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Abstract. We provide some mathematical properties of behaviours of
systems, where the individual elements of a behaviour are modeled by
ideals, ie. downward closed directed subsets of a suitable partial order.
It is well-known that the associated ideal completion provides a simple
way of constructing algebraic cpos. An ideal can be viewed as a set of
consistent finite or compact approximations of an object which itself
may be infinite. A special case is the domain of streams where the finite
approximations are the finite prefixes of a stream.
We introduce a special way of characterising behaviours through sets
of relevant approximations. This is a generalisation of the technique we
have used earlier for the case of streams. Given a set P ⊆M of a partial
order (M,≤), we define

ideP := {Q≤ : Q ⊆ P directed} ,

where Q≤ := {x ∈M : ∃ y ∈ Q : x ≤ y} is the downward closure of Q. So
ideP is the set of all ideals “spanned” by directed subsets of P . We prove
a number of distributivity and monotonicity laws for ide and related
operators. They are the basis for correct refinement of specifications into
implementations. Various small examples illustrate that the operators
lead to very concise while quite clear specifications.
Finally, we give a characterisation of safety and liveness and generalise
the Alpern/Schneider decomposition lemma to arbitrary domains.
An extended example concerns the specification and transformational
development of an asynchronous bounded queue.

Part I: Introduction

1 Origin and Goals

The context of this work is deductive program design, in which implementations
are derived from specifications by semantics-preserving deduction rules. Exam-
ples of this paradigm are transformational program development (eg. [53, 8]) and
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the refinement calculus (eg. [16, 23, 5, 2, 46, 47]). There is a growing conviction
that this paradigm is most efficient when based on algebraic rather than purely
logical frameworks. The aim there is to make program specification and calcu-
lation more concise and perspicuous by compacting logic into algebra as much
as possible. For sequential programs this is demonstrated eg. in [39, 41, 8].

In the parallel case, to some extent the work reported in [50, 14] can be viewed
as falling into the algebraic realm; purely algebraic approaches are presented in
[31, 56]. The present paper presents a particular approach to streams (see eg.
[30, 49, 12] and [62] for a recent survey). It centres around the order-theoretic
view of streams and other semantic objects as used in denotational semantics.
In addition to order theory we use a suitable algebra of formal languages [39] in
reasoning about streams.

To exhibit a certain uniformity we use the same calculational style of rea-
soning in the parts treating the mathematical background as in the program
derivations proper.

2 Streams and Ideals

The basic tool in our approach is the prefix order on finite words in A∗ over
some alphabet A of basic actions, data or states. These words are considered as
initial parts of system traces. A trace language is directed w.r.t. this order iff it
is totally ordered by it. Therefore ideals, ie. prefix closed directed sets of traces,
are a suitable representation of finite and infinite streams.

It is well known that the space of streams under the prefix ordering is isomor-
phic to the ideal completion of the set of finite streams. Since, however, ideals
are just particular trace languages, we can use all operations on formal languages
for their manipulation. A large extent of this is covered by conventional regular
algebra. Moreover, we can apply the tools developed for quite different purposes
in a number of papers on algebraic calculation of graph, pointer and sorting
algorithms (see [39, 41] and the references there). Finally, we do not need ad-
ditional mechanisms for dealing with fairness; rather, fairness is made explicit
within the generating expressions for trace languages.

Using regular expressions rather than automata or transition systems gives
considerable gain in conciseness and clarity, both in specification and calcu-
lation. While this has long been known in the field of syntax analysis, most
approaches to the specification of concurrency stay with the fairly detailed level
of automata, thus leading to cumbersome and imperspicous expressions. Other
approaches use logical formulas for describing sets of traces; these, too, can be-
come very involved. By extracting a few important concepts and coming up
with closed expressions for them one can express things in a more structured
and concise form. This is done here using regular and regular-like expressions
with their strong algebraic properties. The approach can also be nicely tied in
with temporal and modal operators (see [45]).

Another advantage of our approach is that we can do with simple set-theoretic
notions thus avoiding most of the overhead of domain theory. By this, the ap-



proach also is completely orthogonal w.r.t. nesting of data structures, ie. it ad-
mits streams of functions, streams of sets, sets of streams, streams of streams
etc. without problems.

3 A Simple Soda Machine

To show the style of our approach and in order to better motivate the techni-
calities to come we first give a number of examples with informal explanations.
The precise definitions will be given in later sections.

We start with the description of a simple soda machine. It accepts half dollars
and quarters and emits a can of soda after having received a half dollar’s worth
in coins. Let h and q denote the events of receiving a half dollar and a quarter,
respectively, and c the event of emitting a can of soda. Then the behaviour of
that machine is described by the regular-like expression

((h ∪ q • q) • c)ω ,

where • is concatenation and ω denotes infinite repetition. Each expression of
this kind denotes a set of (finite or infinite) streams; in the case of the soda
machine all these streams are infinite.

In the above expression, the iterated subexpression (h ∪ q • q) • c states
the following safety properties: the customer must insert the correct amount of
money and is not allowed to insert further money before delivery of the can.
The infinite repetition ω combines safety and liveness aspects: it expresses the
correct order of insert/deliver cycles, a safety property, and expresses the tem-
poral aspect of eventuality (see eg. [22]): it guarantees that after insertion of
a sufficient amount of money eventually a can is delivered and the machine is
ready to accept further orders.

We prefer to leave states implicit as long as possible, since frequently regular
expressions are clearer and more concise than the corresponding descriptions by
accepting automata (Büchi automata in the case of infinite repetition, see eg.
[52, 65, 66]).

4 Fairness

Other eventuality properties can already be expressed by Kleene’s finite repe-
tition operators ∗ and +. To exemplify this, we describe a scheduler for un-
boundedly fair merging of input from two channels. It is modeled as an infinite
stream over the alphabet {0, 1}, where 0 denotes choice from the left and 1 choice
from the right input channel of the merge module. A sequence in which there
is at least once a choice from the left followed eventually by a choice from the
right is described by the regular expression 0+ • 1. By adding the symmetric
requirement and, again, infinite repetition to drive the single cycles, we get the
following description of the set of streams that model the behaviour of a fair
scheduler:

SCHED def
= (0+ • 1 ∪ 1+ • 0)ω .



The “local eventuality” is here expressed by the finiteness of +, whereas the
infinite repetition ω again adds liveness and “global eventuality”.

Arbitrary (and hence possibly non-fair) merge would be obtained by replacing
this scheduler by (0 ∪ 1)ω.

The reason why fairness does not cause problems in our approach is that
fairness constraints are expressed using the star operation which has a simple
recursive definition using least fixpoints w.r.t. the inclusion ordering on sets of
streams, whereas there are continuity problems w.r.t. extensions of the prefix
order to sets of streams. This is due to the fact that the prefix order has op-
erational traits and unbounded fairness is operationally not feasible, whereas
the inclusion ordering is purely descriptive and hence does not face this prob-
lem. It is adequate for proving properties of sets of streams; when it comes to
implementation, of course operationally feasible descendants have to be used.

We prefer to state fairness assumptions explicitly, since this gives much
greater flexibility than building them into the underlying semantic framework
(such as eg. in [17]).

5 Channels

Another aspect of fairness and eventuality is exhibited in the description of
channels as used in many protocol specifications. The channels are faulty, but fair
in the sense that after an unbounded but finite number of faulty transmissions
they will at least once transmit correctly.

We will describe their behaviour using streams of functions. Each such func-
tion models the transmission behaviour at one particular instance of time. The
identity function id models correct transmission, fail transforms any message
into an “error element” and skip transforms any message into empty output. Let
in the sequel stand the sub/superscript i for ∗ (unbounded but finite repetition)
or ≤ k for some k ∈ IN (bounded repetition). Then the following specifications
express unbounded and bounded fairness, respectively.

A possibly corrupting but fair channel is described by

cchani
def
= (fail i • id)ω ,

a possibly lossy but fair channel by

lchani
def
= (skipi • id)ω

and a possibly lossy and corrupting but fair channel by

lcchani
def
= ((skip ∪ fail)i • id)ω .

An unfair corrupting channel is

arbchan
def
= (fail ∪ id)ω .

This kind of channel descriptions has been used in [42] for a very concise
algebraic correctness proof of the alternating bit protocol.



6 Two Stream-Based Models of Systems

6.1 Modules as Stream-Processing Functions

A stream-processing function (SPF) is a function from tuples of input streams
to tuples of output streams (see eg. [30, 12]). In the case of synchronous systems
this may equivalently be replaced by a function from a stream of input tuples
to a stream of output tuples.

In the SPF view each module is described as an SPF. The advantage of this
model is that it allows easy definitions of various composition operations for
modules and hence lends itself to a modular structuring of large systems.

The disadvantage in the description of asynchronous systems is that the
separation between input and output streams loses causal information, viz. which
input triggered which output. This gives rise to the (in)famous merge anomaly
[9] which can be fixed by re-introducing time information into the streams. It
has to be expressed which elements of a stream are considered to belong to the
same time interval. This can be done using explicit time ticks [11, 63] or streams
of sequences where each sequence lists the elements that belong to one time
interval [32].

6.2 Trace Models

In the trace view, the overall system is described by admissible sequentialisations
of actions during system runs (interleaving semantics). If the structure of non-
deterministic branching is preserved, one obtains tree-like semantic domains such
as used in CCS [36], CSP [26] and process algebra [3]. In the simplest case,
however, the trace structure is a set of streams (see also [29]) which we term
a behaviour. In this view, a stream in A∞ is a complete record of one possible
system run with all system actions interleaved.

Eg. for a CSP-like view one uses the alphabet A = C × V of basic actions,
where C is a set of channel names and V a set of values that are transmitted
along the channels. Then the streams in A∞ are complete records of system runs
with all channel activities interleaved.

The advantage of this view is that it keeps track of the causality between
input and output; hence the merge anomaly does not arise.

The disadvantage is a loss in modularity, since only the overall system is
described directly. Modularisation can be re-introduced, though, by restricting
attention to subsets of channels.

Part II: The Algebra of Ideals

This part reviews a few order-theoretic notions and provides some auxiliary
facts. It then goes on to develop the ideal-theoretic basis of our approach. On
first reading, this part may be skipped and consulted later for details as the need
arises.



7 Mathematical Background

7.1 Order-Theoretic Preliminaries

In this section we repeat some basic notions from the theory of partial orders.
Some useful properties of the operations introduced are given in the Appendix.
Proofs not contained in the present paper can be found in [42].

For partially ordered set (M,≤) and N ⊆ M we define the proper and
improper downward closure by

N< def
= {y ∈M : ∃ x ∈ N : y < x}

N≤
def
= {y ∈M : ∃ x ∈ N : y ≤ x} = N ∪N<

where y < x ⇔ y ≤ x ∧ x 6= y.
The set of maximal elements of N ⊆ M is defined by

maxN
def
= N\N< .

We now extend the order ≤ to a relation on subsets of M by

N ≤ P def⇔ N ⊆ P≤ .

This is the angelic half of the Egli-Milner pre-order [54]. In particular, N≤ ≤ N .
Since ≤ generally is only a pre-order between sets, we are interested in the

induced equivalence relation

N ∼ P def⇔ N ≤ P ∧ P ≤ N .

A subset N ⊆ M is a cone if it is downward closed, ie. if N≤ ⊆ N . Hence
on cones ≤ and ⊆ coincide; in particular, ≤ is a partial order on cones.

Since M is a cone and the intersection of cones is a cone again, the set of all
cones forms a complete lattice under inclusion. It is isomorphic to the angelic
or Hoare power domain [58] over (M,≤). However, we are not going to use that
domain.

7.2 Pointwise Extension

In the sequel we will define many functions on single points of M and lift them
to subsets of M by pointwise extension, ie. by setting, for f : M → M and
N ⊆ M ,

f(N)
def
= {f(x) : x ∈ N} .

These pointwise extended functions distribute through arbitrary unions and
hence are monotonic w.r.t. inclusion and strict w.r.t. ∅. We will also use this
mechanism to lift these functions a further level to sets of subsets of M .

Pointwise extensions inherit linear laws. These are laws of the following form:



– Equational laws in which all variables occur exactly once on both sides of
the equality sign. Examples are the laws of neutrality, associativity and com-
mutativity over a groupoid.

– Implications with element relations as atoms in which all variables occur
exactly once on both sides of the implication sign. In the inherited form the
variables for elements turn into variables for non-empty sets and the element
relations turn into inclusions. An example is

s • t ∈ ε ⇒ s ∈ ε ∧ t ∈ ε

which lifts to

S 6= ∅ ∧ T 6= ∅ ∧ S • T ⊆ ε ⇒ S ⊆ ε ∧ T ⊆ ε .

7.3 Directed Sets and the Ideal Completion

A subset N ⊆ M is directed if every finite subset of N has an upper bound
in N . Equivalently, N is directed if N 6= ∅ and any two elements of N have
a common upper bound in N . Hence every two elements of a directed set are
consistent in that they approximate a common element.

For P ⊆ M we denote by dirP the set of all directed subsets of P . Note
that the operation dir is monotonic w.r.t. inclusion. Some further properties of
dir can be found in the Appendix.

To tie our approach in with domain-theoretic notions (see eg. [64] we recall
the ideal completion (cf. eg. [6, 19]). Consider an ordered set (M,≤). An ideal is
a directed cone. The set of all ideals is denoted by I(M).

The partial order (M,≤) is called complete or a cpo iff every directed set
D ⊆ M has a supremum (or least upper bound) t D ∈M . An element x of M
is finite (compact) iff for every directed set D ⊆ M with x ≤ tD we have also
x ≤ z for some z ∈ D. Equivalently, x is finite iff for every ideal I ⊆ M with
x ≤ tI we have x ∈ I. (M,≤) is algebraic iff every element of M is the supremum
of a directed set of finite elements. A non-finite element of an algebraic set is
called a limit point or an infinite element. With these notions one has

Theorem 7.1 1. The set (I(M), ⊆ ) ordered by set inclusion is a cpo and al-
gebraic, the finite elements being the principal ideals x≤ for x ∈ M . The
mapping ι : x 7→ x≤ is an embedding of M into I(M).

2. For every monotonic mapping h : M → P into a cpo (P,≤) there is a unique
continuous mapping h : I(M) → P extending h, ie. with h(x≤) = h(x). h
is given by h(I) = t h(I) for I ∈ I(M); hence h(D≤) = t h(D) for directed
D ⊆ M .

The ordered set (I(M), ⊆ ) is called the ideal completion of (M,≤). We set

M∞
def
= I(M). An ideal in M∞ is non-compact iff it does not have a maximal

(and hence greatest) element.



8 Streams as Ideals

We now make our notion of streams precise. Assume an alphabet A of atomic
actions, data or states. Then, as usual, A∗ is the set of all finite words over A. By
ε we denote the empty word, whereas concatenation is denoted by •. A subset
of A∗ is called a (formal) language.

A word u is a prefix of a word v, written u v v, iff there is a word w such that
u•w = v. It is well-known that this defines a partial order on words which is even
well-founded. Moreover, ε is the least element in this order. The corresponding
strict-order is denoted by < . A cone of (A∗, v ) is then a prefix-closed language.
Note that every non-empty cone contains ε.

A few properties we shall use are the following (where x, y, u, v, w ∈ A∗ and
U, V ⊆ A∗):

v v w ⇔ u • v v u • w , (1)

u v w ∧ v v w ⇒ u v v ∨ v v u , (2)

V 6= ∅ ⇒ (U • V )v = Uv ∪ U • V v . (3)

Property (2) is also called local linearity.
Informally, a stream over A is a finite or infinite sequence of elements of A.

The basis of our approach is the observation that such a stream is completely
characterised by the set of its finite prefixes. This set is downward closed w.r.t.
v , ie. a cone. Moreover, it is directed, since in the partial order (A∗, v ) by local
linearity the directed sets can be characterised another way:

Lemma 8.1 D ⊆ A∗ is directed w.r.t. v iff D is totally ordered by v , ie. iff
for any two elements u, v ∈ D we have u v v or v v u.

Hence an ideal of (A∗, v ) is a totally and prefix-closed non-empty language.
Note that every ideal contains ε. Therefore an ideal is a set of words of increasing
length “growing at the right end”. This set may be finite or infinite. A simple
example is, for a ∈ A, the infinite ideal

a∗ = {ε, a, a • a, a • a • a, a • a • a • a, . . .} .

We identify a stream with the set of its finite prefixes. By the above, this set
is an ideal of (A∗, v ). Therefore we call the elements of A∞ streams over A. It
should be noted that the compact elements of A∞ correspond to the elements
of A∗; hence, for countable A, the set (A∞, ⊆ ) has a countable basis of finite
elements and therefore is countably algebraic. The length of stream S is denoted
by |S|; it coincides with its cardinality minus one. Let us give a characterisation
of infinite streams:

Lemma 8.2 A stream S is infinite iff maxS = ∅.

Proof. First, by linearity of the prefix order on a stream and by its well-founded-
ness, an infinite stream cannot have a maximal element. The reverse implication
is provided by Lemma 12.1.2. ut



The compact elements of A∞ correspond to the elements of A∗, whereas
the non-compact elements are precisely the (cardinally) infinite ideals. They
correspond to infinite sequences over A.

To resume our previous example, the ideal

a∗ = {ε, a, a • a, a • a • a, a • a • a • a, . . .}

is the limit (supremum) of the set of finite ideals

{{ai : i ≤ n} : n ∈ IN}

corresponding to the v -increasing set

{an : n ∈ IN}

of finite words. It may thus be viewed as a representation of the infinite stream
of as. This observation is the main motivation for our approach; it allows us to
work with infinite streams by manipulating their sets of finite approximations,
since in the ideal completion each (finite or infinite) element is identified with
the set of its finite approximations. This allows carrying over all laws from the
algebra of formal languages to streams. Of course, the fact that the set of finite
and infinite streams is isomorphic to the ideal completion of the set of finite
streams is well-known; what is new here is the direct algebraic manipulation of
the ideals using those laws.

While our approach was motivated by the particular case of streams, we
will perform the mathematical development as far as possible for general ideal
completions.

9 A Setting for Non-Interleaving Semantics

To stress that latter point and to illustrate our approach with a different setting
we now sketch how partial-order semantics, allowing true concurrency, can be
accommodated in our setting.

Let E be a set of events. Then a history over E is a partial order (F,�)
with a finite subset F ⊆ E of events. The order � models temporal/causal
dependence. Two events not related by � are considered as parallel/concurrent.

Let now H(E) be the set of all histories over E. We define an approximation
ordering ≤ on H(E) by

(F1,�1) ≤ (F2,�2)
def⇔ F1 ⊆ F2 ∧
�1 = �2 ∩F1 × F2 ∧
∀ x ∈ F1 : x�1 = x�2 ∧
∀ y ∈ F2 : ∃ x ∈ F1 : x �2 y .

This is the appropriate generalisation of the prefix relation on words to histories.
It means that F1 is embedded as a cone into F2 and F2 may only add “later”



events. It is straightforward to check that this indeed defines a partial order.
The least element is (∅, ∅).

A chronicle now is an ideal in (H(E),≤), and infinite chronicles generalise
infinite streams. The case of streams is retrieved if one only considers histories
that are linearly ordered by �; in that case � corresponds directly to v . In the
present paper, we shall not pursue this example further, though.

10 Behaviours and Refinement

Our application of ideals will be the description of systems. To model non-
determinacy, we define a behaviour to be a set of ideals.

It should be noted that using sets of ideals as behaviours allows only “trace-
like” semantics in which there is no distinction between internal and external
non-determinacy. The algebraic reflection of this is that concatenation, our se-
quencing operation, distributes through union both from the left and from the
right. In algebraic approaches to CCS-like systems (see eg. [36, 3]) only one of
these distributivities holds. This results in models with tree-like objects that
reflect the non-deterministic branching structure in time. This detailed record is
lost by admitting both distributivities rather than just one.

The set of finite prefixes of a behaviour B is

pref B def
=
⋃
B .

Clearly, pref distributes through union and hence is ⊆ -monotonic.
As our refinement relation we choose inclusion, ie. behaviour B refines be-

haviour C if B ⊆ C. For instance, given a property P ⊆ M , the set ideP of ideals
satisfying P , is a behaviour. To allow correct local refinements one therefore has
to ensure monotonicity of all operations w.r.t. inclusion.

Example 10.1 We resume the example from Section 4 and show that bounded
fairness refines unbounded fairness: since all operators involved are monotonic
w.r.t. inclusion, we obtain from a • a≤k ⊆ a+ for a ∈ A that

(0 • 0≤k • 1 ∪ 1 • 1≤k • 0)ω ⊆ SCHED .

ut

11 Describing Behaviours by Properties

We want to characterise ideals by certain sets of “relevant” or “admissible” finite
approximations. Such a set, ie. a subset of our overall partially ordered set M ,
is called a property in this connection.

In the particular case of streams the finite approximations are “snapshots” in
the form of finite words in A∗. Assume a set U ⊆ A∗ of admissible snapshots. If
a stream contains a subset D ⊆ U of snapshots then D has to be directed. How-
ever, there may be arbitrary “gaps” between the snapshots in D. To reconstruct



the stream we therefore have to “fill in the details” between the snapshots. This
is done by taking the prefix closure Dv. Hence we define the set of streams, ie.
the behaviour, spanned by snapshot set U as

strU
def
= {Dv : D ∈ dirU} .

This is the set of streams that “interpolate” consistent snapshots in U . A related
notion occurs in [20]; the connection will be made precise in Section 12.

We generalise this to arbitrary partial orders and their ideal completions. Let
(M,≤) be the partial order of finite approximations. For property P ⊆ M we
now define by

ideP
def
= {D≤ : D ∈ dirP}

the set of all ideals “spanned” by directed subsets of P . Note that ideM = I(M).
Moreover, ide is monotonic w.r.t. inclusion. A different characterisation of ide is
given by

Lemma 11.1 For I ∈ I(M) and Q ⊆ M the following statements are equiva-
lent:

1. I ∈ ideQ.
2. I ⊆ (I ∩Q)≤.
3. I = (I ∩Q)≤.

Proof. The equivalence of 2 and 3 is obvious by monotonicity of ≤ and downward
closedness of I.
(1⇒ 2) Suppose I = D≤ for D ∈ dirQ.

I

= {[ assumption ]}

D≤

= {[ since D ⊆ Q ]}

(D ∩Q)≤

⊆ {[ monotonicity ]}

(D≤ ∩Q)≤

= {[ assumption ]}

(I ∩Q)≤ .

(3⇒ 1) Since I is directed, so is (I∩Q)≤. By Lemma 30.5.3 also I∩Q is directed
and the claim follows. ut

We have the following distributivity property for ide:

Lemma 11.2 Consider N,P ⊆ M . Then

ide (N ∪ P ) = ideN ∪ ideP .



Proof. I ∈ ide (N ∪ P )

⇔ {[ by Lemma 11.1 ]}

I = (I ∩ (N ∪ P ))≤

⇔ {[ distributivity of ∩ over ∪ and Lemma 30.1.1 ]}

I = (I ∩N)≤ ∪ (I ∩ P )≤

⇒ {[ by directedness of I, Lemma 30.5.2 and Lemma 30.3.3 ]}

I = (I ∩N)≤ ∨ I = (I ∩ P )≤

⇔ {[ by Lemma 11.1 ]}

I ∈ ideN ∨ I ∈ ideP .
The reverse inclusion follows by monotonicity of ide.

Another proof can be given using Lemma 30.5.5. ut

This also shows once again the monotonicity of ide. We have even

Corollary 11.3 N ⊆ P ⇔ ideN ⊆ ideP .

Proof. The inclusion from right to left is part of Theorem 7.1.1 via the principal
ideals x≤ for x ∈M . ut

It should be noted, however, that ide only distributes through finite unions
and hence is not “continuous”. For an instance of this see Example 13.3 below.

Lemma 11.4 We have the following properties concerning downward closure:

1. I ∈ ide (P≤) ⇔ I ⊆ P≤.
2. pref ideP = P≤.
3. ideQ ⊆ ideQ≤. The reverse inclusion is not valid.

Proof. 1. (⇒) Assume I = D≤ for D ∈ dir (P≤). Then, by monotonicity and
idempotence of ≤ we get D≤ ⊆ (P≤)≤ = P≤, ie. I ⊆ P≤.
(⇐) Straightforward, since I ⊆ P≤ implies I ∈ dir (P≤) and I = I≤.

2. The inclusion ⊆ is straightforward. For the reverse consider y ∈ P≤. There
is x ∈ P with y ≤ x. But then y ∈ x≤ ∈ ideP .

3. Immediate from Q ⊆ Q≤ and monotonicity of ide. For a counterexample to
the reverse inclusion see Example 13.1.

ut

12 Maximal and Infinite Ideals

12.1 Maximal Ideals

Frequently one is interested in processes that continue as long as possible. These
are modeled by ideals which are maximal w.r.t. ≤ or, equivalently, w.r.t. inclu-
sion. We therefore give a characterisation of maximal ideals. For a behaviour B
we denote the subset of maximal ideals by maxB; this agrees with the definition
in Section 7.1, and hence all our laws in the Appendix apply.



Lemma 12.1 Suppose I ∈ I(M) and N ⊆ M . Then

1. x ∈ max I ⇔ I = x≤.
2. max I = ∅ ⇒ I infinite.
3. maxN = ∅ ∧ I ∈ max ideN ⇒ max I = ∅.

Proof. 1. (⇒) We only need to show I ⊆ x≤; the other inclusion follows from
downward closure of I. Suppose y ∈ I. By directedness of I there is z ∈ I
with x ≤ z and y ≤ z. Maximality of x implies z = x and hence y ≤ x.
(⇐)

max I

= {[ by assumption ]}

maxx≤

= {[ by Lemma 30.2.1 ]}

(x≤)≤\(x≤)<

= {[ by Lemma 30.1.2 ]}

x≤\x<

= {[ by Lemma 30.2.1 ]}

maxx

= {[ irreflexivity of < ]}

{x} .
2. Every non-empty finite set has a maximal element.
3. Suppose max I 6= ∅, say x ∈ max I. By 1 then I = x≤ and by I ∈ ideN we

get x ∈ N . Since maxN = ∅, there is y ∈ N with x ≤ y and y 6= x. But then
y≤ ∈ ideN and hence, by Theorem 7.1.1, we have x≤ ⊆ y≤ ∧ x≤ 6= y≤.
This is a contradiction to I ∈ max ideN .

ut

12.2 Infinite Ideals

Motivated by Lemma 12.1.2 we define, for a behaviour B, the set of its infinite
ideals as

inf B def
= {I ∈ B : max I = ∅} .

For general domains, this is a bit of a misnomer, since there may well be infinite
ideals with maximal elements. However, we will single out a particular class
of domains where this cannot occur and work mostly with these, so that the
terminology will be justified. Clearly, inf distributes through arbitrary union
and intersection:

inf (
⋃
i∈I
Bi) =

⋃
i∈I

inf Bi , (4)

inf (
⋂
i∈I
Bi) =

⋂
i∈I

inf Bi . (5)



Now Lemma 12.1.3 can be restated as

maxN = ∅ ⇒ max ideN ⊆ inf ideN .

The reverse inclusion is generally not valid. For a counterexample choose M =
IN ∪ {∞} with the usual ordering and consider the ideal IN ∈ I(M). We have
max IN = ∅, but IN 6∈ max I(M), since IN ⊆ M ∈ I(M) and IN 6= M .

We call a partial order (M,≤) max-determined if

inf I(M) ⊆ max I(M) .

12.3 Refinement Laws

Now we clarify the relation between inf ide and max ide and investigate mono-
tonicity and distributivity of the max ide, inf ide and max inf operations, which is
important for refinement. First we note

Lemma 12.2 For N,P ⊆ M ,

inf ideN ∪ P = inf ideN ∪ inf ideP .

In particular, inf ide is monotonic w.r.t. inclusion.

Proof. Immediate from Lemma 11.2 and equation (4). ut

Concerning maximal ideals we have

Lemma 12.3 Let (M,≤) be max-determined. Then, for N,P ⊆ M ,

1. inf ideN ⊆ ideN ∩ max I(M) ⊆ max ideN .
2. max ideN = inf ideN ∪ idemaxN .
3. maxN = ∅ ⇒ inf ideN = ideN ∩ max I(M) = max ideN .
4. inf ideN ∪ P = inf ideN ∪ inf ideP .

In particular, inf ide is monotonic w.r.t. inclusion.
5. N = safN ⇒ inf ide (N ∩ P ) = inf ideN ∩ inf ideP .
6. maxN = ∅ ∧ N ⊆ P ⇒ max ideN ⊆ max ideP .
7. maxN = maxP = ∅ ⇒ max ide (N ∪ P ) = max ideN ∪ max ideP .
8. If N and P are cones with maxN = maxP = max (N ∩ P ) = ∅ then

max ide (N ∩ P ) = max ideN ∩ max ideP .

Proof. 1. I ∈ inf ideN

⇔ {[ definition ]}

I ∈ ideN ∧ max I = ∅

⇒ {[ since (M,≤) is max-determined ]}

I ∈ ideN ∧ I ∈ max I(M)

⇒ {[ by Lemma 30.2.3, since ideN ⊆ I(M) ]}

I ∈ max ideN .



2. (⊆ ) Suppose I ∈ max ideN . If max I = ∅, then I ∈ inf ideN by definition.
Otherwise max I is a singleton, say max I = {x}, and I = x≤. It follows that
x ∈ N . For y ∈ N with x ≤ y we have x≤ ⊆ y≤ ∈ ideN , so that x≤ = y≤

by maximality of I = x≤. Hence also x = y. This shows x ∈ maxN , so that
I = x≤ ∈ idemaxN .
(⊇ ) inf ideN ⊆ max ideN was shown in 1. Suppose now I ∈ idemaxN , say
I = x≤ with x ∈ maxN , and I ⊆ J ∈ ideN , say J = D≤ for D ∈ dirN .
Consider y ∈ J . By directedness of J there is a z ∈ J with x, y ≤ z. By
J = D≤ there is a u ∈ D with z ≤ u. Hence also x, y ≤ u. By D ⊆ N and
x ∈ maxN we get x = u. So y ≤ x and hence y ∈ x≤ = I. Altogether, J ⊆ I
and hence J = I. So I ∈ max ideN .

3. Assume maxN = ∅. Then by Lemma 12.1.3 max ideN ⊆ inf ideN and the
equalities follow from 1.

4. max ideN

= {[ by 3 ]}

ideN ∩ max I(M)

⊆ {[ by assumption N ⊆ P and monotonicity of ide ]}

ideP ∩ max I(M)

⊆ {[ by 3 ]}

max ideP .
5. We aim at an application of Lemma 30.2.4. Assume I ∈ max ideN ∩ (ideP )⊂.

By 3 we have I ∈ max I(M). But by I ∈ (ideP )⊂ there is J ∈ ideP with
I ⊂ J , a contradiction to maximality of I. Hence max ideN ∩ (ideP )⊂ = ∅.
By symmetry, also max ideP ∩ (ideN)⊂ = ∅. Now the claim is immediate
from Lemma 30.2.4.

6. (⊆ ) follows from 6.
(⊇ ) Assume I ∈ max ideN ∩ max ideP . Then by 3 we have I ∈ max I(M).
Hence, again by 3, we only need to show I ∈ ide (N ∩P ). Since N and P are
cones we get I ⊆ N and I ⊆ P and hence I ⊆ N ∩P as well, showing the
claim.

ut

The next lemma allows simplification of the defining property of a behaviour.

Lemma 12.4 Consider N,P ⊆ M . Then

max ide (N ∪ P ) = max ideP ⇔ ideN ≤ ideP .

Proof. (⇐)

ideN ≤ ideP

⇒ {[ by Lemma 30.3.4 ]}

max (ideN ∪ ideP ) = max ideP



⇔ {[ by Lemma 11.2 ]}

max ide (N ∪ P ) = max ideP .

(⇒) If N = ∅, the claim holds trivially, since ide ∅ = ∅. Hence we now assume
N 6= ∅.
We now need the so-called Maximal Principle, a variant of the Axiom of Choice
(see eg. [19]): Assume a partial order in which every non-empty chain has an
upper bound. Then every element has a maximal element above it.
We apply this to the partial order (ideN, ⊆ ). It satisfies the assumption, since
ideN is closed under directed unions and hence, in particular, under unions of
chains. Consider now I ∈ ideN ⊆ ide (N ∪ P ). By the maximal principle there
is a J ∈ max ide (N ∪ P ) = max ideP with I ≤ J . ut

Under additional assumptions we can simplify the assertion:

Lemma 12.5 Assume P ∈ dirM . Then

max ide (N ∪ P ) = max ideP ⇔ N ≤ P .

Proof. To apply Lemma 12.4 we show that P ∈ dirM implies

ideN ≤ ideP ⇔ N ≤ P .

(⇒) Assume x ∈ N . Then x≤ ∈ ideN and so there is I ∈ ideP , say I = D≤ for
D ∈ dirP , with x≤ ≤ I. By Lemma 30.3.1-2 we get x ≤ P .
(⇐) For I ∈ ideN we have I ≤ P ∈ dirP and hence, by Lemma 30.3.1, also
I ≤ P≤ ∈ ideP . ut

For a counterexample when P is not directed see Example 14.2 in connection
with Corollary 12.6.2 below.

Recalling the equivalence ∼ associated with the pre-order ≤, we obtain from
the previous two lemmas

Corollary 12.6 Consider N,P ⊆ M . Then

1. ideN ∼ ideP ⇒ max ideN = max ideP .
2. If N,P ∈ dirM then

N ∼ P ⇒ max ideN = max ideP .

12.4 An Alternative Characterisation of Infinite Ideals

We conclude this section by an alternative characterisation of the set inf ideP
for property P ⊆ M . First we define

limP
def
= {I ∈ I(M) : I ∩ P ∈ dirM ∧ max (I ∩ P ) = ∅} .

This generalises the corresponding definition for infinite words or streams in [55,
60, 61, 65, 66] (to cite just a few), which is based on [20]. Other notations for
limP found in the literature are P δ or P . We can then show



Lemma 12.7 1. inf ideP ⊆ limP .

2. If (M,≤) is max-determined then the reverse inclusion holds as well.

Proof. We first note that

I ∈ inf ideP

⇔ {[ definition ]}

I ∈ ideP ∧ max I = ∅

⇔ {[ by Lemma 11.1 ]}

I = (I ∩ P )≤ ∧ max I = ∅

⇔ {[ equality ]}

I = (I ∩ P )≤ ∧ max (I ∩ P )≤ = ∅

⇔ {[ Lemma 30.2.2 ]}

I = (I ∩ P )≤ ∧ max (I ∩ P ) = ∅ . (∗)

Now we prove our claims as follows:

1. (∗)

⇒ {[ by Lemma 30.5.3 ]}

I ∩ P ∈ dirM ∧ max (I ∩ P ) = ∅

⇔ {[ definition ]}

I ∈ limP .

2. Let (M,≤) be max-determined and assume I ∈ limP . By (∗) it remains to
show I = (I ∩ P )≤. First, by monotonicity of downward closure we have
(I ∩ P )≤ ⊆ I≤ = I. Using Lemma 30.2.2 we obtain max (I ∩ P )≤ =
max (I ∩ P ) = ∅, so that by max-determinedness (I ∩ P )≤ ∈ max I(M) and
hence (I ∩ P )≤ = I.

ut

12.5 About max-Determinedness

To investigate under which conditions a partial order is max-determined, we
introduce some auxiliary notions. Let F : P(M) → P(M) be some function,
such as dir or ide. We say that N ⊆ M has F -maxima if every set in F (N) has
a maximal element. In addition to the functions mentioned we shall use

neN
def
= {C ⊆ N : C 6= ∅} ,

chaiN
def
= {C ⊆ N : C non-empty chain} .

Lemma 12.8 If N ⊆ M has chai-maxima, then it also has ne-maxima.



Proof. Assume ∅ 6= D ⊆ N and maxD = ∅. Construct a chain C ⊆ N as
follows: Choose x0 ∈ D arbitrarily. Assume now that xi has been found. Since

xi 6∈ ∅ = maxD, there is xi+1 ∈ D with xi < xi+1. Now for C
def
= {xi : i ∈ IN}

we have maxC = ∅, a contradiction. ut

Corollary 12.9 If N ⊆ M has chai-maxima, then it also has dir-maxima.

Proof. Every directed set is non-empty. ut

We say that (M,≤) separates ideals if for all I, J ∈ I(M) with I 6= J the
intersection I ∩ J has chai-maxima. The connection with max-determinedness is
given by

Theorem 12.10 (M,≤) is max-determined iff (M,≤) separates ideals.

Proof. (⇒) Suppose I 6= J and C ∈ chai (I ∩ J), but maxC = ∅. Then C≤ is
an ideal with maxC≤ = ∅. By max-determinedness then C≤ ∈ max ideM . Since
by downward closedness of I and J we have C≤ ⊆ I and C≤ ⊆ J it follows
that I = C≤ = J , a contradiction.
(⇐) Assume max I = ∅ and I 6∈ max ideM . Then there is J 6= I with I ⊆ J .
Since (M,≤) separates ideals, and by Corollary 12.9, then I = I ∩ J has dir-
maxima. In particular, max I 6= ∅, a contradiction. ut

This has the following surprising consequence:

Corollary 12.11 Let (M,≤) be max-determined. Then all elements of M are
compact.

Proof. By the previous theorem, (M,≤) separates ideals.

We now first show tI ⊆ I for all I ∈ I(M). Assume y ∈ tI and set J
def
= y≤. We

have I ⊆ J . If I 6= J then I = I ∩J has a maximal and hence, by directedness,
greatest element z. But then z = tI = y so that J = I, a contradiction.
Consider now x ∈ M and I ∈ I(M) such that x ≤ tI ∈ I. By downward
closedness of I we get x ∈ I and x is compact. ut

The reverse implication is not valid as the following example shows. Consider
the partial order
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in which all elements are compact. However, for I
def
= {0, 2, 4, . . .} we have

max I = ∅ and I ⊂ J
def
= {0, 1, 2, 3, 4, . . .}, ie. I is not maximal. Concerning

separation of ideals, I = I ∩ J doesn’t have a maximal element.
It will be interesting to find further, more “manageable” characterisations of

max-determinedness.

Part III: A Particular Case: Streams

We now specialize to a particular partial order. We shall represent streams
using sets of finite traces. These are finite words over an alphabet A of atomic
actions; they are ordered by the prefix relation.

13 Streams and Properties

Whenever we are working in the particular domain A∞, we rename ide into str
to emphasise that fact. So the set of streams spanned by property P ⊆ A∗ is

strP
def
= ideP .

Note that it would not be adequate to work with the set str (Pv), the so-
called adherence of P (see eg. [49, 60]), instead of strP . The reason is that by
prefix-closure infinite substreams may “sneak” into a cone although it results
from a language of mutually v -incomparable words which represent systems
with finite behaviour only.

Example 13.1 The language L
def
= 0∗•1 represents a behaviour with arbitrarily

long but finite sequences of 0s terminated by the “explicit endmarker” 1. The



words in L are mutually incomparable w.r.t. v . Hence all directed subsets of L
are singletons and their downward closures are principal ideals and hence finite.
So strL consists of finite ideals only. However, the prefix closure Lv contains the
infinite ideal 0∗ representing the infinite stream 0ω of 0s. So strLv = strL ∪
{0ω}. ut

Using König’s Lemma one can show that for finite A every infinite cone
contains an infinite stream. The general definition of ide omits these undesired
streams.

So, using ide we can distinguish between erratic and angelic non-determinacy
and talk about fairness without resorting to metric and topological spaces as eg.
in [4].

Example 13.2 Consider the recursive definition

B = 0 ◦ B dc 1 ,

where ◦ denotes stream concatenation (see Section 15 for a precise definition)
and dc denotes non-deterministic choice. In an angelic interpretation of dc always
eventually the terminating branch 1 is chosen, and so B would equal strL of
Example 13.1.

In an erratic interpretation of dc , on the other hand, no guarantee is given
that the terminating branch will ever be chosen, and so B would equal strLv of
Example 13.1. ut

We want to show now that str (and hence ide) does not distribute through
general union:

Example 13.3 Take U = 0∗. Then U =
⋃
i∈IN

0i. However, strU = {0∗} ∪

{(0i)v : i ∈ IN}, whereas
⋃
i∈IN

str 0i = {(0i)v : i ∈ IN}. ut

14 Maximal and Infinite Streams

As already mentioned, maximal ideals model processes that go on as long as
possible. For streams we have a more pleasant situation than for general ideals:

Lemma 14.1 (A∗, v ) is max-determined.

Proof. Assume I ∈ ideA∗ ∧ max I = ∅ and consider J ∈ ideA∗ with I ⊆ J . By
Lemma 30.4 and downward closure of I, J it suffices to show J ≤ I. Consider
y ∈ J . Since max I = ∅ there is some x ∈ I ⊆ J with ||y|| ≤ ||x||, where ||u||
denotes the length of word u. Moreover, by directedness of J , there is z ∈ J with
x v z ∧ y v z. From linearity of zv it therefore follows that x v y ∨ y v x.
However, since ||y|| ≤ ||x||, we must have y v x. ut



This allows us to use all laws from Section 12 for streams. At this point
it is also convenient to give the counterexample to the simplified version of
Corollary 12.6:

Example 14.2 Set U
def
= 0∗ • 1 and V

def
= U ∪ 0∗ = Uv by (3). Then U ∼ V ,

but max strU 6= max str V , since 0∗ ∈ (max str V )\(max strU). ut

Concerning infinite streams, we note that by Lemma 8.2 we have

inf ideP = {I ∈ ideP : I infinite} .

To establish the relation with [60] we also show

Lemma 14.3 For P ⊆ A∗ we have

limP = {I ∈ A∞ : I ∩ P infinite} .

Proof. I ∈ limP

⇔ {[ definition ]}

I ∩ P ∈ dirM ∧ max (I ∩ P ) = ∅

⇔ {[ by I ∩ P ⊆ I and Lemma 8.1 ]}

I ∩ P 6= ∅ ∧ max (I ∩ P ) = ∅ .
We show now that, for linearly ordered L ⊆ A∗,

L infinite ⇔ L 6= ∅ ∧ maxL = ∅ .

(⇒) L 6= ∅ is immediate. Suppose x ∈ maxL. By linearity then L ⊆ xv. But
then |L| ≤ ||x||+ 1, a contradiction.
(⇐) Every non-empty finite set has a maximal element. ut

To end this section, we write out specialisations of some of our laws for the
case of streams, since they will be used in the bounded buffer example below:

Corollary 14.4

inf str (N ∪ P ) = inf strP ⇐ N v P ∧ P directed
inf strN = inf strP ⇐ N ∼ P ∧ N,P directed

Proof. Immediate from Lemma 14.1, Lemma 12.5 and Corollary 12.6. ut

Example 14.5 Since (a • b)∗ • a) ∼ (a • b)∗ and both languages are directed,
we obtain (inf str (a • b)∗ • a) = inf str (a • b)∗. ut



15 Stream Concatenation

As a prerequisite for defining infinite repetition we need stream concatenation
which, for streams S, T is defined by

S ◦ T def
= S ∪ (maxS) • T .

Let us explain this definition. If S is finite then maxS is a singleton. This part
of the overall behaviour then is prefixed to all traces in T to represent the
concatenated behaviour. If S is infinite then maxS = ∅ and hence, by strictness
of ◦, we get S ◦ T = S, as is intuitively expected. We have

max (S ◦ T ) = (maxS) • (maxT ) .

It is straightforward to show that S ◦T is indeed a stream and that (A∞, ◦, ε) is
a monoid. As a shorthand notation we shall also allow words as first argument
of ◦. This is made precise by setting

u ◦ T def
= uv ◦ T = uv ∪ u • T .

Again, ◦ is extended pointwise to behaviours and, in the case of the above
shorthand, to languages.

16 Infinite Repetition

We now give the usual greatest fixpoint definition of the set Uω of streams that
result from infinite repetition of words from a language U ⊆ A∗:

Uω = U ◦ Uω ∧
X = U ◦ X ⇒ X ⊆ Uω .

According to the Knaster-Tarski fixpoint theorem this is well-defined by mono-
tonicity of ◦. Note that by this definition ∅ω = ∅. However, if ε ∈ U then
Uω = A∞. For that reason, Uω is usually considered only for ε 6∈ U .

It should be noted that for |U | ≥ 2 and ε 6∈ U there are nontrivial solutions
of X = U ◦ X properly less than Uω. As an example consider the behaviour

U∗ ◦
⋃
u∈U

uω of all eventually periodic streams.

To tie this in with the str-operation, we quote [60], p. 433:

ε 6∈ U ⇒ limU∗ = Uω ∪ U∗ ◦ limU ,

or, using Lemma 12.7 and max -determinedness,

ε 6∈ U ⇒ inf strU∗ = Uω ∪ U∗ ◦ inf strU .

From this, by strictness of ◦ it is immediate that

ε 6∈ U ∧ inf strU = ∅ ⇒ Uω = inf strU∗ . (6)

A sufficient condition to establish the premise is given by



Lemma 16.1 If U ⊆ A∗\ε satisfies the Fano condition, ie. the words in U are
mutually incomparable w.r.t. v , then

Uω = inf strU∗ .

Proof. By the Fano condition, all directed subsets of U are singletons. Hence
strU = {u≤ : u ∈ U} consists of finite streams only. ut

Note that if ε ∈ U then U satisfies the Fano condition iff U = ε; for this
case the above equation doesn’t hold, since then inf strU∗ = ∅. It should also
be mentioned that U satisfies the Fano condition iff U = maxU . To see what
happens if the Fano condition is not satisfied, consider

Example 16.2 Let A = {a, b} and U
def
= {a • bn : n ∈ IN} ⊆ A∗. Then U ∈

dirU∗, since U ⊆ U∗ and U is directed. Hence Uv = ε∪U ∈ strU∗ and, since Uv

is infinite, even Uv ∈ inf strU∗. Now, Uv represents an a followed by infinitely
many bs; but this behaviour clearly does not arise from repeated concatenation
of words in U . It is “sneaked in” by the fact that simply considering directed
subsets of U∗ throws away too much structural information. ut

To allow a characterisation of Uω for languages that do not satisfy the Fano
condition, one can artificially enforce it by attaching a special endmarker to all
words in U and remove it after singling out the infinite streams. Let # 6∈ A be
a new letter and consider streams over the extended alphabet A∪#. Moreover,
denote by A� u the word that results from u by removing all occurrences of #
and extend the operation A� pointwise to languages and behaviours. Then we
have

Lemma 16.3 For U ⊆ A∗\ε,

Uω
def
= A� inf str (U •#)∗ .

For the somewhat tedious proof see [43].
The streams in str (U •#)∗ correspond to finite and infinite sequences that

result from concatenating arbitrary elements of U with the separator # in be-
tween. The operation inf then selects the infinite ones of these; if ε 6∈ U these are
precisely the infinite words resulting from repeatedly concatenating words from
U . The separators are used to record the “construction history” of the streams;
they are finally thrown away again by the filter A�. In this way subsets of U∗

which are directed “by accident” are ignored. A similar mechanism for defining
iteration is employed in [50] in the finite case and in [11] in the infinite case.

17 Streams of Functions

We have made no assumptions about our alphabet A. Hence it may even be a
set of functions. Then streams over A model components with time-dependent



behaviour. We have seen examples of this in the description of various faulty
channels in Section 5.

A stream S ∈ A∞ of arguments is fed into a stream F ∈ (A → A∗)∞ of
functions by the operator >>. The images f(a) of the elements a of A under the
individual functions f in F are concatenated into an overall output stream. A
wordwise definition of this is

ε >> w
def
= ε ,

s >> ε
def
= ε ,

a • s >> f • w def
= f(a) • (s >> w) .

This operation is extended pointwise to languages and behaviours.

Example 17.1 For finite stream S we have

(S • T )>> cchan∗ = (S >> arbchan) • (T >> cchan∗) .

This reflects the unbounded fairness of cchan∗: we have no guarantee when cor-
rect transmission occurs, and hence the elements of S may or may not be trans-
mitted correctly. ut

With bound assumptions one gets more precise information:

Example 17.2 We have

m > k ⇒ (am • T )>> cchan≤k ∈ A≤k • a •A∞ .

A channel with fairness bound k must transmit a correctly at least once if it
receives more than k copies of a. ut

18 Feedback and State-Based Systems

18.1 The Feedback Operation

An essential operation on SPFs is feedback of some outputs to the inputs. Assume
an SPF F : A∞ × B∞ → A∞ × C∞. Then its feedback feedF : B∞ → C∞ is
given by

(feedF )(S) = T where (Z, T ) = F (Z, S) .

It may be depicted as

F
-

- -S T

Z

The semantics of this recursive declaration is the usual least-fixpoint one.
This version of the feedback operator hides the feedback stream. If this is to
made visible one simply copies it and feeds one copy back whereas the other is
transmitted to the outside.



18.2 State-Based Systems and Automata

This operation together with streams of functions allows a very convenient and
concise description of state-based systems.

Assume a set Q of states, an input alphabet A and an output alphabet B.
Then a time-dependent automaton is given by a stream H ∈ (Q×A → Q×B)∞.

We may now feed this automaton with a starting state q0 ∈ Q and a stream
S ∈ A∞ of input values to produce a stream of output values in B∞. The stream
of states entered during the processing of the input is constructed by a feedback
and hidden from the outside. This is described by

auto(H, q0, S) = T where (Z, T ) = (q0 • Z, S)>>H .

By placing various restrictions on the entities involved, we can distinguish a
hierarchy of automata:

– If no further restrictions are made, we obtain a timed and state-dependent
automaton.

– If we require |Q| = 1 then we have a timed and state-independent automaton.
– If we take H = fω for some f : Q× A → Q× B, we obtain a timeless and

state-dependent automaton.
– If we again take H = fω but also require |Q| = 1, we have a timeless and

state-independent automaton.

For example, an easy proof by induction over the structure of the finite words
shows

Lemma 18.1 If |Q| = 1 then

auto(fω, q0, S) = S >> gω ,

where g(i) = π2(f(q0, i)).

We now illustrate the general case by the following

Example 18.2 We give a description of a one-place asynchronous buffer. The
example is taken from [10]. Consider a set D of data. The input alphabet is

A
def
= D ∪ {!} .

An input d ∈ D means that d is to be stored in the buffer, whereas ! means a
request for the current contents of the buffer.

At each time point the buffer may accept or reject its input which is shown
by a Boolean value. In addition to that the buffer will output data if it accepts
the request signal. So we choose the output alphabet

B
def
= (D ∪ {ε})× IB ,

where ε models the case of no proper output.



As the set of states we choose

Q
def
= D ∪ {ε}

where ε models the state of being empty whereas d ∈ D models the state of
containing value d.

Now we define two transition functions

acc, rej : Q×A → Q×B

which model acceptance and rejection of the input. We have

acc(q, d) = (if q = ε then d else q, (ε, q = ε)) ,
acc(q, !) = (ε, (q, q 6= ε)) ,
rej (q, x) = (q, (ε, false)) .

The behaviour of a fair buffer, ie. one which rejects inputs only finitely many
times before eventually accepting one is the specified as

auto((rej ∗ • acc)ω, ε) .

In particular, we can avoid the use of prophecy variables (see eg. [10]) in this
style. ut

19 Processes and Synchronised Parallel Composition

While the previous two sections are appropriate for the SPF view of distributed
systems, we now define operators that are adequate for the trace view (cf. Sec-
tion 6). The particular definitions given here draw strongly on the corresponding
ones in [25].

Assume an overall alphabet A for our streams. A process is a pair (B,B)
where B ⊆ A is the alphabet of the process and B ⊆ B∞ is a behaviour. We
set

α(B,B)
def
= B , β(B,B)

def
= B .

An auxiliary operation is the projection † of words to an alphabet B ⊆ A.
It is defined inductively as follows:

ε †B def
= ε

(a • s) †B def
=

{
a • (s †B) if a ∈ B
s †B otherwise.

Projection is extended pointwise to languages and behaviours. The projection
of a stream is a stream again.

Using projection we can characterise processes in another way: the pair (B,B)
is a process iff ∀ S ∈ B : S †B = S.

We need to lift the notion of refinement to processes. We allow that a pro-
cess is refined by another one that has additional “internal” actions. Since then



refinement amounts to inclusion of (the projection of) the behaviour, we abuse
notation and write again ⊆ for the refinement relation:

P ⊆ Q
def⇔ αP ⊇ αQ ∧ (βP ) † αQ ⊆ βQ .

In this case we say that P refines Q. It is easily checked that ⊆ is a partial order
on processes.

If behaviours are “loose enough” in that they allow arbitrary actions in be-
tween the “interesting” ones, one can model synchronised parallel composition
very simply by intersection (see eg. [26]). For general behaviours this works well
only if they are “loosened” by interspersing arbitrary actions between the proper
ones; this is again taken from [25]. The intersection then allows only traces in
which the actions interesting to both partners occur in a sequence that is ac-
ceptable to both partners (ie. allowed in both behaviours) whereas the private
actions of each partner are not constrained by the other partner.

Hence, for processes P and Q, we define the parallel composition P ||Q by

α(P ||Q)
def
= αP ∪ αQ ,

S ∈ β(P ||Q)
def⇔ S = S † α(P ||Q)∧

S † αP ∈ βP ∧
S † αQ ∈ βQ .

Note, in particular, that || is commutative, associative and idempotent then.
Moreover,

P ⊆ Q ⇔ P ||Q = P .

If αP = αQ then β(P ||Q) = βP ∩ βQ.
This parallel composition operator will be used in our extended example in

Section 22.3.

Part IV: Safety and Liveness

We have already informally discussed safety and liveness (see eg. [33, 1, 21]).
We want to show how these notions can be expressed algebraically. In [1] and
subsequent papers, a property is a set of infinite sequences of states. The appro-
priate counterpart in our setting is therefore a set of streams, more generally,
ideals, ie. a behaviour.

20 Safety

20.1 Definition and Topological Properties

In [1] a behaviour B ⊆ Aω over infinite streams is called safe if the following
holds:

∀ S ∈ Aω : S 6∈ B ⇒ (∃ s ∈ S : ∀ T ∈ Aω : s ◦ T 6∈ B) .



This means that for every stream not in the behaviour there is a decisive finite
prefix s where something went “irreparably wrong” in that no continuation of s
can bring the computation back to the “good path”.

We want to simplify the formal definition above by moving from logic to
algebra. First, using contraposition, the formula can be transformed to

∀ S ∈ Aω : (∀ s ∈ S : ∃ T ∈ Aω : s ◦ T ∈ B) ⇒ S ∈ B .

Now, recalling the definition pref B = ∪B from Section 10, we have

∃ T ∈ Aω : s ◦ T ∈ B ⇔ s ∈ pref B . (7)

Hence the safety condition reduces to

∀ S ∈ Aω : (∀ s ∈ S : s ∈ pref B) ⇒ S ∈ B

⇔ {[ set theory ]}

∀ S ∈ Aω : S ⊆ pref B ⇒ S ∈ B

⇔ {[ by prefix-closedness of pref B and Lemma 11.4.1 ]}

∀ S ∈ Aω : S ∈ str pref B ⇒ S ∈ B

⇔ {[ defining shouldB def
= str pref B ]}

shouldB ⊆ B .
This simplified form involves only order-theoretic notions and hence generalises
easily to arbitrary ideal completions. Consider a partial order (M,≤) and a
behaviour B ⊆ M∞. Then we call B safe iff shouldB ⊆ B, where

shouldB def
= ide pref B .

By ⊆ -monotonicity of pref and ide also should is ⊆ -monotonic. Note that
for all B ⊆ M∞ we have B ⊆ shouldB. So a behaviour B ⊆ M∞ is safe iff
B = shouldB. Moreover,

Lemma 20.1 1. Safe behaviours are closed under arbitrary intersections and
finite unions.

2. should is idempotent.
3. shouldB is the least safe behaviour containing B.

Proof. 1. Assume a family (Bj)j∈J of safe behaviours. Then for all j ∈ J we
have by monotonicity of should and safety of Bj that

should (
⋂
j∈J
Bj) ⊆ shouldBj ⊆ Bj ,

so that
should (

⋂
j∈J
Bj) ⊆

⋂
j∈J
Bj ,

ie.
⋂
j∈J
Bj is safe again.

For union we calculate, for I ∈M∞,



I ∈ should (B ∪ C)

⇔ {[ definition and distributivity of pref ]}

I ⊆ pref B ∪ pref C

⇔ {[ Boolean algebra ]}

I = (I ∩ pref B) ∪ (I ∩ pref C) .

Set now IB
def
= I ∩ pref B and IC

def
= I ∩ pref C. Since I is directed, by

Lemma 30.5.2 we have IB ≤ IC or IC ≤ IB. So by downward closedness
of IB and IC and Lemma 30.3.3 we have IB ⊆ IC or IC ⊆ IB and hence
I = IB or I = IC . But then, by Boolean algebra and the definition, we get
I ∈ shouldB ∨ I ∈ should C, so that by safety of B and C also I ∈ B ∪ C.

2. For I ∈M∞ we have

I ∈ should shouldB

⇔ {[ definitions ]}

I ⊆
⋃
{J ∈M∞ : J ⊆ pref B}

⇔ {[ using the principal ideals J = x≤ for x ∈ pref B ]}

I ⊆ pref B

⇔ {[ definitions ]}

I ∈ shouldB .

3. Let C be safe with B ⊆ C. Then

shouldB

⊆ {[ monotonicity ]}

should C

= {[ safety of C ]}

C .

But shouldB is safe by 2.
ut

By these properties, the safe behaviours coincide with the closed sets of a
topology on M∞ (cf. eg. [59]) and should is the topological closure operator.

20.2 Safety and Snapshot sets

Let us now study how safety is reflected in snapshot sets. In other words, we
want to know when for P ⊆ M the behaviour ideP is safe. We calculate, for
I ∈M∞,



I ∈ should ideP

⇔ {[ definition of should ]}

I ∈ ide pref ideP

⇔ {[ by Lemma 11.4.2 ]}

I ∈ ide (P≤)

⇔ {[ by Lemma 11.4.1 ]}

I ⊆ P≤

and hence

ideP is safe

⇔ {[ by the above ]}

∀ I ∈M∞ : I ⊆ P≤ ⇒ I ∈ ideP

⇒ {[ ∀ u ∈ P : u≤ ⊆ P≤ ]}

∀ u ∈ P≤ : u≤ ∈ ideP

⇒ {[ since for D ∈ dirP we have D≤ = u≤ ⇔ u ∈ D ]}

P≤ ⊆ P .

On the other hand,

P≤ ⊆ P ⇒ ∀ I ∈M∞ : I ⊆ P≤ ⇒ I ⊆ P .

Altogether we have shown

Lemma 20.2 The behaviour ideP is safe iff P≤ ⊆ P , ie. iff P is downward
closed.

For that reason we call a snapshot set P ⊆ M a safety property iff it is
downward closed. We have

Corollary 20.3 If I ∈M∞ and P is a safety property, then

I ∈ ideP ⇔ I ⊆ P .

Proof. Immediate from Lemma 11.4.1. ut

For a safety property P the behaviour ideP is closed under unions (ie.
suprema) of ⊆ -ascending chains of streams. In the special case of streams, safety
properties are simply prefix-closed subsets of A∗.



21 Continual Satisfaction

21.1 The General Case

In connection with safety issues one is interested in the set of all objects that
satisfy a property also in all their finite approximations. Given a property P ⊆
M we define the property saf P by

saf P
def
= {x ∈M : x≤ ⊆ P} .

The set saf P has also been termed the prefix kernel of P in [50, 67]. We have

Lemma 21.1 1. saf P ⊆ P .
2. saf P = P iff P is a safety property. In particular, saf P≤ = P≤.
3. saf P is the greatest safety property contained in P .
4. saf is monotonic and strict w.r.t. ∅.
5. saf (P ∩ Q) = saf P ∩ safQ.
6. I ∈ ide saf P ⇔ I ⊆ P .

Proof. 1. x ∈ saf P

⇔ {[ definition ]}

x≤ ⊆ P

⇒ {[ x ∈ x≤ ]}

x ∈ P .
2. (⇒)

x ∈ P

⇔ {[ assumption ]}

x ∈ saf P

⇔ {[ definition ]}

x≤ ⊆ P .

(⇐)

x ∈ P

⇒ {[ assumption ]}

x≤ ⊆ P

⇔ {[ definition ]}

x ∈ saf P

so P ⊆ saf P ; the reverse inclusion was shown in 1.
3. It is obvious that saf P is a safety property. Let Q ⊆ P be a safety property

and x ∈ Q. By definition then x≤ ⊆ Q ⊆ P and hence x ∈ saf P .



4. Immediate from the definition.

5. x ∈ saf (P ∩Q)

⇔ {[ definition ]}

x≤ ⊆ P ∩Q

⇔ {[ infimum property of intersection ]}

x≤ ⊆ P ∧ x≤ ⊆ Q

⇔ {[ definition ]}

x ∈ saf P ∧ x ∈ safQ .

6. I ∈ ide saf P

⇔ {[ by Lemma 11.1 ]}

I ⊆ (I ∩ saf P )≤

⇔ {[ since saf P ⊆ P ]}

I ⊆ saf P≤

⇔ {[ by downward closedness of saf P ]}

I ⊆ saf P

⇔ {[ by downward closedness of I ]}

I ⊆ P .

ut

Note that saf does not distribute through union. We can now state further
distributivity properties for ide:

Lemma 21.2 Consider N,P ⊆ M . Then

1. N = safN ⇒ ide (N ∩ P ) = ideN ∩ ideP .

2. N = safN ⇒ inf ide (N ∩ P ) = inf ideN ∩ inf ideP .

3. ideQ ∩ ideP ⊆ ide (Q≤ ∩ P≤).

Proof. 1. We only need to show (⊇ ), since the reverse inclusion follows from
monotonicity of ide.
Assume S ∈ ideN ∩ ideP , say S = D≤ = E≤ with D ∈ dirN ∧ E ∈ dirP .
By Lemma 30.4 then E ≤ D, and by Lemma 30.3.2 we get E ≤ N , since
D ⊆ N . Now N = N≤ shows E ⊆ N . Since E ⊆ P we get E ⊆ N ∩ P
and, since E is directed, even E ∈ dir (N ∩ P ). This shows that S = E≤

and hence S ∈ ide (N ∩ P ).

2. immediate from 2 and equation (5).

3. Immediate from 1, Lemma 21.1.2 and monotonicity of ide.

ut



21.2 Deriving a Recursion for saf

Next, for the particular case of streams we want to derive a grammar-like or
automaton-like representation for safety properties of the form saf P for some
P ⊆ A∗. We use induction on the words involved. For the induction base we
calculate

ε ∈ saf P

⇔ {[ definition ]}

εv ⊆ P

⇔ {[ εv = ε ]}

ε ∈ P .

For the induction step, we have, for arbitrary c ∈ A,

c • s ∈ saf P

⇔ {[ definition ]}

(c • s)v ⊆ P

⇔ {[ by (3) ]}

cv ∪ c • sv ⊆ P

⇔ {[ set theory ]}

cv ⊆ P ∧ c • sv ⊆ P

⇔ {[ cv = ε ∪ c ]}

ε ∈ P ∧ c ∈ P ∧ c • sv ⊆ P .

We assume now that P itself is already given in the form of an automaton-like
recursion. Then there is a systematic way for passing from that to a recursion
for saf P . Suppose that P satisfies, for all c ∈ A and U ⊆ A∗,

c • U ⊆ P ⇔ U ⊆ Fc(P ) (8)

for some function F : A → (P(A∗) → P(A∗)). In other words, we assume that
the “recursive call” Fc(P ) depends only on the first symbol of the word to be
analyzed. Note that this assumption means a Galois connection between c• and
Fc.

Under this assumption we can continue as follows:

c • sv ⊆ P

⇔ {[ by assumption (8) ]}

sv ⊆ Fc(P )

⇔ {[ definition ]}

s ∈ saf Fc(P ) .



Note that a bi-implication linear in s results. To sum up, we have shown

Lemma 21.3 Suppose property P ∈ P(A∗) satisfies

c • U ⊆ P ⇔ U ⊆ Fc(P ) .

Then, for U 6= ∅,

ε ∈ saf P ⇔ ε ∈ P ,
c • U ⊆ saf P ⇔ ε ∈ P ∧ c ∈ P ∧ U ⊆ saf Fc(P ) .

Assume now that we are given two properties P and Q and seek a recur-
sion for saf P ∩ safQ = saf (P ∩ Q). The following result is immediate from
Lemma 21.1.5 and Lemma 21.3:

Lemma 21.4 Suppose P,Q satisfy

(c • U ⊆ P ⇔ U ⊆ Fc(P )) ∧ (c • U ⊆ Q ⇔ U ⊆ Gc(P )) .

Then, for U 6= ∅,

ε ∈ saf (P ∩Q)⇔ ε ∈ P ∩Q ,
c • U ⊆ saf (P ∩Q)⇔ c≤ ⊆ P ∩Q ∧ U ⊆ saf (Fc(P ) ∩Gc(Q)) .

This corresponds to the construction of a product automaton.

22 Liveness

22.1 Definition and Topological Properties

Following again [1] we call a behaviour B over streams live iff

∀ s ∈ A∗ : ∃ T ∈ Aω : s ◦ T ∈ B .

Using again (7) we can reduce this to

∀ s ∈ A∗ : s ∈ pref B

and hence to
A∗ ⊆ pref B .

Since A∗ is the set of compact elements of A∞ we can again easily generalise this
to arbitrary ideal completions. Consider a partial order (M,≤) and a behaviour
B ⊆ M∞. Then B is called live iff

M ⊆ pref B .

We show now (see again [1])

Lemma 22.1 B is live iff it is topologically dense in M∞, ie. iff shouldB =
M∞.



Proof. M ⊆ pref B

⇔ {[ for (⇒) use transitivity of inclusion,
for (⇐) the principal ideals J = x≤ for x ∈ pref B ]}

∀ J ∈M∞ : J ⊆ pref B

⇔ {[ by Corollary 20.3 and the definition of should ]}

∀ J ∈M∞ : J ∈ shouldB

⇔ {[ set theory ]}

M∞ ⊆ shouldB

⇔ {[ set theory ]}

M∞ = shouldB .
ut

Now we obtain

Lemma 22.2 Every behaviour is the intersection of a live and a safe behaviour.

Proof. We could copy the proof of the respective theorem in [1] verbatim, since
it proceeds purely in topological terms. However, we give a simpler proof that
avoids most of the topological reasoning in [1].
Assume B ⊆ M∞. We have

B

= {[ since B ⊆ shouldB ]}

shouldB\(shouldB\B)

= {[ definition of \, where C denotes the complement
of C w.r.t. M∞ ]}

shouldB ∩ shouldB ∩ B

= {[ de Morgan and double complement ]}

shouldB ∩ (shouldB ∪ B) .

Since shouldB is safe, the claim is shown if shouldB ∪ B is live. We calculate

should (shouldB ∪ B)

⊇ {[ since ⊆ -monotonic and hence superdistributive over ∪ ]}

should (shouldB) ∪ shouldB

⊇ {[ since should is extensive ]}

shouldB ∪ shouldB

= {[ definition of complement ]}

M∞ ,



so that we are done by Lemma 22.1. ut

Inspection of the proof leads to the following abstraction. Consider a Boolean
algebra (K,≤) with greatest element >. Call a function f : K → K a pre-closure
if it is extensive, ie. satisfies ∀ x : x ≤ f(x), and monotonic. Next, say that y ∈ K
is f -dense if f(y) = >. Then we have

Corollary 22.3 Every element x of K is the meet of an f -image and an f -dense
element, viz.

x = f(x) u (f(x) t x) .

Another way of replacing the topological proof of Lemma 22.2 in [1] by a
proof over Boolean algebras is presented in [24]. However, our proof is simpler
still.

22.2 Liveness and Snapshot Sets

As in the case of safety, we now investigate when a property P spans a live
behaviour. We calculate

ideP is live

⇔ {[ definition ]}

M ⊆ pref ideP

⇔ {[ by Lemma 11.4.2 ]}

M ⊆ P≤

⇔ {[ definition of ≤ ]}

M ≤ P .

Hence we call P ⊆ M a liveness property iff M ≤ P .

22.3 Spanning Infinite Behaviours by Snapshot Sets

We now define that part of a snapshot set that is relevant for the infinite streams.
We call a set Q ⊆ M lively iff Q 6= ∅ ∧ maxQ = ∅.

Lemma 22.4 1. If Q is lively and x ∈ Q then there is an I ∈ inf ideQ with
x ∈ I.

2. If Q is lively then inf ideQ 6= ∅.
3. If M itself is lively then for every B we have M∞ ⊆ B iff infM∞ ⊆ inf B.

Proof. 1. We construct a chain (xi)i∈IN as follows. Choose x0
def
= x. Assume

now that xi has been chosen. Since xi 6∈ maxQ = ∅, there is an xi+1 ∈ Q
with xi < xi+1.

By construction then K
def
= {xi : i ∈ IN} ∈ dirQ and hence I

def
= K≤ ∈

ideQ. Moreover, max I = maxK = ∅, i.e, I ∈ inf ideQ.



2. Immediate from 1.
3. Immediate from 1.

ut

In connection with the results below, property 3. will allow easier liveness
proofs. Note that this is particularly relevant for the case of streams, since the
set A∗ of compact elements itself is lively.

Now we define the live part of P ⊆ M as

livP
def
=
⋃
LP

where
LP

def
= {Q ⊆ P : Q lively} .

This operation enjoys the following properties:

Lemma 22.5 1. livP ⊆ P .
2. max livP = ∅.
3. P is lively iff P 6= ∅ ∧ P = livP .
4. liv is ⊆ -monotonic.
5. liv livP = livP .
6. livP 6= ∅ ⇒ inf ideP 6= ∅.
7. LP 6= ∅ ⇒ inf ideP 6= ∅.
8. inf ideP = inf ide livP .
9. pref inf ideP = (livP )≤.

Proof. 1. Clear from the definition.
2. Assume x ∈ max livP ⊆ livP . Then there is a Q ∈ LP with x ∈ Q. Since
x 6∈ ∅ = maxQ, there is y ∈ Q ⊆ P with x < y. Contradiction!

3. The implication (⇒) is clear.
For the converse we use that maxP = max livP = ∅ by 2.

4. We have P ⊆ Q ⇒ LP ⊆ LQ ⇒
⋃
LP ⊆

⋃
LQ.

5. By 1 and 4 we have liv livP ⊆ livP . For the converse we calculate

Q ⊆ P ∧ Q lively

⇒ {[ definition of livP ]}

Q ⊆ livP ∧ Q lively

⇒ {[ definition of L ]}

LP ⊆ LlivP

⇒ {[ monotonicity of
⋃

and definition of liv ]}

livP ⊆ liv livP .

6. By 6 we have max livP = ∅. Now from Lemma 22.4 and using ⊆ -monoton-
icity of the inf ide-operation we get ∅ 6= inf ide livP ⊆ inf ideP .

7. First note that ∅ 6∈ LP . But then
⋃
LP 6= ∅ iff LP 6= ∅. Now apply 6.



8. By 1 and ⊆ -monotonicity of inf ide we get ⊇ . Assume, conversely, I ∈
inf ideP . Then there is a D ∈ dirP with I = D≤. Since D is directed, we
have D 6= ∅. Moreover, maxD = max I = ∅. So D ∈ LP and hence also
D ⊆ livP , ie. D ∈ dir livP . So I ∈ inf str livP as well.

9. pref inf ideP

= {[ definitions ]}⋃
{D≤ : D ∈ dirP ∧ maxD = ∅}

= {[ distributivity ]}

(
⋃
{D : D ∈ dirP ∧ maxD = ∅})≤

⊆ {[ definition of L ]}

(
⋃
LP )≤

= {[ definition of liv ]}

(livP )≤ .
Assume conversely y ∈ livP≤. There is a Q ∈ LP and an x ∈ Q with y ≤ x.
By 22.4.1 there is an I ∈ inf ideQ ⊆ inf ideP with x ∈ I.

ut

So in particular, liv is again a kernel operator. Moreover, by 7, to show that
a snapshot set P spans infinite ideals, it suffices to exhibit a lively Q ⊆ P . Such
Qs can frequently be constructed by induction.

Part V: Extended Example: Buffers and Queues

23 Specification of a Bounded Buffer

As an example of the use of our constructs, we give a specification of bounded
buffer and queue modules. For this we use the particular domain A∞ = A∗∪Aω
of finite and infinite streams over a set A of atomic actions. This example uses
the trace view (cf. Section 6) of streams. It was motivated by the asynchronous
bounded queue implementation in the collection of the IFIP WG10.5 benchmark
problems in hardware verification [28].

The buffer module has one input and one output port. In describing such
modules, we choose the letters a for the action of inputting and b for outputting

and set A
def
= {a, b}. Boundedness of a module can be enforced by requiring

the number of input actions to exceed the number of output actions by at most
some n ∈ IN which then is the capacity of the device.

We denote by sc the number of occurrences of c ∈ A in s ∈ A∗. Formally,

εc
def
= 0 ,

(a • s)c
def
= δac + sc ,



where δ is the Kronecker symbol defined by

δxy
def
=

{
1 if x = y ,
0 otherwise .

Generalising the above informal description slightly, we define, for n ∈ ZZ
and a, b ∈ A, the set

EXab
n

def
= {s ∈ A∗ : sa ≤ sb + n}

of snapshots. Then s ∈ EXab
n may be pronounced as “a exceeds b by at most n in

s”. The specification is, however, very loose in that the balance between as and
bs might be struck only at the very end of a word. For instance, ak+n•bk ∈ EXn

ab.
So the restriction may be violated in prefixes and only established in the end.
For bounded devices, this is not possible. They need a stronger specification.
Therefore we strengthen our snapshot set to the safety property

Babn
def
= saf EXab

n .

Now ideBabn is the set of all finite and infinite streams that satisfy EXab
n in all

prefixes. However, we are interested in devices that work for an unbounded time.
This is specified by considering as overall behaviour of such a device the set

Babn
def
= inf strBabn

consisting only of infinite admissible streams.
A buffer is a device in which the number of outputs must not exceed the

number of inputs. Hence we define

BFab def
= Bba0 .

Note the reversal of the arguments in the superscript. The finitary property
Bba0 spells out to sb ≤ sa, as required. This describes an unbounded buffer. A
bounded buffer of capacity n then is described by

BBabn
def
= BFab ∩ Babn .

This specifies the set of all infinite streams for which, in all finite prefixes, the
number of outputs does not exceed the number of inputs and the number of
inputs does not exceed the number of outputs by more than n.

24 Transformation to Automaton Form

We consider now again the family of properties EXab
n . From its predicative defi-

nition in the previous section we want to calculate a more “operational” descrip-
tion corresponding to a generating grammar or accepting automaton. This can
be done by a simple unfold/fold transformation using induction on the words in
A∗. For the induction basis we calculate



ε ∈ EXab
n

⇔ {[ definition of EX ]}

εa ≤ εb + n

⇔ {[ definition of count ]}

0 ≤ 0 + n

⇔ {[ arithmetic ]}

0 ≤ n .

For the induction step, we consider an arbitrary c ∈ A:

c • s ∈ EXab
n

⇔ {[ definition of EX ]}

(c • s)a ≤ (c • s)b + n

⇔ {[ definition of count ]}

δca + sa ≤ δcb + sb + n

⇔ {[ arithmetic ]}

sa ≤ sb + n+ δcb − δca
⇔ {[ definition of EX ]}

s ∈ EXab
n+δcb−δca ,

Note that the recursion relations are linear bi-implications. Therefore we obtain,
for U 6= ∅,

ε ∈ EXab
n ⇔ 0 ≤ n ,

c • U ⊆ EXab
n ⇔U ⊆ EXab

n+δcb−δca .

This corresponds to an infinite grammar with nonterminals EXab
n or an infinite

automaton with states EXab
n (n ∈ ZZ).

25 Counting Resumed

Next we want a similar representation for

Babn
def
= saf EXab

n .

This can be done quite systematically using Lemma 21.3. We obtain, for U 6= ∅,

ε ∈ Babn ⇔ 0 ≤ n ,
c • U ⊆ Babn ⇔ 0 ≤ n ∧ 0 ≤ n ∧ U ⊆ Babn for c ∈ A\{a, b} ,
a • U ⊆ Babn ⇔ 0 ≤ n ∧ 0 ≤ n− 1 ∧ U ⊆ Babn−1 ,
b • U ⊆ Babn ⇔ 0 ≤ n ∧ 0 ≤ n+ 1 ∧ U ⊆ Babn+1 .



which simplifies to

ε ∈ Babn ⇔ 0 ≤ n ,
c • U ⊆ Babn ⇔ 0 ≤ n ∧ U ⊆ Babn for c ∈ A\{a, b} ,
a • U ⊆ Babn ⇔ 0 ≤ n− 1 ∧ U ⊆ Babn−1 ,
b • U ⊆ Babn ⇔ 0 ≤ n ∧ U ⊆ Babn+1 .

In particular, Babn = ∅ for n < 0.
Now we consider the bounded buffer behaviour. We calculate:

BBabn
= {[ definition ]}

BFab ∩ Babn
= {[ definition ]}

Bba0 ∩ Babn
= {[ definition ]}

inf strBba0 ∩ inf strBabn

= {[ by Lemma 12.3.5, since the B sets have been specified as safety
properties ]}

inf str (Bba0 ∩ Babn ) .

So the problem has been reduced to finding an explicit representation for Bba0 ∩
Babn , which is a simple product automaton construction. It is a special case of
the automaton for

Gmn
def
= Bbam ∩ Babn .

26 Decomposition

Let us now define a buffer process by setting

BBabm
def
= ({a, b},BBabm ) .

Then using parallel composition we can state the following nice decomposition
properties:

Lemma 26.1 1. EXab
m ∩ EXbc

n ⊆ EXac
m+n.

2. Babm ∩ Bbcn ⊆ Bacm+n.
3. S † {a, b} ∈ BBabm ∧ S † {b, c} ∈ BBbcn ⇒ S † {a, c} ∈ BBacm+n.

4. BBabm || BBbcn ⊆ BBacm+n.

Proof. 1. s ∈ EXab
m ∩ EXbc

n

⇔ {[ definition ]}



sa ≤ sb +m ∧ sb ≤ sc + n

⇒ {[ transitivity and monotonicity ]}

sa ≤ sc +m+ n

⇔ {[ definition ]}

s ∈ EXac
m+n .

2. immediate from 1.,Lemma 21.1.5 and Lemma 21.1.4.
3. immediate from 2.
4. immediate from 3.

ut

This allows decomposing a buffer of capacity n into a parallel composition
of n buffers of capacity 1. Of course, it needs to be shown that the intersec-
tions/parallel compositions are non-empty. This follows from our results in Sec-
tion 22: first, it is easy to show that

(a • b)∗ ⊆ EXab
n ⇐ n ≥ 0 ,

inf str (a • b)∗ ⊆ BBabn ⇐ n ≥ 1 .

From this we get

inf str (a • b • c)∗ ⊆ β(BBabm || BBbcn ) ⇐ m,n ≥ 1 .

Since (a• b• c)∗ is lively, inf str (a• b• c)∗ and hence BBabm || BBbcn are non-empty.

27 The One-Place Buffer

For the special case of n = 1 we have

BBab1 = inf strG01 ,

where, for U 6= ∅,

ε ∈ G01⇔TRUE ,
a • U ⊆ G01⇔U ⊆ G10 ,
b • U ⊆ G01⇔FALSE ,

ε ∈ G10⇔TRUE ,
a • U ⊆ G10⇔FALSE ,
b • U ⊆ G10⇔U ⊆ G01 .

This corresponds to a two-state accepting automaton for the bounded buffer
property, which is sufficient for purposes of implementation.

However, the above can also be seen as a regular grammar or system of
equations for languages. We can calculate from it a regular expression for G01

using twice

(Arden’s Rule)
ε 6= U X = V ∪ U •X

X = U∗ • V .

This gives
G01 = (a • b)∗ • (ε ∪ a) .



Using Example 14.5 and Corollary 14.4, we obtain

BBab1 = inf str (a • b)∗ .

Finally we use the fact that the language a • b as a singleton trivially satisfies
the Fano condition, so that Lemma 16.1 gives

BBab1 = (a • b)ω ,

as expected.

28 From Buffers to Queues

So far we have only talked about the relative order of input and output events.
For queues also the relative order of input and output values is relevant. We use
now the refined alphabet A = C × V where C is the set of channel names and
V the set of values. An element of A will be denoted as c〈v〉. As a shorthand we
introduce

c = {c〈x〉 : x ∈ V } . (9)

For a word w ∈ A∗ we define the word chans(w) of channels on which activity
occurred and for each c ∈ C the word valsc(W ) of values transmitted along c.
Their inductive definitions read

chans(ε) = ε ,
chans(b〈x〉 • w) = b • chans(w) ,

valsc(ε) = ε ,

valsc(b〈x〉 • w) =

{
x • valsc(w) if b = c ,
valsc(w) otherwise .

These operations are extended pointwise to languages and behaviours.
With these operations we may specify the behaviour of a faithful component,

ie. a component which does not re-order or lose messages when transmitting from
channel a to channel b, as

FAab def
= {S : valsa(S) = valsb(S)} .

A bounded queue is then specified as a faithful bounded buffer:

BQabn
def
= FAab ∩ BBabn .

Here a, b in BBabn are to be understood according to abbreviation (9).
The decomposition properties for buffers carry over to queues, so that again

a queue of capacity n can be refined into the parallel composition of n queues of
capacity 1. Moreover, a similar calculation as before, using again Arden’s rule,
yields for the refinement

BQab1 = (
⋃
x∈V

a〈x〉 • b〈x〉)ω .



29 Conclusion

We have introduced some algebraic operators and laws that can be used in
the specification and derivation of systems. By abstracting from the domain of
streams for which most of the notions were coined originally, we have obtained
a rich set of laws which hold for a variety of domains. The order-theoretic ap-
proach lends itself well to an algebraic treatment. The point-free formulation
eases and compacts specifications, proofs of the basic properties and the actual
derivations. Further research along these lines should search for similar algebraic
characterisations of other important notions about systems and to explore their
algebraic properties.

Concerning the underlying theory, our domain-theoretic notions should be
tied in more closely with the topological view (see eg. [55, 59]). Moreover, in the
stream domain there obviously is a close connection with temporal operators:
strP is related to intermittent assertions [15] and hence the formula 23P (always
eventually P ) in temporal logic, while saf P corresponds to i P (P holds in all
initial subintervals [48]). These connections are made precise and carried over to
arbitrary domains in [44, 45]. The resulting “modal algebra” as well as the ideal
and stream algebra developed in the present paper need to be tried out in larger
and more realistic case studies of deductive design of parallel systems.

Acknowledgement: Many helpful remarks on this paper were provided by J.
Baeten, A. Ponse and V. Stoltenberg-Hansen.
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13. M. Broy, G. Ştefănescu: The algebra of stream processing functions. Institut für
Informatik, TU München, Report TUM-I9620, 1996

14. M. Broy, K. Stølen: Specification and refinement of finite dataflow networks — a
relational approach. In: H. Langmaack, W.-P. de Roever, J. Vytopil (eds.): Formal
techniques in real-time and fault-tolerant computing. Lecture Notes in Computer
Science 863. Berlin: Springer 1994, 247–267

15. R.M. Burstall: Program proving as hand simulation with a little induction. Proc.
IFIP Congress 1974. Amsterdam: North-Holland1974, 308–312

16. R.M. Burstall, J. Darlington: A transformation system for developing recursive
programs. J. ACM 24, 44–67 (1977)

17. K.M. Chandy, J. Misra: Parallel program design: a foundation. Reading, Mass.:
Addison Wesley 1988

18. J.H. Conway: Regular algebra and finite machines. London: Chapman and Hall
1971

19. B.A. Davey, H.A. Priestley: Introduction to lattices and order. Cambridge: Cam-
bridge University Press 1990

20. M. Davis: Infinitary games of perfect information. In: M. Dresher, L.S. Shapley,
A.W. Tucker (eds.): Advances in game theory. Princeton, N.J.: Princeton Univer-
sity Press 1964, 89–101

21. F. Dederichs, R. Weber: Safety and liveness from a methodological point of view.
Information Processing Letters 36, 25–30 (1990)

22. E.A. Emerson: Temporal and modal logic. In: J. van Leeuwen (ed.): Handbook of
theoretical computer science. Volume B: Formal models and semantics. Amster-
dam: Elsevier 1990, 995–1072

23. M.S. Feather: A survey and classification of some program transformation ap-
proaches and techniques. In L.G.L.T. Meertens (ed.): Proc. IFIP TC2 Working
Conference on Program Specification and Transformation, Bad Tölz, April 14–17,
1986. Amsterdam: North-Holland 1987, 165–195

24. H.P. Gumm: Another glance at the Alpern-Schneider characterization of safety
and liveness in concurrent executions. Information Processing Letters 47, 291–294
(1993)

25. C.A.R. Hoare: Communicating sequential processes. London: Prentice Hall 1985

26. C.A.R. Hoare: Conjunction and concurrency. PARBASE 90, 1990

27. J.K. Huggins: Kermit: specification and verification. In: E. Börger (ed.): Specifi-
cation and validation methods. Oxford: Clarendon Press 1995

28. IFIP 94/97: IFIP WG 10.5 Verification Benchmarks. Web document under
http://goethe.ira.uka.de/hvg/benchmarks.html

29. B. Jonsson: A fully abstract trace model for dataflow and asynchronous networks.
Distributed Computing 7, 197–212 (1994)



30. G. Kahn: The semantics of a simple language for parallel processing. In: J.L.
Rosenfeld (ed.): Information Processing 74. Proc. IFIP Congress 1974. Amsterdam:
North-Holland 1974, 471–475

31. B. Von Karger, C.A.R. Hoare: Sequential calculus. Information Processing Letters
53, 123–130 (1995)

32. J.N. Kok: A fully abstract semantics for data flow nets. In: J.W. de Bakker, A.J.
Nijman, P.C. Treleaven (eds.): PARLE, Parallel languages and architectures Eu-
rope, Volume I. Lecture Notes in Computer Science 259. Berlin: Springer 1987,
351–368

33. L. Lamport: Proving the correctness of multiprocess programs. IEEE Trans. Soft-
ware Eng. SE-3, 125–143 (1977)

34. L. Lamport: Specifying concurrent program modules. ACM TOPLAS 5, 190–222
(1983)

35. L.G.L.T. Meertens: Algorithmics — Towards programming as a mathematical
activity. In: J. W. de Bakker et al. (eds.): Proc. CWI Symposium on Mathematics
and Computer Science. CWI Monographs Vol 1. Amsterdam: North-Holland 1986,
289–334

36. R. Milner: Communication and concurrency. London: Prentice Hall 1989
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30 Appendix: Auxiliary Lemmas

30.1 Cones and Maximal Elements

Lemma 30.1 Consider N,P ⊆ M . Then

1. (N ∪ P )< = N< ∪ P< ∧ (N ∪ P )≤ = N≤ ∪ P≤ (distributivity).
2. (N≤)< = N< ∧ (N≤)≤ = N≤.



Lemma 30.2 Consider N,P ⊆ M . Then

1. maxN = N≤\N<.
2. maxN = maxN≤.
3. N ⊆ P ⇒ N ∩ maxP ⊆ maxN .
4. maxN ∩ P< = ∅ ⇒ max (N ∪ P ) = maxN ∪ (maxP )\N<.

Lemma 30.3 Consider N,P ⊆ M . Then

1. N ≤ P ⇔ N ≤ P≤.
2. L ⊆ N ∧ N ≤ P ∧ P ⊆ Q ⇒ L ≤ Q.
3. N ≤ P ⇔ N≤ ⊆ P≤.
4. N ≤ P ⇒ max (N ∪ P ) = maxP .

Lemma 30.4 Consider N,P ⊆ M . Then N ∼ P ⇔ N≤ = P≤.

Proof. Immediate from Lemma 30.3.3. ut

30.2 Directed Sets

Lemma 30.5 Consider N,P ⊆ M . Then

1. N ∪ P ∈ dirM ∧ N ≤ P ⇒ P ∈ dirM .
2. N ∪ P ∈ dirM ⇒ (N ≤ P ∨ P ≤ N) ∧ (N ∈ dirM ∨ P ∈ dirM).
3. Q≤ ∈ dirM ⇔ Q ∈ dirM .
4. N ≤ P ∧ P ∈ dirM ⇒ N ∪ P ∈ dirM .
5. dir (N ∪ P ) = {K ∪ L : (K ∈ dirN ∧ L ⊆ P ∧ L ≤ K)} ∪

{K ∪ L : (L ∈ dirP ∧ K ⊆ N ∧ K ≤ L)} .

Proof. 1. Assume x, y ∈ P . By directedness of N ∪P there is a z ∈ N ∪P with
x ≤ z and y ≤ z. If z ∈ P , we are done. Otherwise, by N ≤ P there is a
u ∈ P with z ≤ u so that by transitivity also x ≤ u and y ≤ u.

2. For N = ∅ or P = ∅ the claim is trivial. So consider N,P 6= ∅ and suppose
N 6≤ P . Then there is x ∈ N with x 6≤ P . Assume now y ∈ P . By directedness
of N ∪ P there is a z ∈ N ∪ P with x, y ≤ z. Since x 6≤ P , it follows that
z ∈ N\P ⊆ N . Since y was arbitrary, we have shown P ≤ N .
The second disjunct is immediate from the first and 1.

3. Immediate from 1 by setting N = Q≤, P = Q and using Q≤ ≤ Q.
4. Assume x, y ∈ N ∪ P . By N ≤ P and P ≤ P there are u, v ∈ P with
x ≤ u ∧ y ≤ v. Since P is directed, there is z ∈ P with u ≤ z and v ≤ z.
Hence also x ≤ z and y ≤ z by transitivity.

5. We show (⊆ ); the reverse inclusion is immediate from 4.

Consider Q ∈ dir (N ∪ P ). We have Q = K ∪ L where K
def
= Q ∩ N and

L
def
= Q∩P . By 2 we know K ≤ L ∨ L ≤ K. If K ≤ L then L ∈ dirP by 1.

If L ≤ K then K ∈ dirN by 1. This shows the claim.

ut


