. Similar arguments can be applied to the case of 

2PRC  to explain the higher SQ for 3PRC  in region III compared to that for 2.PRC  

The results in Figs. 5-2 and 5-3 demonstrate that variations in the type I PRC 

give rise to quantitative differences in synchronization, but qualitatively the results 

are similar. For some combinations of synaptic coupling strength and time delay, the 

network may converge to zero-lag synchrony, but for many other parameter values, 

zero-lag synchrony is not possible. In this context it is important to notice that if the 

type I PRC is replaced by a type II PRC, the synchronization performance increases. 

As shown in Fig. 4-4 in Chapter 4, the same model with Hodgkin-Huxley neurons 

with type II PRCs gives a much larger range of parameter values that allow zero-lag 

synchronization. 

In sec. “STDP facilitates zero-lag synchronization” of Chapter 4 (see also 

Viriyopase et al. (2012)), we have shown that STDP may enlarge the range of 

parameter values that give rise to a high SQ. Without STDP synchronous firing is 

observed for delay times 0.25   and synaptic coupling strengths that are 

sufficiently large (see Fig. 5-2A). Viriyopase et al. (2012) found a higher SQ and a 

faster convergence promptness (CP) in region II for large delay times with STDP. 

This result can be understood as follows. Initially, the dominant mode in region II is 
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slave synchrony, which is unstable. For slave synchrony the spikes from the inner 

oscillator arrive at the outer oscillators before the outer oscillators spike. Hence 

STDP (i.e. the potentiation part of STDP) leads to increase of the synaptic weights 

for the connections from the relay to the outer oscillator. If the value of the synaptic 

coupling strength has increased sufficiently, the increased coupling strength turns 

slave synchrony into driven synchrony, which is asymptotically stable. 

We now investigate the effect of the amount of potentiation and depression

in STDP on zero-lag synchronization, beginning with the simple model with

instantaneous synapses. Figure 4-8 and the corresponding text in Chapter 4

explained how variations in relative strength of potentiation and depression affect

the convergence to zero-lag synchrony. The results in Fig. 4-8 were averaged over

all time delays and relative phases. This result is illustrated in more detail in Fig. 5-

4, which shows the SQ and the CP after the 60th simulation session in the left and

right column, respectively, as a function of time delay and synaptic strength (same

format as in Figs. 5-2A and 5-3) for various values of potentiation and depression.

Panels in the first and second row show the results for decreased  0.5A  and

increased  1.5A  depression, respectively. Panels in the third and fourth row show

results for decreased  0.5A  and increased  1.5A  potentiation. When the ratio

between potentiation and depression increases relative to the ratio for the standard

STDP parameter values, both the SQ and the CP for delay times 0.25 
 
increase

(see Fig. 5-4, the first and fourth rows). This is because the synaptic weights are

increased by STDP when potentiation dominates over depression. When depression

dominates, the SQ and the CP deteriorate (see Fig. 5-4, the second and third rows).

These results add a caveat to the results in Viriyopase et al. (2012) where it 

was shown that STDP contributes to a better SQ. This conclusion is correct, but the 

result critically depends on the relative strength of potentiation and depression of 

STDP. The parameters characterizing potentiation and depression that have been 

measured in in vitro studies (see Bi and Poo (1998)) seem to be close to optimal to 

achieve zero-lag synchronization. 
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Figure 5-5. Influence of rise time of alpha synapses. A-C, SQ and D-F, CP for the 

network with alpha synapses. The rise times synτ  of the alpha synapse is set to 1 ms in 

A and D, 2 ms  in B and E, and 3 ms  in C and F. For longer rise times, the SQ decreases 

and the CP deteriorates. 

Since time delays are important to achieve zero-lag synchronization, it is a 

legitimate question to ask whether synchronization is affected when instantaneous 

synapses are replaced by alpha synapses because the shape of the alpha synapse 

causes a frequency-dependent phase shift. Figure 5-5 shows the SQ and the CP as a 

function of the conduction delay   and the synaptic weight   for the same simple 

model without STDP but with alpha synapses for various synaptic rise times (left, 

middle, and right columns for syn = 1, 2, and 3 ms, respectively). Comparing Fig.

5-2A with Fig. 5-5, A – C, shows that high SQ values are found near smaller delay 

times when alpha synapses are introduced. This shift can be attributed to the synaptic 

rise time of the alpha synapse: the longer the rise time, the longer the effective delay 

by the synapse. More importantly, longer synaptic rise times decrease the ability of 

the system to synchronize with zero lag, as shown in Fig. 5-5, A - C. This is also 

illustrated by Fig. 5-5, D - F, which shows that it takes longer time to synchronize 
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for longer synaptic rise times. To understand this, assume that synaptic inputs from 

the relay oscillator arrive when the phases of oscillators 1 and 3 are 1  and 1  , 

respectively. If   is not 0, then oscillators 1 and 3 will spike at different times, unless 

the input is strong enough to make both oscillators spike immediately. For increased 

rise times (but such that the integral over the post-synaptic potential remains 

constant, i.e. the peak of the PSP decreases for longer rise times), less input per unit 

of time is received. Therefore, input from an instantaneous synapse (equivalent to “

syn 0  ”) or fast alpha synapse (small syn ) provides more input per unit of time and

therefore more easily synchronizes the outer oscillators than a slow alpha synapse 

(large syn ) by triggering an immediate response and thereby enforcing synchrony.

We indeed find that larger synaptic rise times syn  result in larger average spike time 

differences for the outer oscillators and hence less synchronization. In general, SQ 

is reduced for alpha synapses compared to instantaneous synapses, indicating that 

zero-lag synchrony is more difficult to obtain with realistic alpha-type synapse 

models for a model with type I MS neurons. 

We will now address the question to what extent the improved SQ by STDP 

is affected by alpha synapses. Figure 5-6, A and B, shows the SQ and the CP, 

respectively, after 60 learning sessions for the model with STDP and alpha synapses 

with synaptic rise time syn = 2 ms. Comparing the results in Figs. 5-6A and 5-5B

shows that STDP improves the average SQ and the CP, like for instantaneous 

synapses. The main difference between the synchronization for instantaneous 

synapses and alpha-synapses is that rather long time delays (range 0.25 - 0.5) are 

required to achieve zero-lag synchronization, whereas alpha synapses reduce this 

range to smaller delay values (0.15 - 0.3). 

When delay times are not identical 

We now investigate the dynamics of the model when the delay times 1  and 3 are

different with the initial coupling strengths all identical  12 21 23 32        .

Figure 5-7A shows the SQ for the model with instantaneous synapses, and Fig. 5-

7B with alpha synapses ( syn  = 2 ms). When the delay times are almost identical 
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Figure 5-6. Long-range synchronization improves with STDP for alpha synapses. 

A and B, SQ and CP, respectively, after 60 sessions with a synaptic rise time syn 2 

ms. Comparison with Fig. 5-5, B and E, shows that the range of parameter values that 

allows zero-lag synchrony is increased. However, CP remains poor with 6 cycles or 

more to achieve synchrony. 

(close to the diagonal), strong synchrony is found in a limited range of delay times 

from 0.37 to 0.5 for instantaneous synapses and from 0.3 to 0.4 for alpha synapses. 

When the delay times are different, synchronous firing disappears. 

To understand why zero-lag synchronization disappears when the delay 

times are different, we consider the network with instantaneous synapses. Let us 

assume that oscillators 1 and 3 fire simultaneously. When oscillator 2 generates an 

action potential, the spikes arrive at oscillators 1 and 3 after delays 1  and 3 , 

respectively. Because the spikes arrive at oscillators 1 and 3 when the phase exceeds 

the critical phase, oscillators 1 and 3 will spike immediately after arrival of the spike, 

which implies that oscillators 1 and 3 will spike with a time difference 

spike spike
1, 1 3, 1 1 3 0n nt t T     . This illustrates that zero-lag synchrony is lost when the 

delay times 1  and 3 are different. By our definition, oscillators 1 and 3 are in

synchrony if 1 3 0 0.5 msT   , hence synchronous firing is found for a limited 

range of delay times close to the diagonal. Qualitatively similar results (not shown) 

are obtained for asymmetric coupling strengths. 
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Figure 5-7. Zero-lag synchronization only for identical delay times. A and B, SQ 

for instantaneous synapses and alpha synapses  syn 2 ms  , respectively. The

coupling strengths of all connections are 0.1  . When 1  and 3 differ, i.e. off the

diagonal, SQ is poor. 

In Fig. 4-10 in Chapter 4, we have shown that the network may converge to 

stable modes where the outer neurons fire with a relative phase different from zero. 

In general, there are two stable modes with a small and large relative phase. These 

nonzero relative phases are shown in Fig. 5-8. 

Figure 5-8 shows typical patterns for stable modes of asynchronous firing of 

the outer oscillators. Figure 5-8, A and B, shows stable firing for a small relative 

phase of the outer oscillators (corresponding to Fig. 4-10, D and E, in Chapter 4, 

respectively), while Fig. 5-8C shows a stable mode for a larger relative phase. The 

relative phases r  for the dynamics of the three oscillators shown in Fig. 5-8, A, B, 

and C, are determined using methods similar to that for deriving the phase-locking 

equations Eqs. 4-10 and 4-11 in Chapter 4. The relative phases that correspond to 

the stable modes of firing are given by 

 
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where Eqs. 5-13 and 5-14 give the relative phase values that are relatively small, 

whereas the relative phase in Eq. 5-15 corresponds to a larger value.  1,T    and 

 3,T    in Eqs. 5-13 - 5-15 are the new period of the phase-locked oscillators 

defined by 

      0, 1 2 (1) .b b bT T             (5-16) 

Figure 5-8. Typical stable modes of nonzero relative phase of the outer oscillators. 

A and B show stable modes corresponding to small relative phases (as in Fig. 4-10, D 

and E, in Chapter 4, respectively), while C shows a stable mode corresponding to a 

larger relative phase. 

Inserting the values for 1  and 3 in Eqs. 5-13 - 5-14, which were used to

obtain Fig. 4-10, D and E, in Chapter 4, gives relative phases near 0.14 and 0.11, 

respectively, exactly the same as in Fig. 4-10, D and E, in Chapter 4. The larger 

relative phases determined by Eq. 5-15 with    1 3 0.25, .35, 0    and 

   1 3 0.15, .25, 0    are approximately equal to 0.19 and 0.50 in agreement with
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the simulation results in Fig. 4-10, D and E, in Chapter 4, respectively. When the 

delay times 1  and 3 are equal, the relative phase r  becomes zero according to

Eqs. 5-13 and 5-14. In addition, there is a stable relative phase according to Eq. 5-

15, which gives a stable firing mode at a relative phase of 0.38 for 0.1  . When 1  

and 3 are not equal, r  deviates from zero proportionally to the difference of 1  

and 3 . This shows that zero-lag synchronization is not robust for differences in time 

delays between the relay oscillator and the outer oscillators. 

5.4 Discussion 

Several studies in the past have provided evidence for zero-lag synchrony between 

different brain areas that were well separated (Frien et al., 1994; Roelfsema et al., 

1997; Castelo-Branco et al., 1998; Rodriguez et al., 1999; Gross et al., 2004). 

This finding was quite remarkable considering the synaptic and conduction delays 

involved in their interactions. The phenomenon of zero-lag gamma synchronization 

has attracted much attention and has led to speculations about its possible functional 

role, such as a mechanism for feature binding (Engel et al., 1992; Singer and Gray, 

1995), efficient neuronal communication (Fries, 2005), and learning (Pare et al., 

2009). Recently two studies (Gregoriou et al., 2009a; Uhlhaas et al., 2009) have 

demonstrated that oscillations in the gamma frequency range (40-80 Hz) in 

different cortical regions synchronize, but with phase differences significantly 

different from zero. This has led to a discussion whether precise zero-lag 

synchronization occurs in the brain, and if so, under which conditions. 

In the present study we have investigated the conditions for zero-lag 

synchrony between distal cortical areas using a network model. The main result 

of our study is that two pulse-coupled oscillators that interact via a relay oscillator 

can easily synchronize their activity but in general not at zero phase lag. Zero-lag 

synchrony is observed only for a restricted set of synaptic coupling strengths and 

delay times. Furthermore, as soon as the delay times between the synchronizing 

oscillators and the relay oscillator differ, zero phase lag is lost. Since conduction 

delays between various cortical areas and/or subcortical structures generally will not 

be perfectly identical, and since connectivity properties are highly variable across 
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the brain, we conclude that zero-lag synchrony can only be the exception and not the 

rule. 

The network used in this study is a simplified model for interacting neuronal 

populations. This obviously raises the question whether our negative findings about 

zero-lag synchrony may be due to the simplifications inherent in our model. We will 

argue that this is not the case. Our choice of indirect interactions between oscillating 

neuronal populations, i.e., via a relay oscillator, was inspired by previous studies. 

They showed that pulse-coupled neuronal oscillators with direct excitatory coupling 

and signal delays never oscillate with zero phase lag (van Vreeswijk et al., 1994; 

Ernst et al., 1995, 1998; Knoblauch and Sommer, 2003; Zeitler et al., 2009). 

Inhibitory coupling between directly interacting oscillators can cause near zero-lag 

synchrony (van Vreeswijk et al., 1994; Zeitler et al., 2009). However, the dominant 

connectivity between cortical areas, such as V1, V2, V4, and FEF, is excitatory, 

rather than inhibitory. These considerations led Fischer et al. (2006) and Vicente et 

al. (2008) to postulate a network model of oscillators interacting via a relay 

oscillator, which supports zero-lag synchrony. Subcortical structures like the 

thalamus are good physiological candidates for such a mediating relay (Theyel et 

al., 2010). Our study elaborates on this proposed relay network model since it 

appears to be the only viable candidate to obtain zero-lag synchronization. 

A further simplification in our model is that the oscillators used to represent 

neuronal population activity are of the Mirollo-Strogatz kind. The Mirollo-Strogatz 

oscillator corresponds to the type I neuron class (Izhikevich, 2007). Although there 

is evidence that cortical pyramidal cells can switch between type I and type II by 

means of cholinergic modulation (Ermentrout et al., 2001; Jeong and Gutkin, 2007; 

Stiefel et al., 2008, 2009), the majority of pyramidal cells in neocortex are type I 

neurons (Reyes and Fetz, 1993b, a; Kawaguchi, 1995; Erisir et al., 1999; Tateno et 

al., 2004). Furthermore, replacing the Mirollo-Strogatz neurons by more realistic 

Hodgkin-Huxley ones does not change the qualitative nature of our conclusions 

regarding zero-lag synchrony of this study. This result was verified by computer 

simulations (not shown) but also follows theoretically from the fact that our 

analytical results are based on the assumption of periodically oscillating neurons 

with type I phase response curves (i.e. only phase advance, no phase delay), which 

applies to both the Mirollo-Strogatz and most Hodgkin-Huxley-type neurons. Using 
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the much simpler Mirollo-Strogatz oscillator has allowed us to perform a 

comprehensive analytical and computational study of synchronization properties 

without sacrificing the applicability of our results. 

A final assumption of this study, which requires some more discussion, is 

that all oscillators in the model have identical intrinsic properties with the same 

oscillation period. If the intrinsic periods of the outer oscillators differ, zero-lag 

synchrony is lost quickly, whereas if the intrinsic period of the relay oscillator differs 

from those of the outer oscillators, synchronization properties change quantitatively 

but not qualitatively. These results have been confirmed by simulation (not shown) 

but can be understood in a straightforward way. Firstly, if we make the period of the 

relay oscillator different from that of the outer oscillators, the combinations of 

synaptic strength and delay where input can elicit spikes immediately after arrival 

change only slightly with adjustments of the period. Hence the boundaries of regions 

with driven, pacemaker, and slave synchrony will change quantitatively but not 

qualitatively, unless the differences in the period become very large. These 

boundaries (Fig. 5-2) in turn determine the overall synchronization properties that 

hence also remain qualitatively similar. 

Secondly, if the periods of the outer oscillators are different from each other, 

input from the relay oscillator may elicit a spike in one outer oscillator, followed by 

a spike in the other outer oscillator later in time. In that case, the spike inputs from 

the outer oscillators to the relay oscillator arrive at different times. This is essentially 

equivalent to the situation with different delay times that we have studied above (see 

sec. “When delay times are not identical” in sec. 5.3). We have shown that zero-lag 

synchrony is lost when the delay times are different. So likewise, any differences in 

the periods of the outer oscillators quickly abolish zero-lag synchrony. Therefore, 

our network model in Fig. 4-1A in Chapter 4 with equal properties of the oscillators 

is optimal for obtaining zero-lag synchrony. If this homogeneous model cannot 

produce zero-lag synchrony, neither can models with unequal oscillator properties. 

In agreement with Knoblauch and Sommer (2003), we found that STDP 

adapts the synaptic coupling strengths such that the network converges to a stable 

state with zero-lag synchrony for a larger range parameter values (see Fig. 5-4). 

However, adaptation of the synapses by STDP often took a long time (up to 500 
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cycles in our simulations, see Fig. 4-7 in Chapter 4), which implies that STDP 

cannot play a dominant role for the rapid development of zero-lag synchronization 

in novel visual perception tasks. Vicente et al. (2008) reported that the mechanism 

of synchronization rests on the ability of an excitatory postsynaptic potential to 

modify the firing latencies of a postsynaptic neuron in a consistent manner. We agree 

with this conclusion, but our results show that STDP takes too much time 

(considerably more than 200 to 250 ms that is generally considered as the range for 

build-up of gamma oscillations to novel visual stimuli) to generate zero-lag 

synchrony in the gamma frequency range. 

Figure 4-8 in Chapter 4 suggests that the parameters for STDP, as reported 

by Bi and Poo (1998), are close to optimal to achieve zero-lag synchronization in the 

sense that a large range of short delays  0.15   and long delays  0.25   may 

yield relatively good zero-lag synchronization (see Fig. 4-6B in Chapter 4). For 

long delays  0.25   synchronization can be improved by increasing the relative 

amount of potentiation of the learning window by increasing potentiation or by 

decreasing depression. Thus, the more the contribution of potentiation, the smaller 

the number of learning sessions needed to achieve zero-lag synchronization (see Fig. 

5-4 with  ,0.5A A   and  1.5 ,A A   as examples). In contrast, increasing the 

relative amount of depression favours zero-lag synchronization for short delays 

 0.15  , as shown in Fig. 5-4 with  0.5 ,A A   and  ,1.5A A  . In summary, 

when the time delays are restricted to either the short delays or the long delays, the 

parameters of the learning window for STDP as reported by Bi and Poo are not 

optimal to achieve zero-lag synchronization. That is, zero-lag synchronization at 

long delays is enhanced by a larger amount of potentiation, while a relatively larger 

amount of depression facilitates zero-lag synchrony for short delays.  

Can STDP lead to changes in the synaptic weights such that zero-lag 

synchronization becomes possible when the delays are different? Eqs. 5-13 and 5-

14 show that zero-lag synchronization  0r   is possible only if 1  equals 3 . 

Hence, changes in the synaptic weights by STDP will not lead to zero-lag 

synchronization. Next we address the question whether STDP can perhaps change 

the phase in Eq. 5-15 to zero. In simulations with initial weight 0.1  , we find that 
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the synaptic weights of the connections from the relay to the outer oscillators 

gradually increase to their maximum value by STDP. We observe the same 

symmetric increase of coupling from the relay to the outer oscillators for most other 

values of the initial weight. Zero-lag synchronization then is not possible because 

unequal values of the synaptic weights from the relay to the outer oscillators would 

be needed to compensate for unequal time delays, but STDP symmetrically increases 

the synaptic weights. Hence, STDP cannot restore zero-lag synchronization for 

asymmetric delays. This claim has also been confirmed for alpha synapses by 

simulation. 

Overall, our results demonstrate that it is unlikely that gamma oscillations in 

various cortical areas are synchronized at zero-lag for neuronal architectures used in 

this study. Rather our studies support recent experimental data (Gregoriou et al., 

2009a) that neuronal oscillations in various cortical areas can be synchronized, but 

not at zero-lag. 
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Summary 
 

 

       euronal oscillations play an important role in neuronal information processing. 

These oscillations have been reported at various frequency bands in the range 

between 2 and 200 Hz. This thesis focused on neuronal oscillations in the gamma 

band (frequency range between 30-80 Hz). In the thesis we have investigated the 

properties of the gamma oscillations with different networks: a simplified network 

with two neurons, a biologically plausible network with thousands of neurons 

(corresponding to a brain region of about hundreds of microns), as well as 

interactions between interacting brain areas at a distance of centimeters or more. We 

conducted our studies by means of mathematical modeling and extensive computer 

simulations. In the thesis the mathematical description for the dynamics of the 

biologically plausible neurons can range from a very simple one (one state variable) 

to a very complex one (more than ten state variables). 

At a microscopic scale, the generation of brain rhythms in the gamma band 

involves two major classes of neurons; pyramidal cells and interneurons. In vivo and 

in vitro studies have suggested that two major mechanisms (interneuron network 

gamma, ING, and pyramidal interneuron network gamma, PING) underlie the 

generation of brain rhythms in the gamma band. For the first mechanism (ING), the 

gamma band rhythm is generated by a network of interneurons, while for the second 

mechanism (PING), it is the result of interactions between the interneurons and 

pyramidal cells. In Chapter 2, we investigated how the two major mechanisms 

interact using extensive computer simulations of a biologically plausible neuronal 

network, consisting of thousands of neurons. Chapter 3 addresses the same question 

using a fully analytical approach for a simple network. The results obtained from the 

computer simulations for a biologically plausible network and the analytical 

approach for a simplified network in general agree well. Both approaches 

demonstrated that the two mechanisms ING and PING compete: The mechanism 

N
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generating the higher oscillation frequency "wins". The winning mechanism 

determines the frequency of the network oscillation and suppresses the other 

mechanism. 

Both neurophysiological as well as neuro-imaging studies have reported that 

neuronal activity between distant parts of the brain synchronizes with zero phase lag. 

This is a remarkable result because of time delays between the interacting brain 

areas: it takes a significant amount of time for action potentials to travel from one 

area to the other. In Chapter 4, we investigated under what conditions zero-lag 

synchrony between distant brain regions is possible using an analytical approach 

supported by computer simulations. In Chapter 5, we extended the model of the 

oscillators by including additional features of the biologically plausible neurons. 

From the results in both chapters, we conclude that zero-lag synchrony is indeed 

possible, but not likely for the actual conditions in the brain. This suggests a cautious 

re-evaluation of the existence and proposed role of zero-lag synchrony in neuronal 

communication. 

Chapter 2 - Cooperation and competition of gamma oscillation mechanisms 

Brain rhythms appearing in various frequency ranges are one of the hallmarks of the 

brain. One of the most important frequency ranges is the gamma band (30-80 Hz), 

which is assumed to be relevant during sensory, motor, and cognitive tasks. There 

are two different mechanisms (ING and PING) that have been suggested to underlie 

the generation of the gamma band rhythms. Because these mechanisms have a very 

different origin, several studies in the literature have proposed a different biological 

function for these mechanisms. In this chapter, we highlighted our research on how 

the two oscillation-generating mechanisms interact using mathematical modeling 

and extensive computer simulations. 

We found that the two cortical mechanisms compete: The mechanism 

generating the higher oscillation frequency "wins". The winning mechanism 

determines the frequency of the network oscillation and suppresses the other 

mechanism. Furthermore, our computational study suggests approaches to decide in 

experimental studies to what extent oscillatory gamma activity is dominated by ING 

or PING by simply investigating the response frequency of the network when the 
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input to either the pyramidal cells or to the interneurons is varied. The theoretical 

predictions of this study are in line with the results of various experimental studies. 

Chapter 3 - Analyzing the competition of gamma rhythms with delayed pulse-

coupled oscillators in phase representation 

In this chapter, we extended our study conducted in Chapter 2 by analytically 

investigating the competition between the two major mechanisms that have been 

suggested to underlie the generation of the brain rhythms in the gamma frequency 

band (30-80 Hz). We used a network of two coupled oscillators to allow for a 

detailed theoretical analysis. Based on the network of two coupled oscillators, we 

derived all possible stable interaction modes between the two oscillators and their 

relative phase of spiking. 

In general, the results based on our analysis of two coupled oscillators agree 

well with the main results obtained by the computer simulations of the dynamics of 

large networks conducted in Chapter 2. According to the theoretical analysis of the 

two coupled oscillators, we can switch between ING and PING by simply adjusting 

the current to one of the oscillators. Our two-neuron study further suggests that we 

can easily find out whether ING or PING dominates the gamma oscillations since 

the frequency of gamma oscillations increases with a different slope as a function of 

the input to the interneurons or pyramidal cells for ING and PING. At the 

intersection point of the two lines with different slope, ING (PING) takes over from 

PING (ING). 

Chapter 4 - When long-range zero-lag synchronization is feasible in cortical 

networks 

Several experimental studies using neurophysiological techniques and brain imaging 

have reported that neuronal activity in different brain regions synchronizes at zero 

phase lag. This is a remarkable result, since neuronal populations in different parts 

of the brain, sometimes more than 20 cm apart, have to synchronize at zero phase 

lag despite considerable time delays of 3 ms or more along the axons connecting 

these brain areas. The occurrence of zero-lag synchrony has led to many speculations 

about its functional role in neuronal communication, e.g., for attention, memory and 

feature binding. However, some recent studies have reported synchrony with a 
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nonzero phase lag, where activity in one brain area consistently leads the activity in 

the other area, in contradiction with previous reports.  

Therefore, the aim of this study was to investigate under what conditions 

zero-lag synchrony could potentially occur. We adopted a very simple network 

configuration, which has been postulated before in the literature as a potential 

candidate for coupling between distant brain areas. In this model two brain areas are 

connected via a neuronal relay population. We then showed that zero-lag synchrony 

is indeed possible, but not likely for biologically plausible conditions. Therefore, our 

study supports the more recent experimental results, which suggest that the reports 

on zero-lag synchrony may not be valid. This suggests a cautious re-evaluation of 

the proposed role of zero-lag synchrony in neuronal communication. 

Chapter 5 - Robustness of long-range zero-lag synchronization for changes in 

cortical connectivity 

The simple oscillators used to conduct the theoretical analyses in Chapter 4 lack 

some important properties of realistic neurons. First, neurons hardly respond to 

synaptic input arriving shortly after spiking of the neurons because of the refractory 

period of neurons. Second, neurons do not spike exactly at the arrival time of a pulse 

input. In this chapter, we thus extended our study presented in Chapter 4 by 

investigating the effect of these two features on zero-lag synchrony: We did so by 

additionally constructing two different phase oscillators, each of which exhibits each 

feature. 

 Our study shows that the refractory period of neurons and the temporal 

dynamics of neurons do affect the zero-lag synchrony. In fact, adding these 

properties reduces the conditions where zero-lag synchrony is feasible. Therefore, 

we conclude that zero-lag synchrony between distal brain areas is highly unlikely, 

supporting the results in Chapter 4. 
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