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The electronic environment causes decoherence and dissipation of the collective surface plasmon excitation
in metallic nanoparticles. We show that the coupling to the electronic environment influences the width and the
position of the surface plasmon resonance. A redshift with respect to the classical Mie frequency appears in
addition to the one caused by the spill out of the electronic density outside the nanoparticle. We characterize
the spill-out effect by means of a semiclassical expansion and obtain its dependence on temperature and the
size of the nanoparticle. We demonstrate that both, the spill-out and the environment-induced shift are neces-
sary to explain the experimentally observed frequencies and confirm our findings by time-dependent local
density approximation calculations of the resonance frequency. The size and temperature dependence of the
environmental influence results in a qualitative agreement with pump-probe spectroscopic measurements of the
differential light transmission.
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I. INTRODUCTION

One of the most prominent features of a metallic nanopar-
ticle subject to an external driving field is a collective elec-
tronic excitation, the so-called surface plasmon.1–3 Since
the first spectroscopic measurement of the related resonance
in the absorption cross section of free sodium clusters,4 much
progress has been made in the characterization of this
collective resonance, both experimentally1,5–9 and
theoretically.2,10–14 The proposed application of metallic
nanoparticles15 or nanocrystals16 as markers in biological
systems such as cells or neurons renders crucial the under-
standing of their optical properties.

The first experiments have been made on ensembles of
nanoparticles, where the inhomogeneous broadening of the
resonance resulting from the size dependence of the reso-
nance frequency masks the homogeneous linewidth.17–19 In
order to gain detailed information on the collective reso-
nance, considerable effort has lately been devoted to the
measurement of single-cluster optical properties.20–24 The
possibility of overcoming the inhomogeneous broadening re-
sulted in a renewed interest in the theory of the optical re-
sponse of metallic clusters.

From a fundamental point of view, surface plasmons ap-
pear as interesting resonances to study given the various lan-
guages that we can use for their description, which are asso-
ciated with different physical images. At the classical level, a
nanoparticle can be considered as a metallic sphere of radius
a described by a Drude dielectric function ����=1−�p

2 /
���+ i�i�, where �p=�4�nee

2 /me is the plasma frequency,
�i

−1 the relaxation or collision time, while e, me, and ne stand
for the electron charge, mass and bulk density, respectively.
Classical electromagnetic theory for a sphere in vacuum
yields a resonance at the Mie frequency �M =�p /�3.1–3

At the quantum level, linear response theory for an elec-
tron gas confined by a positive jellium background yields a
resonance at the Mie frequency �M with a total linewidth25

�t�a� = �i + ��a� . �1�

Thus, in addition to the intrinsic linewidth �i, we have to
consider a size-dependent contribution which can be ex-
pressed as11,12,25

��a� =
3vF

4a
g0� �F

��M
� , �2�

where �F=�2kF
2 /2me and vF are the Fermi energy and veloc-

ity, respectively, and g0 is a smooth function that will be
given in �36�.26 The size-dependent linewidth ��a� results
from the decay of the surface plasmon into particle-hole
pairs by a Landau damping mechanism, which is the domi-
nant decay channel for nanoparticle sizes 0.5 nm�a
�5 nm considered in this work. For larger clusters, the in-
teraction of the surface plasmon with the external electro-
magnetic field becomes the preponderant source of
damping.3

In a quantum many-body approach, the surface plasmon
appears as a collective excitation of the electron system.
Discrete-matrix random phase approximation �RPA� pro-
vides a useful representation since the eigenstates of the cor-
related electron system are expressed as superpositions of
particle-hole states built from the Hartree-Fock ground state.
Following similar approaches developed for the study of gi-
ant resonances in nuclei, Yannouleas and Broglia12 proposed
a partition of the many-body RPA Hilbert space into a low-
energy sector �the restricted subspace�, containing particle-
hole excitations with low energy, and a high-energy sector
�the additional subspace�. The surface plasmon arises from a
coherent superposition of a large number of basis states of
the restricted subspace. Its energy lies in the high-energy
sector, and therefore the mixture with particle-hole states of
the additional subspace results in the broadening of the col-
lective resonance.

An alternative to the previous approaches is given by nu-
merical calculations using the time-dependent local density
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approximation �TDLDA� within a jellium model.10,27 The
absorption cross section

���� =
4�e2�

3c
�

f

��f �z�0	�2	��� − Ef + E0� �3�

can be obtained from the dipole matrix elements between the
ground state �0	 and the excited states �f	 of the electron
system with energies E0 and Ef, respectively. c is the speed
of light. In the absorption cross section, the surface plasmon
appears as a broad resonance �see Fig. 1� centered at a fre-
quency �sp close to �M and with a linewidth approximately
described by �1�.

Finally, the separation in center-of-mass and relative co-
ordinates for the electron system28,29 within a mean-field ap-
proach allows to describe the surface plasmon as the oscilla-
tion of a collective coordinate, which is damped by the
interaction with an environment constituted by a large num-
ber of electronic degrees of freedom. Within such a decom-
position, the effects of finite size, a dielectric material,29 or
the finite temperature of the electron gas are readily incorpo-
rated. Since the excitation by a laser field in the optical range
only couples to the electronic center of mass, this approach is
particularly useful.

The experimentally observed resonance frequencies are
smaller than the Mie frequency �M,1,5,9 and this is qualita-
tively captured by TDLDA calculations since �sp
�M �see
Fig. 1�. This redshift is usually attributed to the so-called
spill-out effect.2 The origin of this quantum effect is a non-
zero probability to find electrons outside the nanoparticle,
which results in a reduction of the effective frequency for the
center-of-mass coordinate. If a fraction Nout /N of the elec-
trons is outside the geometrical boundaries of the nanopar-
ticle, we can expect that the electron density within the nano-
particle is reduced accordingly and the frequency of the
surface plasmon is given by

�̃M = �M�1 −
Nout

N
. �4�

We will see in Sec. II that such an estimation can be formal-
ized considering the form of the confining potential. It has
been known for a long time2 that �̃M ��sp, and therefore the
spill-out effect is not sufficient to explain the redshift of the
surface plasmon frequency as it can be seen in Fig. 1. Re-
cently, the coupling to the electronic environment has been
invoked as an additional source of frequency shift.28,30 In this
work we provide an estimation of such a contribution �analo-
gous to the Lamb shift of atomic physics31� and its paramet-
ric dependence on the particle size and electron temperature
�see Sec. V�. In our approach, we always adopt a spherical
jellium model for the ionic background which is expected to
yield reliable results for not too small nanoparticle sizes.
Despite the fact that we must make several approximations,
we find that this additional shift implies a reduction of the
surface plasmon frequency, in qualitative agreement with the
TDLDA calculations. However it is known2 that the experi-
mental resonance frequency is even lower than the TDLDA
prediction. This could be due to the ionic degrees of free-
dom.

In femtosecond time-resolved pump-probe experiments
on metallic nanoparticles32,33 the surface plasmon plays a
key role. The pump field heats the electron system via an
excitation of the collective mode. The probe then tests the
absorption spectrum of the hot electron gas in the nanopar-
ticle, and therefore it is important to understand the tempera-
ture dependences of the surface plasmon linewidth and of the
frequency of the resonance.

The paper is organized as follows: In Sec. II, we present
our model and the separation of the electronic degrees of
freedom into the center-of-mass and the relative coordinates.
The center-of-mass coordinate provides a natural description
of the spatial collective oscillations of the electronic cloud
around its equilibrium position resulting from a laser excita-
tion. Its coupling to the relative coordinates, described within
the mean-field approximation, is responsible for the broad-
ening of the surface plasmon resonance that we evaluate in
Sec. III. We determine the dependence of the surface plas-
mon linewidth on the size of the nanoparticle and explore its
low-temperature properties. In Sec. IV, we evaluate the spill-
out effect, focusing on its dependence on size and tempera-
ture of the nanoparticle. We show by means of TDLDA cal-
culations that the spill-out effect is not sufficient to describe
the redshift of the surface plasmon frequency as compared to
its classical value. In Sec. V, we propose an estimation of the
environment-induced redshift of the surface plasmon reso-
nance which adds to the spill-out effect. Both effects to-
gether, spill-out and frequency shift due to the electronic
environment, could explain the observed redshift of the reso-
nance frequency. In Sec. VI, we draw the consequences of
our findings for pump-probe experiments. The temperature
dependences of the linewidth and frequency of the surface
plasmon resonance peak permit to qualitatively explain the
time dependence of the measured optical transmission as a
function of the delay between the pump and the probe laser

FIG. 1. Absorption cross section ���� in arbitrary units ex-
tracted from TDLDA calculations for a sodium cluster containing
N=832 valence electrons. The classical Mie frequency is �M, while
�̃M is the frequency of the surface plasmon resonance taking into
account the spill-out effect. It has been obtained with the Kohn-
Sham self-consistent ground-state density as explained in Sec.
IV C. �sp corresponds to the position of the maximum of the ab-
sorption curve.
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field. We finally conclude and draw the perspectives of this
work in Sec. VII.

II. COUPLING OF THE SURFACE PLASMON TO
ELECTRON-HOLE EXCITATIONS

Treating the ionic background of the nanoparticle as a
jellium sphere of radius a with sharp boundaries, the Hamil-
tonian for the valence electrons is given by

H = �
i=1

N � pi
2

2me
+ U�ri�� +

e2

2 �
i,j=1

�i�j�

N
1

�ri − r j�
, �5�

where ri is the position of the ith particle and ri= �ri�. The
single-particle confining potential

U�r� =
Ne2

2a3 �r2 − 3a2���a − r� −
Ne2

r
��r − a� �6�

is harmonic with frequency �M =�Ne2 /mea
3 inside the nano-

particle and Coulomb-like outside. ��x� denotes the Heavi-
side step function. In principle, the photoabsorption cross
section �3� can be determined from the knowledge of the
eigenstates of H. However, except for clusters containing
only few atoms, this procedure is exceedingly difficult, and
one must treat this problem using suitable approximation
schemes.

A. Separation into collective and relative coordinates

A particularly useful decomposition28 of the Hamiltonian
�5� can be achieved by introducing the coordinate of the
electronic center of mass R=�iri /N and its conjugated mo-
mentum P=�ipi. The relative coordinates are denoted by
ri�=ri−R and pi�=pi−P /N. Then, the Hamiltonian �5� can be
written as

H =
P2

2Nme
+ Hrel + �

i=1

N


U��ri� + R�� − U�ri��� , �7�

where

Hrel = �
i=1

N � pi�
2

2me
+ U�ri��� +

e2

2 �
i,j=1

�i�j�

N
1

�ri� − r j��
�8�

is the Hamiltonian for the relative-coordinate system.
Assuming that the displacement R of the center of mass is

small compared to the size of the nanoparticle, we can ex-
pand the last term on the right-hand side �rhs� of �7�. To
second order, we obtain

U��r� + R�� − U�r�� � R · �U�r�� + 1
2 �R · ��2U�r�� , �9�

where the derivatives are taken at r=r� �R=0�. Choosing the
oscillation axis of the center of mass in the z direction, R
=Zez, we obtain with �6�

R · �U�r�� = Zme�M
2 �z���a − r�� +

z�a3

r�3 ��r� − a��
�10�

and

�R · ��2U�r�� = Z2Ne2


� 1

a3��a − r�� +
1 − 3 cos2 ��

r�3 ��r� − a�� .

�11�

Equation �10� represents a linear coupling in Z between the
center-of-mass and relative coordinate system. In second or-
der, the first term on the rhs of �11� is the dominant contri-
bution to the confinement of the center of mass. The second
term on the rhs of �11� is of second order in the coupling and
therefore is neglected compared to the first-order coupling of
�10�.

Inserting �9� and �11� into �7�, we obtain

H =
P2

2Nme
+

1

2

Ne2

a3 R2�
i=1

N

��a − ri� + Hrel + Hc, �12�

where

Hc = �
i=1

N

R · �
�U�ri����R=0 �13�

is the coupling between the center-of-mass and the relative
coordinates to first order in the displacement R of the center
of mass according to �10�. The remaining sum over i in �12�
yields the number of electrons inside the nanoparticle, i.e.,
N−Nout where Nout is the number of spill-out electrons, and
finally we rewrite the Hamiltonian as

H = Hc.m. + Hrel + Hc. �14�

The Hamiltonian of the center-of-mass system is

Hc.m. =
P2

2Nme
+

1

2
Nme�̃M

2 R2. �15�

It is the Coulomb tail of the single-particle confinement �6�
which yields the frequency �̃M given in �4� instead of �M for
the effective harmonic trap that is experienced by the center-
of-mass system.

Equation �14� with �8�, �13�, and �15� recovers up to the
second order in R the decomposition derived in Ref. 28.
However, in contrast to that work, we do not need to appeal
to an effective potential for the center-of-mass system.

The structure of �14� is typical for quantum dissipative
systems:34 The system under study �Hc.m.� is coupled via Hc

to an environment or “heat bath� Hrel, resulting in dissipation
and decoherence of the collective excitation. In our case the
environment is peculiar in the sense that it is not external to
the nanoparticle, but it represents a finite number of degrees
of freedom of the gas of conduction electrons. If the single-
particle confining potential U of �6� were harmonic for all r,
Kohn’s theorem35 would imply that the center-of-mass and
the relative coordinates are decoupled, i.e., Hc=0. Thus, for a
harmonic potential U the surface plasmon has an infinite
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lifetime. The Coulomb part of U in �6� leads to the coupling
of the center of mass and the relative coordinates, and trans-
lates into the decay of the surface plasmon. Furthermore, it
reduces the frequency of the center-of-mass system from �M
according to �4�.

B. Mean-field approximation

Introducing the usual annihilation operator

b =�Nme�̃M

2�
Z +

i

�2Nme��̃M

PZ, �16�

where PZ is the momentum conjugated to Z, and the corre-
sponding creation operator b†, Hc.m. reads

Hc.m. = ��̃Mb†b . �17�

Since the electron-electron interaction appears in the
Hamiltonian �8�, it is useful to describe Hrel within a mean-
field approximation. One can write

Hrel = �
�

��c�
†c�, �18�

where �� are the eigenenergies in the effective mean-field
potential V and c�

† �c�� are the creation �annihilation� opera-
tors associated with the corresponding one-body eigenstates
��	. The mean-field potential V can be determined with the
help of Kohn-Sham LDA numerical calculations. In Fig. 2,
we show it as a function of r /a0 where a0�0.53 Å is the
Bohr radius, for a nanoparticle containing N=1760 valence
electrons. We see that it is relatively flat at the interior of the
nanoparticle, and presents a steep increase at the boundary.
The potential jump is often approximated by a true disconti-
nuity at r=a. However, the details of the self-consistent po-
tential close to the surface may be crucial for some proper-
ties, as we show in Sec. IV C.

Inserting �10� into the coupling Hamiltonian Hc �13�, and
expressing the Z coordinate in terms of the creation and an-
nihilation operators of �16�, one obtains in second quantiza-
tion

Hc = ��b† + b��
��

d��c�
†c�, �19�

where

d�� = ����z��a − r� +
za3

r3 ��r − a����	 �20�

is the matrix element between two eigenstates of the unper-
turbed mean-field problem. In �19�, we have defined the con-
stant �=��me�M

3 /2N and neglected the spill out for the cal-
culation of the coupling when we expressed Z in terms of b
and b†. The sums over � and � in �19� are restricted to the
additional �high energy� RPA subspace mentioned in the in-
troduction. If initially the center of mass is in its first excited
state, the coupling Hc allows for the decay of the collective
excitation into particle-hole pairs in the electronic environ-
ment Hrel, the so-called Landau damping.13,29,36

III. TEMPERATURE DEPENDENCE OF THE SURFACE
PLASMON LINEWIDTH

In this section, we address a semiclassical calculation of
the surface plasmon linewidth and extend our zero-
temperature results of Ref. 29 to the case of finite tempera-
tures. We are interested in nanoparticles with a large number
of confined electrons, typically of the order of 102 to 104.
Thus, the Fermi energy is much larger than the mean one-
body level spacing and the semiclassical approximation can
be applied.

A. Fermi’s golden rule

When the displacement of the center of mass is much
smaller than the size of the nanoparticle, it is possible to
linearize the coupling Hamiltonian as it was done in Sec. II.
The weak coupling regime allows to treat Hc as a perturba-
tion to the uncoupled Hamiltonian Hc.m.+Hrel. Assuming that
initially the center of mass is in its first excited state �1c.m.	,
i.e., a surface plasmon is excited, two processes limit the
surface plasmon lifetime: the decay into the ground state
with creation of a particle-hole pair and the excitation to the
second state of the center of mass accompanied by the anni-
hilation of a particle-hole pair. Obviously, this last process is
only possible at finite temperatures. Then, Fermi’s golden
rule yields the linewidth

� =
2�

�
�

Fc.m.

Irel,Frel

PIrel
��Fc.m.,Frel�Hc�1c.m.,Irel	�2


 	���̃M − �Fc.m.
+ �Irel

− �Frel
� �21�

for the collective state �1c.m.	. In the golden rule, �Fc.m.	 and
�Frel	 are the final states of center-of-mass and relative coor-
dinates with energy �Fc.m.

and �Frel
, respectively. The prob-

ability of finding the initial state �Irel	 occupied is given in the
grand-canonical ensemble by the matrix element

FIG. 2. LDA self-consistent potential V as a function of the
radial coordinate r for a sodium nanoparticle containing N=1760
valence electrons. The radius a is indicated by the vertical dotted
line. The Fermi level is marked by the dashed line.
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PIrel
=

�Irel�e−��Hrel−�N��Irel	
�

�22�

of the equilibrium density matrix at the inverse temperature
�=1/kBT, kB being the Boltzmann constant. � is the chemi-
cal potential of the electrons in the self-consistent field V and
� the grand-canonical partition function. Introducing the ex-
pression �19� of the coupling Hamiltonian, one finds that

� = ���̃M� + 2��− �̃M� , �23�

where the first term is the rate associated with the spontane-
ous decay of a plasmon, while the second one is the rate
for a plasmon excitation by the thermal environment. The
relative factor of 2 arises from the dipolar transition between
the first and second center-of-mass excited states,
�2c.m.�b†�1c.m.	=�2.

In Eq. �23�, we have introduced the function

���� =
2�

�2 �
��


1 − f�����f������d���2	�� − ���� , �24�

which will be helpful for the evaluation of � and will also be
useful in Sec. V when the redshift of the surface plasmon
induced by the electronic environment will be determined. In
the above expression, ���= ���−��� /� is the difference of
the eigenenergies in the self-consistent field V and

f��� =
1

e���−�� + 1
�25�

is the Fermi-Dirac distribution. It is understood that in �24�,
�������c where �c is some cutoff separating the restricted
subspace that builds the coherent superposition of the surface
plasmon excitation from the additional subspace at high en-
ergies. The expression �24� implies the detailed-balance re-
lation

��− �� = e−������� �26�

which allows to write �23� as

� = ���̃M��1 + 2e−���̃M� . �27�

This expression shows that an excitation of the surface plas-
mon to a higher level is suppressed at low temperatures.

B. Semiclassical low-temperature expansion

We now use semiclassical techniques to determine the
low-temperature behavior of ����. In view of the detailed-
balance relation �26� we can restrict ourselves to positive
frequencies �. In a first step, we need to calculate the matrix
elements d�� defined in �20�. The spherical symmetry of the
problem allows to write d��=Al�l�

m�m�R��� ,���, where an ex-
pression for the angular part Al�l�

m�m� is given in Ref. 29. Di-
pole selection rules imply l�= l�±1 and m�=m�, where l and
m are the angular momentum quantum numbers. The self-
consistent potential is usually approximated by a steplike
function, V�r��V0��r−a�, where V0=�F+W with W the
work function of the metal. The accuracy of such an approxi-
mation can be estimated by comparison with LDA numerical

calculations �see Fig. 2 and Ref. 29�. In the case of strong
electronic confinement V0��F, the radial part can be ap-
proximated by12

R���,��� =
2�2

mea

�����

��� − ���2 . �28�

The condition of strong confinement implicit in �28� assumes
that the spill-out effect is negligible. Replacing in �24� the
sums over � and � by integrals and introducing the angular-
momentum restricted density of states �DOS� �l���,29,36 one
gets

���� =
4�

�



��

�

d�
1 − f����f�� − ���


 �
l,m

l�,m�

�l����l��� − ���
�All�
mm�R��,� − ����2,

�29�

where a factor of 2 accounts for the spin degeneracy.
We now appeal to the semiclassical approximation for the

two DOS appearing in �29� using the Gutzwiller trace
formula37 for the effective radial motion.29,36 The DOS is
decomposed into a smooth and an oscillating part. With the
smooth part

�l��� =
�2mea

2�/�2 − �l + 1/2�2

2��
�30�

of the DOS, and after performing the summation over the
angular momentum quantum numbers, �29� reads

���� =
3vF

8a
���M

�F
�3 �F

��
F��,��� . �31�

Here, we have introduced

F��,��� = 

��

� d�

��

1 − f����f�� − ���H� �

��
� , �32�

where

H�x� = �2x − 1��x�x − 1� − ln��x + �x − 1� �33�

is an increasing function. The dependence on the chemical
potential � in �32� is via the Fermi functions appearing in
this expression. We calculate the function F in the Appendix
and this leads for temperatures much smaller than the Fermi
temperature TF to

���� =
3vF

4a
��M

�
�3

g� �F

��
,

T

TF
� �34�

with

g�x,
T

TF
� = g0�x� + g2�x�� T

TF
�2

, �35�

where11,12
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g0�x� =
1

12x2„
�x�x + 1�
4x�x + 1� + 3� − 3�2x + 1�


ln��x + �x + 1� − ��x�x − 1�
4x�x − 1� + 3�

− 3�2x − 1�ln��x + �x − 1����x − 1�… �36�

is a monotonically increasing function with g0�0�=0 and
limx→� g0�x�=1, while

g2�x� =
�2

24x
��x�x + 1��6x − 1� + ln��x + �x + 1�

− 
�x�x − 1��6x + 1� + ln��x + �x − 1����x − 1��
�37�

with g2�0�=0 and limx→� g2�x�=�2 /6. For x near 1, a
nonanalytical T5/2 correction coming from �A5� must be
added to �35�.

Equation �27� then yields the size- and temperature-
dependent surface plasmon linewidth

� =
3vF

4a
g� �F

��M
,

T

TF
� . �38�

Note that the exponential factor appearing in �27� is irrel-
evant in our low-temperature expansion. Furthermore, we
have replaced �̃M by �M for the calculation of �. As we will
see in Sec. IV, the spill-out correction to the Mie frequency
scales as 1 /a. Furthermore, �38� shows that � scales also as
1/a. Thus, incorporating the spill-out correction in the result
of �38� would yield higher order terms in 1/a, inconsistently
with our semiclassical expansion that we have restricted to
the leading order.

At T=0, we recover with �38� the well-known 1/a size
dependence of the surface plasmon linewidth. First found by
Kawabata and Kubo,25 this size dependence is due to the
confinement of the single-particle states in the nanoparticle.
We also recover the zero-temperature frequency dependence

found in Refs. 11 and 12. As a function of �F, the Landau
damping linewidth increases linearly for �F���M and as
��F for �F���M. The increase of the linewidth is a conse-
quence of the fact that with increasing Fermi energy the
number of relevant particle-hole excitations rises.

Since the function g2 is positive, finite temperatures lead
to a broadening of the surface plasmon resonance which to
leading order is quadratic. As for T=0, the linewidth de-
creases with increasing size of the nanoparticle like 1/a.
Based on classical considerations, this has been proposed in
Ref. 12, where the authors argued that �� v̄ /a with the av-
erage speed

v̄ =
3vF

4
�1 +

�2

6
� T

TF
�2� �39�

of electrons at the temperature T. The result of Ref. 12 is
only relevant in the high energy limit �F���M where it
agrees with our general result.38

In Fig. 3, we show the linewidth �38� as a function of the
temperature, scaled by the zero-temperature linewidth, for
different values of the ratio �F /��M �solid lines�. In order to
confirm the validity of our low temperature expansion, we
compare it to the result of a numerical integration �dashed
lines� of �27� with Eqs. �31�–�33�. The agreement of the ex-
pansion �38� with this direct integration is excellent for low
temperatures. For fixed T /TF, the deviation increases with
�F /��M since then, the low-temperature condition ��M
�kBT is less and less fulfilled.

There are a number of experiments showing a broadening
of the surface plasmon linewidth with the temperature.38–40

Those experimental results on not too small clusters indicate
the presence of small corrections to the width of the collec-
tive surface plasmon excitation due to finite temperatures, in
agreement with our result �38�. In Ref. 38, absorption mea-
surements on gold nanoparticles with a diameter ranging
from 9 to 25 nm in aqueous solution have shown only a
weak temperature effect on the surface plasmon linewidth. In
Ref. 39, a weak broadening of the plasmon resonance in
silver and gold nanoparticles of sizes a=4.25 to 10 nm is
reported, accompanied by a small redshift of the peak posi-
tion as the temperature increases. In Ref. 40, the temperature
dependence of small silver clusters �radius of 1.6 to 10.5 nm�
embedded in a glass matrix has been investigated and a
rather small broadening of the plasmon line has been re-
ported as the temperature increases from 1.5 to 300 K.

There are also experiments on very small clusters6,8 show-
ing a strong temperature effect on the surface plasmon line-
width. It has been observed in Ref. 6 that the plasmon width
of mercury clusters increases dramatically with temperature.
A systematic study of the temperature dependence of the
linewidth in small charged sodium nanoparticles with N=8,
20, and 40 valence electrons has been carried out in Ref. 8.
As the temperature of the cluster is increasing, the authors
found a pronounced broadening of the resonance which goes
typically as �T. This is in apparent contradiction with our
result �38�. However, for very small particle sizes, an addi-
tional broadening mechanism becomes important, namely

FIG. 3. Surface plasmon linewidth as a function of the tempera-
ture, scaled by the linewidth at T=0, for different ratios �F /��M.
Solid lines, low-temperature expansion �38�. For �F=��M, we have
accounted for the additional T5/2 correction to �, see �A5�. Dashed
lines, numerical integration of �27� with Eqs. �31�–�33�. The arrow
indicates the direction of increasing �F /��M.
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the coupling of the surface plasmon to quadrupole surface
thermal fluctuations.13,41,42

In addition to the smooth part �30� of the semiclassical
DOS, there exists a term which oscillates as a function of the
energy. The convolution of the two oscillating parts of the
DOS in �29� yields an additional contribution to the plasmon
linewidth, which oscillates as a function of the size of the
nanoparticle. This contribution is significant only for very
small sizes. Its existence has been confirmed by TDLDA
calculations.29,36 Size-dependent oscillations are also ob-
served in experiments on very small nanoparticles.7,43 The
oscillations of the linewidth can be expected to be smoothed
out with increasing temperature because of thermal broaden-
ing suppressing the particle and hole oscillations of the DOS.

IV. SPILL-OUT-INDUCED FREQUENCY SHIFT

We now turn to the evaluation of the redshift of the sur-
face plasmon frequency with respect to the classical Mie
value �M. In this section, we calculate one of the contribu-
tions affecting the resonance frequency, namely the spill-out
effect, while in Sec. V, we will calculate the additional fre-
quency shift induced by the electronic environment.

A. Mean-field approximation

Obtaining the many-body wave function and extracting
the number of spill-out electrons is very difficult already for
very small clusters, and practically impossible for larger par-
ticles. Therefore we use the mean-field approximation and
treat the electronic degrees of freedom in the mean-field one-
particle potential V shown in Fig. 2. Within this approxima-
tion, the number of electrons outside of the nanoparticle is
given by

Nout = 2

0

�

d��
lm

�l���f���

�r�a�

d3r���lm�r��2, �40�

where �l��� is the DOS restricted to a fixed angular momen-
tum l from �30�. The factor of 2 accounts for the spin degen-
eracy. Because of the spherical symmetry of the problem, the
one-particle wave function

��lm�r� =
u�l�r�

r
Yl

m��,�� �41�

separates into a radial and an angular part given by the
spherical harmonics Yl

m�� ,��. The radial wave functions
u�l�r� satisfy the reduced Schrödinger equation

�−
�2

2me

d2

dr2 +
�2l�l + 1�

2mer
2 + V�r��u�l�r� = �u�l�r� �42�

with the conditions u�l�0�=0 and limr→�
u�l�r� /r�=0. Equa-
tion �42� yields the single-particle eigenenergies � in the
mean-field potential V, that we approximate by the steplike
potential V�r�=V0��r−a�.

The Fermi function in �40� suppresses contributions to the
energy integral from values higher than �F plus a few kBT.
For low temperatures kBT�W, the states in the continuum
do not contribute to Nout and we restrict our evaluation to the

bound states with �
V0.44 Defining k=�2me� /� and �
=�2me�V0−�� /�, we find for the regular solutions of �42�,

u�l�r� =� r

a� Akl
�kJl+�1/2��kr� , r � a ,

Bkl
��Kl+�1/2���r� , r � a ,

� �43�

where J��z� are Bessel functions of the first kind and K��z�
are modified Bessel functions. The normalization constants
Akl and Bkl are given by

Akl =� 2

kaCkl
, �44a�

Bkl =� 2

�aCkl

Jl+�1/2��ka�

Kl+�1/2���a�
, �44b�

with

Ckl = � Jl+�1/2��ka�

Kl+�1/2���a��2

Kl−�1/2���a�Kl+�3/2���a�

− Jl−�1/2��ka�Jl+�3/2��ka� . �45�

We therefore obtain for the integral in �40�



�r�a�

d3r���lm�r��2 =
Jl+�1/2�

2 �ka�

Ckl


�Kl−�1/2���a�Kl+�3/2���a�

Kl+�1/2�
2 ��a�

− 1� .

�46�

The summation of this expression over all one-particle
states required to obtain Nout according to �40� cannot be
done exactly. We therefore use a semiclassical approximation
which provides additional physical insight into the spill-out
effect.

B. Semiclassical low-temperature expansion of the number
of spill-out electrons

The integral of the electronic density �46� increases with
the energy. Combined with the increasing DOS in �40� and
the Fermi function providing an energy cutoff, this allows to
conclude that the spill out is dominated by the energies near
the Fermi level. In addition, in most of the metallic nanopar-
ticles, we have �F�W��, where � is the mean single-
particle level spacing. The semiclassical limit, in which ka
and �a must be much larger than one, then applies. In this
limit, we obtain for the integral �46� of the density outside of
the nanoparticle



�r�a�

d3r���lm�r��2 �
�

�aV0
, �47�

to first order in 1/ka and 1/�a. Since this result does not
depend on the angular momentum quantum numbers l and m,
the total DOS �lm�l��� �whose explicit expression can be
found in Ref. 29� is sufficient to determine the number of
spill-out electrons. Inserting �47� into �40� then yields
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Nout �
4mea

2

3��2V0



0

V0

d�f���
�3/2

�V0 − �
. �48�

Applying the low-temperature Sommerfeld expansion,45 we
obtain

Nout =
�kFa�2

6�
�� �F

V0
,

T

TF
� �49�

with

��x,
T

TF
� = �0�x� + �2�x�� T

TF
�2

, �50�

where

�0�x� =
1

x

− �x�1 − x��2x + 3� + 3 arcsin �x� �51�

and

�2�x� =
�2

3
� x

1 − x
�3/2

�2 − x� . �52�

Note that the upper bound of the integral over the energy in
�48� has been replaced by V0 since we neglect exponentially
suppressed contributions from higher energies. Therefore our
Sommerfeld expansion is reliable for temperatures T /TF
�1−�F /V0.

At zero temperature the number of spill-out electrons in-
creases smoothly with increasing Fermi energy, reaching its
maximal value �kFa�2 /4 at �F=V0. According to �49� and
�50�, the number of spill-out electrons increases with tem-
perature. This is expected since the evanescent part of the
wave function increases with the energy of the occupied
states.

Scaling the result �49� with the total number of electrons
in the nanoparticle, N=4�kFa�3 /9�, we obtain

Nout

N
=

3

8kFa
�� �F

V0
,

T

TF
� . �53�

This relative spill out scales to first order as 1 /a, and is
therefore negligible for large particles. As the work function
W depends on the size of the nanoparticle like W=W�

+� /a,46 the number of spill-out electrons �53� acquires, via
the dependence on V0, higher-order corrections to the 1/a
scaling. We neglect these terms because they are of the same
order as terms neglected in our semiclassical expansion.
Therefore we approximate W by its bulk value W�.
The dependence of �53� on a can be interpreted by
observing that the spill out is a surface effect so that
Nout increases only with a2. Inserting �53� into �4�, one can
calculate the spill-out-induced redshift of the surface plas-
mon resonance. This redshift increases for decreasing sizes
and for increasing temperatures, in qualitative agreement
with experiments.7,39,40

One can define a spill-out length as the depth

ls =
1

3

Nout

N
a �54�

of the spill-out layer. Inserting �53� into �54� yields the size-
independent spill-out length

kFls =
1

8
�� �F

V0
,

T

TF
� , �55�

which is represented in Fig. 4 as a function of the ratio �F /V0
for different temperatures. The result is compared with the
results of a numerical integration of �48� �dashed lines�. This
confirms our expectations about the validity of our result,
namely for low temperatures and for a reasonable ratio
�F /V0.

C. Number of spill-out electrons: Semiclassics vs LDA

In this section, we compare our semiclassical evaluation
of the spill-out effect at zero temperature with LDA calcula-
tions on spherical sodium nanoparticles. One possible way to
estimate Nout is to use the LDA, which allows to compute the
spherically symmetric self-consistent electronic ground-state
density for nanoparticles with closed electronic shells. Inte-
grating the density outside the nanoparticle then yields an
approximation to Nout, and thus to ls according to �54�. An
estimation of the spill-out length from �55� by means of our
semiclassical theory at zero temperature gives ls�0.2a0 for
sodium nanoparticles, while Madjet and collaborators ob-
tained on the basis of Kohn-Sham and Hartree-Fock calcula-
tions ls around 0.55a0 for clusters of size N=8–196.14 With
our LDA calculations, we obtain ls of the order of 0.45a0 for
all closed-shell sizes between N=8 and N=1760 �see the
squares in Fig. 5�.

The fact that the semiclassical spill-out length is signifi-
cantly smaller than that of LDA is a consequence of our
assumption of a steplike potential for V. Indeed, the LDA
self-consistent potential V shown in Fig. 6 deviates from the
form V�r�=V0��r−a� that we have used. As one can see in
Fig. 6, the Fermi level does not coincide with V�a�. Defining

FIG. 4. kFls from �55� as a function of �F /V0 at zero temperature
�black line� and for finite temperatures �solid gray lines�. The
dashed lines result from the numerical integration of �48�. In the
figure, T /TF increases from bottom to top.
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the effective radius of the nanoparticle for the spill-out effect
by means of V�aeff�=�F, it seems appropriate to approximate
the self-consistent potential by V�r�=V0��r−aeff�. An esti-
mation from our LDA calculations gives aeff�a+ ls for all
sizes between N=8 and N=1760. Using this effective radius
in �49� does not change our results for Nout and ls since a
� ls. However, the spill-out length is defined from the geo-
metrical radius a of the ionic jellium background of the
nanoparticle. Since aeff�a+ ls, it actually yields an effective
spill-out length ls

eff�2ls and approximately doubles our re-
sult for Nout. The improved T=0 result for the spill-out
length is represented by the dashed line in Fig. 5. It yields
good agreement with the spill-out length as deduced from the
LDA calculations �squares in Fig. 5�. Note that there is no
need to consider an effective radius of the nanoparticle in the
calculation of the resonance width presented in Sec. III. In-

deed, the linewidth � scales as 1 /a. Replacing a by an ef-
fective radius for the linewidth � would thus only lead to
higher-order corrections.

D. Redshift of the surface plasmon resonance

We now examine the redshift of the surface plasmon reso-
nance by means of TDLDA calculations. In Fig. 7, we show
the frequencies deduced from the LDA number of spill-out
electrons for various closed-shell nanoparticle sizes between
N=8 and N=1760, where Nout is incorporated according to
�4� �squares�. The dashed line is our semiclassical result from
�53� with �4�, where we have taken into account the effective
radius for the self-consistent potential, as discussed in the
preceding section. We see that our analytical expression for
the spill out is in a good agreement with the LDA calcula-
tions, and that the redshift is increasing with decreasing size
as predicted by �53�.

Alternatively the resonance frequency can be extracted
directly from the absorption cross section ���� defined in �3�
and calculated from the TDLDA response function �see Fig.
1�. An upper bound for the resonance energy is given by the
root mean square2,47

���2	 =�

0

�

d��2����



0

�

d�����
, �56�

providing a lower bound for the redshift of the surface plas-
mon frequency from the Mie value. In the spherical jellium
model, the frequency deduced from �56� coincides with

FIG. 5. Spill-out length ls at T=0 in units of the Bohr radius a0

as a function of the total number of electrons N, after �55� �solid
line� for sodium nanoparticles. The dashed line is twice the result of
�55�, and is obtained considering the effective radius aeff for the
approximated self-consistent potential, namely V�r�=V0��r−aeff�.
The squares result from LDA calculations.

FIG. 6. Detail of the LDA self-consistent potential V close to the
boundary of the cluster as a function of the radial coordinate r for a
sodium nanoparticle containing N=1760 valence electrons. The ra-
dius a is indicated by the vertical dotted line, and the effective
radius defined by V�aeff�a+ ls�=�F is indicated by the dashed line.
The Fermi level corresponds to the horizontal dashed line.

FIG. 7. Surface plasmon frequency as a function of the number
N of valence electrons in the nanoparticle. Squares, �̃M /�M, fre-
quencies deduced from the LDA number of spill-out electrons ac-
cording to �4�. Dashed line, semiclassical evaluation of �53� with
�4�. Dots, �sp/�M, frequencies obtained by fitting the TDLDA ab-
sorption curves with a Mie-type cross section �Ref. 1�. Dotted line,
linear fit to the dots. Solid line, sum of the spill-out effect �dashed
line� and the environment-induced redshift of the resonance �64�.
All results shown here are at zero temperature for the case of so-
dium. The points shown represent all closed shell sizes between
N=8 and N=1760.

SURFACE PLASMON IN METALLIC… PHYSICAL REVIEW B 74, 165421 �2006�

165421-9



�̃M,2,48 the Mie frequency redshifted by the spill-out effect
�4�. We have checked with our TDLDA calculations that the
frequencies deduced from Nout, i.e., from the electronic
ground-state self-consistent density correspond to the fre-
quencies obtained from �56�, up to the numerical error. At
zero temperature, the TDLDA thus fulfills the sum rule2

���2	= �̃M.
The dots in Fig. 7 represent the maxima �sp of the absorp-

tion curves obtained by fitting the TDLDA results with a
Mie-type cross section.1 It is clear from Fig. 7 that the fre-
quency obtained by �4� from the number of spill-out elec-
trons �squares� overestimates the resonance frequency �sp
�see also Fig. 1�.49 It has been noticed in Ref. 9 that the
spill-out effect is not sufficient to describe the experimentally
observed resonance frequency.

In the following section, we propose to interpret the dis-
crepancy between �sp given by the TDLDA and �̃M deduced
from the spill out by means of the coupling of the surface
plasmon mode to electron-hole excitations. This coupling re-
sults in a shift of the surface plasmon frequency which adds
to the effect of the spill out.

V. ENVIRONMENT-INDUCED FREQUENCY SHIFT

In the absence of the coupling Hc, the energy of the nth
eigenstate of the center-of-mass system is given by the
eigenenergies En

�0�=n��̃M of Hc.m. given in �17�. However,
the coupling Hamiltonian �19� perturbs the eigenstates of
Hc.m.. The leading contribution to the resulting shift of the
eigenenergies En

�0� is determined using perturbation theory in
Hc. While the first order does not contribute due to the se-
lection rules contained in the coupling �19�, there are four
second-order processes involving virtual particle-hole pairs.
In addition to the two resonant processes mentioned in Sec.
III A, i.e., decay into the ground state with creation of a
particle-hole pair and excitation to a higher state accompa-
nied by the annihilation of a particle-hole pair, there exist
also two antiresonant processes. A plasmon can be excited to
a higher collective state by creating a particle-hole pair, or a
plasmon can decay by destroying a particle-hole pair. Taking
into account all four processes, we obtain the resonance en-
ergy to second order in the coupling

��sp = E1
�2� − E0

�2� = ���̃M − 	� �57�

with the frequency shift

	 =
1

�
�

Fc.m.

Irel,Frel

PIrel� ��Fc.m.,Frel�Hc�1c.m.,Irel	�2

�Fc.m.
− ��̃M + �Frel

− �Irel

−
��Fc.m.,Frel�Hc�0c.m.,Irel	�2

�Fc.m.
+ �Frel

− �Irel

� , �58�

where we use the same notations as in Sec. III A. Writing
explicitly the coupling Hamiltonian Hc �19� in the preceding
expression, we obtain

	 =
2

�2P�
��


1 − f�����f������d���2
���

���
2 − �̃M

2 . �59�

Here, P denotes the Cauchy principal value. The resonance
frequency �sp �57� thus contains a correction with respect to
the value induced by the spill-out effect. As we will show,
the shift 	 is positive, and thus redshifts the plasmon reso-
nance from �̃M.

According to �24� and �59�, the energy shift 	 is related to
the function ���� through the Kramers-Kronig relation

	 =
1

�
P


−�

+�

d�
�����

�2 − �̃M
2 . �60�

In �60�, the frequency �̃M appearing in the denominator can
be replaced by �M. Indeed, the function ���� of �34� is
proportional to 1/kFa. Thus, taking into account the spill-out
effect in the evaluation of 	 would yield higher order terms
in powers of 1 /kFa, that we neglect in the semiclassical
limit. Furthermore, we must restrict the integral over the fre-
quency � by introducing the cutoff �c discussed in Sec.
III A. It arises from the fact that the particle-hole pairs that
contribute to 	 in �59� belong to the high-energy sector of the
RPA Hilbert space, while the surface plasmon excitation is
the superposition of particle-hole pairs of the restricted low-
energy subspace. The TDLDA absorption cross section
shows a large excitation peak at the frequency �sp which
supports almost all of the dipole strength. This peak is sur-
rounded by particle-hole excitations that become noticeable
for frequencies larger than ��M −��, where � is a constant
of the order of unity. Thus for the purpose of calculating the
integral �60� we can take the cutoff at �M −�� and approxi-
mate

	 �
1

�
P


�M−��

+�

d�
�����

�2 − �M
2 . �61�

For frequencies � larger than �M −��, the function g ap-
pearing in �34� can be replaced by its asymptotic expansion
for �F���,

g�x,
T

TF
� � � 8

15
+

2�2

9
� T

TF
�2��x . �62�

Inserting this expression into �61�, and performing the re-
maining integral over � in the semiclassical limit kFa�1,
we arrive at

	 �
3vF

4a
� �F

��M
�ln�4�M

��
� −

�

2
−

4

3
�� 4

15�
+

�

9
� T

TF
�2� .

�63�

We remark that the dependence of this result on the cutoff is
only logarithmic.

Inserting our expression �38� for the linewidth �, we ob-
tain to second order in T /TF

	 =
3vF

4a
j� �F

��M
,

T

TF
� , �64�

where
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j�x,
T

TF
� = j0�x� + j2�x�� T

TF
�2

, �65�

with

j0�x� =
4�x

15�
�ln� 8kFa

3�xg0�x�� −
�

2
−

4

3
� �66�

and

j2�x� =
��x

9
�ln� 8kFa

3�xg0�x�� −
�

2
−

4

3
−

12

5�2

g2�x�
g0�x�� .

�67�

The functions g0 and g2 are defined in �36� and �37�, respec-
tively. While the linewidth �38� goes as 1/a, the frequency
shift scales as 1 /a up to a logarithmic factor. This redshift
increases with temperature and adds to the redshift arising
from the spill-out effect discussed in Sec. IV.

The importance of the shift 	 can be seen in Fig. 7. There,
the position of the surface plasmon resonance peak for so-
dium clusters calculated from TDLDA �dots� is in qualitative
agreement with our semiclassical result �solid line� taking
into account the shift 	 and the spill out 
see Eqs. �4� and
�53� in Sec. IV�.50 In Fig. 7, we have used �=1/2 for the
frequency cutoff in �61�. Our approximate expression for 	
does not allow us to obtain a quantitative agreement with the
position �sp of the resonance frequency shown by the dots.
This is not surprising considering the approximations needed
in order to derive an analytical result. First, the expression
for 	 is based on our result �34� for ���� which was derived
under the assumption of perfectly confined electronic states.
Thus, the delocalized self-consistent single-particle states
have not been accurately treated in the calculation of 	. Sec-
ond, the cutoff introduced above is a rough estimate of the
energy beyond which particle-hole excitations couple to the
surface plasmon. Despite those approximations, our estimate
implies an increase of the redshift beyond that caused by the
spill-out �dashed line in Fig. 7�. Comparing the two effects
leading to a redshift of the surface plasmon frequency, we
find that they have the same size and temperature depen-
dence, and are of the same order of magnitude. Therefore,
one must take into account both contributions in quantitative
descriptions of the surface plasmon frequency.

For zero temperature, the shift 	 has also been considered
in Refs. 28 and 30. The authors of Ref. 28 have used the
separation of the collective center-of-mass motion from the
relative coordinates. Their coupling between the two sub-
systems which is only nonvanishing outside the nanoparticle
leads to a shift that they have numerically evaluated by
means of the RPA plus exchange in the case of small charged
sodium clusters. In Ref. 30, the authors assumed a certain
expression for the coupling, and a variational RPA calcula-
tion was used to obtain an analytical expression of the
environment-induced redshift. In contrast to our findings,
Refs. 28 and 30 obtained a shift 	 proportional to the number
of spill-out electrons.

For very small clusters �N between 8 and 92�, a nonmono-
tonic behavior of the resonance frequency as a function
of the size of the nanoparticle has been observed

experimentally.9 This behavior is in qualitative agreement
with our numerical calculations �see dots in Fig. 7� and can
be understood in the following way. We have shown in Refs.
29 and 36 that the linewidth of the surface plasmon reso-
nance presents oscillations as a function of the size of the
nanoparticle. Furthermore, we have shown in this section
that the linewidth and the environment-induced shift are re-
lated through the Kramers-Kronig transform �60�. Thus, the
shift 	 should also present oscillations as a function of the
size of the cluster. This is in contrast to the spill-out effect
discussed in Sec. IV where the oscillating character of the
DOS leads to a vanishing contribution, as confirmed by the
LDA calculations �see squares in Fig. 7�. Those significantly
different behaviors could permit to distinguish between the
two mechanisms contributing to the redshift of the surface
plasmon frequency with respect to the classical Mie value.

Using temperature-dependent TDLDA calculations,
Hervieux and Bigot51 have recently found a nonmonotonic
behavior of the energy shift of the surface plasmon fre-
quency as a function of the temperature for a given nanopar-
ticle size. They observed a redshift of the surface plasmon
resonance up to a certain critical temperature �e.g., 1000 K
and 2500 K for Na138 and Na139

+ , respectively�, followed by a
blueshift of the resonance at higher temperatures. This be-
havior is not present in our theory. The authors of Ref. 51
attribute the nonmonotonic temperature dependence to the
coupling of the surface plasmon to bulklike extended states
in the continuum, which causes a blueshift, as one can expect
for a bulk metal. However, we have restricted ourselves to
low temperatures compared to the work function of the nano-
particle, where we can neglect those extended states in the
evaluation of the spill out. The critical temperature of a thou-
sand degrees is much smaller than the Fermi temperature for
metals, such that our treatment should remain a good ap-
proximation.

VI. TIME EVOLUTION OF THE OPTICAL
TRANSMISSION IN A PUMP-PROBE CONFIGURATION

We now examine the experimental consequences of the
temperature dependence of the Landau damping linewidth
�38� and of the energy shifts induced by the spill out 
Eqs.
�4� and �53�� and by the electronic environment �64�.

We focus on the absorption cross section defined in �3�.
Assuming it to be of the Breit-Wigner form, we have

���,T� = s�a�
��T�/2


� − �sp�T��2 + 
��T�/2�2 , �68�

where �sp�T� is the temperature-dependent resonance fre-
quency of the surface plasmon excitation given in �57�. s�a�
is a size-dependent normalization prefactor. For the spill out,
we consider the effective radius discussed in Sec. IV C
which doubles the results of �53�.

Unfortunately, to the best of our knowledge, systematic
experimental investigations of the shape of the absorption
cross section as a function of temperature are not available.
However, an indirect approach is offered by pump-probe
experiments,32,33 where the nanoparticles are excited by an
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intense laser pulse. After a given time delay, the system is
probed with a weak laser field, measuring the transmission T
of the nanoparticles. After the excitation of a surface plas-
mon, its energy is transferred on the femtosecond time scale
to the electronic environment, resulting in the heating of the
latter. On a much longer time scale of typically a picosecond,
the equilibration of the electrons with the phonon heat bath
results in the decrease of the temperature of the electronic
system with time. Such a process is not included in our
theory.

An experimentally accessible quantity32,33 is the differen-
tial transmission �T /T= �Ton−Toff� /Toff, i.e., the normalized
difference of transmissions with and without the pump laser
field. It is related to the absorption cross section by means of

�T
T ��,T� = −

3

2�a2 
���,T� − ���,Tamb�� , �69�

Tamb being the ambient temperature. The relation �69� be-
tween transmission and absorption holds provided that the
reflectivity of the sample can be neglected, which is the case
in most of the experimental setups. The differential transmis-
sion can be viewed in two different ways. For a fixed time
delay between the pump and the probe pulses, it is sensitive
to the energy provided by the pump laser which is transferred
to the electronic environment via the surface plasmon, and
thus to the temperature of the heat bath. Alternatively, for a
given pump intensity, increasing the time delay between the
pump and the probe scans the relaxation process of the elec-
tronic system as the bath temperature decreases.

In Fig. 8, we present the differential transmission of �69�
for a sodium nanoparticle of radius a=2 nm, which has a
strong surface plasmon resonance around 3.5 eV. We see that
as the temperature of the electronic system increases, �T /T
becomes more and more pronounced since both, the line-
width and the redshift of the resonance frequency in �68�
increase with temperature. Similar results are observed in
experiments,32,33 where the amplitude of �T /T is observed to

decrease as a function of the time delay between the pump
and the probe laser fields. This is accompanied by the blue-
shift of the crossing of the differential transmission curves
with the zero line as the time delay increases. Moreover, the
asymmetry of �T /T is observed in the experiments and ob-
tained in our calculations.

Our results could provide a possibility to fit the experi-
mental results on metallic nanoparticles excited by a pump
laser field in order to extract the temperature, and thus could
assist in analyzing the relaxation process.

VII. CONCLUSION

The influence of the electronic environment on the surface
plasmon resonance in metallic nanoparticles has been ana-
lyzed in this work. By means of a separation into collective
and relative coordinates for the electronic system, we have
shown that the coupling to particle-hole excitations leads to a
finite lifetime as well as a frequency shift of the collective
surface plasmon excitation. The size and temperature depen-
dence of the linewidth of the surface plasmon has been in-
vestigated by means of a semiclassical evaluation within the
mean-field approximation, together with a low-temperature
expansion. In addition to the well-known size dependence of
the linewidth, we have demonstrated that an increase in tem-
perature leads to an increasing width of the resonance. The
effect of finite temperature has been found to be weak, in
qualitative agreement with the experimental results.

We have analyzed the spill-out effect arising from the
electron density outside the nanoparticle. Our semiclassical
analysis has led to a good agreement with LDA calculations.
In order to achieve this, it was necessary to introduce an
effective radius of the nanoparticle which accounts for the
details of the self-consistent mean-field potential. The ratio
of spill-out electrons over the total number as well as the
resulting redshift of the surface plasmon frequency scale in-
versely with the size of the nanoparticle. The spill-out-
induced redshift was shown, by means of a Sommerfeld ex-
pansion, to increase with the temperature.

We have demonstrated that the coupling between the elec-
tronic center of mass and the relative coordinates results in
an additional redshift of the surface plasmon frequency. This
effect is of the same order as the redshift induced by the
spill-out effect and presents a similar size and temperature
dependence. Thus it must be taken into account in the de-
scription of numerical and experimental results. Our semi-
classical theory predicts that for the smallest sizes of nano-
particles, the environment-induced redshift should exhibit a
nonmonotonic behavior as a function of the size, as con-
firmed by numerical calculations. This is not the case for the
redshift caused by the spill-out effect, and thus permits to
distinguish between the two effects.

Our theory of the thermal broadening of the surface plas-
mon resonance, together with the temperature dependence of
the resonance frequency, qualitatively explains the observed
differential transmission that one measures in time-resolved
pump-probe experiments. Our findings could open a possi-
bility to analyze relaxation processes in excited nanopar-
ticles.

FIG. 8. Differential transmission �T /T as a function of the
probe energy �� for increasing temperatures, resulting from in-
creasing pump intensities and a fixed delay between pump and
probe �or by decreasing the time delay at a fixed pump intensity�.
The presented results are for a sodium nanoparticle with a radius
a=2 nm.
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APPENDIX: LOW-TEMPERATURE EXPANSION FOR
INTEGRALS INVOLVING TWO FERMI FUNCTIONS

In this appendix, we calculate the function F defined in
�32�, which involves the integral of two Fermi distributions.
Integrating �32� by parts yields

F��,��� = 

��

�

d��−
dF

d�
�H� �

��
� �A1�

with

H�x� = 

1

x

dx�H�x�� , �A2�

the function H being defined in �33�. In �A1�, we have intro-
duced the notation F���= 
1− f����f��−���. In the low-
temperature limit ���kBT, we get

−
dF

d�
� − �

e���−��

�e���−�� + 1�2 + �
e���−��−��

�e���−��−�� + 1�2 , �A3�

which corresponds to two peaks of opposite sign centered at
�=� and at �=�+��. It is therefore helpful to expand in
�A1� the function H around �=� and �=�+��. For low
temperatures and for ���−�� kBT, we obtain

F��,��� � H�1 +
�

��
�

− H� �

��
���� − ��� +

�2

6
� kBT

��
�2


�H��1 +
�

��
� − H�� �

��
���� − ���� ,

�A4�

where H� denotes the derivative of H. This treatment is ap-
propriate for all values of �, except in a range of order kBT
around �. There, the nonanalyticity of H must be properly
accounted for52 since for x near 1, H�x���16/15��x−1�5/2.
At ��=�, an additional term thus appears, and

F��,�� � H�2� +
�2

6
� kBT

��
�2

H��2� − C� kBT

��
�5/2

�A5�

with

C = 

0

�

dx
exx5/2

�ex + 1�2 � 3.07. �A6�

In order to pursue the evaluation of �A4�, we need to
determine the chemical potential �. Since the DOS of �30�,
once summed over l and m yields29 the three-dimensional
bulk DOS proportional to ��, we can use the standard Som-
merfeld expression for the chemical potential of free
fermions.45 We thus get for ���−�� kBT

F��,��� � 

max��F,���

�F+�� d�

��
H� �

��
� +

�2

6

�F

��
� T

TF
�2


 � �F

��
�H��1 +

�F

��
� − H�� �F

��
����F − ����

−
1

2
�H�1 +

�F

��
� − H� �F

��
����F − ����� ,

�A7�

where TF is the Fermi temperature. Inserting the result �A7�
into �31�, and using the expression �33� for H, we finally
obtain �34�.
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