
Constructing Programs from Specifications
B. Möller (Ed.)
Elsevier Science Publishers B.V. (North-Holland)

1991 IFIP

Relations as a Program Development Language
Bernhard Moller

Institut für Mathematik, Universität Augsburg, Universitätsstr. 2, W-8900 Augsburg,
Germany

Abstract
We use n-ary higher-order relations between nested tuples as elements of a language in
which to specify and develop programs. The main emphasis is laid on algebraic laws for
carrying out the transformations from a specification into a program. Fixpoint semantics
of general recursion comes cheap without domain theory, since the set of all relations of a
given arity forms a complete lattice under set inclusion. Relational union provides angelic
non-deterrmnistic choice. The Booleans can be replaced by the (only possible) two nullary
relations. This leads to simple definitions of assertions, conditional, and guards. Besides
relational composition we introduce a special case of relational join which corresponds
to path concatenation in directed graphs. For the case of unary relations, i.e., sets, these
operations give convenient definitions of image, inverse image, and restriction. Closure
operations are defined as least fixpoints of certain recursions; consequently, we can prove
properties about them by computational induction. These properties are used in the
derivation of a simple reachability algorithm on directed graphs.

1 IN TR O D U C TIO N

The transformational or calculational approach to program development has by now a long
tradition [8,2,3,21,6]. There one starts from a (possibly non-executable) specification and
transforms it into a (hopefully efficient) program using semantics-preserving rules. While
in the beginning only deterministic programs were considered, [2] provided a first non-
deterministic language CIP-L. However, the rules for CIP-L suffered from the amount of
side conditions, especially those concerning non-determinacy, attached to them. For that
reason, search for a simpler semantic basis had been going on for some time.

Within CIP-L, a particular data type, viz. that of partial maps received special atten­
tion in connection with the derivation of pointer [25,4] and matrix [27] algorithms. The
idea was to find a set of algebraic laws in the style of [21,6] to allow convenient manip­
ulation of maps. However, the sets of laws presented in [25,4,27] are quite diverse and
unsystematic. Moreover, map union, the central operation, is partial, since the union of
two maps may yield a non-functional relation. The incentive for the present paper there­
fore was the search of a more uniform treatment of map algebra within the framework of
relations which encompasses partial maps as a special case. However, it turned out that
within this framework also the above-mentioned simpler basis for a program development
language could be found.

374

Of course, the idea of working in a relational framework is by no means new [22,11,14,1],
Let us therefore point out the main particularities of our approach:

(1) We consider relations of arbitrary arities. Arities > 2 correspond to non-determinis-
tic functions with tuples as arguments and/or results. Relations of arity 1 represent
types, i.e., sets of single elements. The only two nullary relations (the singleton
relation consisting just of the empty tuple and the empty relation) play the role of
the Boolean values. This also allows easy definitions of assertions, conditional, and
guards.

(2) We allow nested tuples as elements of relations.
(3) Relations may be of higher order, i.e., contain other relations as tuple components.

This allows also parameterized and dependent types.
Essential operations on relations are (besides union, intersection, and difference) junction
and join. Junction encompasses concatenation and composition; as special cases we obtain
image and inverse image as well as tests for intersection, emptiness, and membership. The
join corresponds to path concatenation on directed graphs; special cases yield restriction.

All operations are montonic w.r.t. relation inclusion. Hence the Knaster-Tarski fixpoint
theorem provides semantics for recursive definitions of relations. By (1) above we get re­
cursion on types as well as on non-deterministic functions (where union represents angelic
non-deterministic choice). (2) allows general tree-like data types to be defined in this way.
The principle of computational induction provides proofs about recursively defined types
and functions.

The approach is illustrated with the derivation of a simple reachability algorithm on
directed graphs.

Most proofs are straightforward and therefore omitted.

2 OPERATIONS ON SETS

Given a set A we denote by P(A) its powerset. Frequently, we will extend set-valued
operations

f : A iX ■■■ x A^ -» P(An+i) (n > 0)
to the powersets P(Ai) of the Ai. In these cases we use the same symbol f also for the
extended function

defined by
/ : P ^) x - x P(An) - P(An+ 1)

^ , . . . , 1 ^ = U ••• U f ^ . . . , X n) (1)
for Ui C Ai. By this definition, the extended operation distributes through union in all
arguments:

/ (^ t ^ U U „ U + 1 , . . . ,U n) = U (2)
ieJ

By taking J = 0 we obtain strictness of the extended operation w.r.t. 0:
/ (U ^ . - . U ^ ^ U i ^ , . . . , ^) = 0

By taking J = {1,2} and using the equivalence
U Q V 44- U U V = V

(3)

375

we also obtain monotonicity w.r.t. C in all arguments:
C U,2 => f (l / I , . . .U i . i ,U a ,UW t . . . ,U n ' j C f (U] , . . .U i . 1 ,U i l ,UW l . . . ,U n) (4)

To save braces, we identify a singleton set with its only element whenever no ambiguities
arise. In particular, for x 6 V, S £ P(V), and ? 6 {U ,n ,\} we abbreviate { x } lS and
S l{x } by x?S and S ix , resp.

3 TUPLES, LANGUAGES, AND RELATIONS

We are working with general, n-ary relations. Since relations are subsets of cartesian
products, we need some notation for their elements. We denote tuples as sequences of
components delimited by the brackets (and), with () standing for the empty tuple.
Tuples may be nested, e.g.

(0), (0,0), <«»,«>,0»
Tuple concatenation is defined by

(a i , . . . , am) • (bi,. . . , &„) “ (a i,. . . , am , bi,. . . , b„) (5)
It is associative, with () as the neutral element:

u • (v • w) = (u • v) • w (6)
()•“ = “ (7)
“ •0 = “ (8)

The reverse of a tuple u = (a i , . . . , a n) is the tuple u ' 1 "= (an , . . . , a i) . We have
u - 1 = u for singleton tuples and ()- 1 = ().

A (formal) language is a set of tuples. Associativity of concatenation also holds for
l a n g u a g e s : U . (V .W) = (C /.V) .W

The language e {()} is its neutral element:
e » U = V = U>e (10)

We extend concatenation to finite families (If.Xjjnnj of languages by setting for j , k £
[1 : n]

, f e if j > k
i u . (11)

i=j I (• Ui) • Uk otherwiseI i=j
For a language U we define the powers (n £ IN) by

= • U (12)t=l
In particular,

= e (13)
Uw = U (14)

T h e n [/(•) 4^ J uM (15)

is the language of all tuples formed by concatenating finitely many elements of U . In formal
language theory the parentheses around the superscripts usually are dropped; however,
we are going to use the unparenthesized notation with a different meaning in defining the

376

reflexive transitive closure of a binary relation.
The diagonals VA ’' (n 6 N) on a language V are defined by

yA, <« J a/") (16)
xev

In particular,
V A0 = I * « V * 0

(0 otherwise (17)

V ^ = V (18)
We have y ^ Y ' = (V - l)A" (19)
Consider now some set U from which the tuple components are taken. The length of

a tuple u is denoted by |u| and defined by
H = 0 (20)

|(a)| = 1 (a e U) (21)
|u • v| = |u| + |v| (22)

The singletca tuple consisting just of the ¿-th (1 < i < |u|) component of a tuple u is
denoted by Ui. So , ,

u = (23)
A relation R is a language such that all tuples in R have equal length. If R 0 this

length is called the arity of R and is denoted by ar R. The empty relation 0 is considered
to have any arity required from the context. With this convention, there are only two
0-ary relations, viz. 0 and e . Note also that, for relations R ,S 0 the language R » S is
again a relation with

a r ^ e S) = a rR + arS (24)
Given a relation R, the language R 1 is called the converse relation of R. For unary R
we have R 1 = R. Moreover, e 1 = e.

4 A HIERARCHICAL UNIVERSE OF DISCOURSE

We now want to construct a hierarchy of sets from which our relations will be taken.
The levels in the hierarchy correspond to those in typed A-calculus: Objects of level n
will roughly be languages of... of languages. More precisely, the elements of a language

n
of level n + 1 are nested tuples of languages from level n and below. In the special case
of relations this leads to relations of higher order. First we give a construction for the set
Ve of nested tuples over some set V : We define

= U (25)
.gn

where
Vo = V (26)

K+ i = (Ù (27)
k=0

377

So V”+1 contains all tuples of nesting depth i + 1, and hence V* consists of all (finitely)
nested tuples.

Now we can construct our hierarchy of universes l ^ i £ IN). At the lowest level we start
with a nonempty denumerable set Z/ of urelem ents which are considered atomic. Then
we define

% = Z/ (28)

^+ 1 = ? (((M) (29)
k-0

According to this definition, consists of all languages the elements of which are nested
tuples of elements of any Uk with k < i. In the sequel, we are only considering languages
and relations from one of these universes.

5 JUNCTION AND COMPOSITION

As auxiliary operation on tuples we need the detachm ent z j y of a tuple x from the left
of another tuple y. To make the algebra nicer, we let j return a set of tuples of cardinality
at most 1. If x is a prefix of y then x \ y contains the remainder of y after x. Otherwise, if y
is a prefix of x the operation returns e, the result of erasing x from y “as far as possible”.
In all other cases it returns the “error value” 0. We define it inductively by

x j () = e (30)
O J y = v (31)

{ ; J * (3!>

A related operation on languages is forming the left factor as known in formal language
theory. Analogously, we define the de tachm en t x [y of a tuple y from the right of a tuple

* Is, = (y - 1 J i ’ 1)"1 (33)
An important dyadic operation on tuples is the junction along common elements. It is

a generalization of the operation that takes place when two singleton binary relations are
composed in the usual sense: Denoting relational composition by ; we have

{(a,6)};{(c,d)} = (i f ? = C.
' ' [0 otherwise

This means that a “common factor” of length 1 is erased from the two tuples and the
remainders are glued together to make up the result. If there is no common factor, the
tuples are not composable and the empty relation results. We want to generalize this to
allow composition along k common elements; then e.g. a relation with two results may
be composed with another one having two arguments. We call the respective operation
ju n c tio n and define it using detachment:

U (x L2) • (z J y) (34)
ld=*

So this operation erases a common part of length k at the right of x and at the left of y
and concatenates the remainders. If no common part of length k exists, again the “error

378

value” 0 results. From the definition the following properties are immediate:
x ® y = {* • ! /} (35)

|x|-*
X ® £ = (36)
£ ® x = J L * <3 7)

e ® e = e (38)
So a fc-junction with e erases up to k components from the respective side of a tuple.

For |x| < k < |y| we have
(u i f 3 v : \ v x \ = k h v x * u = y

otherwise (3 9)

lid
Hence (J x ® V *s s e * remainders of y after occurrences of x in y, this is useful in

*=|x|
specifying pattern matching problems.

Junctions associate:
* ® (j/® *) = (i ® l i) ® z <= |y |> * + n (40)

As a special case of junction on languages we obtain concatenation:
U ® V = U * V (41)

Junction, and hence also concatenation, is contravariant with reversal:
(^ © v) - 1 = y - 1 ® ^ - 1 (42)

For relation R with ar R > 0 and k > 0 we define, with n == max(ar R — k, 0),
dom*A = A @ £ (43)
cod* R = e @ R (44)

These are the domain and codomain of length k of R, i.e., the languages of all k first
and k last components of tuples occurring in R. In particular

o l”o ~ iI e 0i fo/t?he0rw0ise (45)

dom*H = cod*# = R <= k > ar R (46)
dom*e = cod*e = c (47)

As abbreviations we use
dom R dornj R (48)
cod R == codi R (49)

Suitable diagonals are neutral w.r.t. junction: Suppose I? is a relation and k < ar R.
Then

For diagonals, junction leads to a kind of intersection [31]: Suppose R, S are relations
with ar R = ar S = k. Then

(dom* H)A2 ® R = R (50)
R ® (cod* K)A2 = R (51)

= (A n 5)A„+n_2 4= m,n>Q (52)

379

Junction provides a flexible way of composing relations. Consider e.g. the following
relations: . ,

R = {(a, 6, a + i, a — 6) | a, 6 g IN}
S {(a, b, a * b) | a, b £ IN}
T = {{a, a2} I a e IN}

Then
R ® S = {(a,b,(a + b) * Ça — b)} | a, b g IN}

vrlicrcàs
S ® T = {(a, b, (a * b)2) I a, & G IN}

On binary relations ® coincides with usual relational composition (see e.g. [29]. For
that reason, we introduce the abbreviation

U -,V = U ® V (53)
and term it com position in the sequel. Again we obtain a distributive, monotonic and
strict operation.

Junctions associate:
U ® Ç V ® W) = Ç U ^ V ^ W 4= V y E V : |y |> f c + n (54)

The following association properties are derived from the general law above:
U ,Ç V -,W) = ÇU ;V)-,W 4= V y G V : |y| > 2 (55)
U » {V -,W) = Ç U » V),W 4= V y E V : |y| > 1 (56)
U ,Ç V » W) = (Î7 ;V) .W 4= V j e V : |y |> l (57)

We shall omit parentheses whenever one of these laws applies.
Diagonals enjoy further associativities [31]: Let R, S be relations with ar R = ar S = k.

Then
^ A m ® (5 ® K A") = (R ^ ® S) ® R h n 4= m = n = 1 V (m > 1 A n > 1) (58)

Proof: For m = n = 1 the result is immediate from (52) and (17). Assume now m > 1
and n > 1.

® (5 ® AA”)
= {[by (18,52) &

R ^ ® (S A R f - 1

= 4 by (52)]}
(R A S) ^ - *

= {[by (52)]}
(R A ® KA"

= {[by (18,52)]}
(R ^ R ^

■

Further interesting special cases of junction arise when the junction is formed w.r.t.
the minimum of the arities involved. Suppose k = ar R < ar S. Then

R ® S = | J {v : x • v e S}
tea

380

In other words, R ® S is the image of R under S. Likewise, if k = arT < ar 5, then S © T
is the inverse image of T under S .

Suppose now ar R — kk == aarr SS aanndd ||zz|| == kk == ||yy||.. TThheenn

R ® S =
(e if Æ n S' 0
[0 if Æ n s = 0 (59)

R ® R =
(e if R / 0
J 0 if R = 0 (60)

x (¡) R =
J e if x G R

« ® æ = J 0 if x £ R (61)

x ® y =
_ J e if r = y

® 1 - } 0 if x 0 y (62)

Because these “tests” will be used frequently, we introduce more readable notations for
them by setting

R / 0 = K ® R (63)
x G R = x ® R (64)
x = y = z ® y (65)

For binary R and x G dom R ,y E cod R we have

x ; R ; y = < e if x • y E R
0 otherwise (66)

6 CIRCULAR SHIFT

The composition via junction alone still is not flexible enough, since it does not allow the
consideration of “inner” tuple elements. Consider again

R {(a, &, a + &, a - 6) | a, 6 e IN}
S = {{a,b,a*b) | a, b G IN}

Then it is not possible to feed the “results” a * b of S into the second “argument” b of
R using the operations we have so far. To remedy this we introduce the circular left and
right shifts +-> and ► for rotating the components of a tuple. They sure defined by

<-^x = e © z « z i (67)
^ x = z w » a :® e (68)

Using these, our task is now solved by the expression
^ (5 ® ^ A)

Generally, the junction of P and Q along the k inner components ocurring immediately
after position n within the tuples of Q is formed by

— n (P ® Q)

381

7 EXTENSIONALITY

We may decompose relations in a domain-oriented and a range-oriented way: For k < ar R,
R = | J x » x (^) R (domain-oriented) (69)

R
R — [J R ($ x t z (range-oriented) (70)

xgcodjH
If we take as our relation R the partial map representing the dereferencing operation on
a von Neumann storage, the range-oriented decomposition of R plays a prominent role in
the derivation of the garbage collection algorithm presented in [4]; it leads to a chaining
of all cells which point to a given other cell, so that all these pointers can be adjusted in
one pass in the compactifying relocation.

From the decomposition properties we also immediately get extensionality and co-
extensionality:

(V x G dom* R : x (̂) R = x (̂) S'j R = S (71)
(V x G cod* R : R(Q x = S (J) x) => R = S (72)

These properties will be used in “pointwise” calculation of the behaviour of relations.

8 ABSTRACTIONS

We already have used unions of families of languages. This mechanism also provides us
with a relational analogue of A-abstractions: The typed abstraction

A a G lN .a 2 (73)
can be expressed as , , - , ,

U) (7 4)

Application is then obtained using composition:
(5) ; U

= -J distributivity J
U (5); (a) . (a 2)

aeU
= ([since (5) ; (a) = 0 for a 5]}

(5) ; (5) . (52)
= c • (25)
= (25)

Generally we define for a language V and relational expression R in which the identifier
x may occur

Xx E V . R = | J x» R (75)
xev

An example of a higher-order abstraction is the cartesian product former
A V G if , . A W G W.. V • W (i > 0)

382

9 PARAMETERIZED TYPES AND POLYMORPHISM

So far we have used only “simple” parameters in abstractions. By the rich structure of
our universe, however, we may also use sets, i.e., types, as parameters. In this way we
obtain both parameterized types, such as the type of sequences,

X A z H . A ^ (i > 0)
and polymorphic relations, such as a doubling function

X A z U i - X x z A . x » x (i > 0)
More intricate examples are obtained in connection with recursion (see below).

Note that this form of polymorphism is not fully general [23], since the abstraction
requires type information. Nevertheless there are many useful applications without any
additional theory.

10 PARTIALITY AND STRICTNESS

The above definition of abstractions might give the impression that only left-total relations
can be defined that way. However, the body R in

Xx Z V . R
may for certain values of x evaluate to the “error element” 0, i.e., to no proper value at
all. Hence partial relations with a domain smaller than V may result.

In composing such partial relations, “undefinedness” propagates, as is immediate from
the definition of junction. Hence composition is strict, i.e., for functional relations a call-
by-value semantics results.

11 NON-DETERMIN ACY

Since relations may be one-to-many, they immediately provide a means for handling non-
determinacy. Union plays the role of non-deterministic choice. In fact, this choice is “an­
gelic” in that the union of two relations provides image values for an argument value
whenever one of them does. This is mirrored by the neutrality of 0 w.r.t. union, since 0
plays the role of X as known from denotational semantics.

As pointed out in [7], some caution is necessary with non-deterministic choice at the
level of functions. Let us briefly explain the reason for the paradox derived in that paper.
The choice operator is denoted by |] there, and postulates equivalent to the following ones
are put forward (in functional notation):

(A) f (x [] y) = f(x) [] f(y)
(B) I f D ?)(®) = /(*) 0 p(®)

(A) applies also to higher-order functions f . Moreover, the principle of extensionality is
required to hold. Together with (B) this implies that

(C) f 0 9 = h where h. d= X x . f(x) [] g(x)
Consider now the functions id, not : IB —► IB, where IB = {0, L}, and tab : (IB —> B) —»
(IB) • (IB) defined by

tab(f) * (/(O),/(L)>

383

Now we have
(O,L)D(L,O)

= ■{[definition of tab]}
tab(id) [] tabfnot)

= i by (B) J
tabfid [] not)

= {I by (C) J
tabfh)

= {[definition of tab]}
M < W))

= •{[definition of h J
W) 0 notfO)) . (»¿(L) 0 not(L))

= {[definition of id, not]}
(0 a L) . (L 0 0)

= -Q by (A) applied to (.) • (.) J
(0,L)Q(0,OJO(L1L)D(0101

This is an apparent paradox. It shows that postulating both (A) and (B) is inconsistent
with extensionality. To retain extensionality, either (A) or (B) has to be dropped.

The relational framework cleanly distinguishes between
{ f} V { g } = { f ,g } ,

which should be the interpretation of a non-deterministic choice between f and g consid­
ered as objects, and

f U g = h
with h defined as in (C). If we evaluate the relational analogue of the expression

({ /} U { S })(x)
we obtain

W ; ({ / } u {<?})
=
= -fl by (61) J

0
so that (B) does not hold. However, (A) is valid; relationally it reads

«*) U (y)) ; f = (x) ; f U {y) ; f ,
which is just a special case of the distributivity of composition over union. Note that (B)
entails that the parameter passing mechanism is call-time-choice [16,15,2].

12 ASSERTIONS AND QUANTIFIERS

As we have already seen in Section 5, the nullary relations e and 0 characterize the
outcomes of certain test operations. More generally, they can be used instead of Boolean
values; therefore we call relational expressions yielding nullary relations assertions. Note

384

that in this view “false” and “undefined” both are represented by 0. Negation is defined
by

0 e (76)
e 0 (77)

For assertions B, C we have e.g. the properties
B » C = B n c (78)
B e B = B (79)
B » B = 0 (80)
B U B = e (81)
B » C = B U G (82)

Conjunction and disjunction of assertions are represented by their intersection and union.
To improve readability, we write B C for B u C — B t C and B V C for B U C.

For assertion B and arbitrary relation R we have

B* R = R * B = i f B = 0 (83)

Hence B • R (and R • B) behaves exactly like the expression
B l> R = if B then R else error fi

in [24]. In fact, many of the properties of assertions listed there turn out to be special
cases of properties of concatenation and composition. E.g., shifting of assertions through
compositions can be done using

R * B ; S = R ; B e S (84)
which follows from the above property.

Since there are only two nullary relations, in particular there are no “non-determinate”
assertions. This avoids many of the side-conditions about determinacy that were necessary
in CIP-L [2].

Using the concept of assertions we can also define universal and existential quantifica­
tion as well as set comprehension and general non-deterministic choice. Assume that U
is a language and B is a relational expression with ar B = 0 which possibly involves the
identifier x. Then we set

3 x 6 B : B d= | J B (85)

n B (86)

{* e u : B} d= U B . x (87)
xeu

Since, as mentioned above, non-deterministic choice is represented by union in the rela­
tional framework, no separate concept is necessary for this. If desired, one could set

some t e U : B = (J B • x (88)

as well.
From these definitions, it is immediate that 3 , some , and {.} distribute through union

385

and hence are monotonic w.r.t. C and strict w.r.t. 0. However, V does not distribute
through union (and hence is not continuous); however, it is still monotonic.

13 DEPENDENT TYPES

Using comprehension, we can also define dependent types as used in Martin-Lof’s theory
[19]: Assume that A is a language and B[z] is a relational expression possibly depending
on the identifier x. We set

II = { / C A r e A. B[x] : / ; f 1 C A (J B[z])A2 C /-* ; f } (89)

The assertion f O - -®[®] states that the value of x under f is an element of the
appropriate set B[z], while f , C AA S A ((J B[a:])A2 C / - 1 ; / requires / to be

XGA
functional and left-total on A (see e.g.[28]).

14 CONDITIONAL AND GUARDS

Using assertions we can also define a conditional by

(90)

for assertion B and relations R, S of equal types. This plays the role of the expression
if B then R else S fi .

From this definition, the usual properties of the conditional (as stated e.g. in [20]) are
easily proved using the properties of concatenation and composition. As an example we
give an introduction/elimination rule for the conditional:

R = B - | J J (91)

Note that no condition about the “definedness” of B is necessary here.
The concept of the conditional can be generalized to that of a guarded expression

[2] analogous to Dijkstra’s guarded commands [12]. Given assertions Bi and relations Ri
(1 < i < n) we define n

u (B, -+ Ri) [J B i ,R i (92)
’=i i=i

A similar definition appears in [21]. Note that, according to the general angelic view
taken by the relational framework, the semantics differs substantially from Dijkstra’s:
If two guards open, but one of the corresponding branches is undefined, then the other
branch is taken. The same angelic behaviour is shown w.r.t. evaluation of the guards in
case one of the guards is undefined. The guarded expression obeys laws analogous to those
for the conditional and additional ones concerning the relation between the branches. As
a simple example we mention

(B — R) [] (B -> S) = B - (R U S)

386

15 RECURSION

By definition, all sets of the shape P(V), where V is an arbitrary language, form complete
lattices w.r.t. inclusion. Moreover, all operations except forming the relative complement
are monotonic (most of them even continuous) w.r.t. inclusion. Hence standard fixpoint
theory [18,30] applies to this setting. Given an identifier X for elements of P(V) and
a context C[X] which again yields elements of P (y) and which is monotonic in X , we
d e n o t e b y n x e P (V). <7[X]
411(1 u X e P (V) .c [X]
its least and grea test fixpoint, resp. The type information “e P(V)” will frequently be
omitted if it can be reconstructed from C[X]. The extension to simultaneous fixpoints is
straightforward.

If C[X] is continuous, i.e., distributes over unions of chains, we have the well-known
iteration [17] for the least fixpoint:

p X e ? (V) . C[X] = U ^[0] (93)

with
C°[0] = 0 (94)

C i+ 1 [0] = Cf^fO]] (95)
By dualizing the powerset lattice one obtains a corresponding iteration for the greatest
fixpoint if (7[X] is co-continuous, i.e., distributes over intersections of chains.

The recursion mechanism also allows the formation of recursive data types. This is
illustrated with the following examples.

Given a language A C e (k > 0) we may form
^ X e P (V ^) . e U A » X

to obtain the language A(*\ In particular, if A is a singleton set consisting of a singleton
tuple (i.e. a letter), we obtain the language IN of natural numbers. Since we have concate­
nation and union available, we obtain the full power of context-free languages (see [13]).
By using a different recursion with tuple nesting, viz.

? X e U k . e U (A .X)
we obtain the type of finite lists with elements taken from A. Likewise, binary trees with
node markings from A are given by

p X e U k . e U (X . A .X)
Hence we also have the power of a language with variant records. Moreover, by making
A into a parameter we get a recursive definition of a parametrized type:

^ r .A A e « t . e u ((A ; r) . A . (A ; r))
A related definition is

X A ^ U k . p .X . e U (X .A .X)
At this point we remark that our way of treating recursive types is quite similar to

work reported in [1] and [26]. The main difference to [1] is that we use arbitrary, not
just binary, relations; moreover, tupling is built-in in our system whereas it needs some
coding in [1]. The main difference to [26] is that sorts and functions are kept separate

387

there whereas they are treated symmetrically in our approach.
The language of repetition-free sequences over a set A of urelements is given by

P r f e P (« o) . A A G P(U0) . r u U (x) • (M *) ; rf)
s^A

As an example of a recursive definition of a binary relation we take McCarthy’s [20]
non-deterministic function that returns for a natural number n any natural number k
with k < n: , .

p /e .A x G lN .z = 0 —» < 1 ., . , 7
[r U r ; pred ; le J

where pred is the predecessor relation on IN. In conventional notation this would read
(with [j, i.e., angelic choice, instead of U):

/iZ e .A x G lN .ifx = Othen x elsez [j le(pred(x)) fi
Let us finally give an example of a higher-order recursion. We choose a polymorphic

function for the iteration of a binary relation:

{ yAa 1

R ; (i ; pred ; it) J
Since we are applying standard fixpoint theory, we can also use the principle of

com putational induction:
Lemma 15.1

Let GfA] be a monotonic context and P[X] be a continuous predicate. Then from
P[0] and
V X . P[X] => P[C[X]]

we may infer P [fiX . Cpf]].

Here, a predicate P is continuous if for any chain
Ho C Hj C • • •

of languages we have
(V i G IN : P ^]) => P (U Hi]

.eK
For instance, = and C are continuous. The principle generalizes in a straightforward way
to simultaneous fixpoints.

As an example, let us prove the following

Lemma 15.2
For a language V, = , y

Proof: As our continuous predicate we choose
P[X] g v » x = x , v

The induction base P[0] is trivial. Now assume P[X]. We have to show P[C[X]]
where C[X] = e U V • X . We calculate

V » (e U V » X)
= V u v » v » x
= {[by the induction hypothesis J

V U V » X t V

388

= (e U V . X) . V
■

Using this and the properties of least fixpoints one can, moreover, show that
= n Y . e U V U V » Y » V

This way of viewing is important in solving the palindrome problem (see e.g. [14]).

16 JOIN
A useful derived operation is provided by a special case of the join operation as used in
database theory (see e.g. [10]). Given two relations R, S, their ¿-join ii M S consists of
all tuples that arise from “glueing” together tuples from R and from S along k common
intermediate components. By our previous considerations, the language of ¿-tuples which
are endings of tuples in R is cod* R whereas the language of ¿-tuples which are beginnings
of tuples in S is dom* S. Hence we define

R& S | J R Q z i x t x Q S (96)
xgcod* Hndom* S

Using distributivity of junction over union, this can more succinctly be expressed as [31]
R & S = R ® (co d k R 0 dom* S)^ ® S’ (97)

We can state this a bit more generally using the fact that for any x with |z| = ¿ and
x cod* R fl dom* S we have H @ z = 0 or x (¡) S = 0. This gives

R& S = R Q T ^ ® S 4= arT = ¿ A cod*U n dom*$ C T (98)
The join is contravariant with reversal, i.e.

(R A S) - 1 = S ' 1 A R - 1 (99)
A special case of the join is nR M S = R » S (100)
As an abbreviation we introduce

R M S = R&S 4= ar .R, ar S '> 0 (101)
Then

ar(R M S) = ar R + ar S — 1 (102)
Join and composition are closely related. To explain this we consider two binary rela­

tions R, S with Q cod R D dom S:
R ; S = [j { x » y : x t z £ R f \ z t y € S }

R M S = { x » z » y - . x » z £ . R t \ z » y € . S }

Thus, whereas R ; S just states whether there is a path from x to y via some point z E Q,
the relation R M S consists of exactly those paths x • z • y. In particular, the relations

R
RM R
RM (RM R)

389

consist of the paths of lengths 1,2, 3 ,.. . in the directed graph with vertex set dom R U
cod R associated with R.

Other interesting special cases arise when the join is taken w.r.t. the minimum of the
arities involved. Suppose k = ar R < ar S. Then

R A S
= U R ® x • x • x ® S

xecodj, fin dom* S
= | J z • z ® 5

xeHndomjS
In other words, R txl S is the restriction of S to R. Likewise, for T with k = ar T < ar S,
the language S A T is the corestriction of S to T.

If even ar R = k = ar S we obtain, using (52),
R ^ s = R n s (103)

In particular, if ar R = k and |z| = k = |y|.
R & R = R (104)

k „ „ k I X if X E RxM R = R txl X = < a ,c . _ (0 if x £ R (105)

k k i x ii x = yx M y = y M x = < . ,
(0 if x y (106)

For binary R, x £ dom R, and y 6 cod R this implies
_ | x • y if x* y € RxM R M y = i a * *[0 otherwise (107)

In special cases the join can be expressed by a single junction: Assume ar P =
Then

k = arQ.

P & R = P ^ ^ R (108)
R ^ Q = R ^ Q ^ (109)

Domain and codomain are left and right identities of the join, resp.:
L L

dom^RM R = R = RM cod*R <= k < a rR (HO)
By the associativity of junction (54) also join and junction associate:

(R & S) ® T = R ^ (S ® T) (H l)
R ® (S ^ T) = (R ^ S ^ T (H2)

provided ar S > k + n.
Another useful pair of laws is

R ^ S ^ T } = (M S) ® ? 4= ar R = ar S = k < ar T (113)

(R & S) ® T = R $ (S n T) 4= arS = arT = k < ar R (114)

Moreover, also joins associate:
R ^ (S ^ T) = (R ^ 4= f c = n V a r S > i t + n (115)

390

1*1
Proof: We define U = | J U ”>• T h u s is t J l e s e t o f a11 t o P 'l e v e l components of

xeRUSUT i=l , .
tuples in R, S, T. Moreover, we set V = Uk and W = U". Then

R ft (S T)

= ¿[by (98) J
R ® V * ’® (S @ W ^ ® T)

= -J by the assumption and (54) D
R ® (V ^ ® (S ® W ^)) ® T

= d by (58) J
R ® ((V ^ ® S) ® W ^) ® T

= ¿[by the assumption and (54)]}
(R ® V ^ ® S) ® W ^ ® T

= ¿1 by (98) J)
(R ft S) ft T

■
The join also satisfies a number of further idempotence properties. Assume ax R = k.

T h e n { P ^ R) ® S = { P ^ R) ® { R ^ S } = P ® { R ^ S } (116)

Proof: We only prove the first equality; the proof of the second one is symmetric.
(P& R)® (R & S')

= (P ® R ^) ® (R ^ ® S)
= P ® R*2 ® R*2 ® S
= P ® R ^ 2 ® S
= (P ^ R) ® S

By substituting P resp. S for R we obtain, together with (104)
P ® (P & R) = P ® R (117)
(R & Q)® Q = R ® Q (118)

Iterated joins can be compressed into a single one. Assume ar Pi = k = arP2 . Then
P i@ (P 2 f tP) = (P i n P 2) ® P (119)

(R & Q ^ Q Q t = R ® (Q ^ Q 2) (120)
P i® (P 2 f tP) = P2 ® (P i f t «) (121)

(p f tQ i) ® Q j = (P f t Q 3)® Q i (122)

Proof: We only prove the first equality; the proof of the second one is symmetric. The
third and fourth equalities are immediate from the first and second one, resp.

391

PI ® (P 2 &R)
= PI ®(P2

A’ ® Ä)
= œ i ® p 2

A 2) ® Â
= (I by (18,52) J

(P in P 2) ® Ä

Finally, a relation may be split according to a subset of its domain or codomain. Assume
P C dom*P, Q C cod* R. Then by the distributivity of join over union we have

R = P ^ P U P ^ P (123)

R = R & Q U R & Q (124)
where P, Q are the relative complements of P, Q w.r.t. dom* R, cod* R, resp.

17 CLOSURES

Consider a binary relation, i.e., a relation R with ar R = 2 and let V “= dom R U cod R.
We define the (reflexive and transitive) closure R’ of R by

Let G be the directed graph associated with R, i.e., the graph with vertex set V and
arcs between the vertices corresponding to the pairs in R. We have

R ’ = n X e P (V » v) .T K [X] (125)
where

T«[X] = U R ; X
Fixpoint iteration gives . ,

(126)

JT = U * (127)

with
X o = 0 (128)

= Tal-Xii] (129)
An easy induction shows that

x . = U (130)
3=0

where, as usual,
^0 yAa (131)

p*+1 = R-R (132)

x ; R ;y = e if there is a path of length i from x to y in G
0 otherwise

(133)

Likewise,
x ; R ' ; y = e if there is a path from x to y in G

0 otherwise (134)

For s C V, the set 3 ; R* gives all points in V reachable from points in 3 via paths in G,

392

whereas R ’; s gives all points in V from which some point in s can be reached. Finally,
i e if s and t are connected by some path in G

0 otherwise (1 3 5 >

Analogously, we define the path closure R* of R by
a H [r] (136)

The path closure consists of all finite paths in G. Hence

where cr^K] = V U R M Y (137)
Fixpoint iteration gives K" = |J (138)

with
.eN

Yo = 0 (139)
K+i = ^[K.] (140)

An easy induction shows that 1-1
Y, = U j R (141)

where now
3=0

OR 4g y (142)
i+1R = A M R (143)

x IX R* t*l y (144)
is the language of all paths between x and y in G.

A sequence s of nodes is a cycle in G iff s G _RM\V A «—> s G R M\V or, equivalently, iff
s G R ^ \V A s G R *\V . Using this, it is easy to see that (R* n — R *)\V = (R* C

is precisely the set of cycles in G.
It should be noted that our definitions of closures also apply to relations of higher arity.

Hence one could use them on a representation of directed graphs with labelled edges by
ternary relations R C (V) • (L) • (V) where V is the set of nodes and L is the set of edge
labels. Then H“1 is the set of all sequences (iiliXjZj • • • xn fnZn+i) with r, G V and I, G L
such that (ziXa • • • xn xn + i) is a path in the graph and (Z1Z2 ■••/„) is the corresponding
sequence of edge labels. By contrast, R* is the set of all sequences (x/j^ • • • ¡nil} with
x, y G V and 1; G L such that there is a path in the graph from x to y and (Zjlj •■•/„) is
the sequence of edge labels on that path.

Moving away from the graph view, the path closure also is useful for general binary
relations. Let e.g. < be a partial order. Then < M is the language of all <-non-decreasing
sequences. If < is even a linear order then < M is the language of all sequences which are
sorted w.r.t. <.

Note that by our definitions, for a language V of singleton tuples,
(^ (0 *)), U, •, -w , 0, e)
(P (V »V), U, 0,

□, 0, V)
all form Kleene algebras [9].

We now prove two properties of the reflexive transitive closure which will be of use in

393

the derivation of a reachability algorithm. To save parentheses, we define for the sequel
that join binds tighter than composition which, in turn, binds tighter than union.

When computing the points reachable from some set, we can remove all paths starting
in a set 3 if these are already covered otherwise:
L em m a 17.1

Let V be a language of singleton tuples and assume R C V • V and 3,t C V.
T h e n (1) t-,R* C s i R* U t ; (M R y

(2) 3 , R ' C s U s ; R ; (3 ixl R)‘
where s “= V \s.

P roof: (1) by computational induction using the continuous predicate
P[X] K Y s , t . t ; X C 3 ;R* U t ; [> K R y

The base case P[0] is immediate. For the induction step assume P[Aj. Then

t ; ^ [X]
= U A ; *)
= t U t \ R ; X
C {[by the induction hypothesis P[X] specialized to t ; R [}

t U 3 , R" U t - R - (s ^ R y
= 3 ; R- U t U t ; (3 txl R U 3 txl R) ; (3 M R)*
= 3 ; R ' U t U t ; s 1*1 R ; (3 N R y U t ; 3 txl R; (3 M R y
= {[by (113) D

3 ; R* U t U (i n 3) ; R ; (3 Ixl R y U t ; 3 M R ; (3 M R)’
= (b y i l l s C s, s M R C R and monotonicity]}

s ; R* U t U i ; s txl R ; (3 ixl Ry
= s ; R" U t ; (3 txl R ^

(2) by computational induction using the continuous predicate
Q[X] V 3 . 3 ; X C 3 U 3 ; R ; (3 txl R y

The base case Q[0] is immediate. For the induction step assume Q[^f[- Then

; TR[X]
= 3 ;(V A ’ U R \ X)
= 3 U 3 ; R ; X
C {[by the induction hypothesis <?[X] specialized to 3 ; R]}

3 U 3 ; R U 3 , R ; R ;(s R)’
= 3 U s ; R U 3 ; R ; (3 N R u 3 txl R) ; (3 txl R y
= 3 U 3 ; R U s ; R ; s M R ; (s M R y u 3 ; R ,3 txl f l ; (3 txl R y
= 3 U 3 ; R ; (3 M R)* U 3 ; R ; 3 M R ; (3 txl R y

= {[by (113)}
3 U 3 ; fl ; (3 txl fl)* U (3 ; R n 3); R ; (3 M R y

= {[by monotonicity, since 3 ; R n 3 C 3 }

394

3 U s ; R ; (s N R)”

Corollary 17.2
(1) s; R* U t ; R* = s ; R* U i ; (s N B)’
(2) 3 ; R ' = s U 3 ; R ; (5 N R)*

Proof: Monotonicity shows the (2) parts; (C) follows from the above lemma. ■
Note that analogous properties do not hold for the path closure, since R M records all

intermediate points of the paths, whereas R* “forgets” these.

18 EXAMPLE: A SIMPLE REACHABILITY ALGORITHM

We consider the following problem: Given a directed graph, represented by a binary
relation R C V • V over the set V of singleton tuples of vertices, and a subset 3 C V,
compute the set of vertices reachable from paths starting in 3. Hence we define (omitting
type information)

reach == À 3 . s ; R‘ (145)
The aim is to derive a recursive variant of reach from this specification. A termination

case is given by {0} ; reach = 0 ; R* = 0
Another obvious idea is to use the fixpoint property

R* = U R ; R

(146)

(147)
of the closure. This gives

{3} ; reach
= 3 , R’
= 3 - (V ^ U R ;R ')
= 3 - ,V ^ U s ;(R ;R *)
= 3 U (s ; R) ; R '
= 3 U {3 ; R} ; reach

However, since there may be cycles in R, there is no guarantee for termination for this
recursion. The common technique to avoid this is to keep track of the vertices already
visited. So we embed reach into a function re with a second parameter t which is the set
of points already visited. Then we need no longer consider paths starting in t. This is
expressed by

rt = A t .A l . t U j ; (t O) ’ (148)
where i = V\t- We have the embedding

{3} ; reach = {s} ; ({0} ; re) (149)
Then,

{0} ; ({t} ; re) = t (150)
so that we have a termination case. For s 0 we have 3 = x U s \z for all x € 3. We
calculate

{3} ; ({t} ; re)
= t U 3 ; (t N R y
= t U (x U s\x) ; (t N R)'

395

= t U U (s\x) ; (i M R)*
= {[by Corollary 17.2]}

t U x U x ; (i txl R) ; (z M t M R y U (s\x) ; (x IX! i M R)*
= t U x U (x ; (i N R) U s\x) ; (x txl t M R y
= t U x U (x ; (t txl R) u s \ x) ; (x Cl t) M R y
= t U x U (x Cl t) ; R U s \ x) ; (tU x) txl R y
= t U x U ((x \t) ; R U s\x) ; (t U x) txl R y
= {(x \t) ; R U s\x} ; ({x U t} ; re)

Altogether,
{ t 1

U {(x\t) ; R U s\x} ; ({x U t} ; re) f (151)

Note that this is a tail recursion. Termination is guaranteed, since for each recursive call
either the first parameter decreases or the second one increases.

19 CONCLUSION

The relational approach offers a surprisingly simple, yet very powerful framework for
calculational program development. We have given only one example in the present paper;
however, further (and much more intricate) ones can be obtained by transcribing the
developments in [25,4,27] into relational notation. It is to be hoped that the incorporation
of the basic operations of formed language theory makes the framework also suitable for
the treatment of parsing and pattern recognition algorithms.

A lot remains to be done. One has to define a suitable notion of refinement between
relational expressions; a crude approximation, of course, is the superset relation which
describes the reduction of nondeterminacy but also allows decreasing the “definedness”.
The main problem is to find a refinement relation w.r.t. which all operators are monotonic.
A promising candidate is discussed in [14]. Then one needs to show, as in [5], that the
unfold/fold transformation strategy also is correct when refinement steps are used instead
of equality steps only.

Next, it has to be investigated how the results of [1] can be expressed in our framework,
so that larger development steps can be taken.

Finally, since data types are “first-class citizens” in this framework, one should in­
vestigate the possibilities of data type transformations using the rules of the relational
operators.

Acknowledgm ents
I am grateful to H. Partsch and D. Smith for encouraging me to write this paper, and
to W. Dosch, H. Ehler, F. Regensburger, and M. Russling for providing many valuable
comments. R. Bird has pointed out a simplification in the derivation of the reachability
algorithm. Particular thanks are due to J. van der Woude for a number of suggestions
which considerably improved the presentation.

396

20 REFERENCES
1. R.C. Backhouse, P.J. de Bruijn, G. Malcolm, E. Voermans, J. van der Woude:

Relational catamorphisms. This volume
2. F.L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger, R. Gnatz, E.

Hangel, W. Hesse, B. Krieg-Brückner, A. Laut, T.A. Matzner, B. Möller, F. Nicki,
H. Partsch, P. Pepper, K. Samelson, M. Wirsing, H. Wössner: The Munich project
CIP. Volume I: The wide spectrum language CIP-L. Lecture Notes in Computer
Science 183. Berlin: Springer 1985

3. F.L. Bauer, B. Möller, H. Partsch, P. Pepper: Formal program construction by trans­
formations — Computer-aided, Intuition-guided Programming. IEEE Transactions
on Software Engineering 15, 165—180 (1989)

4. U. Berger, W. Meixner, B. Möller: Calculating a garbage collector. In: M. Broy,
M. Wirsing (Hrsg.): Methodik des Programmierens. Fakultät für Mathematik und
Informatik, Universität Passau, MIP-8915, 1989, 1-52. Also in: M. Broy, M. Wir­
sing (eds.): Programming methodology — The CIP approach. Berlin: Springer (to
appear)

5. R. Berghammer, H. Ehler, B. Möller: On the refinement of nondeterministic re­
cursive routines by transformation. In: M. Broy, C.B. Jones (eds.): Programming
concepts and methods. Amsterdam: North-Holland 1990, 53-71

6. R. Bird: Lectures on constructive functional programming. In M. Broy (ed.): Con­
structive methods in computing science. NATO ASI Series. Series F: Computer and
systems sciences 55. Berlin: Springer 1989, 151—216

7. R. Bird, L. Meertens, D. Wile: A common basis for algorithmic specification and
development. Document No. 477 ARK-3 of IFIP Working Group 2.1, 1985

8. R.M. Burstall, J. Darlington: A transformation system for developing recursive pro­
grams. J. ACM 24, 44-67 (1977)

9. J.H. Conway: Regular algebra and finite machines. London: Chapman and Hall 1971
10. C.J. Date: An introduction to database systems. Vol. I, 4th edition. Reading, Mass.:

Addison-Wesley 1988
11. J. Desharnais, N.H. Madhavji: Abstract relational specifications. In: M. Broy, C.B.

Jones (eds.): Programming concepts and methods. Amsterdam: North-Holland 1990,
267-284

12. E.W. Dijkstra: Guarded commands, non-determinacy, and formal derivation of pro­
grams. Commun. ACM 18, 453-457 (1985)

13. S. Ginsburg: The mathematical theory of context-free languages. New York: McGraw-
Hill 1966

14. A.M. Haeberer, P.A.S. Veloso: Partial relations for program derivation — Adequacy,
inevitability and expressiveness. This volume

15. M. Hennessy: The semantics of call-by-value and call-by-name in a non-deterministic
environment. SIAM J. Comp. 1, 67-84 (1980)

16. M. Hennessy, E.A. Ashcroft: The semantics of non-determinism. In S. Michaelson,
R. Milner (eds.): Automata, languages and programming. Edinburgh: Edinburgh

397

University Press 1976, 478-493
17. S.C. Kleene: Introduction to metamathematics. New York: van Nostrand 1952
18. B. Knaster: Un théorème sur les fonctions d’ensembles. Ann. Soc. Pol. Math. 6,

133-134 (1928)
19. P. Martin-Löf: Constructive mathematics and computer programming. In L.J. Co­

hen et al. (eds.): Logic, methodology and philosophy of science VI. Amsterdam:
North-Holland 1982, 153-175

20. J. McCarthy: A basis for a mathematical theory of computation. In: P. Braffort, D.
Hirschberg (eds.): Computer programming and formal systems. Amsterdam: North-
Holland 1963, 33-70

21. L.G.L.T. Meertens: Algorithmics — Towards programming as a mathematical ac­
tivity. In J. W. de Bakker et al. (eds.): Proc CWI Symposium on Mathematics
and Computer Science. CWI Monographs Vol 1. Amsterdam: North-Holland 1986,
289-334

22. A. Mili: A relational approach to the design of deterministic programs. Acta Infor­
matica 20, 315-329 (1983)

23. J.C. Mitchell: Type systems for programming languages. In J. van Leeuwen (ed.):
Handbook of theoretical computer science. Volume B: Formal models and semantics.
Amsterdam: Elsevier 1990, 365-458

24. B. Möller: Applicative assertions. In: J.L.A. van de Snepscheut (ed.): Mathematics
of Program Construction. Lecture Notes in Computer Science 375. Berlin: Springer
1989, 348-362

25. B. Möller: Some applications of pointer algebra. In: M. Broy (ed.): Programming
and mathematical method. Proc. International Summer School Marktoberdorf 1990.
Berlin: Springer (to appear)

26. P.D. Mosses: Unified algebras and modules. Proc. ACM Conference on Principles of
Programming Languages 1989

27. P. Pepper, B. Möller: Programming with (finite) mappings. In: M. Broy (ed.): In­
formatik im Kreuzungspunkt von Numerischer Mathematik, Rechnerentwurf, Pro­
grammierung, Algebra und Logik. Berlin: Springer (to appear)

28. G. Schmidt, T. Ströhlein: Relationen und Graphen. Springer 1989
29. A. Tarski: On the calculus of relations. J. Symbolic Logic 6, 73-89 (1941)
30. A. Tarski: A lattice-theoretical fixpoint theorem and its applications. Pacific J.

Math. 5, 285-309 (1955)
31. J. van der Woude: Personal communication

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22
	Seite 23
	Seite 24
	Seite 25

