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Towards automatic pulmonary 
nodule management in lung cancer 
screening with deep learning
Francesco Ciompi1,2, Kaman Chung1, Sarah J. van Riel1, Arnaud Arindra Adiyoso Setio1, 
Paul K. Gerke1, Colin Jacobs1, Ernst Th. Scholten1, Cornelia Schaefer-Prokop1, 
Mathilde M. W. Wille3, Alfonso Marchianò4, Ugo Pastorino4, Mathias Prokop1 &  
Bram van Ginneken1

The introduction of lung cancer screening programs will produce an unprecedented amount of chest CT 
scans in the near future, which radiologists will have to read in order to decide on a patient follow-up 
strategy. According to the current guidelines, the workup of screen-detected nodules strongly relies on 
nodule size and nodule type. In this paper, we present a deep learning system based on multi-stream 
multi-scale convolutional networks, which automatically classifies all nodule types relevant for nodule 
workup. The system processes raw CT data containing a nodule without the need for any additional 
information such as nodule segmentation or nodule size and learns a representation of 3D data by 
analyzing an arbitrary number of 2D views of a given nodule. The deep learning system was trained 
with data from the Italian MILD screening trial and validated on an independent set of data from the 
Danish DLCST screening trial. We analyze the advantage of processing nodules at multiple scales with a 
multi-stream convolutional network architecture, and we show that the proposed deep learning system 
achieves performance at classifying nodule type that surpasses the one of classical machine learning 
approaches and is within the inter-observer variability among four experienced human observers.

The American National Lung Screening Trial (NLST)1 demonstrated a lung cancer mortality reduction of 20% 
by screening of heavy smokers using low-dose Computed Tomography (CT), compared with screening using 
chest X-rays. Motivated by this positive result and subsequent recommendations of the U.S. Preventive Services 
Task Force2, lung cancer screening is now being implemented in the U.S., where high-risk subjects will receive a 
yearly low-dose CT scan with the aim of (1) checking for the presence of nodules detectable in chest CT and (2) 
following-up on nodules detected in previous screening sessions. As a consequence, an unprecedented amount 
of CT scans will be produced, which radiologists will have to read in order to check for the presence of nodules 
and decide on nodule workup. In this context, (semi-) automatic computer-aided diagnosis (CAD) systems3–6 for 
detection and analysis of pulmonary nodules can make the scan reading procedure efficient and cost effective.

Once a nodule has been detected, the main question radiologists have to answer is: what to do next? In order 
to address this question, the Lung CT Reporting And Data System (Lung-RADS) has been recently proposed, 
with the aim of defining a clear procedure to decide on patient follow-up strategy based on nodule-specific char-
acteristics such as nodule type, size and growth. Lung-RADS guidelines also refer to the PanCan model7, which 
estimates the malignancy probability of a pulmonary nodule detected in a baseline scan (i.e., during the first 
screening session) based on patient data and nodule characteristics. In both Lung-RADS guidelines and the 
PanCan model, the key characteristic to define nodule follow-up management is nodule type.

Pulmonary nodules can be categorized into four main categories, namely solid, non-solid, part-solid and calci-
fied nodules (see Fig. 1). Solid nodules are characterized by a homogeneous texture, a well-defined shape and an 
intensity above − 450 Hounsfield Units (HU) on CT. Two sub-categories of nodules with the density of solid nod-
ules can be considered, namely perifissural nodules8, i.e., lymph nodes (benign lesions) that are attached or close 
to a fissure, and spiculated nodules, which appear as solid lesions with characteristic spicules on the surface, often 
considered as an indicator of malignancy. Non-Solid nodules have an intensity on CT lower than solid nodules 
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(in the range between − 750 and − 300 HU), also referred to as ground glass opacities. Part-Solid nodules contain 
both a non-solid and a solid part, the latter normally referred to as the solid core. Compared with solid nodules, 
non-solid and in particular part-solid nodules occur less frequent but have a higher frequency of being malignant 
lesions9. Finally, calcified nodules are characterized by a high intensity and a well-defined rounded shape on CT. 
Completely calcified nodules represent benign lesions.

In Lung-RADS, the workup for pulmonary nodules is mainly defined by nodule type and nodule size. 
However, presence of imaging findings that increase the suspicion of lung cancer, such as spiculation, can modify 
the workup. In the PanCan model, spiculation is a parameter that together with nodule type, nodule size and 
patient data contribute to the estimation of the malignancy probability of a nodule. Furthermore, completely 
calcified and perifissural nodules are given a malignancy probability equal to zero. In a scenario in which CAD 
systems are used to automate the lung cancer screening workflow from nodule detection to automatic report 
with decision on nodule workup, it is necessary to solve the problem of automatic classification of nodule type. 
In this context, the classes that have to be considered are: (i) solid, (ii) non-solid, (iii) part-solid, (iv) calcified, (v) 
perifissural and (vi) spiculated nodules.

Although the general characteristics of nodule types can be easily defined, recent studies10,11 have shown that 
there is a substantial inter- and intra-observer variability among radiologists at classifying nodule type. In this 
context, researchers have addressed the problem of automatic classification of nodule type in CT scans by (1) 
designing a problem-specific descriptor of lung nodule and (2) training a classification model to automatically 
predict nodule type. In ref. 11, nodules were classified as solid, non-solid and part-solid. A nodule descriptor was 
designed based on information on volume, mass and intensity of the nodule, and a kNN classifier was applied, 
but the used features strongly rely on the result of a nodule segmentation algorithm, whose optimal settings also 
depend on nodule type. The authors propose to solve this problem by first running the algorithm multiple times 
using different segmentation settings in order to extract features and then classify nodule type. In practice, this 
strategy hampers the applicability of such a system to an optimized scan reading scenario. In ref. 12, the SIFT 
descriptor was used to classify nodules as juxta, well circumscribed, pleural-tail and vascularized, and a feature 
matching strategy was used for classification purposes. Despite the good performance reported, the considered 
categories are not relevant for nodule management according to current guidelines. A descriptor specifically 
tailored for lung nodule analysis was introduced in ref. 13, which was used to assess presence of spiculation in 
detected solid nodules14 and to classify nodules as perifissural15. Although this approach could be extended to 
other nodule types, it strongly relies on the estimation of nodule size in order to define the proper scale to analyze 
data.

Scale is an important factor to consider in automatic nodule type classification. As an example, discriminating 
a pure solid nodule from a perifissural nodule involves the detection of the fissure, which on a 2D view of the 

Figure 1. Examples of triplets of patches for different nodule types in axial, coronal and sagittal views. Each 
triplet is depicted using three different patch sizes, namely 10 mm, 20 mm and 40 mm.
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nodule can be differentiated from a vessel only if a sufficiently large region surrounding the nodule is considered 
(see Fig. 1). On the other hand, discriminating non-solid from part-solid nodules strongly relies on the presence 
of a solid core, which can consist of a tiny part of the lesion that can only be clearly detected on a small scale.

In recent years, the advent of deep learning16,17 has emerged as a powerful alternative to designing ad-hoc 
descriptors for pattern recognition applications by using deep neural networks, which can learn a representa-
tion of data from the raw data itself. The most used incarnation of deep neural networks are convolutional net-
works16,18,19, a supervised learning algorithm particularly suited to solve problems of classification of natural 
images19–21, which has recently been applied to some applications in chest CT analysis6,15,22–24.

In this paper, we address the problem of automatic nodule classification by introducing three main contribu-
tions. For the first time, we propose a single system that classifies all nodule types relevant for patient manage-
ment in lung cancer screening according to the Lung-RADS assessment categories and the PanCan malignancy 
probability model, namely solid, non-solid, part-solid, calcified, perifissural and spiculated nodules. Differently 
from what has been done in previous work, we design a classification framework based on Convolutional 
Networks (ConvNets)17–19. In particular, we propose a multi-stream multi-scale architecture in which ConvNets 
simultaneously process multiple triplets of 2D views of a nodule at multiple scales and compute the probability 
for the nodule to belong to each one of the six considered nodule types. The proposed approach does not require 
nodule segmentation or the estimation of nodule size. Inspired by recent work6,15, we formulate the analysis of 
a nodule as a combination of 2D patches. Relying on the experimental results of Setio et al.6, which showed that 
performance increase by increasing the number of analyzed patches, we go beyond a limited number of patches 
by introducing a novel approach to extract an arbitrary number of 2D views from a nodule. We trained the deep 
learning system using data from 943 patients and 1,352 nodules from the Multicentric Italian Lung Detection 
(MILD) trial25 and we validated the trained system using independent data from 468 patients and 639 nodules 
from the Danish Lung Cancer Screening Trial (DLCST)26. Furthermore, in order to compare the performance 
of our deep learning architecture versus classical approaches of patch classification, we trained a linear support 
vector machines classifier to classify both features based on the raw intensity of nodules and features learned from 
raw data via an unsupervised learning approach. Finally, in order to compare the performance of our method 
versus human performance, we designed an observer study in which four observers, including experienced radi-
ologists, classified a subset of 162 nodules extracted from the test set. We show that the proposed system achieves 
performance that surpasses classical patch classification approaches and is comparable with the inter-observer 
variability among human observers.

Results
Training data. We trained the deep learning system using data from the Multicentric Italian Lung Detection 
(MILD) trial25. For this purpose, we considered all baseline CT scans from the MILD trial. The study was 
approved by the Institutional review board of Fondazione IRCCS Istituto Nazionale Tumori di Milano, and the 
written informed consent was waived for the retrospective examination of the analyzed data. For all patients, non 
contrast-enhanced low-dose CT scans were acquired using a 16-detector row CT system, with section collimation 
16 ×  0.75 mm. Images were reconstructed using a sharp kernel (Siemens B50 kernel, Siemens Medical Solutions) 
with a slice thickness of 1.0 mm. Nodules were detected and annotated based on the following procedure. All CT 
scans were first read by a workstation (CIRRUS Lung Screening, Diagnostic Image Analysis Group, Radboudumc, 
Nijmegen, Netherlands) with automatic nodule detection (CAD) tools integrated. Two medical students, trained 
by a radiology research in detecting pulmonary nodules, either accepted or rejected CAD marks and labeled nod-
ules as one of the considered nodule types. Accepted nodules were segmented using the algorithm presented in 
ref. 27, which is implemented in CIRRUS Lung Screening. The students manually adjusted parameters to obtain 
the best possible nodule segmentation, which allowed to compute the equivalent diameter of the lesion. Nodules 
with label disagreement were reviewed by a thoracic radiologist (ES) with more than 20 years of experience in 
reading chest CT scans. Nodules with label agreement were further reviewed by two radiology researchers (SvR, 
KC) independently. From the set of annotated nodules, we removed all cases with a diameter smaller than 4 mm, 
which is considered as an irrelevant finding in lung cancer screening1. The final set of data consisted of 1,805 nod-
ules from 943 subjects (see Table 1), which were split into two non-overlapping sets: a training set (1,352 nodules), 
used to train the deep learning system and a validation set (453 nodules), used to monitor the performance of the 
system during training.

In the development of the proposed deep learning system, we defined a nodule data sample as a set of triplets 
of patches (axial, coronal and sagittal view), where each triplet was used to feed three streams of convolutional 
network (details on data preprocessing, system design and training are detailed in the Methods section). For 
training purposes, several different samples were extracted from the same nodule by rotating triplets around the 
center of mass and by using techniques of data augmentation at patch level. In this way, ≈ 0.5 M training samples 
were extracted and used to train the deep learning system. In our experiments, we investigated the performance 
of the system when data at different scales were considered. For this purpose, we extracted nodule data with 
patches of size 10 mm, 20 mm and 40 mm, which represent 3 different scales. We built and trained three network 
architectures where one scale (40 mm), two scales (20 mm, 40 mm) and three scales (10 mm, 20 mm, 40 mm) 
were processed, and compared the performance of the three networks with both classical patch classification 
approaches based on machine learning and human performance.

Test data. The performance of the trained deep learning system was assessed on data from the Danish Lung 
Cancer Screening Trial (DLCST)26. In particular, we used the subset of data used in a study recently published by 
the DLCST research group28, where the authors also describe the procedure used to annotate nodule types. The 
DLCST was approved by the ethics committe of Copenhagen County and fully funded by the Danish Ministry 
of Interior and Health. Approval of data management in the trial was obtained from the Danish Data Protection 
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Agency. The trial is registered with ClinicalTrials.gov (NCT00496977). All participants provided written informed 
consent. Non contrast-enhanced low-dose CT scans were acquired using a multi-slice CT system (16-row Philips 
Mx 8000, Philips Medical Systems) with section collimation 16 ×  0.75 mm. Images were reconstructed using a 
sharp kernel (kernel D) with a slice thickness of 1.0 mm. From the initial data set, we removed nodules with a 
diameter smaller than 4 mm, as done for data from the MILD trial, and discarded scans with incomplete or cor-
rupted data (e.g., missing slices). Finally, we obtained a set testALL of 639 nodules from 468 subjects (see Table 1), 
which we used for testing purposes.

Observer study. In order to compare the deep learning system with human performance, we selected a 
subset of nodules from the set testALL and asked three observers to label nodule type. For this purpose, we built 
a dataset by including all spiculated nodules in testALL (27 nodules) and the same number of nodules randomly 
selected from the other classes. Therefore, a dataset testOBS of 162 nodules was built for the observer study. Two 
chest radiologists (ES, CSP) with more than 20 years of experience reading chest CT and a radiology researcher 
(KC) were involved in the observer study. Readers independently labeled nodule types. Nodules were shown at 
locations indicated by annotations provided by the DLCST trial, and readers had the possibility to either label the 
nodule as belonging to one of the six considered categories, or label it as not a nodule. For evaluation purposes, 
we considered annotations made by the three observers involved in this study as well as annotations coming from 
the DLCST trial, which we considered as an additional observer. In the rest of the paper we will refer to annota-
tions coming from these four different sources as observers O1, O2, O3 and O4 (where O4 indicates the DLCST 
annotations).

Evaluation. After training, all nodules in testALL were classified using the trained deep learning system. In 
order to compute the computer-observer agreement, we compared the results from the computer with the nodule 
type given by each observer independently in the testOBS set. Furthermore, we computed the inter-observer agree-
ment by considering all possible pairs of observers Oi vs. Oj (i, j =  1, … , 4, i ≠  j). In this case, since observers were 
given the possibility of labeling a given nodule as “not a nodule”, the additional class not a nodule is considered 
to assess the inter-observer variability. The results in terms of k value are reported in Table 2, when all pairs of 
observers and the results from the three deep learning architectures working with different scales are considered. 
It can be noted that human observers have a moderate to substantial agreement, with k between 0.59 and 0.75, 
and that the deep learning system achieves a variability in the same range of human observers, with a level of 
agreement that increases with the number of scales used for nodule classification. When the 3-scale architecture is 
considered, the k value between the computer and each observer under test is between 0.58 and 0.67 and in half of 
the cases, it is higher than the agreement between the observer under test and at least one of the other observers.

We also evaluated the classification performance of the best performing network, namely the one working 
with 3 scales, in terms of accuracy and per-class F-measure and compared it with human performance (Table 3). 

MILD (943 patients) DLCST (468 patients)

Training 
nodules N

Training 
samples

Validation 
nodules

Test nodules 
testALL/testOBS

Solid 694 8 88,832 232 382/27

Calcified 233 22 82,016 78 58/27

Part-solid 63 80 80,640 21 37/27

Non-solid 152 33 80,256 50 87/27

Perifissural 181 28 81,088 62 48/27

Spiculated 29 167 77,488 10 27/27

Total 1,352 — 490,320 453 639/162

Table 1.  Detailed number of nodules and samples in the training, validation and test sets. The MILD 
dataset is used for training and validation purposes, the DLCST dataset is used for testing purposes. In the test 
set, the number of nodules per class randomly selected to design the observer study is reported. The number 
of class-specific planes per nodule used to extract training data (N, see also Fig. 4) is indicated for each nodule 
type. The number of used patients from MILD and DLCST are also indicated.

Observers Computer

O1 O2 O3 O4 1 scale 2 scales 3 scales

O1 — 0.59 (0.51–0.68) 0.65 (0.57–0.74) 0.68 (0.60–0.76) 0.63 (0.54–0.72) 0.64 (0.55–0.73) 0.65 (0.57–0.74)

O2 0.59 (0.51–0.68) — 0.71 (0.63–0.79) 0.66 (0.58–0.75) 0.55 (0.45–0.64) 0.54 (0.45–0.64) 0.58 (0.49–0.67)

O3 0.65 (0.57–0.74) 0.71 (0.63–0.79) — 0.75 (0.67–0.82) 0.56 (0.47–0.65) 0.57 (0.48–0.66) 0.61 (0.52–0.70)

O4 0.68 (0.60–0.76) 0.66 (0.58–0.75) 0.75 (0.67–0.82) — 0.62 (0.53–0.70) 0.64 (0.55–0.73) 0.67 (0.59–0.75)

Table 2.  Cohen k statistics with 95% confidence intervals for agreement between computer and observers. 
Oi indicates the i-th observer. Results for automatic classification using deep learning systems with different 
numbers of scales are reported.
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It is worth noting that the average performance among human observers are comparable with the average per-
formance between the computer and observers, with an average accuracy of 72.9% versus 69.6% respectively. A 
similar trend can be observed for all the other classification parameters.

Furthermore, we used the testALL dataset to compare the performance of the proposed deep learning sys-
tem with two classical approaches where a linear Support Vector Machines (SVM) classifier was trained in a 
supervised fashion using features extracted from 2D nodule patches. In the first approach, features based on the 
raw pixel intensity of 2D patches were used (intensity features). In the second approach, features were not engi-
neered but learned from raw data via an unsupervised learning approach using the K-Means algorithm (unsuper-
vised features), as proposed in ref. 34. Details on the design of these two additional experiments are given in the 
Methods section. The proposed approach based on deep learning, together with these two approaches based on 
classical machine learning, covers a scenario where the problem of nodule classification is tackled by (1) manually 
defining features based on raw image data and use them to train a classifier, (2) learning features from raw data 
in an unsupervised fashion and use them to train a classifier, (3) learning a hierarchical representation of nodules 
from raw data, using convolutional networks trained end-to-end. The results of the comparison are reported 
in Table 4, where the gradual improvement from using intensity-based features and SVM to a 3-scale approach 
based on deep learning can be observed both in terms of accuracy and F-measure.

In Fig. 2, examples of nodule type classification are depicted, grouped based on labels provided by the DLCST 
trial. For each nodule type, nodules classified by the deep learning system are ordered by increasing probability. 
As a consequence, atypical examples for each nodules type can be found on the left side of the figure, while typical 
examples can be found on the right side of the figure.

Discussion
The deep learning system produces a score by classifying an internal representation learned from raw data. In 
order to get insights on the kind of features learned by the network, we extracted an embedded representation of 
each nodule and applied multidimensional scaling to project the embedded representation onto a bidimensional 
plane. For this purpose, we applied the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm29 to 
the output of the last fully-connected layer of the network. In this way, each nodule is represented by a feature 
vector of 256 values. The result of the multidimensional projection is depicted in Fig. 3, where close nodules have 
a similar representation in the network. Clearly defined clusters of nodules with similar characteristics can be 
identified. Examples are clusters of large solid nodules, calcified or perifissural nodules, but also groups of nodules 
of a particular class that was not used in this study, namely juxtapleural nodules.

One of the clusters in the t-SNE representation shows a direct association between large solid nodules and 
spiculated nodules. Based on training data, the system implicitly learns that large solid nodules are likely to be 
spiculated nodules. This effect can be observed in the quantitative evaluation reported in Table 3, where spicu-
lation has an F-measure of 62.7% when the system is compared with O4 on the subset of 162 nodules, while it 
decreases to an F-measure of 43.4% when all nodules are considered. The reduction in precision observed in the 
second experiment is therefore related to the presence of more large solid nodules that are misclassified as spicu-
lated. This suboptimal behavior of the system can be compensated by increasing the amount of spiculated nodules 
in the training set, for example by including follow-up cases. Nevertheless, in the clinical context of lung cancer 
screening, labeling large solid nodules as spiculated may not hamper the nodule workup, since large solid nodules 
without spiculation are also considered as suspicious lesions.

The values of precision and recall per nodule type when the testALL set is classified with the 3-scale network 
are reported in Table 5. We can observe that the system tends to classify solid, calcified and non-solid nodules 

Accuracy Fsolid FCalcified FPart-solid Fnon-solid FPerifissural FSpiculated FNot-a-nodule

O1 vs. Computer (3 scales) 71.5% 60.8% 88.4% 66.7% 86.3% 62.2% 71.4% —

O2 vs. Computer (3 scales) 66.2% 62.6% 82.4% 47.8% 72.7% 80.0% 56.4% —

O3 vs. Computer (3 scales) 67.7% 56.8% 85.1% 59.1% 78.3% 75.6% 60.9% —

O4 vs. Computer (3 scales) 72.8% 64.2% 88.9% 71.7% 80.0% 77.3% 62.7% —

Average 69.6% 61.1% 86.2% 61.3% 79.3% 73.8% 62.9% —

O1 vs. O2 66.0% 52.7% 84.0% 51.3% 79.2% 63.6% 83.3% 50.0%

O1 vs. O3 71.0% 55.0% 87.0% 66.7% 80.0% 81.5% 74.4% 40.0%

O1 vs. O4 72.8% 64.8% 90.9% 66.7% 71.7% 75.5% 89.4% 0.0%

O2 vs. O3 76.5% 74.7% 88.9% 61.5% 81.0% 77.3% 75.7% 66.7%

O2 vs. O4 72.2% 64.4% 88.5% 70.8% 71.1% 79.1% 73.2% 0.0%

O3 vs. O4 79.0% 68.4% 95.8% 71.1% 80.9% 90.6% 79.2% 0.0%

Average 72.9% 63.3% 89.2% 64.7% 77.3% 77.9% 79.2% 26.1%

Table 3.  Nodule classification performance in terms of accuracy and F-measure per nodule type. Results 
for each pair of human observer Oi vs. Oj and for observers versus the computer on the testOBS dataset (167 
nodules) are reported. Averages of measures across observers and across computer-observers are also indicated. 
The additional class “not a nodule” is added to observers since they could exclude nodules during the observer 
study. The performance of the system on the testALL set (639 nodules) is also reported. In this case, annotations 
from DLCST radiologists (O4) are considered as the reference standard.
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with high performance. As a consequence, since nodule type distributions are skewed (see Table 1), the overall 
accuracy for testALL is higher than for testOBS. The low value of precision and recall for part-solid and spiculated 
nodules in testALL corroborates what is observed for testOBS and can be compensated in the future by adding more 
training samples for underrepresented classes, therefore increasing the variability of nodule appearance in the 
learning procedure.

The performance of the system is within the inter-observer variability. This corroborates the effectiveness of 
the system at classifying nodules and also indicates that even experienced radiologists do not fully agree on nod-
ule types. The concept of nodule type has been coined by radiologists, who have to differentiate opacities in CT 
scans according to their appearance and, most importantly, to their frequency of malignancy. The fact that there 
is no complete agreement among experienced radiologists implies that no gold standard for nodule type classifi-
cation can be made, and that there will always be doubtful cases even in the training set. In this context, the range 
of variability within the one among humans reached by the proposed system makes it the first suitable system to 
be integrated in workstations for automatic analysis of CT scans in lung cancer screening.

Methods
The input of the proposed framework is a chest CT scan and the position q =  [x, y, z] of the nodule (e.g., its center 
of mass) to classify. The output of the system is the probability for the nodule to belong to each one of the six con-
sidered classes. The framework is based on convolutional networks (ConvNet), which process input samples via a 
“multi-stream multi-scale” architecture (see Fig. 4). We define an input sample as a triplets of 2D patches obtained 
by intersecting the 3D domain of the nodule with triplets of orthogonal planes, and crop triplets of patches at dif-
ferent resolutions. Therefore, an input sample to feed the deep learning system is given by three triplets of patches 
from the same nodule (see Fig. 4). Each step of the proposed framework is detailed in next sections.

Generation of triplets of 2D patches. Let us define a triplet of orthogonal planes = Ψ Ω ΦT { , , }n n h n  
passing through the point q and an angle θ = π−

n
n

N
( 1)

2
 (n =  1, … , N), which defines the rotation of each plane of 

Tn with respect to the axes x, y, z. In this way, T1 is the triplet of planes that define the default axial, coronal and 
sagittal views of a CT scan, and any other triplet Tn is obtained by sequentially rotating the triplet with respect to 
the x, the y and the z axis by an angle θn. Rotating all the planes by the same angle guarantees that orthogonal 
planes are always obtained. Examples of triplets for several values of N are depicted in Fig. 4(a), where the axial, 
coronal and sagittal planes are represented in different colors.

The intersection of a triplet of planes and a CT scan generates 2D views of the nodule of interest. From each 
intersection, we generate triplets of 2D patches by cropping a square area of size d centered on q. Increasing the 
value of N allows to increase the number of extracted patches per nodule, which also increases the coverage of 
the volume of a nodule in 3D. Furthermore, adapting the value of N per nodule type has the advantage of (1) 
balancing classes distribution in the presence of skewed distribution of classes by using a larger value of N for 
underrepresented classes, and (2) using it as a kind of data augmentation, in which many different views of the 
same object are extracted.

The parameter d defines the scale at which patches are considered. Using multiple values of d allows to crop 
triplets of patches with information that range from local content to more global context of nodule appearance. In 
order to train the proposed deep learning system, we extracted triplets of patches at three different scales, namely 
d =  10, 20, 40 mm and fed three streams of the network with three triplets at the same time. This allows the net-
work to focus both on the local appearance of a nodule (10 mm), where small structures like the solid core can be 
analyzed, and on more global context (40 mm), in which structures like the fissure can be recognized. Before 
feeding the network, each patch was rescaled to a fixed size of 64 ×  64 pixels using bicubic interpolation and the 
pixel intensity ∈ −I [ 1200, 400]HU  HU was rescaled to ∈I [0, 1]norm  by applying the transformation 

= +Inorm
I 1200

1600
HU .

Deep learning network. Network design. The architecture of the used deep learning system is depicted 
in Fig. 4(b). The system consists of nine streams of ConvNets, grouped into three sets of three streams. Each set 
of streams is fed with a triplet of orthogonal patches extracted at the same scale. Different sets of streams process 
triplets of orthogonal patches with exactly the same orientation in the CT scan, but at different scales. Each stream 

Accuracy Fsolid FCalcified FPart-solid Fnon-solid FPerifissural FSpiculated

Intensity 
features +  SVM 27.0% 4.1% 60.2% 0.0% 35.4% 26.7% 32.5%

Unsupervised 
features +  SVM 39.9% 38.4% 32.0% 49.4% 59.2% 16.9% 39.5%

ConvNets 1 scale 78.0% 84.4% 82.4% 54.5% 84.4% 57.5% 37.8%

ConvNets 2 scales 79.2% 85.6% 84.9% 52.3% 87.8% 63.4% 36.8%

ConvNets 3 scales 79.5% 85.6% 85.7% 52.2% 87.4% 68.2% 43.4%

Table 4.  Comparison of classification performance in terms of accuracy and F-measure when the 
considered methods are: (1) features based on pixel intensity of patches and linear SVM classifier, (2) 
features learned from raw nodule patches using the unsupervised learning approach proposed in ref. 34  
and linear SVM classifier, (3) the proposed deep learning approach using ConvNets working at 1, 2 and 3 
scales.
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Figure 2. Examples of classified nodules from the test set (DLCST). Each row depicts nodules from one class 
as labeled in the DLCST trial, and nodules are sorted from left to right based on the probability given by the (3-
scale) deep learning system. Examples with low probability (on the left) are a-typical cases of each nodule type, 
while a high probability (on the right) is given to typical examples of each nodule type.

Figure 3. Multidimensional scaling of nodules in the test set using the t-SNE algorithm. Close nodules have 
similar characteristics. In (a), clusters of similar nodules are highlighted and grouped with different boxes. A 
zoomed-in version of each cluster is also shown and a representative name is given based on their appearance. 
The nodule label assigned in the DLCTS trial is also reported as a coloured dot for each nodule patch (see legend 
for nodule types).

Solid Calcified Part-solid Non-solid Perifissural Spiculated

Precision 89.2 88.9 43.6 87.4 78.4 32.7

Recall 82.2 82.8 64.9 87.4 60.4 64.3

Table 5.  Precision and recall values for the 3-scale deep learning system tested on the testALL set.
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of the set is fed with one patch from a triplet of orthogonal patches. The 2D input patch is then processed by a 
series of convolutional and pooling layers, with one last fully-connected layer. The size of each patch is 64 ×  64 
pixels, which covers a size of ≈ 40 mm at the used in-plane resolution of 0.67 mm/px.

In order to define the optimal architecture for each stream, we followed the VGG-net approach proposed in 
ref. 30. We set a fixed size of convolutional kernels to 3 ×  3 px and used 32 filters in the initial layer. Similarly to 
ref. 30, we added pairs of convolutional and max-pooling layers, keeping a fixed filter size of 3 ×  3 and doubling 
the number of filters in convolutional layers after each max-pooling, as long as the performance on the valida-
tion set were improving. We slightly deviated from the fixed procedure of ref. 30 by increasing the filter size in 
the first convolutional layer to 5 ×  5 and by using 2 layers of 64 filters in cascade before the second max-pooling 
layer, since this configuration showed to perform slightly better than the standard one. The described architecture 
represents one of the three streams used in a set, which we define as multi-stream network. All the parameters 
of the network are shared across the three streams in the same multi-stream network. It is worth noting that a 
multi-stream network processes triplets of 2D patches extracted with the same resolution d.

We used three scales with patch size of 10 mm, 20 mm and 40 mm, respectively, and for each scale we trained a 
multi-stream network. Each multi-stream network has the same architecture, but parameters are optimized inde-
pendently at each scale. The multi-stream networks at different scales are finally merged in a final fully-connected 
layer (see Fig. 4(b)). The final soft-max layer has six neurons, which produce the probability for the six considered 
classes. We implemented the network using Theano31.

Training. We trained the proposed multi-stream multi-scale convolutional network with data from the MILD 
trial. For training purposes, we split the dataset into two parts, a training set containing 75% of the data, and a 
validation set, containing the remaining 25% of the data. We defined the two data sets without any overlap of 
patients or nodules across the sets and distributing all nodule types in the two sets based on the same proportion 
75–25%. The statistics of the two data sets are reported in Table 1.

For training purposes, for each nodule, three triplets of patches were extracted. Each triplet was extracted at a 
given scale by setting the values d1 =  10 mm, d2 =  20 mm and d3 =  40 mm for the streams 1, 2, and 3 respectively. 
Since the distribution of nodule types were skewed, we adapted the number of angles N per nodule type. In order 
to set the proper value for N, we decided to initially extract 5,000 training samples per nodule class. Specific values 
for N for each class are reported in Table 1. Adapting the value of N per nodule type produced 30,000 training sam-
ples. We further augmented the size of the training data set by adding three shifted versions of each training sample. 
Data augmentation was therefore done by randomly shifting the position q of the center of mass of the nodule to 

δ δ δ= + + +x y zq [ , , ]shift x y z , where (δx, δy, δz) were drawn from a normal distribution with mean value μ =  0 
and standard deviation σ = 1

3 3
, which ensures shifting within a sphere of radius 1 mm centered on q. Finally, each 

patch of the triplet and its shifted version were flipped along the vertical, the horizontal axis, and a combination of 
the two axes. As a result, 16 different views of each nodule sample were included in the training set, which resulted 
in approximately 500,000 training samples.

Figure 4. (a) Examples of triplets of nodules extracted by varying the parameter N. (b) Examples of pyramidal 
triplets of patches used to feed the proposed deep learning systems. The system consists of three groups of three 
streams, one for each considered scale (namely 10 mm, 20 mm and 40 mm for patch size). Convolutional layers, 
max-pooling layers, fully-connected layers and one soft-max layer are the building blocks of the proposed 
network. The last fully-connected layer with 256 neurons serves as a combiner of the three sets of three streams, 
and a 6-value probability vector is generated as output.
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In order to train the ConvNet, we initialized the parameters according to the method in ref. 32 and trained 
using stochastic gradient descent, minimizing the categorical cross-entropy loss. During optimization, we set an 
initial learning rate η =  10−3 and decreased it by a factor 3 every 50 epochs. The parameters of the network were 
updated using the ADAM algorithm33. We set the batch size to 256 and used dropout19 with a probability of 0.5 
in the last fully-connected layer. Additionally, L2 normalization was used, with a weight decay parameter of 10−6. 
We empirically noticed that the training converges after ≈ 200 epochs.

Prediction. Given an input sample x, consisting of a set of triplets extracted at multiple scales, the trained 
architecture is able to predict a probability Pk(x) for each considered nodule type class k. Since one set of triplets 
is extracted for a given angle θ, the prediction also depends on the angle θ. Therefore, the input triplet for a given 
nodule can be written as a function of θ, namely xθ. In order to classify a given nodule, the prediction becomes a 
function of the parameter θ as well, which we can write as P(xθ). The final prediction is obtained as a combination 
of the N predictions obtained by varying the parameter θ. The adopted combination strategy consisted in averag-
ing the per-class probability, and finally assigning the nodule the label = ∑ θ=y argmax P x( ( ))k N i

N
k

1
1 i

. This predic-
tion strategy was applied both during training to assess the performance of the network on the validation set, and 
during the final evaluation on the DLCST data set. For validation purpose, after each epoch, all nodules in the 
validation set were tested and performance was assessed. For this purpose, 30 samples per nodule were extracted 
(N =  30), meaning that patches at rotation steps of 6° were taken. At each iteration, nodule type was predicted 
using the proposed combination of predictions, and quantitative performance parameters were computed. Since 
the distribution of nodule types in the validation set is skewed (see Table 1), we considered the F-measure per 
class instead of the commonly used accuracy, since the F-measure is less sensitive to skewed distributions. Based 
on this, during training we maximized the mean F-measure across classes. For the final evaluation on DLCST 
data, the same settings using N =  30 was used, and the results for the three considered architectures reported in 
Tables 2 and 3 were obtained.

Nodule classification using Support Vector Machines. In this section, we describe the details of the 
experiments based on classical machine learning approaches, where we used two different sets of features. The 
first set consists of features based on the intensity of pixels in 2D patches. The second set consists of features auto-
matically learned from raw data in an unsupervised fashion, using the K-means algorithm.

Intensity features. The first set of features consists of the raw pixel intensity (HU values) extracted from 2D 
patches. Given a patch of size 64 ×  64 px, we extracted a feature vector by vectorizing the values of pixel intensities 
in the patch. In this way, each patch had a 4,096-dimension feature vector. We built a training set by consider-
ing all the nodules used to train the methods based on deep learning, balancing samples across classes using 
the coefficients reported in Table 1. We used the training set to train a linear Support Vector Machines (SVM) 
classifier. Data were normalized prior to training to have zero mean and unit variance, and the one-vs-one strat-
egy was used to deal with the multi-class problem. After training, we applied the classifier to the testALL dataset, 
which contains 634 nodules. As done for the evaluation of deep learning approaches, 30 patches per nodules were 
considered at test time, which were all classified using the trained SVM classifier. Finally, majority voting of the 
predicted labels was used to obtain the final prediction of nodule type.

Unsupervised features. The approach used to learn a representation of pulmonary nodules in an automatic 
unsupervised fashion is based on the work of Coates et al.34. The original method presented in 34 was developed 
based on the CIFAR10 dataset, which contains RGB images of 32 ×  32 px. Since the size of the patches used in this 
paper is 64 ×  64 px, in order to apply the method in ref. 34 to our data we doubled the receptive field size, which 
we set to 12 px, and set the number of centroids to 1,600, which gave a feature space of 6,400 dimensions. We kept 
the rest of parameters of the algorithm at their default value. As done for the experiment using intensity features 
and linear SVM, at test time we classified 30 samples per nodule and considered the label given by the majority 
voting on the predicted labels as the final prediction of nodule type.
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