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Abstract. The goal of deductive design is the systematic construction
of a system implementation starting from its behavioural specification
according to formal, provably correct rules. We use Haskell to formulate
a functional model of directional, synchronous and deterministic systems
with discrete time. The associated algebraic laws are then employed in
deductive hardware design of basic combinational and sequential circuits
as well as a brief account of pipelining. With this we tackle several of
the IFIP WG 10.5 benchmark verification problems. Special emphasis is
laid on parametrization and re-usability aspects.

1 Introduction

1.1 Deductive Design

The goal of deductive design is the systematic construction of a system imple-
mentation

• starting from its behavioural specification,
• according to formal, provably correct rules.

The main advantages are the following.

• The resulting implementation is correct by construction;
• The rules can be formulated schematically, independent of the particular

application area;
• Hence they are re-usable for wide classes of similar problems;
• Being formal, the design process can be assisted by machine.
• Implementations can be constructed in a modular way.
• In the first stage the main emphasis lies on correctness;
• in further stages transformations can be used to increase efficiency.
• A formal derivation serves as a record of the design decisions that went into

the construction of the implementation.
• It is an explanatory documentation and eases revision of the implementation

upon modification of the system specification.
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Note that we do not view deductive design as alternative to, but comple-
mentary to verification. In fact, usually transformational derivations will be
interleaved with verification of lemmas needed on the way. Conversely, verifi-
cation may benefit from incorporation of standard reduction strategies based on
algebraic laws.

There is a variety of approaches to deductive design, eg.

• refinement calculus,
• program extraction from proofs,
• transformations.

We shall follow the latter (see e.g. [4, 19]) and use mainly

• equational reasoning,
• algebraic laws,
• structural induction,
• fixpoint induction for recursive definitions.

1.2 Overview

We exemplify deductive hardware design in the particular area of

• directional,
• synchronous and
• deterministic systems with
• discrete time.

Directionality means that input and output are clearly distinguished. As for
synchronicity we assume that our systems are clocked, in particular, that the
clock period is long enough that all submodules stabilize their output within it.

The approach generalizes with varying degrees of complexity to adirectional
systems, asynchrony, non-determinacy or continuous time. Adirectionality, as
found eg. in buses, may be modeled better in a relational than in a functional
setting, handshake communication may more adequately be treated by systems
such as CCS, CSP or ACP.

references, Josephs

We show deductive design of basic combinational and sequential circuits and
give a brief transformational account of pipelining. In particular we derive sys-
tolic circuits and tackle several of the IFIP WG 10.5 benchmark verification
problems [11]. Special emphasis is laid on parameterization and re-usability as-
pects.

1.3 The Framework

We model hardware functionally in Haskell. The reasons for this are the follow-
ing.
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• Functional languages supports various views of streams directly, eg. lazy lists
or functions from time to data as first-class objects.
• Polymorphism allows generic formulations and hence supports re-use.
• Since all specifications are executable, direct prototyping is possible.
• Functional languages are being considered for their suitability as bases of

modern hardware description languages; an example is the (unfortunately
abandoned) language MHDL [20].
• Many other approaches to hardware specification and verification also use

higher-order concepts to good advantage (see e.g. [8]).
• A transformation system ULTRA for the Gofer sublanguage of Haskell is

being constructed at the University of Ulm under the direction of H. Partsch.
It is an adaptation of the system CIP-S [3]. Several of our paper and pencil
derivations have been replayed on a prototype version of ULTRA to check
their correctness by machine. The set of transformation rules given here can
be re-used for further derivations directly on the system.

Readers not familiar with Haskell will find a brief review of its essential
constructs in the Appendix.

some more text
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Part I: Combinational Circuits

2 A Model of Combinational Circuits

text A brief review of the essential concepts of Haskell that are used in this
paper can be found in the Appendix.



2.1 Functions as Modules

A combinational module will be modeled as a function taking a list of inputs
to a list of outputs. This function reflects the behaviour at one clock tick. This
reflects the underlying assumption of synchrony: the complete tuple of inputs
must be available before the output can be computed.

tie this in with laziness
Using lists of inputs and outputs has the advantage that the basic connection

operators can be defined independent of the arities of the functions involved. The
disadvantage is that we need uniform typing for all inputs/outputs, since Haskell
does not allow heterogenous lists.

So we assume some basic type a that is the direct sum of all data types
involved, such as integers, booleans, bytes etc. Then a function f describing a
module with m inputs and n outputs will have the type f :: [a] -> [a] but be
defined only for input lists of length m and always produce output lists of length
n . Assuming

[o1,...,on] = f [i1,...,im]

we represent such a module diagrammatically as

Bild

We now discuss briefly the role of functions as modules of a system. In a
higher-order language such as Haskell there are two views of functions:

• as routines with a body expression that depends on the formal parameters,
as in conventional languages;
• as ”black boxes” which can be freely manipulated by higher-order functions

(combinators).

The latter view is particularly adequate for functional hardware descriptions,
since it allows the direct definition of various composition operations for hard-
ware modules.

However, contrary to other approaches we do not reason purely at the com-
binator level, i.e. without referring to individual in/output values. While this
has advantages in some situations, it can become quite tedious in others. So we
prefer to have the possibility to switch.

The basis for showing equality of two expressions that yield functions as their
values is the extensionality rule

f = g iff fx = gx for all x .

Many algebraic laws we use are equalities between functions, interpreted as ex-
tensional equalities.

Example 21 Function composition is defined in Haskell by
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(f . g) x = f (g x)

with polymorphic combinator

(.) :: (b -> c) -> (a -> b) -> a -> c

A fundamental law is associativity of composition:

(f . g) . h = f . (g . h)

ut

2.2 Modeling Connections

We shall employ two views of connections between modules:

• that of ”rubber wires”, represented by formal parameters or implicitly by
plugging in subexpressions as operands;
• that of ”rigid wires”, represented by special routing functions which are

inserted using basic composition combinators.

Contrary to other approaches (e.g. [10, 12]), we proceed in two stages:

• We start at the level of rubber wiring to get a first correct implementation.
• Then we (mechanically) get rid of formal parameters by combinator abstrac-

tion to obtain a version with rigid wiring.

This avoids the introduction of wiring combinators at a too early stage and
carrying them through all the derivation in an often tedious manner.

In drawing diagrams we shall be liberal and use views in between rubber
and rigid wiring. In particular, we shall use various directions for the input and
output arrows. So input arrows may not only enter at the top but also from the
right or from the left; an analogous remark holds for the output arrows.

Example 22 Splicing along one wire is defined by

splice m f g (xs++[c]) = f (take m xs ++ [u]) ++ us

where (u:us) = g (drop m xs ++ [c])

Assume now

\begin{verbatim}

xs = [x1,...,xm,x(m+1),...,xn]

[u1,u2,...,ul] = g [x(m+1),...,xn,c]

[v1,v2,...,vk] = f [x1,...,xm,u1]

Then we may depict splice m f g xs as

Bild

We straighten the wires to obtain the following form:
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This form will be used for passing carries from one module to the next. ut

Lemma 23 Splicing is associative in the following sense:

splice (m+k) (splice m f g) h = splice m f (splice k g h) .

Moreover, the identity id on singleton lists is its left and right neutral element.

This is essential in that it shows that the functional model adequately de-
scribes the graphical and layout views of hardware: there are no “parentheses”
in circuits, and hence the mathematical model should not depend on parenthe-
sization.

2.3 Wire Bundles

Often we need to deal with wire bundles. In the case of circuits for binary
arithmetic operators it is usually assumed that the wires for the single bits of
the two operands are interleaved (or shuffled) in the following fashion:

Bild

So the bits for one operand occur at even positions in the overall list of inputs,
those for the other one at odd positions. To extract the corresponding sublists
we use

evns xs = [ xs !! i | i <- [0..length xs -1], even i ]

Bild

odds xs = [ xs !! i | i <- [0..length xs -1], odd i ]

Bild

Recursive versions of these functions are
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evns [] = []

evns (x:xs) = x : odds xs

odds [] = []

odds (x : xs) = evns xs

The converse is shuf k which shuffles two lists of length k, say ys and zs,
into one list of length 2*k.

Bild

Following our general principle that every module takes one list of inputs,
we have to concatenate ys and zs into one list xs. Then shuf is specified by

(shuf n xs) !! (2*i) = xs !! i

(shuf n xs) !! (2*i+1) = xs !! (n+i)

for length xs == 2*n and i <- [0..n-1]. This is an implicit specification;
the patterns on the left hand side are not legal Haskell patterns. However, the
clauses of this specification will be used as algebraic laws in derivations. An
explicit version is

shuf n xs

| length xs == 2*n = ileave (take n xs) (drop n xs)

ileave [] [] = []

ileave (y : ys) (z : zs) = y : (z : ileave ys zs)

3 Numbers and Their Representation

We leave now briefly the field of circuits. As a preparation for the derivation
of some basic arithmetic circuits we need some definitions concerning the rep-
resentation of natural numbers w.r.t. a base p. To simplify matters we use the
nonnegative part of the Haskell type Int for treating natural numbers; a different
possibility would be the definition of a recursive data type

data Nat = Zero | Succ Nat .

We avoid this, since it would necessitate a lengthy redefinition of all arithmetic
operators.

To characterize p-adic digits we use the auxiliary predicate below :: Int

-> Int -> Bool

n ‘below‘ m = 0 <= n && n < m .

Then d is a p digit iff d ‘below‘ p. Lists of length k consisting only of p-adic
digits are characterized by
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digits :: Int -> Int -> [Int] -> Bool

digits p k xs = length xs == k && all (‘below‘ p) xs .

Now we define representation and abstraction functions between (the nonnega-
tive part of) Int and lists of p-adic digits. To cope with bounded word length,
we parameterize them not only with p but also with the number of digits to be
considered.

First we define the representation function

code :: Int -> Int -> Int -> [Int]

Its first argument p is the base of the number system; for n > 0 the result of
code p k n is defined only for p > 1. The second argument k is the number
of digits we want to consider. With k we can represent only numbers n with n

‘below‘ p^k exactly. Hence for other numbers n the result of code p k n is
undefined. Otherwise it is the p-adic representation of n in k digits precision,
padded with leading zeros if necessary) The definition reads

code p 0 0 = []

code p (k+1) n = code p k (n ‘div‘ p) ++ [n ‘mod‘ p]

Example 31 code 2 5 24 = [1, 1, 0, 0, 0]

code 2 7 24 = [0, 0, 1, 1, 0, 0, 0]

ut

For the corresponding abstraction function

deco :: Int -> Int -> [Int] -> Int

the result of deco p k xs is the number represented by the list xs of p-adic
digits. Again k is the number of digits expected; the result is undefined if xs has
a length different from n. The defintion reads

deco p 0 [] = 0

deco p (k+1) xs = (deco p k (init xs)) * p + last xs

These particular abstraction and representation functions were introduced in
[6]. They are useful in that they admit induction/recursion over the parameter
k. They enjoy pleasant algebraic properties:

Lemma 32 The functions code and deco are inverses of each other:

deco p k (code p k n) = n <== n ‘below‘ p^k

code p k (deco p k xs) = xs <== digits p k xs .

We have the decomposition/distributivity properties

code p (j+k) (m * p^k + n) = code p j m ++ code p k n

<== m ‘below‘ p^j && n ‘below‘ p^k

deco p (j+k) (xs ++ ys) = (deco p j xs) * p^k + deco p k ys

<== digits p j xs && digits p k ys .

10



By the sign <== we mean logical implication from right to left; it is not part of
official Haskell.

These properties are verified by structural induction over the lists involved
using the following properties of div and mod (see [6]):

Lemma 33 (x+y) ‘mod‘ z = y ‘mod‘ z <== (x ‘mod‘ z) = 0

(x+y) ‘div‘ z = x ‘div‘ z + y ‘div‘ z <== (x ‘mod‘ z) = 0

(x ‘div‘ p^m) ‘div‘ p^n = x ‘div‘ p^(m+n)

(x ‘mod‘ p^m) ‘mod‘ p^n = x ‘mod‘ p^(min m n)

(x ‘mod‘ p^m) ‘div‘ p^n = (x ‘div‘ p^n) ‘mod‘ p^(max 0 (m-n))

(x ‘div‘ p^m) ‘mod‘ p^n = (x ‘mod‘ p^(m+n)) ‘div‘ p^m

For the latter four properties we have to assume p>0.

4 Development of an Adder

As our first case study we derive a simple adder

add :: Int -> Int -> [Int] -> [Int] .

The first parameter is the base for the number representation, the second the
number of digits we treat. For the specification we assume that the list zs is the
shuffle of the digit lists for the two summands, ie. that digits p (2*k) zs holds.
Then we specify

add p k zs = code p (k+1) (deco p k (evns zs) +

deco p k (odds zs)) .

The length k+1 for the result list serves to accommodate a possible overflow
digit. We illustrate this by a diagram:

Bild

This specification does not yet provide a particular adding algorithm which
could be directly taken as the description of an abstract layout. It clearly sep-
arates “what” from “how” and allows quite different implementations, such as
carry-ripple and carry-lookahead adders. This will be exploited in later stages of
our derivation.

4.1 The Unfold/Fold Strategy

Our first goal is now to derive an inductive (recursive) version of add which does
no longer refer to deco and code and uses only operations on single digits.

The derivation is driven by the recursion structure of the abstraction and
representation functions. It follows a general strategy that can be partly auto-
mated, eg. by transformation tactics in ULTRA and, in the present case, does
not require great amounts of intuition. This classical unfold/fold strategy (see
e.g. [19]) consists pf the following steps:
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• Unfold the definitions of deco and code .
• Simplify and rearrange.
• Fold with the definition of add to get recursive calls.

The derivation follows the case analysis of deco and code.
Case k=0. We calculate:

add p 0 []

= {[ unfold add ]}

code p 1 (deco p 0 [] + deco p 0 [])

= {[ unfold deco, neutrality of 0 ]}

code p 1 0

= {[ unfold code ]}

code p 0 (0 ‘div‘ p) ++ [0 ‘mod‘ p]

= {[ arithmetic and unfold code ]}

[] ++ [0]

= {[ neutrality of [] ]}

[0]

This is the termination case; here the overflow digit is 0.
Case k > 0. We calculate, assuming xs = evns zs and ys = odds zs:

add p (k+1) (zs ++ [x,y])

= {[ unfold add ]}

code p (k+2) (deco p (k+1) (xs ++ [x]) +

deco p (k+1) (ys ++ [y]) )

= {[ unfold deco ]}

code p (k+2) ((deco p k xs)*p + x + (deco p k ys)*p + y )

= {[ arithmetic ]}

code p (k+2) ((deco p k xs + deco p k ys)*p + x + y)

= {[ unfold code ]}

code p (k+1) ((deco p k xs + deco p k ys)*p + x + y) ‘div‘ p)

++ [(deco p k xs + deco p k ys)*p + x + y)*p + x + y) ‘mod‘ p]

= {[ by Lemma 33 ]}

code p (k+1) (deco p k xs + deco p k ys + (x + y) ‘div‘ p)

++ [(x + y) ‘mod‘ p] .

This expression is almost foldable, but because of the additional summand (x +

y) ‘div‘ p we are stuck!
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4.2 Generalization

A strategy that frequently helps when direct folding is not possible is general-
ization. It works in two stages.

• First one introduces additional parameters, which may be completely new
ones or abstractions of constants in the original specification. These constants
may even be “invisible” neutral elements which need to be made explicit first.
• Then one uses the additional degrees of freedom to make the derivation go

through.

The original problem is then solved by instantiating the solution for the gener-
alized problem; this is also known as embedding the original problem into the
generalized one. This strategy is well-known from inductive proofs: there one
frequently needs to generalize the induction hypothesis to make the proof go
through.

In the case of our adder we introduce a parameter for the extra summand
that prevented the folding. The generalized specification reads

cadd p k (xs ++ [c]) =

code p (k+1) (deco p k (evns xs) + deco p k (odds xs) + c)

If one wishes to interpret this, then the new parameter c is the carry. But note
that it has been introduced purely formally, ”without thinking”, as part of the
generalization strategy! In fact, this strategy can again be partly automated.

The original problem is retrieved via the embedding

add p k xs = cadd p k (xs ++ [0])

Now we can replay the derivation for cadd. This results in

cadd p 0 [c] = [c]

cadd p (k+1) (xs ++ [x,y,c]) =

cadd p k (xs ++ [(x+y+c) ‘div‘ p]) ++ [(x+y+c) ‘mod‘ p]

We need to ensure that the expression (x+y+c) ‘div‘ p always yields a proper
digit. The maximal values for x and y are p-1. In this case we have gfx+y+c
= p + (p+c-2) so that the quotient by p is at least 1. Since 1 is the only
digit that exists in all number systems, notably the binary system, we have to
guarantee that the quotient does not exceed 1. Hence we need the additional
assertion c ‘below‘ 2. Fortunately, this assertion is preserved as an invariant
of the recursion, ie. if it holds for c it also holds for the new carry (x+y+c) ‘div‘

p. We forego a formal treatment of assertions here and refer to [15] instead.

4.3 Modularization

The resulting expression for the recursive case is very complex. We structure it
by packing the two expressions for the last digit and the new carry in cadd into
a function fa defined by
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fa p [x,y,c] = [(x+y+c) ‘div‘ p, (x+y+c) ‘mod‘ p] .

Bild

Of course, fa is the full adder function. But note again that this is introduced
purely formally!

Now we may use splicing (cf. Section 2.2) to obtain

cadd p (k+1) = splice (2*k) (cadd p k) (fa p) .

Bild

For fixed n we may now unwind the recursion to obtain the well-known
regular design of the carry ripple adder:

Bild

The associativity of splicing is essential here; it allows this ”parenthesis-free”
graphical layout.

Based on the decomposition properties for code and deco we can also show
a decomposition property for cadd :

Lemma 41 cadd p (k+m) = splice (2*k) (cadd p k) (cadd p m)

Bild

Proof. Consider a list zs ++ zs’ ++ [c] with length zs = 2*k and length

zs’ = 2*m and set

xs = evns zs, ys = odds zs,

xs’ = evns zs’, ys’ = odds zs’ .

Then we calculate

cadd p (k+m) (zs ++ zs’ ++ [c])

= {[ unfold cadd ]}

code p (k+m+1) (deco p (k+m) (xs ++ xs’) +

deco p (k+m) (ys ++ ys’) + c)
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= {[ by Lemma 32 ]}

code p (k+m+1) ((deco p k xs) * p^m + deco p m xs’ +

(deco p k ys) * p^m + deco p m ys’ + c)

= {[ arithmetic ]}

code p (k+m+1) ((deco p k xs + deco p k ys + d) * p^m + r)

where(d,r) = (z ‘div‘p^m, z ‘mod‘ p^m)

z = deco p m xs’ + deco p m ys’ + c

= {[ by Lemma 32 ]}

code p (k+1) (deco p k xs + deco p k ys + d) ++

code p m r

where(d,r) = (z ‘div‘p^m, z ‘mod‘ p^m)

z = deco p m xs’ + deco p m ys’ + c

= {[ fold code ]}

code p (k+1)(deco p k xs + deco p k ys + d) ++ us

where (d:us) = codep (m+1)

(deco p m xs’ + deco p m ys’ + c)

= {[ fold cadd ]}

cadd p k (xs ++ ys ++ [d] ++ us)

where (d:us) = cadd p m (xs’ ++ ys’ ++ [c])

= {[ fold splice ]}

splice (2*k) (cadd p k) (cadd p m) (zs ++ zs’++ [c]) .

ut

Note that this proof has been performed at the specification level and hence
holds for all correct implementations, not just the carry ripple adder! This allows
modular decomposition of large adders into smaller ones, say 4-bit modules,
which may even be heterogeneous. Again the associativity of splicing is essential
here.

Since decomposition holds for all implementations, we may even use combi-
nations of various adders, e.g. a (carry ripple) splicing of 4-bit carry lookahead
adders (see below).

Here we have a typical combination of parametrization and modularization.

It should also be noted that we have

fa p [x,y,c] = cadd p 1 [x,y,c]

so that the carry ripple design can also be seen as the result of an iterated
application of Lemma 6.1.
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4.4 Abstraction

We now review the derivation to find the algebraic laws that were used in it. We
abstract from the particular case of addition and define a general function

digrep :: (Int -> Int -> [Int] -> [Int]) ->

Int -> Int -> [Int] -> [Int] .

The idea is that, given a function f :: Int -> Int -> [Int] -> [Int], the
module digrep f p k (zs ++ [c]) computes a p-adic representation of the
value of f on the shuffled digit representation zs of two natural numbers and a
“carry” c . Again, p is the base and k the number of digits we treat. The function
f takes into account the base p and number k of digits and uses a list consisting
of two “proper” arguments and a “carry”. Assuming that digits p (2*k + 1)

(zs ++ [c]) holds, we specify

digrep f p k (zs ++ [c]) =

f p k [deco p k (evns zs), deco p k (odds zs), c] .

To retrieve the adder function, we have to set, for m,n ‘below‘ p^k,

f p k [m,n,c] = code p (k+1) (m+n+c) . (*)

For the base case k=0 we calculate

digrep f p 0 [c]

= {[ unfold digrep ]}

f p 0 [deco p 0 [], deco p 0 [], c]

= {[ unfold deco ]}

f p 0 [0, 0, c] .

For the inductive case we could now also replay the derivation of cadd for digrep.
However, as the remark at the end of Section 4.3 shows, it is more advantageous
to head for a decomposition property of digrep. By analyzing the proof of
Lemma 41 we can find a sufficient condition on f that makes the proof go
through in general. Following [9] we call f factorizable if

f p (j+k) [m*p^k+q, n*p^k+r, c] =

splice 2 (f j) (f p k) [m,n,q,r,c]

holds for all natural numbers j,k,m,n,p,q,r. Now Lemma reflm:spliceadd gen-
eralizes to

Theorem 42 (Factorization Theorem) Let f be factorizable. Then

digrep f p (k+m) =

splice (2*k) (digrep f p k) (digrep f p m) .
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Proof.digrep f p (k+m) (zs ++ zs’ ++ [c])

= {[ unfold digrep ]}

f p (k+m) [deco p (k+m) (xs++xs’),

deco p (k+m) (ys++ys’), c]

= {[ unfold deco ]}

f p (k+m) [(deco p k xs)*p^m + deco p m xs’,

(deco p k ys)*p^m + deco p m ys’, c]

= {[ factorizability ]}

splice 2 (f p k) (f p m) [deco p k xs, deco p k ys,

deco p m xs’, deco p m ys’, c]

= {[ unfold splice ]}

f p k [deco p k xs, deco p k ys, d] ++ us

where (d:us) = f p m [deco p m xs’, deco p m ys’, c]

= {[ fold digrep twice ]}

digrep f p k (zs ++ [d]) ++ us

where (d:us) = digrep f p m (zs’++[c])

= {[ fold splice ]}

splice (2*k) (digrep f p k) (digrep f p m)

(zs ++ zs’ ++ [c]) .

ut

This is in fact Hanna’s Factorization Theorem (see again [9]), which gives
a general scheme for correct implementations of iterative arithmetic circuits.
The proof of Lemma 41 contains a section which uses Lemma 32 to show that
(*) above defines a factorizable f; the remainder is isomorphic to the proof of
Theorem 42.

Using this theorem and the fact that digrep f p 1 = f p 1 we can unwind
digrep f p k into a regular layout:

Corollary 43 For k > 0 we have

digrep f p k = foldr1 (splice 2) (copy k (f p 1)) .

Here we use the standard Haskell function copy. The expression copy k x pro-
duces a list consisting of k copies of x.

Another instance of digrep is a comparator circuit, described by

digrep f p k where f p k [m,n,c] = [eq m n /\ c] . (**)

Here,

eq m n = if m == n then 1 else 0 and b /\ c = b*c ,
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so that we have numerical representations of the usual Boolean operations. It is
straightforward to show that the function f in (**) is indeed factorizable. To
obtain a comparator circuit, we have to instantiate c appropriately, viz. by the
neutral element 1 of /\, and to unwind the specification using the Factorization
Theorem. This results in

Bild

5 Successor (Counting)

Next we want to derive a counter circuit, ie. an implementation of the successor
function on digit representations. The specification reads

succ :: Int -> Int -> [Int] -> [Int]

succ p k xs = code p (k+1) (deco p k xs + 1)

This is quite similar to the adder specification. We therefore try to re-use the
adder design. Formally we need to reduce succ to add; this is done by making
the hidden neutral element 0 of addition visible so that we have a second operand
for addition. We calculate:

succ p k xs

= {[ unfold succ ]}

code p (k+1) (deco p k xs + 1)

= {[ neutrality of 0 ]}

code p (k+1) (deco p k xs + 0 + 1)

= {[ fold deco ]}

code p (k+1) (deco p k xs + deco p k (copy k 0) + 1)

= {[ fold cadd ]}

cadd p k (shuf k (xs ++ copy k 0) ++ [1]) .

Although this is a first correct implementation, it is too inefficient. The fact that
in the unwound version we have calls of the form fa [x,0,c] may be used to
simplify the design. Define an auxiliary function

ha [x,c] = fa [x,0,c] = [(x+c) ‘div‘ p , (x+c) ‘mod‘ p]

Of course, ha is the half adder function. But again it has been introduced purely
formally.

The simplified design looks as follows:
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6 Specialization: Base 2

For p=2 we obtain the usual representations

ha 2 [x,c] = [x /\ c, x >< c]

fa 2 [x,y,c] = [ d \/ e, z]

where [d,u] = ha 2 [x,y]

[e,z] = ha 2 [u,c]

Bild

Here, /\, \/ and >< are again the arithmetic representations of the Boolean
operations on base 2 digits with >< denoting exclusive or.

7 The Carry Lookahead Adder

It is well known that the carry ripple adder is time-inefficient, since the length
of the longest path through the design (along which the carries ripple) is propor-
tional to the number of digits processed. So there have been various proposals to
speed up the carry computation. One idea is to compute the carries in parallel
with the sums; this leads to the carry lookahead adder which we want to derive
formally now.

Let the modules in the carry ripple adder be numbered from the right starting
with 0 and let x i, y i and c i be the i-th input digits and carries (where c 0

is some given value). DA From the carry ripple design we read off the recurrence
equation

c (i+1) = (p i /\ c i) \/ g i where

(g i, p i) = (x i /\ y i , x i >< y i ) .

By usual techniques for solving recurrences we obtain a closed form for the
carries:

c (i+1) =

foldr1 (\/)[ ( foldr1 (/\) [ p k | k <- [j+1..i] ) /\ g j |

j <- [-1..i] ]

where g (-1) = c 0 .
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Here foldr1 is a predefined Haskell function which takes a binary operator and
a non-empty list and combines all list elements by that operator, associating
them to the right.

For reasons of space we draw the picture of the carry lookahead computation
only for 3 digits:

Bild

Using this form of carry computation results in a circuit in which the path
length is independent of the number of digits processed. This gain is bought
at the expense of fan-in proportional to the number of digits. So for electrical
reasons this design is meaningful only for small numbers of digits, say 4 or 8. But
from our above decomposition property we know that we may connect several
carry lookahead adders in a carry ripple fashion to obtain a correct adder which
will then be faster by a factor 4 or 8 than the original pure carry ripple adder.

8 More About Wiring

So far we have mostly described connections using the rubber view of wires
(”logical connection”). We now sketch how to step from the logical connection
to a topology with rigid wires, crossings and fan-out.

Note, however, that many approaches start at this level and have to carry the
complications of wiring all through the derivation. This is tedious and obscures
the essential steps.

8.1 Basic Wiring Elements

The basic wiring elements are a straight wire, modeled by the identity function,
the fan-out of degree 2 (fork), the crossing (swap) and the sink:

id [x] = [x]

fork [x] = [x,x]

swap [x,y] = [y,x]

sink [x] = []

Bild

These operations are extended to wire bundles:

bfork m n xs

| length xs == n = foldr (++) [] (copy m xs)

-- undefined otherwise
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Bild

bswap m n xs

| length xs == n = drop m xs ++ take m xs

-- undefined otherwise

Bild

The identity id is predefined polymorphically by id y = y and hence does
not need to be extended to wire bundles. The sink can be handled by setting
generally sink xs = []. We will discuss other versions later.

Finally, we have the invisible module ide with 0 inputs and 0 outputs:

ide [] = []

8.2 Sequential and Parallel Composition

Sequential composition simply is reverse function composition. We are a bit
sloppy here about the arities of the functions; this has again to do with the
already mentioned absence of tuples as first-class citizens.

(f |> g) xs = g (f xs)

Bild

For parallel composition we need to supply the respective operator with the
number of k inputs to be routed to the left module; the remaining ones are
routed to the right module.

par k f g xs = f (take k xs) ++ g (drop k xs)

By the definition of take and drop this works also if k > length xs: in that
case f gets the full list xs whereas g only gets the empty list []. Here is the
diagram for par k f g:

Bild

Conventional polymorphism is too weak to model parallel composition more
adequately. To avoid the necessity of uniformly typing all list element one would
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need an extension to “tuples as first-class citizens” with concatenation of tuple
types and also of tuples as primitive operations. However, this might lead to
problems with automatic type checking. Therefore we have chosen the simple
approach above.

We abbreviate par 1 by the infix operator |||.

8.3 Basic Laws (Network Algebra I)

All semantic models for graph-like networks should enjoy a number of natural
properties which reflect the abstraction that lies in the graph view. A systematic
account of these properties has been given in [21].

Associativity:

f |> (g |> h) = (f |> g) |> h

par (m+k) (par m f g) h = par m f (par k g h)

Abiding Law I:

par m (f |> g) (h |> k) = (par m f h) |> (par n g k)

where n is the output arity of f and the input arity of g.

Bild

Neutrality:

id |> f = f = f |> id

par m f ide = f = par 0 ide f

Idempotence:

swap |> swap = id

Whereas associativity and abiding just allow ”parenthesis-free layouts”, use of
neutrality or idempotence means simplification/complexification of abstract lay-
outs.

8.4 Selection

Using parallel composition we can now give alternative definitions for block
identity and sink:

bid n = foldr1 (|||) (copy n id)

Bild
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bsink n = foldr1 (|||) (copy n sink)

Bild

Based on this we define selection nets:

sel n i j =

par i (bsink i) (parj (bid j) (bsink (n-j-i)))

for 0 <= i <= n and 0 <= j <= (n-i).

Bild

We have the following fusion rule:

(bfork 2 n) |> par n (sel n i j) (sel n (i+j) k) =

sel n i (j+k) .

8.5 Recursions for the Bundle Operations

Using sequential and parallel composition we can reduce the bundle operations
to the primitives.

Example 81 The bundle operation bswap m n swaps its first m inputs with the
following n ones. It is defined by the equations

bswap m 0 = ide

bswap 0 n = id

bswap 1 1 = swap

bswap k (k+m+n) = par (k+m) (bswap k (k+m)) (bid n) |>

par m (bid m) (bswap k (k+n))

ut

Bild

9 Combinator Abstraction

We have already discussed the need to pass from rubber wiring to rigid wiring.
Formally this is achieved by eliminating all formal parameters from functional
expressions in favour of parallel and sequential composition and the basic wiring
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elements. This is analogous to the process of λ-abstraction in combinatory logic
(see eg. [1]). Therefore we term this operation combinator abstraction. For its
definition, we need the list ID E of the formal parameters occurring in expression
E. This list is organized in textual order of appearance of the parameters and
kept repetition free.

Suppose now an expression E all formal parameters of which occur in the
repetition free list [x0,...,xn-1]. Then the combinator abstraction CA E of E
is defined by induction over the structure of E.

CA [xi] = sel n i 1

CA f = \xs -> [ f (xs!!0) ... (xs!!(k-1))]

if f :: t0 -> ... tk-1 -> t

CA (f E1 ... Em) =

(CA (E1 ++ ... ++ Em)) |> CA f

CA (E1 ++ ... ++ Em) =

bfork m n |> (CA E1 ||| ... ||| CA Em)

Example 91 CA ([x /\ y] ++ [y >< x]) =

bfork 2 2 |> (bfork 2 2 |> ((sel 0 1 ||| sel 1 1) |> CA /\) |||

bfork 2 2 |> ((sel 1 1 ||| sel 0 1) |> CA ><)) ) .

Bild

This can, of course be simplified to

bfork 2 2 |> ((bid 2 |> CA /\) ||| (swap |> CA ><)) .

Bild

ut

The basic rules above lead to circuits involving very high fan-outs. More
refined rules avoid this, e.g.

CA (E1 ++ ... ++ En) = CA E1 ||| ... ||| CA En

if ID [E1,...,En] = ID E1 ++ ... ++ ID En, ie. if the sublists of formal pa-
rameters are disjoint and in order.

The situation can often be improved using swaps .

Example 92 We have

CA f (g [y,z] ++ [x]) = bfork 2 |> (g ||| sel 3 0 1) |> f

A simpler version is
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CA f (swap ([x] ++ g [x,y])) =

(fork ||| id ) |> (id ||| g) |> swap |> f

Bild

ut

10 A Further Example: Shuffling

Recall the specification of the shuffle operation from Section 4.2:

(shuf k xs) !! (2*i) = x !! i

(shuf k xs) !! (2*i+1) = x !! (k+i)

for length xs == 2*k and i <- [0..k-1].
Some calculation yields the following inductive version:

shuf 0 = id

shuf 1 = id

shuf (k+1) =

(par 1 id (par k (cshiftl k) id) ) |> ( par 2 id (shuf k))

cshiftl k = foldr1 (splice 2) (copy k swap)

Bild

For further details on wiring we refer to [10, 18].
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Part II: Sequential Hardware

11 A Model of Streams

A frequently used model of sequential hardware is that of stream transformers.
Streams are used to model the temporal succession of values on the connection
wires, whereas the modules are functions from (bundles of) input streams to
(bundles of ) output streams.

In this paper we deal with discrete time only. Even this leaves several options
how to represent streams. One possibility would be to define

type Stream a = [a]

Since Haskell employs a lazy semantics, this allows finite as well as infinite
streams. Time remains implicit, but can be introduced using the list indexing
operation (!!).

We use a version which explicitly refers to time:

type Time = Int

type Stream a = Time -> a

This will carry over easily to real time. On the other hand, this does not directly
support finite streams. They have to be modeled by functions that become even-
tually constant, preferably yielding only the pseudo-value undefined after the
“proper” finite part.

We will use partial definitions also to “cut off” negative time points. To this
end we define

nonneg :: (Time -> a) -> Stream a

nonneg f t

| t >= 0 = f t

So nonneg f is a stream that is undefined for negative time points (ie. enforces
the assertion t >= 0) and on nonnegative time points agrees with f .



12 Networks

Again we model bundles of inputs and outputs by lists, this time of streams.
By polymorphism we can re-use all our connection primitives, such as |>, par,
fork, swap and splice and their laws for stream transformers.

Our diagrams will now be drawn sideways:

Bild

The input/output streams are numbered from bottom to top in the respective
lists.

12.1 Lifting and Constant

To establish the connection with combinational circuits we need to iterate their
behaviour in time. To this end we introduce liftings of operations on data to
streams. A ”unary” operation takes a singleton list of input data and produces
a singleton list of output data. This is lifted to a function from a singleton list
of input streams to a singleton list of output streams. It is the analogue of the
apply-to-all operation map on lists. We define

lift1 :: (a -> b) -> [Stream a] -> [Stream b]

lift1 f [d] = [\t -> f (d t)]

Alternatively, since streams are functions themselves, the lifting may also be
expressed using function composition:

lift1 f [d] = [f.d]

Similarly, we have for binary operations

lift2 :: (a -> a -> b) -> [Stream a] -> [Stream b]

lift2 g [d,e] = [\t -> g (d t) (e t)]

Bild

The inscriptions of the boxes follow notationally the view of infinite streams
of functions used in [16].

Another useful building block is a module that emits a constant output
stream. For convenience we endow it with a (useless) input stream. So this
module actually is a combination of a sink and a source. We define

cnst :: a -> [Stream b] -> [Stream a]

cnst x = lift1 (const x)
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Here const is a predefined Haskell function that produces a constant unary
function from a value.

12.2 Initialized Unit Delay

To model memory of the simplest kind we use a unit delay module. Other delays
such as inertial delay or transport delay can be modeled similarly. For a value x

the stream transformer (x #) shifts its input stream by one time unit; at time
0 it emits x as the initial value:

(#) :: a -> [Stream a] -> [Stream a]

(x # [d]) = [e]

where e t | t == 0 = x

| t > 0 = d (t-1)

Bild

We now state laws for pushing delays through larger networks. They allow
for each circuit constructor to shift delay elements from the input side to the
output side or vice versa under suitable change of the initialization value. These
laws are used centrally in our treatment of systolic circuits.

Lemma 121 (Delay Propagation Rules) If f is strict, ie. is undefined when-
ever its argument is, then

(x#) |> lift1 f = lift1 f |> ((f x) #)

If g is doubly strict, ie. is undefined whenever both its argument are, then

((x#) ||| (y#)) |> lift2 g = lift2 g |> ((g x y)#)

Moreover,

(x#) |> cnst y = cnst y |> (y#)

((x#) ||| (y#)) |> swap = swap |> ((y#) ||| (x#))

(x#) |> fork = fork |> ((x#) ||| (x#))

These rules can be given in pictorial form as

Bild

For propagation through |> and ||| we may use associativity of |> and
the abiding law. These simple laws are quite effective as will be seen in later
examples.
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13 Example: The Single Pulser

To show our algebra at work we will treat a single pulser as our first example.

IFIP? The informal specification requires it to emit a unit pulse whenever a
pulse starts in its input stream.

13.1 Formal Specification

We model this by a transformer of streams of Booleans. A pulse is a maximal
time interval on which a stream is constantly True. First we characterize those
time points at which a pulse starts formally by

startPulse :: Stream Bool -> Time -> Bool

startPulse d t = d t && ( t==0 || not(d (t-1) )

Note that by Time -> Bool = Stream Bool we may view startPulse also as
a stream transformer.

Now we can give the formal specification of the pulser:

pulser [d] = [ \t -> startPulse d t ] , ie.

pulser [d] = [ startPulse d ]

13.2 Derivation of a Pulser Circuit

For t = 0 we calculate

startPulse d 0

= {[ unfold startPulse ]}

d 0 && ( 0==0 || not (d (0-1) )

= {[ Boolean algebra ]}

d 0 .

For t > 0 we have

startPulse d t

= {[ unfold startPulse ]}

d t && ( t==0 || not (d (t-1) )

= {[ t > 0 and Boolean algebra ]}

d t && not (d (t-1))

= {[ fold # ]}

d t && not ((x # d) t) .

for arbitrary x. Now we try to choose the initialization value x such that
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startPulse d t = d t && not ((x # d) 0)

holds also for t=0, ie.

d 0 = d 0 && not x .

This is satisfied for all values d 0 iff x = False.

Now combinator abstraction yields

pulser = fork |> ( id ||| ((False #) |> lift1(not)) )

|> lift2 (&&) .

Bild

14 Feedback

For describing systems with memory we need another essential ingredient. It is
the very general concept of feeding back some outputs of a module as inputs
again. This allows, in particular, the preservation of a value for an arbitrary
period, ie. storing of values.

14.1 The Feedback Operation

Given a module f :: [a] -> [a] the module feed k f results from f by feed-
ing back the last k outputs to the last k inputs:

feed :: Int -> ([a] -> [a]) -> ([a] -> [a])

feed k f xs = codrop k ys

where ys = f (xs ++ cotake k ys)

cotake n xs = drop (length xs - n) xs

codrop n xs = take (length xs - n) xs

Bild

Note the recursive definition of ys which reflects the flowing back of infor-
mation. This recursion is well-defined by the lazy semantics of Haskell.
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14.2 Properties of Feedback (Network Algebra II)

The feedback operation enjoys a number of algebraic laws which show that it
models the rubber wire abstraction correctly. For a systematic exposition see
again [21].

Stretching wires:

f |> feed k g |> h = feed k ((f ||| id) |> g |>

(h ||| id) )

Bild

Abiding law II:

feed k f ||| g = feed k (f ||| g)

Bild

Shifting a module:

feed k (f |> (id ||| g)) = feed k ((id ||| g) |> f)

Bild

15 Interconnection (Mutual Feedback)

In more complex designs it may be convenient to picture a module f with inputs
and outputs distributed to both sides:

Bild

We want to compose two such functions to model interconnection of the
respective modules. To this end we introduce

connect :: Int -> Int -> Int -> [Stream a ] -> [Stream a ]

The three Int-parameters in connect k m n f g are used similarly as for splic-
ing: they indicate that k inputs are supposed to come from the left neighbour of
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f, that m wires lead from f to g, and that n outputs go to the right neighbour
of g.

Bild

We define therefore

connect k m n f g xs = take n zs ++ drop m ys

where ys = f (take k xs ++ drop n zs)

zs = g (take m ys ++ drop k xs) .

This involves a mutually recursive definition of ys and zs which again is well-
defined by the lazy Haskell semantics.

Lemma 151 Interconnection is associative in the following sense:

connect k n p (connect k m n f g ) h =

connect k m n f (connect k m p g h)

Moreover,, connect has the identity id as its neutral element.

Two interesting special cases are

f =||= g = connect 1 1 1 f g

Bild

and

f =| g = connect 1 1 0 f g

Bild

The symbols have been chosen such that they indicate the places of the
external wires of the resulting circuits: whereas f =||= g has external wires on
the left and on the right, f =| g has them only on the left. The operator =||= is
also known as mutual feedback ⊗ (see eg. [2]). The corresponding network can
be depicted as

Bild

Using a suitable torsion of the network we can relate interconnection to
feedback:
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f1 =||= f2 =

feed 1 ( (id ||| swap) |> (f1 ||| id) |> (id ||| swap) |>

(f2 ||| id) |> (id ||| swap) )

Bild

With the help of this connection, the proof of the above lemma can be given
using purely the laws of network algebra. Hence the lemma is valid for all models
of network algebra, not just our particular one.

16 A Convolver

We want to tackle a somewhat more involved example now. In particular, we
want to prepare the way to systolic circuits.

A non-programmable convolver of degree n uses n fixed weights to compute
at each time point t >= n the convolution of its previous n inputs by these
weights. Mathematically, the convolution is defined as

n∑
i=1

wn−i ∗ d(t− i) ,

where d is the input stream and the wj are the weights. Convolution is used in
digital filters.

16.1 Specification

Using list comprehension, the above mathematical definition can be directly
transcribed into a Haskell specification. For convenience we collect the weights
also into a stream w. Then the convolver is specified by

conv :: Stream Int -> Int -> [Stream Int] -> [Stream Int]

conv w n d =

[ \t -> if t < n then undefined

else sum [ w (n-i) * d (t-i) | i <- [1..n] ] ]

It should be clear that the problem generalizes to arbitrary compositions of fold
and apply-to-all operations. Since we have taken such an abstraction step already
in Section 6.4, we do not want to repeat this here.

16.2 About Error Handling

We have not used nonneg here but rather modeled non-initialization by the
pseudo-value undefined. However, the only essential assumption about undefined
is the strictness property x + undefined = undefined. This could also be achieved
by introducing an additional error element using Haskell’s facilities for defining
variant record types and adapting addition accordingly:
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data Error a = Proper a | Err

instance Num a => Num (Error a) where

Proper x + Proper y = Proper (x+y)

_ + _ = Err

Similarly definitions would be given for the other arithmetic operations. Since
this is somewhat cumbersome, though, we have chosen the above method.

16.3 Derivation of a Convolver Circuit

We now want to derive from the formal specification a regular layout described,
as in the case of the adder, by a recursion. The obvious parameter to drive the
recursion is the number n of terms in the sum, since the summation function
is defined recursively itself and we can carry over its recursion structure to the
convolver circuit.

The base case is n = 0. For t >= 0 and [e] = conv w 0 d we calculate

e t

= {[ specification of e ]}

sum [ w (0-i) * d (t-i) | i <- [1..0] ]

= {[ definition of intervals ]}

sum [ w (0-i) * d (t-i) | i <- [] ]

= {[ definition of list comprehension ]}

sum []

= {[ definition of sum ]}

0

Hence conv 0 = cnst 0 with cnst defined as in Section 12.1.
We now perform the induction step. For t >= n+1 and [e] = conv w (n+1)

d we obtain

e t

= {[ specification of e ]}

sum [ w (n+1-i) * d (t-i) | i <- [1..n+1] ]

= {[ spliting the interval, definition of sum ]}

w n * d (t-1) + sum [ w (n+1-i) * d (t-i) | i <- [2..n+1] ]

= {[ index transformation ]}

w n * d (t-1) + sum [ w (n+1-(j+1)) * d (t-(j+1)) | j <- [1..n] ]

= w n * d (t-1) + sum [ w (n-j) * d (t-1-j) | j <- [1..n] ]

= {[ fold conv ]}
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w n * d (t-1) + c (t-1)

where [c] = conv w n d .

Now combinator abstraction yields

conv w (n+1) = (cell w n) =| (conv w n)

cell w k [li,ri] =

[undefined # lift2(+) (lift1 ((w k) *) [li], [ri]), li]

Here the expression ((w k) *) is a so-called operator section of Haskell. It
denotes the residual function that remains when the operator * is supplied with
a fixed first argument while the second one still kept variable. Using λ-notation
we have the equivalence

((w k) *) = \y -> (w k) * y

Although the parentheses in the right hand side expression are not required by
the Haskell syntax we have added them for clarity.

Our recursive formation law for the basic convolver can be depicted as follows:

Bild

16.4 Unwinding the recursion

For fixed n > 0 we obtain again a regular design:

conv w n = (foldr1 (=||=) [ cell w k | k <- [1..n] ]) =| cnst 0

After simplification of the rightmost cell this yields

Bild

16.5 Towards a Systolic Version

A circuit is combinational if it uses only lifted operations and sequential or
parallel composition. In a clocked circuit, the clock period is determined by the
stabilization time of the circuit which depends on its longest combinational path.

In systolic circuits one tries to minimize the clock period by making the
combinational modules involved quite small. Then the clock period can be kept
relatively short, namely it can be taken as the maximum of the stabilization
times of the combinational submodules involved. Since there is, however, no
general rule for calling a combinational module “small” the precise definition of
systolism avoids sich a notion. Rather, a circuit is called systolic (cf. [13, 14, 7])
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if there is at least one delay element along every connection wire between any of
its combinational modules. A related but somwhat different notion of systolism
is used in the field of massively parallel systems; however, there no explicit delay
elements are employed.

We want to obtain a systolic version of our convolver. Hence we have to
introduce additional delay elements.

17 Speedup by Slowdown

The technique to introduce delays formally is slowdown (see e.g. [13, 14, 12]).
The k-fold slowed down version of a circuit works on k interleaved streams. So
each of these is processed at rate k slower than in the original circuit.

17.1 Interleaved Streams

To talk about the component streams of such a ”multistream” we introduce

split k j d t = d (k*t + j) .

So split k j d is the j-th of the k component streams where numbering starts
with 0 again. Eg. split 2 0 d and split 2 1 d consist of the values in d at
even and odd time points, respectively. Then d can be considered as an alter-
nating interleaving of these.

The following properties of split are useful for proving the slowdown prop-
agation rules below:

Lemma 171 We have

(x#) |> split k 0 = (split k (k-1)) |> (x#)

(x#) |> split k j = split k (j-1) (0 < j < n)

To interleave k streams from a list we use

ileave k ss t = (ss !! (t ‘mod‘ k))(t ‘div‘ k)

Provided that length ss >= k, we have

split k j (ileave k ss) = ss !! j .

A special case is the interleaving of k copies of the same stream:

rep k d = ileave k (copy k d) .

The above property yields

split k j (rep k d) = d .
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17.2 The Slowdown Function

Now the slowdown function is specified implicitly by

(slow k f ) |> split k j = (split k j) |> f .

Here f is an arbitrary function on streams, not just a lifted unary operation.
In particular, f may look at all the history of a stream. By this definition,
slow k f s may be considered as splitting s into k substreams, processing these
individually with f and interleaving the result streams back into one stream.
From the specification the following proof principle is evident:

Lemma 172 If for a function h and all j in [1..k] we have

h |> split k j = (split k j) |> f

then h = slow k f.

For easier manipulation we want to obtain an explicit version of slow . Since
by definition of split

split k j (slow k f s) t’ = slow k f s (k*t’ + j) (*)

we have conversely

slow k f s t

= {[ definition of ‘div‘ and ‘mod‘ ]}

slow k f s (k*(t ‘div‘ k) + t ‘mod‘ k)

= {[ by (*) ]}

split k (t ‘mod‘ k) (slow k f s) (t ‘div‘ k)

= {[ specification of slow ]}

f (split k (t ‘mod‘ k) s) (t ‘div‘ k) .

In sum,

slow k f s t = f (split k (t ‘mod‘ k) s) (t ‘div‘ k) .

17.3 Slowdown Algebra

The function slow distributes nicely through our circuit building operators, as
stated by the following

Lemma 173 slow k (x #) = foldr (|>) id (copy k (x #))

slow k (cnst x) = cnst x

slow k (f |> g) = slow k f |> slow k g

slow k (f ||| g) = slow k f ||| slow k g

slow k (f =||= g) = slow k f =||= slow k g

slow k (f =| g) = slow k f =| slow k g

slow k (feed m f) = feed m (slow k f)
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This means that the k-fold slowed down version of a circuit results by replac-
ing each delay element by k identical delay elements. A further useful propagation
law for slow is given by

Lemma 174 Suppose that (x#) |> f = f |> (y#). Then also

(x#) |> slow k f = (slow k f) |> (y#) .

18 A Systolic Convolver: The 2-Slow Convolver

Using k-fold slowdown we can interleave k computations or pad streams with
dummy elements by merging the stream proper with a constant stream of dum-
mies. The latter approach is usually taken in verification approaches to the
systolic convolver: only the stream values at odd time points are of interest; at
even time points the value 0 is used.

We want to derive a systolic convolver. We leave the decision whether to use
proper interleaving or padding open; both can be achieved by suitable embed-
dings of the original conv function into the slowed down one defined by

sconv n = slow 2 (conv n) .

Now, employing the delay propagation rules, we push the second delay intro-
duced by the slowdown through the various modules. We perform the derivation
pictorially:

The step of pushing the delay through sconv w n is justified by Lemma 174.
Unwinding the recursion again we obtain a regular systolic design:

sconv w n =

(foldr1 (=||=) [scell w k | k <- [1..n]]) =| cnst 0

scell w k [li,ri] =

[undefined # lift2 (+) (lift1 ((w k) *)[bli], [ri]), bli]

where bli = undefined # li

Bild

This simplifies into

Bild

Of course, the techniques we have developed do not only apply to the con-
volver, but are of general interest for the derivation of systolic implementations
of circuits. As a further case study, a systolic recognizer for regular expressions
is developed in [17].

comparison with verif approaches
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19 Pipelining

As a final example we want to leave the level of circuits and step up to questions
about microprocessor architectures. To exemplify our approach there we give a
brief account of the essence of pipelining.

Let a be a set of instruction addresses, i a set of instructions and s a set of
machine states. Assume, moreover, a function

fetch :: a -> s -> i

that obtains the instruction stored under an address in the current state and a
function

exe :: i -> s -> s

for executing an instruction in a state to yield a new state. Then the fetch/execute-
cycle of a machine can be defined by the function

run :: [a] -> s -> s

run [] q = q

run (x : xs) q = run xs (exe (fetch x q) q)

We now want to uncouple the fetch and execute phases so that they can be done
in parallel. This is done by a suitable embedding into a function which has as
parameters an instruction to be performed currently and a list of addresses of
further instructions:

pipe :: [a] -> i -> s -> s

pipe xs j q = run xs (exe j q)

The original function run is reduced to pipe by the equations

run [] q = q

-- pipeline exhausted

run (x : xs) = pipe xs (fetch x q) q

-- put 1st instruction into pipeline and run that

The goal is now again a version of pipe that is independent of run.
As the termination case we obtain

pipe [] j q = exe j q .

To derive the recursive case we need the central assumption for the correct-
ness of the version of pipelining we treat here. We stipulate that execution of an
instruction does not change the contents of the program memory. This means
that the program has to be kept in a part of the memory that is administered
in a read-only fashion. This assumption can be expressed formally as

fetch a (exe j q) = fetch a q (*)

for all a,j,q. With this assumption we calculate
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pipe (x : xs) j q

= {[ unfold pipe ]}

run (x : xs) (exe j q)

= {[ unfold run ]}

run xs (exe (fetch x q’) q’)

where q’ = exe j q

= {[ by (*) ]}

run xs (exe (fetch x q) q’)

where q’ = exe j q

= {[ fold pipe ]}

pipe xs (fetch x q) (exe j q) .

This means that fetching the next instruction can be done in parallel with exe-
cuting the current one.

Note that the derivation is completely polymorphic; no assumptions are made
about the types a, s and i. The only assumption is the validity of equation (*).
In particular, the transformation can be iterated to obtain pipelines with several
stages if exe can be decomposed into further subfunctions.

reference to Börger

20 Summary

expand

We have seen a number of essential ingredients of deductive hardware design:

• algebraic reasoning,
• parameterization,
• modularization,
• re-use of designs and derivations,
• precise determination of initialization values.

Further elaboration of this approach will mainly concern design in the large,
asynchronous systems and other notions of time.

Acknowledgement: Many helpful remarks on this paper were provided by F.K.
Hanna, J. Philipps, P. Scholz and G. Ştefănescu.
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Appendix: Essential Constructs of Haskell

20.1 Basic Types and Functions

For those not familiar with Haskell, we briefly repeat its essential elements. Basic
types are Int for the integers and Bool for the Booleans with elements True and
False. The operations of conjunction and disjunction are denoted by && and ||,
resp. These are the semi-strict versions evaluating their arguments from left to
right, ie. satisfying

x && y = if x then y else False

x || y = if x then True else y

The type of functions taking elements of type a as arguments and producing
elements of type b as results is a -> b. The fact that a function f has this type
is expressed as f :: a -> b.

Function application is denoted by juxtaposing function and argument, sep-
arated by at least one blank, in the form f x. Functions of several arguments
are mostly used in curried form f x1 x2 ... xn. In this case f has the higher-
order type f :: t1 -> (t2 -> ... (tn -> t) ...) or, abbreviated, f :: t1

-> t2 -> ... tn -> t (the arrow -> associates to the right, whereas function
application associates to the left).

Functions are defined by equations of the form f x = E or as (anonymous)
lambda abstractions. Instead of λx.E one uses the notation \x -> E.

A two-place function f :: a -> b -> c may also be used as an infix op-
erator in the form x ‘f‘ y; this is equivalent to the usual application f x y.
Consider now some binary operator ?. By supplying only one of its arguments
we obtain a residual function or section of the form

(x ?) = \y -> x ? y or (? y) = \x -> x ? y .

20.2 Case Distinction and Assertions

Haskell offers several possibilities for doing case distinctions. One is the usual if
then else construct. To avoid cascades of ifs, a function may also be defined in
a style similar to the one used in mathematics. The notation is

f x

| C1 = E1

...

| Cn = En
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The result is the value of the first expression Ei for which the corresponding Ci

evaluates to True. If there is none, the result is undefined.
We shall also use this to make functions intentionally partial in order to

enforce assertions about their parameters (see [15]).
To avoid partiality one can use the predefined constant otherwise = True

and add a final clause

| otherwise = En+1 .

Yet another way of case distinction is provided by defining a function through
argument patterns. Several equations indicate what a function does on inputs
that have certain shapes. The equations are tried in textual order; if no pattern
matches the current argument, the function is again undefined at that point.

Example 201 By the equations

f 0 = 5

f 1 = 7

the function f :: Int -> Int is defined only for argument values 0 and 1. ut

20.3 Lists

The type of lists of elements of type a is denoted by [a] . The list consisting of
elements x1,...,xn is written as [x1,...,xn] ; in particular, [] is the empty
list. Concatenation is denoted by ++ . Prefixing an element to a list is denoted
by the colon operator:

x:xs = [x] ++ xs .

The function length returns the length of a list. The ith element of list xs is
selected by the expression xs!!i (where numbering starts with 0).

A list may be split into two parts using the functions

take, drop :: [a] -> Int -> [a] .

For non-negative integer k the list take k xs consists of the first k elements of
xs if k <= length xs and of all of xs if k > length xs . For negative k the
expression take k xs is undefined. The list drop k xs results by removing take

k xs from the front of xs. Hence one always has

take k xs ++ drop k xs = xs .

A very useful specification feature is list comprehension in the form

[ f x | x <- L, px]

where L is a list expression, f some function on the list elements and p a Boolean
function. The symbol <- may be viewed as a leftward arrow and pronounced as
”drawn from” or as a form of element sign. In this latter view, the expression
is the list analogue of the usual set comprehension {fx|x ∈ S, px}. The mean-
ing of the list comprehension expression [ f x | x <- L, p x] is again a list,
constructed as follows:
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• The elements of list L are scanned in left-to-right order.
• On each such element x the test p is performed.
• If p x = True, f x is put into the result list.
• Otherwise, x is ignored.

The list [m,m+1,...,n] of integers may be denoted by the shorthand [m..n].
The right bound n may be omitted; then the expression denotes the infinite list
[m, m+1, ... ].

A useful operation on non-empty lists is the folding of their elements using
a binary operator f :: :

foldr1 f [x1,...,xn] = f x1 (f x2 ... (f xn-1 xn)...) .

Eg. foldr1 (+) s computes the sum of all elements of s . The function foldr1

itself has the type (a -> a -> a) -> [a] -> a .
A variant of foldr1 that also copes with empty lists is foldr ; it uses an addi-

tional argument e that specifies the value for empty lists. The defining equations
read

foldr f e [] = e

foldr f e [x] ++ xs = f x (foldr f e xs)

Based on foldr one can define a universal quantifier over lists. For a predicate
p :: a -> Bool one has

all p xs = foldr (&&) True [p x | x <- xs ] .

So all p xs is True iff p x is True for all x in xs .

type classes?

laziness, comparison with other f’nal lang’s

45


