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Abstract Natural sounds such as wind or rain, are characterized by the statistical occurrence of

their constituents. Despite their complexity, listeners readily detect changes in these contexts. We

here address the neural basis of statistical decision-making using a combination of psychophysics,

EEG and modelling. In a texture-based, change-detection paradigm, human performance and

reaction times improved with longer pre-change exposure, consistent with improved estimation of

baseline statistics. Change-locked and decision-related EEG responses were found in a centro-

parietal scalp location, whose slope depended on change size, consistent with sensory evidence

accumulation. The potential’s amplitude scaled with the duration of pre-change exposure,

suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no

response to the change. A dual timescale, statistical estimation model accounted for subjects’

performance. Furthermore, a decision-augmented auditory cortex model accounted for

performance and reaction times, suggesting that the primary cortical representation requires little

post-processing to enable change-detection in complex acoustic environments.

DOI: 10.7554/eLife.24910.001

Introduction
Many natural and environmental sounds are composed of shorter, elementary events, whose occur-

rence can be described on a statistical level (Lederman, 1979; McDermott and Simoncelli, 2011;

Thoret et al., 2014; Turner and Sahani, 2007). For example, individual drops of water can add

together to sound like rain or like a dripping faucet, depending on their number, rate, and relative

timing (McDermott et al., 2013). However, in real-life, listeners face a dynamic acoustic environ-

ment, where statistics do not remain constant for very long. Changes in the statistics of the sound of

rustling leaves amidst the sounds of an ongoing storm, or changes in the acoustic composition of a

busy cityscape, provide relevant information of putative threats. We investigate here determinants

of human performance and their neural representation in these contexts, addressing the hypothesis

that the behavior and neural representation are consistent with statistical estimation.

Changes in sound statistics can only be detected if the statistical properties before the change

have been estimated sufficiently well (Kaya and Elhilali, 2014; McDermott et al., 2013). Without

this estimate, the listener cannot distinguish between ’what to ignore’ given the current statistics

and ’what to recognize’ as a change. Moreover, the quality of this estimate can influence the speed

and certainty of detection, which are essential in real-life contexts. The present study thus investi-

gates the factors influencing detection of deviations in sound statistics, and what the underlying
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dynamics of auditory sensory and evidence accumulation processes are in the human brain. For this

purpose, listeners are presented with a continuous sound, whose statistics change at a random time.

Hence, they are faced with the dual-task of estimating the baseline statistics and detecting a poten-

tial change in those statistics at any moment, which mimics real-life challenges.

The estimation of sound statistics depends on many factors, but most importantly on the com-

plexity of a stimulus in relation to the time available to sample it (Kaya and Elhilali, 2014). A simple

stimulus, governed by only few parameters, can be reliably estimated more quickly than a complex

stimulus. We introduce a statistically controlled stimulus that combines simplicity with broad spectral

distribution. In contrast to previous studies with narrow-band complex stimuli (Andreou et al.,

2015; Cervantes Constantino et al., 2012; Overath et al., 2010; Teki et al., 2013), the sounds

here form a minimalistic, but well-controlled model for natural, acoustic textures that are only

defined by first order statistics. The task for the subjects was to listen to the texture of the stimulus

(for a variable pre-change duration), and then signal the detection of a change in the texture as soon

as possible.

We found that detection performance improves with the time available to sample the baseline

statistics before the change. As expected, detection performance also depended on the saliency of

the change. EEG recordings from auditory projection sites show a strong response related to the

onset of the sound, but did not exhibit a discernible response related specifically to the subsequent

change in stimulus statistics. By contrast, EEG signals over parietal cortex appeared after the time of

change, and displayed a build-up rate that depended on the size of the change (consistent with EEG

responses in other evidence integration tasks, e.g. O’Connell et al., 2012; Kelly and O’Connell,

2013). The peak amplitude of this potential also increased with change size, but decreased with pre-

change interval, i.e. the time available to the subjects to sample the stimulus baseline statistics. Per-

formance and reaction times were well predicted by a model of statistical estimation based on the

difference in the outputs of two leaky integrators operating at fast and slow timescales. In addition,

a model of auditory cortical processing (Chi et al., 2005; Overath et al., 2008) augmented with an

accumulation-to-bound decision stage also accounted for the EEG responses and subjects’ behav-

iors, thus suggesting that decision-making in such statistically complex acoustic environments may

only require minor post-processing (channel-selection and averaging) beyond the early auditory

cortex.

Results
We investigated the neural mechanisms of detecting changes in the statistics of auditory stimuli, on

the basis of human behavioral performance, neural response and models of acoustic processing

leading to decision-making. In a set of psychoacoustic experiments, listeners (n = 12) were pre-

sented with complex acoustic stimuli, whose statistics could change at a random time. Several

parameters of the change were varied in order to estimate their influence on the change’s saliency.

In a different set of listeners (n = 18) EEG responses were collected to track the brain dynamics

reflecting the accumulation of sensory evidence leading to the detection of a change in sound statis-

tics. We propose a simple model to account for the listener’s behavior, which is based on the estima-

tion of stimulus statistics on two timescales. Finally, we suggest a neural implementation of this

principle based on a model of auditory cortical processing.

Detection of changes in statistics is consistent with estimation of
marginal distribution
The ability to detect a change in stimulus statistics improved in trials that provided more time before

the change (‘change time’ in Figure 1A) for subjects to listen to the baseline statistics of the texture.

Performance also increased monotonically to different asymptotic levels for the four tested change

sizes (50, 80, 110, 140%, Figure 2A). Asymptotic performance depended on change size, with big-

ger changes in marginal probability leading to greater asymptotic performance especially between

levels, from 50% to 95% (Figure 2A, psize < 10�5, Friedman; ptime < 10�5, Friedman). Change size

also influenced the dependence on change time, such that greater change sizes led to improved

performance at shorter change times than for smaller change sizes (Figure 2A). This translates to a

combined steepening and leftward shift of the performance curves with change size. The signifi-

cance of this effect was assessed by fitting the performance curves for individual subjects with a
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parametric function of sigmoidal shape (an Erlang CDF, see Materials and methods) in order to

extract the change size-dependent time constant. The characteristic time constant t decreased sig-

nificantly as a function of change size (Figure 2B; p<10�6, Kruskal-Wallis).

The observed performance could alternatively be explained by a timing strategy or a pattern rec-

ognition strategy. Both of these explanations can be rejected based on the data and the paradigm:

if subjects had used a timing strategy, their instantaneous false alarm rate (as a function of change

time, divided by the window length) should never reach a constant value. Instead, the false alarm

rate exhibits an initial linear increase, followed by a constant false alarm rate per unit time

(Figure 2D), a feature that was embodied in the behavior of the models (see Figures 7E/8F). Further-

more, the initial rising portion of the false alarm rate is a consequence of the dual estimation task

Figure 1. Dynamical change-detection paradigm with auditory textures. (A) Subjects listened to an acoustic

textural stimulus, whose predictability was governed by its marginal frequency distribution (grey curve, left panel).

Tones in individual frequency bins were drawn independently consistent with the marginal (middle panel).

Listeners were instructed to report changes by a button press. The frequency marginal was modified (indicated in

orange in the right panel distribution) after a randomly chosen point in time (‘change time’). The probabilities in

two adjacent or non-adjacent frequency bins were increased together, and the distribution over the bins

renormalized to maintain average global level. (B) The distribution of change times was chosen from an

exponential distribution. This ensured that the probability of a change in the next time-bin remained constant

(shown here is the empirical distribution). (C) Response times occurred before (false alarms) and after the change

time (hits). Subjects usually responded only after an initial listening duration, allowing them to acquire the sound

statistics.

DOI: 10.7554/eLife.24910.002
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design. The uniform regime of false alarm rate is consistent with the use of an exponential distribu-

tion of change times, which keeps the change occurrence probability constant per unit of time (see

Figure 1B and Materials and methods).

Some subjects could have attempted to use a pattern recognition strategy, i.e. effectively ignor-

ing the statistics of the first stimulus. However, based on the stimulus design, a pattern recognition

strategy would have failed, since the first stimulus was drawn randomly for each trial, and the second

was a stochastic modification of the first. Further, in this case, detection performance should not

Figure 2. Detecting a change in statistics improves with size and time of change. (A) Performance of change

detection depended significantly on change time (abscissa) and change size (shades of orange indicate the step

size as percent of the original bin probability, see inset). Only changes in contiguous bins were used presently, to

maintain identical trial numbers across difficulties. (B) The dynamics of the performance curve varied with change

size, indicated by the speed parameter t of an Erlang CDF fitted to the data (see Materials and methods). (C)

Dynamical d’ confirms the dependence of performance on change time and change size. The dependence on

change time suggests an improved detection relying on a converged estimate of the baseline statistics, whereas

the dependence on change size indicates a higher level of certainty can be attained more rapidly if the amount of

evidence is larger. (D) Instantaneous false alarm rate is uniform across time, after an initial hesitation to respond in

the first 2 s. The initial hesitation is likely due to the task-design, requiring an initial estimation of the sound

statistics.

DOI: 10.7554/eLife.24910.003

The following figure supplements are available for figure 2:

Figure supplement 1. Change detection improves with base probability.

DOI: 10.7554/eLife.24910.004

Figure supplement 2. Change detection is not focussed on high probability bins.

DOI: 10.7554/eLife.24910.005

Figure supplement 3. Change detection improves with stimulus exposure in the previous trial.

DOI: 10.7554/eLife.24910.006
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have depended on change time. All together these results are inconsistent with both a pattern rec-

ognition and a timing strategy.

Using the time-dependent false alarm rate, the sensitivity of the subjects to detect a change can

be analyzed with a time-dependent d’ (see Materials and methods for details of computing this d’).

This analysis exhibited similar monotonically increasing shapes as a function of both change time

and size (Figure 2C). Further, probability in a frequency bin was positively correlated with change

detection (Figure 2—figure supplement 1), consistent with the idea that a high rate of samples pro-

vided a better estimate of the probability value in a frequency bin. We can rule out that only large

probability bins were attended to, since the performance for equal size chances in large probability

bins is dominated by the change in other, lower probability bins (Figure 2—figure supplement 2).

Finally, longer stimulus duration in the current trial predicted a reduced performance in the following

trial (Figure 2—figure supplement 3), suggesting that the converged estimate in the previous trial

could ‘contaminate’ the estimation process in the subsequent trial. This is another indication that

subjects were not using a pattern recognition strategy, as such a strategy completely ignores the sta-

tistics presented in the previous trial.

In summary, those findings indicate that change detection (i) improves with time allowed to sam-

ple the stimulus, (ii) improves with the size of the change and (iii) saturates with longer observation

intervals. These properties are consistent with statistical decision-making, where a decision can only

be made if the observed change in a stimulus property is substantial compared to the current uncer-

tainty about the same property. Subjects using statistical decision making can (i) reduce their uncer-

tainty by collecting more stimulus information over time, (ii) use larger differences in the stimulus

property to overcome the uncertainty more rapidly, and (iii) will not be able to improve their perfor-

mance once the estimation of the stimulus statistics has saturated.

Reaction Times are consistent with statistical estimation
The dependence of performance on change time suggests a dynamical mechanism performing an

on-going estimation of the initial statistics. To gain insights into these dynamics, we examined the

dependence of reaction times on the parameters of the change, especially its size, which intuitively

correlates inversely with task difficulty according to Piéron’s law (Pins and Bonnet, 1996) and time

of occurrence (or ‘change time’).

Reaction time distributions changed both in duration and shape as a function of change size

(Figure 3A). Median reaction time decreased with larger change sizes (p<10�3; Kruskal-Wallis,

Figure 3B), in accordance with the increase in performance with larger change sizes. Receiver oper-

ating curve (ROC)-based analysis indicated that the distributions of reaction times were different

across change sizes and chance level (Figure 3—figure supplement 1; p<10�7; Friedman). More

specifically we found a significant difference between the most difficult condition and chance level

(p<10�5; Kruskal-Wallis), confirming that subjects were performing at all change sizes. This suggests

that the time necessary to detect the deviation between the pre- and post-change stimulus statistics

was reduced for larger change sizes.

For shorter change times, reaction time distribution changed in a qualitatively similar manner as

was observed for smaller change sizes, although the effect was less pronounced (Figure 3C). Median

reaction times decreased with change times, mirroring dependence of performance on change times

(p<10�5; Kruskal-Wallis, Figure 3D). This dependence can already be seen in the raw data

(Figure 1C), where hit trials (black) for longer change times exhibited shorter reaction times. Again

the timing of the first correct responses decreased correspondingly with longer change time, sug-

gesting more accurate estimation of the initial statistics.

Dependence on spectral location of acoustic change
Changes in stimulus statistics are effectively a probabilistic redistribution of the stimulus energy in

the spectrotemporal domain, here restricted to the spectral axis. Therefore, we hypothesized that a

detection process acting in a spectrally localized manner should perform better when the total

energy of the change is concentrated in a restricted frequency region. Indeed, we found that perfor-

mance decreased for non-localized changes when compared with localized ones (Figure 4A). This

effect was significant only when distances below and above eight semitones were grouped

(Figure 4A; p<5.10�3). Finally, we found that performance did not vary as a function of relative
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position along the frequency axis (p=0.28; Figure 4B), contrary to the predictions of a recent study

(Catz and Noreña, 2013) showing that the cortical representation at the extreme edges of the stim-

ulus spectrum could be enhanced for sharp contrast, resulting in lower change detection thresholds.

EEG responses correlate with accumulation of sensory evidence
We collected neural responses using electroencephalography (EEG) in human subjects performing

the above psychoacoustic task to study the relationship between behavioral performance and neural

responses, and to narrow down the scalp regions whose neural response reflects the change in sta-

tistics. The analysis was focused on a subset of the recording electrodes, namely an auditory (central

location, El.1; corresponding to the center in Nie et al., 2014) and a centro-parietal (14,27,28; corre-

sponding to Twomey et al., 2015) set. Depicted potentials show averages across each set of elec-

trodes. Subjects exhibited similar performance and reaction time dependencies on change time as

in the psychophysical experiments (Figure 5—figure supplement 1). Change times were binned

into four bins based on their distribution and Hit rate to equalize trials per bin.

At stimulus onset, the average auditory potential exhibited a classical, large and rapid event-

related potential (ERP) (Figure 5A,C, composed of N1 and P2), followed by a negative sustained

potential (indicated as NS in the figure) previously described for prolonged stimulus duration

(Hari et al., 1980; Lammertmann and Lütkenhöner, 2001; Lütkenhöner et al., 2011). However,

Figure 3. Reaction times also reflect estimation of pre- and post-change stimulus properties. (A) Reaction time

distribution sharpens with change size. (B) Median response time significantly reduces by 20% (p<10�4, Kruskal-

Wallis) with larger change size (different colors indicate different change sizes). These effects indicate a faster,

temporally more constrained decision, which could indicate more rapid evidence accumulation for larger changes.

(C) Reaction time distribution sharpens with change time and D) median reaction time reduces rapidly with change

time by 25% (p<10�5, Kruskal-Wallis). Both effects indicate a higher degree of certainty in decision making, which

could indicate a more converged estimation of the pre-change statistics.

DOI: 10.7554/eLife.24910.007

The following figure supplement is available for figure 3:

Figure supplement 1. Discriminative performance across change sizes.

DOI: 10.7554/eLife.24910.008
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there was no systematic evidence for a response to the change in statistics (Figure 5B1, EEG of Hit

trials aligned to change times). EEG aligned to subjects’ response time also did not show a signifi-

cant response (Figure 5B2, EEG of Hit trials aligned to button-press, different colors indicate differ-

ent change sizes, averaged over all change times, see below for differences in change time). This

suggests that the detection of the change in statistics was not accompanied by an overall response

in the auditory cortex comparable to other stimulus changes such as stimulus onset or offset (com-

pare also to the model responses in Figure 8B, see also Discussion). While this does not preclude

the information about the change to be available in early auditory cortex, there is no specific, overall

reaction to the change, compared to the continuous representation of the stimulus.

The centro-parietal electrodes exhibited a centro-parietal positivity (CPP) reported previously

(O’Connell et al., 2012; Kelly and O’Connell, 2013; Twomey et al., 2015) in a similar location (see

Figure 5F for its topography at response time). In contrast to the central electrodes, the CPP did

not display any clear response to sound onset (Figure 5D) but exhibited a long-lasting response fol-

lowing change events (Figure 5E1). This increase in the EEG signal was building-up and preceded

subjects’ responses across change sizes (Figure 5E2), outlasting the timing of the button press. The

difference between change sizes was colocalized with the CPP (Figure 5F, inset), indicating that the

difference in amplitude is not due to a global shift in potential). In previous studies, the CPP poten-

tial was clearly linked to evidence integration in decision making tasks, e.g. in simple visual and audi-

tory detection tasks (O’Connell et al., 2012) and a complex visual discrimination task (Kelly and

O’Connell, 2013). We therefore hypothesized the CPP to also be indicative of evidence integration

in complex auditory detection tasks. In order to assess this, we examined how the CPP potential

depended on the amount of evidence, and whether it exhibited accumulation-to-threshold

dynamics.

Both the slope (Figure 5G) and the height (Figure 5K) of the response-aligned CPP potential

depended on the stimulus parameters. The slope increased significantly with change size

Figure 4. Detectability of changes depends on spectral properties of the change. (A) Spectral distance between

the changed bin centers (’change distribution’, measured in semitones, st) significantly reduces performance

(p=0.01, Kruskal-Wallis test). Spectral distance ranged from neighboring (three st) bin centers to locations at the

edges of the tested range (23 st). (B) Absolute spectral position of the changed bins does not influence

performance (p=0.85, Kruskal-Wallis). Absolute spectral position was not significantly correlated with the

detectability.

DOI: 10.7554/eLife.24910.009
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Figure 5. The CPP potential shows a dependence on both time and size of change, while the central potential remains unaffected. (A) After stimulus

onset, the central potential (Ch. 1, black dot in C) shows a classical N1-P2 progression, followed by a sustained negative potential (labelled NS here).

Different shades of red indicate different change sizes. Curves are average over all change times, to avoid crowding the plots. Note that the lowpass

filtering at 20 Hz (common for all potentials) reduces the N1/P2 amplitudes below their typical size. (B1) Locked to the time of change, the central

potential shows a slow negative trend, which, however, does not depend systematically on change size. (B2) Preceding the response, the central

electrodes show no significant change in potential, which only starts to deviate from 0 after the button press. (C) At 200 ms after stimulus onset, the

topography of the potential indicates a typical auditory onset response for bilateral stimulation, i.e. centered on Cz (El.1 in the equidistant layout, black

dot). (D) The potential above the central parietal cortex (average over Ch. 14,27,28 in the equidistant cap, black dots in F) shows no substantial change

at stimulus onset. (E1) Aligned to the time of change, the CPP electrodes show a progressive increase in potential, with some staggering according to

change size. In comparison to the response-locked potentials, the present potential is wider and smaller since it is composed of responses at different

times. (E2) In contrast to the central electrodes, the CPP electrodes show a clear increase before the response, peaking at or slightly after the response

time. (F) The topography locked to the response is found to be centered over the parietal cortex, tending towards the occipital cortex (black dots mark

Ch. 14,27,28). The inset shows the difference between the 140% and 50% condition, indicating that the difference in potential is also localized

consistently with the average topography. Note, that there was no display change in the entire tone presentation, and a 0.5 s gap after the response,

before the screen changed, hence, visual responses can be excluded. (G) CPP slope of the potential leading up to the response in relation to the

Figure 5 continued on next page
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(Figure 5H, p<<0.001, 2-way ANOVA across change size and change time), but was not significantly

dependent on change time (Figure 5I, p=0.074, same ANOVA). The effect of change size on slope

is consistent with a representation of task-related evidence in the CPP signal, as reported previously

in other change detection tasks (O’Connell et al., 2012).

The height of the potential also increased significantly with change size (Figure 5L, p<<0.001, 2-

way ANOVA across change size and change time), and decreased significantly as a function of time

(Figure 5M, p<<0.001, same ANOVA). Such a change size dependence has been reported before

(see Figure 2 in O’Connell et al., 2012), and at first appears inconsistent with a fixed threshold.

However, since the execution of the button press requires some time, the application of the thresh-

old has to precede the button press by some delay. The observed difference in heights could thus

reflect a continued accumulation of evidence at different slopes, during the time interval between

decision commitment and response completion, until the execution of the decision is communicated

to the CPP source. Consistent with this interpretation, CPP height did not exhibit a dependence on

change size, if measured in a window of 200–100 ms preceding the response time (p=0.16, same

ANOVA, close to the crossing in Figure 5E2). In addition, we verified that the CPP height did not

Figure 5 continued

different change time and size conditions was measured in a window of 300–50 ms before the response. (H) CPP slope depended significantly on

change size (2-way ANOVA with change time and change size as factors, p<<0.001 for the change time as a factor). (I) CPP slope did not depend

significantly on change time (ANOVA as above, p=0.07). (J) CPP slope for false alarms showed no significant dependence on the time into the trial

(p=0.76, 1-way ANOVA). (K) Peak height of the CPP was measured in a symmetric window of 80 ms around the response time. (L) Peak height of the

CPP showed a significant increase with change size (2-way ANOVA with change time and size as factors, p<<0.001 for change size). (M) Peak height

depended significantly on change time, decreasing with longer change times (ANOVA as above, p<<0.001 for change time). (N) Peak heights for false

alarms showed no dependence on time into the trial (p=0.43, 1-way ANOVA) but were significantly smaller than the hit trials (p<1e-9, 1-way ANOVA).

Error bars indicate single SEMs for all plots.

DOI: 10.7554/eLife.24910.010

The following figure supplements are available for figure 5:

Figure supplement 1. Change detection performance during the EEG experiment.

DOI: 10.7554/eLife.24910.011

Figure supplement 2. Same data and analysis as in Figure 5, however, detrended with a classical high-pass filter (Matlab: filtfilt, 0.1 Hz, 15th order, 50

dB attenuation in the stop band).

DOI: 10.7554/eLife.24910.012

Figure 6. The CPP potential shows no dependence on whether responses occur early or late after the change. (A)

CPP potentials aligned to response as in Figure 5E2 (for second change-time bin, i.e. around 2.4 s). The solid

lines are the early responses (up to median reaction time) and the dashed lines are the late responses (median

reaction time to end of response-window). (B) Across all conditions the reaction time did not significantly influence

the height of the CPP potential (p=0.36 for reaction time, 3-way ANOVA over reaction time, change size and

change time).

DOI: 10.7554/eLife.24910.013
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depend on the reaction time (Figure 6), as expected from an evidence accumulator signal

(Kelly and O’Connell, 2013).

The height decrease as a function of change time is indicative of a reduction in threshold as a

function of time (Figure 5M). However, we did not observe an increase in FA rate later in the trial

(Figure 2D), suggesting no increase in unfounded decisions. Although the time-dependence of CPP

height could result in a decrease of CPP height for late versus early reaction times, we did not find

any significant decrease in CPP height for late reaction times, which may be due to a rather small

effect-size (Figure 6B).

Finally, CPP responses aligned to false alarms exhibited similar slope and amplitude as the lower

signal conditions (50%, 80%), however, were overall significantly lower than the overall signal condi-

tions (p<<0.001, 1-way ANOVA, across change size). Neither slope nor height displayed a depen-

dence as a function of time into the trial (Figure 5J/N, p=0.76, p=0.43, respectively, 1-way ANOVA,

across different time-into-trial bins). Together these results suggest that the decision threshold on

the CPP is close to the lowest change size / false alarm height.

Neither of these results depended on the detrending method, as verified by the alternative use

of a classical high-pass filter (see Materials and methods and Figure 5—figure supplement 2).

In summary, we found central and centro-parietal electrodes to respond in a diametrically

opposed manner to stimulus onset and (detection of) change in statistics. The CPP potential

remained practically silent to stimulus onset, but reflected properties of the stimulus/task when

aligned to button press. These results reinforce the notion that the CPP potential reflects sensory

evidence accumulation and exhibits accumulation-to-threshold dynamics, with the possibility of con-

tinued integration until actual response execution. As a function of change time, only the CPP poten-

tial’s height reduced, suggesting a time-dependent threshold.

Dual timescale statistical estimation model matches human response
behavior
The psychoacoustic results demonstrate that a listener’s ability to detect a change in a statistical

property of the environment depends on the time available to estimate this parameter, both for the

pre- and post-change stimulus. However, how does the listener know, when to start estimating the

new statistics? Since - as in real life - the change occurs at an unexpectable time, one solution would

be to compare the recent statistics to a longer term estimate of the same statistics, acting as a base-

line - or ’null’ - distribution. A minimal implementation of this solution consists of two processes esti-

mating the same statistical property on different timescales (Figure 7).

For this purpose, we turned to models of statistical estimation of the drift diffusion type, used

previously to account for visual and auditory decision making in paradigms where subjects were

asked to choose between two alternative choices (Britten et al., 1996; Brunton et al., 2013). In

these models a dynamic variable compares the stimulus information in favor of the two alternatives,

and when reaching a predefined bound, a decision is made. We extended this model to a pair of

variables, estimating the statistical property on different timescales (Figure 7A–B and Materials and

methods). A deviation is detected if the long-term estimate (Figure 7B, Pslow) and the short-term

estimate (Pfast) differ by more than the difference between the thresholds (Figure 7B, T). As intro-

duced above, this was intended to capture the dual task the participants faced in our paradigm,

namely to estimate the base (initial) statistics while simultaneously scanning for deviations from these

statistics. The modified model is governed by four parameters, which control the timescales of the

dynamics variables and the threshold. To make the model applicable to our auditory textures, we

assume that multiple copies of it operate in parallel in different frequency channels (see Materials

and methods).

We presented an analogous stimulus to the model, exhibiting a change in the probability of tone

occurrence at a random time (Figure 7A left and 7B, gray, only one frequency bin shown) and in a

random frequency location, and quantified the model’s response in performance and response time.

The model exhibited a comparable behavior on individual trials as humans (Figure 7C, compare to

Figure 1C), with an initial hesitation to respond, and a mixture of false alarms (gray), correct

response (black) and misses (not shown). We quantified the performance (performance, false alarms,

misses) and the reaction times as a function of the change times and the change size (Figure 7D–G).

The match between the human data and the model was close, with an average residual (mean

squared error) of 0.049 (in units of probability). The correlation coefficients between the real data
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Figure 7. Dual timescale statistical estimation replicates behavioral results. (A) The dual timescale model consists

of two dynamical estimation processes operating with different speeds. If their estimates differ by more than a

threshold T , a change in the stimulus is detected. The model was fitted to the entire set of behavioral data (D–G).

(B) In a single trial the slow (Pslow, blue) and the fast (Pfast , purple) estimates of the actual stimulus probability (light

grey) vary with the stimulus (black) on different timescales. Here, a decision. (Pfast � Pslow>T ) is detected at 300 ms

after the change in the stimulus (red). (C) The distribution of response times compared with the change times

exhibits a similar shape as for the real subjects (see Figure 1B). (D) Detection performance of the model (dashed

lines) closely matches the human data (continuous line with 1 SEM error hull) both as a function of change time

and change size (different shades see legend in G), see text for parameter values). (E) False alarm rates are also

Figure 7 continued on next page
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and the fit were [0.97,0.99,0.98], for performance (Figure 7D), false alarms (Figure 7E) and misses

(Figure 7F), respectively.

The reaction times could be accounted for both in mean and distribution for different change

sizes (r = 0.95, MSE = 0.009 (norm. prob.), Figure 7G). For the condition with the biggest step, a

certain fraction of the responses occurred very early, which may be subject-dependent and we were

unable to replicate in the present model.

The parameters that best fit the average human data were tf = 0.2 s, ts = 1.1 s, ta = 0.65 s, and

T=0.40 (in units of probability). Hence, the time constants of the fast and the slow processes differed

by more than fivefold, and the threshold for detecting a step was surprisingly high. The time for elic-

iting a motor signal was consistent with the asymptotic times we found in the human data (see

Figures 3B and 140 %). The time constant of the transitional period represents (as the other param-

eters) an average over the subjects. Inspecting individual subjects revealed some variability in their

propensity to react early (min median: 0.77 s; max median: 1.03 s).

The residual differences in the fit could be a consequence of the fact that the data from multiple

listeners was pooled, rather than fitted individually. With the current limitation of ~1000 trials / lis-

tener, a single listener fit would be dominated by within-subject variability across trials, requiring

more trials before stabilizing.

In summary, the dual timescale estimation model captures the human performance and reaction

times well, suggesting that its basic principle may be implemented by the brain. The fitted time-

scales of estimation suggest that a rapid estimate of the present statistics can be formed within 200

ms. While this time appears sufficient to reliably distinguish the larger steps in statistics, it is insuffi-

cient to detect small changes in occurrence probability, which are often perceived as unchanged

statistics.

In relation to the CPP’s response properties, it is noteworthy that the decision variable in the

dual-time scale model exhibits a similar, positive dependence between slope and change size (evi-

dent from Equations 2/3/3). If the evidence accumulation continued during the time interval between

decision commitment and the actual motor execution, this would translate into a dependence of the

height on the change-size as well. In agreement with the CPP dynamics, the slope should not

depend on change time. Instead, the estimate of Pslow(t) should exhibit better convergence as a func-

tion of change time, leading to improved discrimination against Pfast(t). This non-decision period sep-

arating the crossing of the threshold and the actual response execution is implicitly incorporated in

the model as the motor-related increment in reaction times.

Detection of changed statistics based on spectrotemporal processing in
auditory cortex
The dual timescale model successfully captures human performance via an estimation of stimulus sta-

tistics. While this suggests a consistency with the principle of statistical estimation, it does not pro-

vide any insights into putative neural implementations. For this purpose, we turn to an established

model of auditory cortical processing (’cortical model’, Chi et al., 2005; Elhilali et al., 2009;

Krishnan et al., 2014; Patil et al., 2012; Yang et al., 1992), which we augment here with a decision

stage specific to the present task. In particular, this alternative model investigates whether the corti-

cal model (and hence the primary auditory cortex) represents the acoustic stimulus in a way that sup-

ports an account of our psychoacoustic data, i.e. supports decision making in certain statistical

contexts.

The cortical model emulates the spectrotemporal response properties of neurons in primary audi-

tory cortex, which have been extensively studied by various groups (Ahrens et al., 2008; Egger-

mont, 2002; Kowalski et al., 1996). Its responses are based on a filterbank-based, joint

spectrotemporal modulation analysis following the output of the early stages of the auditory system

(auditory spectrogram, Figure 8A). Parameters and properties were set to approximate the

Figure 7 continued

matched closely (same legend as in D). (F) Miss rates are matched equally closely (same legend as in D). (G)

Response time distributions are also matched closely, which is of interest as no explicit model of response times

was included in the model (same legend as in D).
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responses of neurons in auditory cortex (see Materials and methods for details) (Chi et al., 2005;

Yang et al., 1992). The spectrotemporal filters cover the experimentally observed range of 1–30 Hz

and 0.5–8 cycle/oct, whose outputs are weighted in correspondence with the experimentally

observed abundance of these properties in A1 (Kowalski et al., 1996), Figure 8B).

We simulated two types of readouts from the model to account for two of the main experimental

constraints. For the first, we summed all cortical outputs to simulate an effective EEG recording with

limited spatial separation of sources, leading to a global response. As expected, in this case, trial

onsets and offsets produced strong responses (Figure 8B), with a plateau of sustained response for

the whole duration of the stimulus. The responses due to the statistical change in the stimulus were

largely diluted in the summed response and thus could not been discerned, consistent with the pres-

ent EEG recordings of the auditory electrodes (Figure 5B).

The ranges of spectral bandwidths and timescales related to the change were kept constant over

the whole duration of the task. Consequently, a more optimal strategy would be to focus on the

temporal modulation filters in cortex that are most activated by the statistical change. Hence, we

postulated that high-order areas could monitor the outputs of the task-relevant temporal filters. For

example, subjects could make their decisions based on the largest output produced by the change.

Figure 8. A cortical filter-bank model provides an implementation consistent with the behavioral results. (A) Conceptual structure of the model. The

cochleogram (top panel) is passed through modulation filters (scale W: 0.54 cycle/oct.; rate w: 0.72 Hz) for obtaining a cortical representation of the

sound (middle panel). Changes are detected with a threshold (bottom panel, grey dashed line) applied to the frequency-averaged cortical

representation (collapsing threshold parameters: l = 1.14 s; b = 10.77; a = 6.23). First peak exceeding the threshold is classified as change (purple

arrow). Timing of change is indicated by a red arrow in the three panels. (B) Average output of the cortical model across all modulation filters. Although

trial onset elicits an overall increase in activity, the change in statistics does not lead to an average change in activity (depiction for single trial length,

with change time indicated by arrow). (C) Single filter output as a function of change time (average over 100 trials for each curve). Change times are

indicated by colored arrows. Notice that the change-related peak is not discernible for early changes, due to its interaction with the onset response.

Same parameters than in A). (D) Single filter output as a function of change sizes (average over 100 trials for each curve). Same parameters as in A). (E)

Performance for human participants (thin lines) and the decision model (dashed thick lines), as a function of change size and change time. Same colors

as in D). (F) False alarm rate as a function of change size and change time. Same colors as in D). (G) Response time distributions as a function of change

size. Same colors as in D). (H) Decrease in performance with respect to the distance between incremented bins. Actual data in full line, model result is

depicted with a dashed black line.
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These would be sampled from the filter with the temporal dynamics and spectral modulation that

roughly matched those of the stimuli. The response thus selected is shown in Figure 8A. Aside from

the strong responses at stimulus onset and offset, the responses now exhibited in addition a promi-

nent intermediate peak due to the change in statistics (Figure 8A). This change-induced response

peak vanished in trials when the pre-change interval was very short because it became fused with

the large onset peak (Figure 8C). Change size was encoded in the slope of this cortical response

(Figure 8D), consistent with the neural CPP response (Figure 5H). The variability in responses of the

cortical outputs was solely due to the random tone-clouds preceding and following the change in

the stimulus.

To quantitatively simulate the perceptual decisions of the listeners, we analyzed the cortical filter

outputs for individual trials. In order to take into account the time-dependence of the CPP amplitude

in the EEG recordings, we used a time-varying threshold that remained identical across all conditions

(see Figure 8A and Materials and methods). The first peak exceeding this threshold (if any) was con-

sidered to be the decision point (purple arrow in Figure 8A). This readout mechanism was fitted to

the performance and false alarm rate across change sizes and change times by allowing five free

parameters (Figure 8E–F): the (bandwidth) scale W, the (temporal) rate w, and the decision parame-

ters (l, a, b; see Materials and methods). The parameters that best fitted the human dataset were

W = 0.54 cycle/oct, w = 0.72 Hz (a rate corresponding approximately to dynamics or an integration

time-constant of the order of 1–2 s), and a = 6.2, b = 10.8, and l = 1.14 s (r = 0.95; p<5.10�16;

MSE = 0.7%). The scale value corresponds to a full width at half-maximum for the scale filter of

approximately 0.56 octave, very close to the frequency region spanned by localized changes (0.55

octave). This may indicate that subjects preferentially used a single scale value for monitoring the

frequency modulation and that they estimated the most common frequency modulation across trials

since half of the trials contained localized changes. Importantly, reaction times predicted by the

model matched subject reaction times remarkably well both in distributional shape, mean and

spread (Figure 8G), although the fitting procedure did not make use of this information (r = 0.90;

p<5.10�13; MSE = 9.1%).

Scale filters integrate frequency modulations over a limited spectral bandwidth set by the scale

factor W. Such scale filters are more prone to detect changes localized in the spectrotemporal modu-

lation domain. Therefore spectrally distributed changes could be missed by the decision stage as

they elicit less activity in the filter outputs. This is reminiscent of the observation that listeners

detected changes more efficiently if their energy was concentrated in the frequency domain

(Figure 4A). Consistent with this, we found a decrease in the model performance for non-localized

changes, without fitting the model parameters to this aspect of the data (Figure 8H).

Thus, the model describes a physiological mechanism that accounts for the behavioral data, as

well as suggesting an implementation for the basis of statistical estimation in neural terms. In relation

to the neural responses, it provides an interpretation for the lack of change-related signal in the

auditory EEG electrodes, and the decision signal’s slope also scales with the change size

(Figure 8D), i.e. the amount of evidence. Similar to the dual timescale model, the peak size of the

decision signal increases with change size (Figure 8D), unless interrupted by the threshold. The

reduction of the threshold over time (to compensate for the task designs) is consistent with the

experimentally observed reduction in CPP size as a function of change time (Figure 5M).

Discussion
We investigated how listeners detected changes in spectrotemporally broad acoustic textures, as a

model for change detection in complex auditory environments. The results demonstrated that listen-

ers estimated the statistics of the stimulus to make their decision, as evidenced by the dependence

of performance, reaction times, and the CPP response on the stimulus parameters. We developed a

drift-diffusion type model for estimating certain stimulus statistics, which accounted well for the

response performance and dynamics in human listeners. Finally, we adapted a model of auditory cor-

tical processing to provide a link between statistical estimation and the underlying physiology. The

model accounted equally well for the human performance by exploiting a range of temporal filters,

providing a potential, neurally plausible substrate for statistical decision-making. The decision signals

of both models exhibit consistent integration behavior with the CPP potential.
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Relation to previous spectral detection tasks
The present experimental paradigm mimics the unexpected transformation of a sound source within

a natural auditory environment. There are some relations to previous research on spectral represen-

tations of sound, e.g. profile analysis (Green, 1992; Green and Berg, 1991; Hartmann, 1986;

Lentz and Richards, 1997; Neff and Green, 1987). Our work, however, differs in several relevant

ways. In profile analysis, subjects detected spectral shape changes on static spectra that were pre-

sented in isolation for short times (fraction of a second each). By comparison, our stimuli were

dynamic and sustained (multiple seconds), and changes were detected in the midst of a continuous

background with an explicit measure of reaction times. This enabled us to explore the dynamic

acquisition of the statistical information.

Further, a series of recent studies investigated detection of change occurring in first- and second-

order sound statistics (Sohoglu and Chait, 2016; Barascud et al., 2016). In particular, these authors

probed the detection of appearing or disappearing regular sound sources in an acoustic scene

(Sohoglu and Chait, 2016). This type of changes featured modifications of first- and second-order

sound statistics, which also included an increase in the overall sound level. In comparison, our stimu-

lus design allowed us to limit the change to the first-order statistics while keeping the overall sound

level constant.

Our experimental task offers a compromise between complexity of spectrotemporal structure

versus tractability and interpretability of the changes. Furthermore, the task design and acoustic

stimulus are well-suited for electrophysiological studies with behaving animals, where one can easily

estimate neuronal receptive fields from the responses to tone clouds at the same time as the animal

detects the changes (Ahrens et al., 2008; Wang et al., 2012).

Another important aspect of the experiments was their interleaved (as opposed to block-based)

design for change sizes and other parameters, which had several consequences. For instance, it is

likely that the observed performance underestimated optimal performance, since the time, location

and size of changes were unexpected. This also prevented subjects from using a template-match

strategy on the largest change size, and provided access to reaction times, which consistently mir-

rored performance, and perhaps the certainty of the subjects in their decisions (Kiani et al., 2014).

Modelling statistical decision-making on two levels
Following the modeling steps proposed by Marr (1982), we provided an algorithmic and an (neural)

implementational model of our subjects’ behavior. The algorithmic approach implemented the prin-

ciple of statistical estimation, while the neural model leveraged principles of auditory cortex process-

ing. Although both models analyzed recent inputs, and effectively detected deviations from them,

they differed fundamentally in their levels of description and abstraction.

The statistical estimation model implements the principle of statistical integration in a close-to

minimal form, and provides a link to classical drift-diffusion models. It is a mechanistic, non-neural

description of the process that performed statistical estimation in the classical sense, by representing

and comparing the probability of stimuli in frequency bins, based on a lossy memory. Previous work

has suggested a possible neural implementation of such a decision making process, in the form of

competing neuronal populations, each corresponding to one alternative choice (reviewed in

Insabato et al., 2014). While this approach can in principle be extended to the estimation of other

properties of a stimulus distribution, i.e. moments or correlations, it has to be adapted more specifi-

cally to each particular task. In the present case we chose a static set of parameters, since the

change time distribution remained unchanged in a session. More generally, (temporal) integration

properties can adapt to the recent statistics, as recently shown in related contexts (Raviv et al.,

2012; Ossmy et al., 2013).

The cortical model differs fundamentally in that it seeks to capture basic sensory neural responses

and is inspired by physiological mechanisms. In this sense, it is agnostic to the type of stimulus, and

can be readily extended to handle more complex scenarios such as changes in natural stimuli,

speech and music. To create behavioral performance from its representation, we merely added a fil-

ter selection and a decision criterion. The spectrotemporal filters implemented in the cortical model

exhibit alternating excitatory (positive) and inhibitory (negative) fields (Figure 8A) that compare the

spectral stimulus properties over a given time window set by a filter’s temporal rate. As such, it
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effectively integrates the recent input with opposing signs to detect a change, which can be com-

pared to the difference between the fast and slow estimators in the statistical estimation model.

Therefore, we may view this model as approximating a neural implementation of the statistical

model, and thus as a bridge to a neural interpretation of the behavioral performance and the EEG

recordings. Several properties of human performance and of the neural data can be considered

within each model’s framework. The most relevant are (i) reduced performance in detecting early

changes, (ii) longer reaction times for early changes, and (iii) reduced height of the centro-parietal

EEG responses for late changes.

In the cortical model, the reduced performance results primarily from the large onset response

masking the responses to the smaller subsequent change, rendering the peak response less detect-

able (i). In order to simulate the instructions to the subjects not to report the stimulus onset as a

change, the detection threshold was set to decrease from a larger initial value, which will delay

responses for early changes (ii). Interestingly, this choice for the threshold is in line with the reducing

CPP potential heights as a function of change times (iii). Overall, the integration time-constants in

the cortical model on the order of 1 s (due to bandpass filters tuned at rates near ~1 Hz) appear suf-

ficiently long to explain the decision dynamics exhibited by the subjects (Figure 2). These time-con-

stants, while on the slow-end of the range, are still found in the primary and secondary auditory

cortical regions (Kowalski et al., 1996; Liang et al., 2002).

In the statistical model, the reduced performance (i) is a consequence of the model’s design hav-

ing two estimators: one with a fast and the other with an adaptive time-constant (tf and ts). At stimu-

lus (trial) onset, the absence of prior evidence is reflected by the equality of the two time-constants.

As the trial progresses, ts becomes longer, and the difference between the two estimator outputs

increases to reflect the buildup of evidence for a change in stimulus statistics (see Materials and

methods). the dynamics are a consequence of the time-constant dynamics (as above) as well as the

not-yet converged estimate of the initial occurrence probability (ii). There is no correspondence for

the observed decrease of the CPP potential as a function of change time (iii).

It has previously been proposed that subjects may be trading response speed for accuracy

(Teichert et al., 2014). We think this may apply to the first period up to 1 s, where subjects

responded very little. After this point accuracy quickly rose (Figure 2C), as did the false alarm rate

(before reaching its plateau). The time controlling the divergence between the two estimators in the

statistical model (ta = 0.65 s) roughly matches this time scale and may be accounting for an initial

postponing of decision by the subjects. An alternative modelling strategy would include a dead-

time, corresponding to the minimal time subjects take before responding. While this appeared

unnecessary for the present data, such a model may become relevant if the paradigm includes

blocks of different response window length, where subjects are forced to respond more quickly to

perform successfully.

In summary, what is typically termed accumulation of evidence (and its associated performance

and dynamics) could be explained by the dynamics of the onset response in the cortical model inter-

twined with its integration time-constants. Future experiments need to further test the validity of this

neural interpretation, given the ubiquity of such ‘sudden’ events in natural stimuli due to saccades

(in vision), attentional switches, or trial onsets, which could also influence the detectability of changes

(as e.g. in change blindness, Levin and Simons, 1997; Rensink et al., 2000).

EEG recordings and the site of decision-making
As discussed above, recognizing a change in the statistics of a complex spectrotemporal sound

requires the extraction and accumulation of evidence from the stimulus to estimate decision-relevant

properties. This transition from a stimulus-related to a task-related representation needs to occur

along several stations of the auditory system. Our EEG recordings provide partial evidence regard-

ing their putative location. Specifically, we found a clear difference in the representation of the stim-

ulus at the central electrodes (estimated to originate from auditory cortex activity) and at the centro-

parietal electrodes (estimated to reflect parietal activity): while the central electrodes exhibited a

sharp onset response at stimulus onset (Figure 5A) and offset, they showed little evidence of the

change response or of the presumed accumulation of evidence for a change (Figure 5B).

In sharp contrast, the centro-parietal electrodes displayed no response to the onset (Figure 5D),

and a clear evidence of the sensory evidence accumulation after the change aligned to response

(Figure 5E2). Previous studies using a linear increase of sensory evidence found a quadratic time
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progression of the centro-parietal potential. In the present task, the constant amount of evidence as

function of time resulted in more linear dynamics of the centro-parietal potential, supporting the

integration hypothesis. The task-irrelevant abrupt sensory event (i.e. the onset) was thus filtered out

in the parietal EEG response while the task-relevant event (the change in statistics), although more

subtle in nature, was selectively integrated and converted into a decision signal.

A set of related EEG studies termed the corresponding potential the centro-parietal positivity

(CPP, Kelly and O’Connell, 2013; O’Connell et al., 2012). Consistently, we found the CPP slope

and amplitude at the response time to be correlated with evidence level (change size). However, the

amplitude was independent of reaction time, and did not depend on change size before the

response time (200–100 ms). Additionally, the amplitude of the CPP was found to be inversely

related with change times, as one would expect if performance would be influenced by the esti-

mated, maximal trial duration. Such a reduction would be expected both as a consequence of the

general task design, i.e. on the one hand, the requirement to not respond to the onset of the first

texture, and on the other hand, the possibility to approximate the maximal trial duration. For practi-

cal reasons, arbitrary trial lengths are not realizable. Hence, subjects could form an expectation of

the maximal sound duration, which means participants could be subject to an urgency signal that

would lower their criterion in this time-range.

On the other hand, the texture onset may also play an important role, since the requirement to

not respond to an otherwise salient change, may be regulated by a change in threshold (as modeled

in the decision stage of the cortical model).

A decrease in decision threshold has been used in models of decision-making for dealing with

speed-accuracy trade-offs (Bogacz et al., 2006) and observed in electrophysiological studies

(Heitz and Schall, 2012). Although it could in theory explain the time-dependence we observed for

CPP heights, subjects did not exhibit any urgency to respond, even after a few seconds, as exempli-

fied by the constant FA rate per unit of time (Figure 2D). Instead, we propose that this decrease in

threshold reflects a more sensitive criterion for change detection, via a more settled estimate of the

initial statistics. The decision threshold would thus be dynamically adjusted during the course of a

trial. Importantly, the lack of increase in FA rate suggests that the improved estimate of the initial

statistics would also reduce the neural response to expectable deviations, such that the sensitivity

(type I errors) stays at the same level.

This predominance of decision-related signals in the centro-parietal electrodes is consistent with

decades of research in the accumulation of task-related visual information in the parietal cortex,

more specifically in decision-making with saccades in the lateral intraparietal (LIP) cortex (Huk and

Shadlen, 2005; Roitman and Shadlen, 2002; Shadlen and Newsome, 2001). Neurons in LIP have

been shown to exhibit activity correlated with the accumulation of visual evidence coming from MT

(Huk and Shadlen, 2005; Mazurek et al., 2003). Their firing rate usually exhibits a linear increase

until the animal makes a decision (Shadlen and Newsome, 2001). In these studies, typically a fixed

threshold on neural firing rate is used to relate neural activity to decision making.

It has recently been suggested that individual neurons change their firing rate instantaneously at

the single trial level (Latimer et al., 2015). We presently observed gradual, rather than step-wise

changes in our across-trial averages. However, we predict that even single trial EEG signals would

be gradual as these step-changes occur randomly between neurons, and hence are unlikely to be

synchronized at the population-level. Due to the large ensemble of neural responses contributing to

a single scalp location’s potential, this instead results in the commonly seen ramping activity on the

EEG level, as observed in our data.

The lack of evidence for a change-related signal in the auditory EEG potentials can, however, not

fully rule out the presence of a change-related signal in auditory cortex in the present stimulus con-

text. The representation of the change could be diverse and distributed, which may average out in

the non-selective, coarse averaging on the EEG level (see Figure 8B). This is also consistent with

recent work, demonstrating choice-related signal in auditory cortex (e.g. Bizley et al., 2013;

Tsunada et al., 2016). Our cortical modelling suggests that the representation in auditory cortex

provides a good substrate for initial accumulation of sensory information about changes in stimulus

statistics, which is then selected and amplified in parietal cortex, leading up to the sustained parietal

activity and a full representation of accumulated evidence and choice (Shadlen and Newsome,

2001). This interpretation is supported by the match in performance, reaction times (Figure 8E–G),

Boubenec et al. eLife 2017;6:e24910. DOI: 10.7554/eLife.24910 17 of 28

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.24910


and in the progression of activity between specific filters of the cortical model (Figure 8C) and neu-

ral data (Figure 5E).

In conclusion, as with many other cognitive functions, it is likely that higher-order areas such as

the LIP and PFC select and potentially amplify task-relevant outputs of the auditory cortex. To test

this hypothesis and the value of the proposed models, it will be necessary to extend change detec-

tion tasks to more natural and complex stimuli. As shown previously (Lewicki, 2002; Smith and Lew-

icki, 2006), natural statistics shape neural processing, and in a similar way should be informative

about which changes to focus on in research. Furthermore, the models should be extended to

include the effects of cognitive functions in modulating this process, such as attention or

expectations.

Materials and methods

Participants
In the main psychophysical study, 15 normal hearing subjects (mean age: 24.8y, 6 females) partici-

pated, 10 of which could be included for final analysis (see below for criteria). A different set of 18

subjects participated in the combined psychophysics and EEG experiment (mean age: 30 ± 10 years,

7 females), all of which could be included for final analysis (see below for criteria). All experiments

were performed in accordance with the guidelines of the Helsinki Declaration. The Ethics Commit-

tees for Health Sciences at Université Paris Descartes approved the experimental procedures.

Experimental setup
Acoustic Stimulation Subjects were seated in front of a screen with access to a response box in an

acoustically-sealed booth (Industrial Acoustics Company GmbH). Acoustic stimulus presentation and

behavioral control were performed using custom-written software in MATLAB (BAPHY, from the

Neural Systems Laboratory, University of Maryland, College Park; available upon request). The

acoustic stimulus was sampled at 100 kHz, and converted to an analog signal using an IO board

(National Instruments, PCIe-6353) before being sent to diotic presentation using high-fidelity head-

phones (Sennheiser i380, calibrated flat, i.e. ±5 dB, within 100–20000 Hz). Reaction times were mea-

sured via a custom-built response box and collected by the same IO card sampled at 1 kHz.

Electroencephalogram (EEG) acquisition EEG recordings were collected in a separate set of 18

normal-hearing subjects while listening and responding to the texture change stimuli. Continuous

EEG data were recorded using a 64-channel system (ActiCap, BrainProducts, Gilching, Germany) at

a sampling rate of 500 Hz with one reference and one ground electrode. In order to standardize

electrode placement on the skull, we used a default fabric head-cap that holds the electrodes (Easy-

Cap, Equidistant layout, 60 scalp, four ocular channels). The analysis of EEG responses was carried

out offline (see section Data analysis).

Stimulus design and trial procedure
We investigated the conditions under which listeners could detect a change in the statistics of com-

plex acoustic stimuli. More specifically, we wondered how subjects capture the percept of a spectro-

temporally complex stimulus, and then use it as a background to detect changes relative to it.

Concretely, in an experimental trial, a sound texture was presented, allowing the subjects a ran-

domly varying period of time to form a percept of the stimulus (i.e. ‘estimate the baseline statistics’),

and then a change in the frequency distribution of the tones was introduced (while maintaining the

overall sound level). After the change, subjects had up to 2 s to indicate that they had detected it.

The stimulus captures the central textural properties of complex spectrotemporal structure and sta-

tistical predictability. Both the stimulus design and the procedure are described in detail below.

Stimulus design
Briefly, the stimulus was a ’cloud’ of tones, i.e. a train of short pure tones chords (30 ms) drawn from

a range of 2.2 octaves (400 to 1840 Hz), where the occurrence probability of each tone was gov-

erned by a marginal distribution (see below, Figure 1, and sound examples in Supplementary files

1–4). The frequency resolution of the tone distribution was 12 semitones per octave, i.e. 26 logarith-

mically spaced pure tones covered the used frequency range. To limit the number of experimental
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conditions, these were grouped into eight spectral bins, each comprising 3–4 of the pure tone fre-

quencies (see Figure 1 for illustration). The marginal distribution was chosen to ensure that the

actual rate of tones per bin was controlled, independent of the number of pure tone frequencies

constituting the bin. The entire stimulus can be described by a spectrogram denoted by S(t,f) as a

function of time and frequency.

The minimal temporal unit of the stimulus was a 30 ms chord, i.e. a synchronous presentation of

multiple pure tones. The number of tones for each chord was drawn from a Poisson distribution with

a fixed mean of 2 tones per octave. The mean number of tones per chord was kept fixed as a func-

tion of time to avoid changes in level (see below). The frequency of each tone in a chord was chosen

in two successive steps: First, one of the eight spectral bins was selected according to a marginal

probability distribution (see below). Second, within this bin, one of the pure tone frequencies consti-

tuting the bin was randomly selected. Chords at different times were drawn independently from

each other.

The baseline marginal probability distribution was composed of 8 frequency bins with discrete

probability values (Figure 1A, left). These values were chosen pseudo-randomly for each trial, forc-

ing subjects to always reestimate the stimulus statistics. The probability in each bin could take one

of 3 values: 0.083, 0.125, 0.188. To avoid differences in spectral density, the number of bins with

each probabilities was fixed to three bins with p=0.083, two bins with p=0.125 and 3 bins with

p=0.188. The marginal distribution is thus normalized, i.e. the sum across bins equals 1. Since multi-

ple pure tone frequencies constituted each of the eight bins, the probability per pure tone frequency

bin was correspondingly lower: based on this marginal distribution and the number of tones per

chord, the effective probability of a tone falling in a pure tone frequency bin thus ranges between

0.021–0.063 per chord duration, corresponding to an average rate of ~147 tones/s.

The change in statistics consisted in a change in the baseline marginal distribution. Two out of

the eight spectral bins were increased in probability at a random point in time (referred to as change

time, more details below) during stimulus presentation, i.e. the stimulus continued uninterrupted.

The increment size will be referred to as change size and was drawn from a set of discrete values:

30, 50, 80, 110, 140% (inset in Figure 2A), relative to the single bin probability in a uniform distribu-

tion (for eight bins this is 0.125, i.e. a 50% change size would be an increment of 0.0625). In order to

exclude cues from global level changes, the marginal distribution was simultaneously renormalized,

thus keeping the global level constant within a trial (i.e. as mentioned above the rate of tones per

chord was kept constant at all times). Since the 30% condition was only collected for three subjects,

it is omitted from most plots, although results were generally consistent with the other conditions.

The relative spectral locations of the two changed bins were separated into two conditions:

1. Localized: the frequency bins containing the change were adjacent. To limit the number of
conditions, only 4 pairs of bins, {1,2}, {3,4}, {5,6}, {7,8} were tested at all increment levels.

2. Non-localized: the frequency bins containing the change were separated in frequency. To limit
the number of conditions, we chose a subset of distances (D=[2, 3, 5, 7] bins, i.e. [6.6, 9.9,
16.5, 23.1] semitones (st)) and only used the change size 110% (determined as intermediate
difficulty during pilot studies). Since certain inter-bin distances are more frequent (i.e. six for
D = 2, five for D = 3, three for D = 5, one for D = 7), the number of trials going into each dis-
tance differs, which scales the error bars accordingly (see Figure 4B).

The time at which the change occurred (change time) was drawn randomly from an exponential

distribution (mean: 3.2 s) limited to the interval of [0,8] s (Figure 1B). This choice of distribution pre-

vents subjects from developing a timing strategy, by keeping the probability of a change constant

over time. The associated flat hazard rate minimizes the ability of participants to anticipate the trial

end (Janssen and Shadlen, 2005; Kiani et al., 2008). The change time is an important parameter

with respect to the estimation of the first marginal distribution, with the hypothesis that greater

change times improve detection of changes.

Given the low, per-bin probabilities (see above), individual tones remained distinguishable.

Hence, the spectrotemporal density was low enough to avoid fusion into a single stream per chan-

nel, although the present study still has some parallels with previous paradigms, e.g. spectral shape

analysis (Green, 1988, 1992; Green and Berg, 1991) (see Discussion).
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Procedure
The experiment proceeded along three phases: instruction, training, and main experiment. After

reading the instructions, subjects went through 10 min (60 trials) of training, where they were

required to obtain at least a detection performance of 40%. The training comprised only stimuli of

the two largest change sizes (110%, 140%). Three subjects in the psychophysics-only group did not

attain the criterion level of performance and were not tested further.

The main experiment was composed of two sessions of about 70 min each, comprising a total of

930 trials. The two sessions were never more than two days apart. Each session contained three

blocks of about 20 min, for a total of 465 trials per session, corresponding to 30 repetitions of each

condition (for the three subjects in which the 30% condition was tested the total trial number

increased to 1050). In between blocks subjects could take a short break.

The instructions specified that subjects would be compensated according to their performance,

although an easily attainable threshold of proficiency would give them the maximal compensation.

However, all subjects were compensated equally according to the length of the experiment (e10/

hour).

After reading the instructions, subjects were aware that the change could arise at any moment on

each trial and that their task was to detect it within a 2 s window. When subjects heard a change,

they pressed a response button. This terminated the trial and the sound. Hence, the subject had up

to 2 s after the change to detect the change in stimulus statistics.

Visual feedback was always displayed on a screen in front of them after the end of the trial. A red

square was displayed, if the button was pressed before the change (false alarm), or if the button was

not pressed within the 2 s time window after the change (miss). A green square was displayed, if the

button was pressed after the change, but within the 2 s window (hit).

In addition, stimulus level was roved from trial to trial, chosen randomly between 60 and 80 dB

SPL. This procedure is classically applied to prevent subjects from adopting an absolute level strat-

egy (Green and Berg, 1991). Overall level was not found to significantly influence performance

(p=0.89, ANOVA). The inter-trial interval was ~1 s with a small, random jitter (<0.1 s) depending on

computer load.

Psychophysics procedure during EEG recordings
During the EEG recordings, stimuli and experimental procedures identical to those of the psycho-

physics experiments were used. In addition, subjects were required to continuously fixate a white

cross on the screen. They were asked not to blink and to keep fixation especially during the sound

presentation. After the end of the trial (i.e. either the end of the sound or their response), they

received a visual text feedback after 0.5 s. After the feedback disappeared, eye blinks were allowed

during the intertrial interval indicated by on-screen text underneath the fixation cross. At 1 s before

the next stimulus, the text disappeared, indicating that blinking should be prevented subsequently.

Data analysis
The ability of the subjects to detect the change in stimulus statistics was quantified using two meas-

ures, performance and d-prime, denoted d’. These analysis (Figures 1–4) were performed on the

data obtained during the psychophysics experiments, and restricted to the trials embedding local-

ized changes unless stated in the text. In addition, reaction times dependences over stimulus param-

eters were analyzed.

Performance
We computed a subject’s performance as the fraction between successful detection (hits) out of the

total trials for which the change occurred before the response (hits + misses). False alarms were

excluded from the performance computation, since the responses occurred before the change arose

(see d’ for an inclusion of false alarms).

d’ analysis
We developed a time-dependent d’ measure, in which longer trials serve as catch trials before the

change occurs (Green and Swets, 1966). We computed d’ values to assess the ability to detect

changes (Egan et al., 1961), while taking their false alarm rate into account, as classically analyzed
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using signal detection theory. Due to the present task structure, d’ could be computed as a continu-

ous function of time from stimulus onset. We used the usual approximation d’(t) = Z(HR(t)) - Z(FAR

(t)), where Z(p) is the inverse of the Gaussian cumulative distribution function (CDF). HR(t) is the hit

rate as a function of time since stimulus onset. HR was computed as the fraction of correct change

detections, in relation to the number of trials with changes occurring at t (Macmillan and Creelman,

1991). As detailed above, a correct detection had to occur within 2 s of the change time. Similarly,

the false alarm rate FAR(t) was computed as the number of false alarms that occurred over all 2 s

windows (starting at t), in which no change in statistics occurred. This created an artificial reaction

time for each false alarm, that we used for comparing the distributions of the actual reaction times

resulting from the Hits (Yin et al., 2010). d’ was computed for different times and change sizes,

yielding only a limited number of trials per condition. To avoid degenerate cases (i.e. d’ would be

infinite for perfect scores), the analysis was not performed separately by subject, but over the

pooled data. Confidence bounds (95%) were then estimated by bootstrapping within the dataset.

The analysis was verified on surrogate data from a random responder (binomial with p=0.01 per

time bin at 40 Hz sampling rate), providing d’ close to 0 as expected.

Reaction times
We obtained reaction times by subtracting the change time from the response time in each hit trial.

For each condition, the distribution of reaction times was assembled and the median reaction time

computed. Note that very early and late reaction times will in some cases not correspond to actual

reaction to the change in statistics, but are coincidental, which cannot be distinguished on a trial-by-

trial level. The results presented for the effect of change size on performance and reaction time

were computed using only the data with change in contiguous bins (localized change). Results for

the trials with non-localized bins (at 110% change size) were qualitatively the same, however, they

were excluded from this analysis to keep the number of trials per condition equal.

These measures were computed as a function of change size and change time. While change

times were drawn without binning from an exponential distribution for the experiment, they were

binned for analysis using bins of exponentially increasing width (in order to achieve comparable

numbers of trials in each bin).

Performance dynamics
In order to compare the performance dynamics for different change sizes, we fitted an adapted ver-

sion of the Erlang CDF to the data according to:

PðDc; tcÞ ¼P0ðDcÞþPmaxðDcÞ �gðk; tc=tðDcÞÞ=ðk� 1Þ! (1)

where tc is change time, Dc change size, g the incomplete gamma function, t the function rate, and k

controls the function shape. k was kept constant across subjects and change sizes, assuming the

shape of the performance curves is invariant. Optimizations were performed using nonlinear least-

squares minimization on the residuals of the fit (via ‘lsqnonlin’ in Matlab).

To control for inattentive subjects, we set a 30% threshold for the total false alarm rate. Two sub-

jects were discarded according to this criterion leaving a total of 10 subjects for the data analysis,

with false alarm rates below 25%.

Analysis of EEG recordings
We analyzed two signals based on the EEG: the classical auditory event-related potential (ERP), and

the centro-parietal positive potential (CPP). First, slow trends were removed from all electrodes

using a low-dimensional polynomial fit (‘nt_detrend’, from the NoiseTools Matlab toolbox by

de Cheveigné and Parra, 2014). We verified that a classical high-pass filter (Matlab: filtfilt, 0.1 Hz,

15th order, 50 dB attenuation in the stop band) gave very similar results. Electrodes were low-pass

filtered below 30 Hz with a 45th order Chebyshev filter using the ‘filtfilt’ function in MATLAB to

avoid phase distortion. All electrodes were referenced to the common average potential. All trials

with at least one scalp channel exceeding 500 mV at any time after referencing were discarded as

artifacts. All subjects had a low or moderate rate of blinks and eye movements and could thus be

included for a total of 18 subjects.

Boubenec et al. eLife 2017;6:e24910. DOI: 10.7554/eLife.24910 21 of 28

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.24910


Classical auditory ERPs were estimated from the central electrode (El. one in the equidistant lay-

out of EasyCap, equal to Cz; corresponding to the center in Nie et al., 2014). The CPP signal was

based on a set of centro-parietal electrodes (El. 14, 27, 28, similar to Twomey et al., 2015). Trials

were then extracted in the period encompassing 0.5 s before and 3 s after the sound presentation

and either time-shifted to the onset or their corresponding change times (see Figure 5). EEG data

were segmented into shorter epochs locked on stimulus onset or response time for display. The

epochs were baseline-corrected relative to a 150 ms interval prior to onset, and a 200 ms interval

before change time for alignments to both change and response time.

CPP amplitude was computed as the peak amplitude at the response time in a window of ±80

ms. CPP slope was the average slope in a window of 300–50 ms before response time, computed as

the mean derivative of the CPP. Topographic distributions of the EEG signal were plotted with

EEGLAB (‘topoplot’ function) (Delorme and Makeig, 2004).

Dual timescale model
We assume that subjects continuously estimate a wide range of statistical properties of the acoustic

environment, and are able to detect unexpected deviations in these properties for the purpose of

detecting changes in the ongoing sound. Among these properties are the probabilities of having a

tone in the different frequency channels. Since these are the only determining properties in our stim-

ulus design, we developed a phenomenological model, which estimates and detects changes in the

marginal tone probabilities across multiple frequency channels (see next section for a more biologi-

cally motivated model based on a cortical filter-bank).

The model consists of change-detector modules, which operate independently on a limited spec-

tral range and whose output is combined to enable change-detection on a full spectrum. For simplic-

ity, the spectral division of the modules was matched to the presently relevant division of the

psychophysical stimulus S t; fð Þ (see above), i.e. we here consider four modules, one for each pair of

frequency bins, whose marginal probability could change. Since the modules operate independently,

frequency separation is not relevant in the present model (but see below in the cortical model). For

the present model, these frequency bins are referred to as Si tð Þ (with i2[1,4]), which contain a ran-

dom set of tones, adhering to the same marginal probabilities as the psychophysical stimulus.

For each frequency bin Si tð Þ, a pair of dynamical processes {Pslow tð Þ,Pfast tð Þ}i, acts as a change

detector. Pslow;i estimates the long-term probability of the presence of a tone at a given time in Si tð Þ,

and Pfast;i estimates the more recent probability of the presence of a tone in Si tð Þ. The dynamics of

the processes are given by:

dPfast;i tð Þ
dt

¼
Pfast;i tð Þ�Si tð Þ

tf

dPslow;i tð Þ
dt

¼
Pslow;i tð Þ�Si tð Þ

ts

(2)

where ts > tf , which separates the speed of the processes. Normally, Pfast;i and Pslow;i are going to

have similar values, since Pfast;i is simply tracking faster than Pslow;i. However, if a change in the proba-

bility of occurrence occurs in the stimulus, the difference between the two processes will grow, since

Pfast;i will react faster to this change. A change in the environmental statistics is hence detected, if

j Pfast;i �Pslow;i j > T, where T is a threshold and a free variable of the model. Identical models exist

for different frequency channels Si tð Þ. If T is exceeded in a particular Si tð Þ, this is considered as a

detected change in the environment at the corresponding time Ti. Hence, only the first detected

change in any Si is recorded as the response. The time of actual response is then given by

T ¼ TiþTm, where Tm is a constant time equals to 250 ms to account for the non-integration related

process, such as stimulus representation and motor execution, up to the button press (akin to the

non-decision time, by Ratcliff and McKoon [2008]). The model is termed a dual timescale model.

If we use the model as described so far, it would - correctly - detect a change in statistics at the

onset of the stimulus (transition from silence to stimulus). In the present task design, the subjects

were instructed to ignore the change associated with the start of the stimulus, but only detect the

change in statistics within the stimulus. As laid out in the introduction, two estimations needed to be

performed simultaneously: (1) estimate the probability from stimulus onset, (2) compare this esti-

mate to the changed probability in the latter part of the stimulus (which occurs at an unknown time).

To account for this initial period of estimation, we change the dynamics of Pslow (the slower tracking

Boubenec et al. eLife 2017;6:e24910. DOI: 10.7554/eLife.24910 22 of 28

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.24910


process) as a function of stimulus time. Intuitively this means that Pslow and Pfast initially operate on

the same timescales, and thus q is never exceeded. The modified equations therefore become

dPfast;i tð Þ

dt
¼
Pfast;i tð Þ� Si tð Þ

tf

dPslow;i tð Þ

dt
¼
Pslow;i tð Þ� Si tð Þ

� tð Þ

� tð Þ ¼� ts� tf
� �

e�t=ta

(3)

The speed at which the tracking dynamics diverge is regulated by ta. Overall, the model has four

free parameters (T, tf , ts, ta), which were matched to account for the experimentally collected data.

The phenomenological model accounted for the dependence of performance on change time and

change size. Given the numerators in (2) and (3), the slope of the both Pslow and Pfast and their differ-

ence will depend on change size (compare to the EEG data in Figure 5). Simulations were run at a

sampling rate of 100 Hz. Fitting was performed by exhaustive search in the parameter space to

avoid local minima and biasing by initial values.

The model structure is inspired by earlier accounts for decision-making in random-dot motion

stimuli, i.e. so-called drift-diffusion models (Bogacz et al., 2006; Britten et al., 1996), which have

also recently been used to account for acoustic click-rate comparison tasks (Brunton et al., 2013). In

contrast to these models, the dynamical process Pslow in our case becomes an estimate of the

medium-term occurrence probability, and Pfast an estimate of the recent occurrence probability, and

a decision is made across the set of estimators (similar to Churchland et al., 2008) Note, that the

processes can transiently exceed 1, however, on average the right hand side of the dynamical equa-

tions is zero, when the dynamical process equals the probability that Si is drawn from.

Auditory multiresolution cortical model
The cortical model is an approximation to the analysis performed up to primary auditory cortex,

which has been used successfully in a range of different auditory projects. A full description of the

model can be found in Chi et al. (2005) and Yang et al. (1992), but an outline of its basic principles

is provided below.

Computational structure of the cortical model
The cortical model processes the audio signal via two stages, inspired by the auditory pathway up to

the midbrain and by the primary auditory cortex. The first stage transforms the sound into an audi-

tory spectrogram, and the second performs a spectrotemporal analysis on this spectrogram.

The processing of the acoustic signal in the cochlea is modelled as a bank of 128 constant-Q,

asymmetric bandpass filters, equally spaced on the logarithmic frequency scale spanning 5.3

octaves. The cochlear output is then transduced into inner hair cell potentials via a high-pass and

low-pass operation. The resulting auditory nerve signals undergo further spectral sharpening via a

lateral inhibitory network. Finally, a midbrain model resulting in additional loss in phase locking is

performed using short term integration with a time constant of 4 ms, resulting in a time-frequency

representation (the auditory spectrogram z(t,f)) (top panel in Figure 8A). The central stage further

analyzes the spectrotemporal content of the auditory spectrogram using a bank of modulation-selec-

tive filters centered at each frequency along the tonotopic axis, mimicking neurophysiological recep-

tive fields. This step corresponds to a 2D affine wavelet transform, with a spectrotemporal mother

wavelet, defined as a Gabor-shape in frequency and exponential in time. Each filter h is tuned

(Q = 1) to a specific rate (w in Hz) of temporal modulations and a specific scale of spectral modula-

tions (W in cycles/octave), and a bidirectional orientation (+ for upward and - for downward). The

response of each cortical filter in the model is given by

r�ðt; f;!;
;�;FÞ ¼ zðt; fÞ�t;f h� t; f;!;
;�;Fð Þ (4)

where *t,f denotes convolution in time and frequency, where q and F are the characteristic phases of

the cortical filter, which determine the degree of asymmetry in the time and frequency axes respec-

tively (middle panel in Figure 8A). Because changes were isotropic within the sound spectrum, we

averaged the upward and downward components of the scale modulation filter. To simplify the
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analysis, we limited our computations to the real cortical outputs across frequency (i.e. responses

corresponding to zero-phase filters). The resulting modulation response is denoted R(t;w,W) (bottom

panel in Figure 8A). Simulations were run at a sampling rate of 100 Hz.

Decision process based on the cortical model output
On a single trial basis, the stochastic nature of the stimulus was reflected in the noisy outputs of the

cortical model. To facilitate change detection on single trials, we post-filtered the modulation

response R(t;w,W) using the average response to a change in statistics. Concretely, the shape of the

trial-averaged response in R(t;w,W) was convolved with single trials, to improve detection of change.

Due to the different modulation rates, the length of the average response shape varied by modula-

tion rate ! as 1/ (2!) ms. A unique combination of rate w and scale W was used across all trials to

characterize the modulation response. Next, we implemented a decision criterion on top of the fil-

tered R(t;w,W).

Due to the comparative nature of the present paradigm and because the onset peak was not

driven by any task-relevant feature of the sound, a time-dependent decision boundary was better

suited to match the experimentally observed reaction times in both models. This was inspired by

previous studies that described either time-varying collapsing boundaries (Ditterich, 2006) or line-

arly increasing emergency-related gain (Cisek et al., 2009; Drugowitsch et al., 2012). We designed

the time-dependent threshold as follows:

TðtÞ ¼ be�t=l þ a (5)

where a and b scales the amplitude of the threshold and l sets its time-dependence. The first peak

exceeding the time-dependent threshold was labelled as the decision timing.

In total, the decision stage is controlled by five parameters: the time-varying threshold (l, a, b),

the scale W, and the rate w, while other parameters of the cortical model were kept fixed. The

threshold parameters tune the balance between conservative and liberal decisions. To take into

account this aspect we fitted both performance and false alarm rate across all subjects for all change

sizes and change times. Motor-related delay was accounted for by a 250 ms offset added to the esti-

mated reaction times, as was done for the phenomenological model.

Statistical analysis
If not specified otherwise, nonparametric tests were used. When data were normally distributed (for

performance), we checked that statistical conclusions were the same. One-way analysis of variance

was computed with the Kruskal-Wallis’ test; two-way using Friedman’s test. Error bars are ±2 SEM

(standard error of the mean), unless specified otherwise. All statistical analysis was performed using

Matlab (The Mathworks, Natick).
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Lammertmann C, Lütkenhöner B. 2001. Near-DC magnetic fields following a periodic presentation of long-
duration tonebursts. Clinical Neurophysiology 112:499–513. doi: 10.1016/S1388-2457(00)00551-4,
PMID: 11222972

Latimer KW, Yates JL, Meister ML, Huk AC, Pillow JW. 2015. NEURONAL MODELING. Single-trial spike trains in
parietal cortex reveal discrete steps during decision-making. Science 349:184–187. doi: 10.1126/science.
aaa4056, PMID: 26160947

Lederman SJ. 1979. Auditory texture perception. Perception 8:93–103. doi: 10.1068/p080093, PMID: 432084
Lentz JJ, Richards VM. 1997. Sensitivity to changes in overall level and spectral shape: an evaluation of a channel
model. The Journal of the Acoustical Society of America 101:3625–3635. doi: 10.1121/1.418323, PMID: 91
93050

Levin DT, Simons DJ. 1997. Failure to detect changes to attended objects in motion pictures. Psychonomic
Bulletin & Review 4:501–506. doi: 10.3758/BF03214339

Lewicki MS. 2002. Efficient coding of natural sounds. Nature Neuroscience 5:356–363. doi: 10.1038/nn831,
PMID: 11896400

Liang L, Lu T, Wang X. 2002. Neural representations of sinusoidal amplitude and frequency modulations in the
primary auditory cortex of awake primates. Journal of Neurophysiology 87:2237–2261. PMID: 11976364
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