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Abstract
We use n-ary higher-order relations between nested tuples as elements of a language in 
which to specify and develop programs. The main emphasis is laid on algebraic laws for 
carrying out the transformations from a specification into a program. Fixpoint semantics 
of general recursion comes cheap without domain theory, since the set of all relations of a 
given arity forms a complete lattice under set inclusion. Relational union provides angelic 
non-deterrmnistic choice. The Booleans can be replaced by the (only possible) two nullary 
relations. This leads to simple definitions of assertions, conditional, and guards. Besides 
relational composition we introduce a special case of relational join which corresponds 
to path concatenation in directed graphs. For the case of unary relations, i.e., sets, these 
operations give convenient definitions of image, inverse image, and restriction. Closure 
operations are defined as least fixpoints of certain recursions; consequently, we can prove 
properties about them by computational induction. These properties are used in the 
derivation of a simple reachability algorithm on directed graphs.

1 IN TR O D U C TIO N

The transformational or calculational approach to program development has by now a long 
tradition [8,2,3,21,6]. There one starts from a (possibly non-executable) specification and 
transforms it into a (hopefully efficient) program using semantics-preserving rules. While 
in the beginning only deterministic programs were considered, [2] provided a first non- 
deterministic language CIP-L. However, the rules for CIP-L suffered from the amount of 
side conditions, especially those concerning non-determinacy, attached to them. For that 
reason, search for a simpler semantic basis had been going on for some time.

Within CIP-L, a particular data type, viz. that of partial maps received special atten­
tion in connection with the derivation of pointer [25,4] and matrix [27] algorithms. The 
idea was to find a set of algebraic laws in the style of [21,6] to allow convenient manip­
ulation of maps. However, the sets of laws presented in [25,4,27] are quite diverse and 
unsystematic. Moreover, map union, the central operation, is partial, since the union of 
two maps may yield a non-functional relation. The incentive for the present paper there­
fore was the search of a more uniform treatment of map algebra within the framework of 
relations which encompasses partial maps as a special case. However, it turned out that 
within this framework also the above-mentioned simpler basis for a program development 
language could be found.
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Of course, the idea of working in a relational framework is by no means new [22,11,14,1], 
Let us therefore point out the main particularities of our approach:

(1) We consider relations of arbitrary arities. Arities > 2 correspond to non-determinis- 
tic functions with tuples as arguments and/or results. Relations of arity 1 represent 
types, i.e., sets of single elements. The only two nullary relations (the singleton 
relation consisting just of the empty tuple and the empty relation) play the role of 
the Boolean values. This also allows easy definitions of assertions, conditional, and 
guards.

(2) We allow nested tuples as elements of relations.
(3) Relations may be of higher order, i.e., contain other relations as tuple components. 

This allows also parameterized and dependent types.
Essential operations on relations are (besides union, intersection, and difference) junction 
and join. Junction encompasses concatenation and composition; as special cases we obtain 
image and inverse image as well as tests for intersection, emptiness, and membership. The 
join corresponds to path concatenation on directed graphs; special cases yield restriction.

All operations are montonic w.r.t. relation inclusion. Hence the Knaster-Tarski fixpoint 
theorem provides semantics for recursive definitions of relations. By (1) above we get re­
cursion on types as well as on non-deterministic functions (where union represents angelic 
non-deterministic choice). (2) allows general tree-like data types to be defined in this way. 
The principle of computational induction provides proofs about recursively defined types 
and functions.

The approach is illustrated with the derivation of a simple reachability algorithm on 
directed graphs.

Most proofs are straightforward and therefore omitted.

2 OPERATIONS ON SETS

Given a set A  we denote by P(A) its powerset. Frequently, we will extend set-valued 
operations

f  : A iX  ■■■ x A^ -» P(An+i) (n > 0)
to the powersets P(Ai) of the Ai. In these cases we use the same symbol f  also for the
extended function

defined by
/  : P ^ )  x - x  P(An) -  P(An+ 1)

^ , . . . , 1 ^ =  U ••• U f ^ . . . , X n ) (1)
for Ui C Ai. By this definition, the extended operation distributes through union in all 
arguments:

/ ( ^ . . . . t ^ U  U „ U + 1 , . . . ,U n ) =  U  (2)
ieJ

By taking J  =  0 we obtain strictness of the extended operation w.r.t. 0: 
/ ( U ^ . - . U ^ ^ U i ^ , . . . , ^ )  = 0

By taking J  = {1,2} and using the equivalence
U Q V 44- U U V = V

(3)
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we also obtain monotonicity w.r.t. C in all arguments:
C U,2 => f ( l / I , . . .U i . i ,U a ,UW t . . . ,U n ' j C f ( U ] , . . .U i . 1 ,U i l ,UW l . . . ,U n )  (4)

To save braces, we identify a singleton set with its only element whenever no ambiguities 
arise. In particular, for x 6 V, S  £ P(V ), and ? 6 {U ,n ,\}  we abbreviate { x } lS  and 
S l{x }  by x?S  and S ix ,  resp.

3 TUPLES, LANGUAGES, AND RELATIONS

We are working with general, n-ary relations. Since relations are subsets of cartesian 
products, we need some notation for their elements. We denote tuples as sequences of 
components delimited by the brackets ( and ), with () standing for the empty tuple.
Tuples may be nested, e.g.

(0), (0,0), <«»,«>,0»
Tuple concatenation is defined by

( a i , . . . ,  am ) •  (bi,. . . ,  &„) “  (a i,. . . ,  am , bi,. . . ,  b„) (5)
It is associative, with () as the neutral element:

u • (v • w) = (u • v) • w (6)
()•“ = “ (7)
“ •0 = “ (8)

The reverse of a tuple u =  ( a i , . . . , a n ) is the tuple u ' 1 "= (an , . . . , a i ) .  We have
u - 1  = u for singleton tuples and ()- 1  =  ().

A (formal) language is a set of tuples. Associativity of concatenation also holds for 
l a n g u a g e s :  U . ( V .W )  = (C /.V ) .W

The language e {()} is its neutral element:
e » U  = V = U>e (10)

We extend concatenation to finite families (If.Xjjnnj of languages by setting for j ,  k £ 
[1 : n]

, f e if j  > k
i  u  . (11)

i=j I ( •  Ui) • Uk otherwiseI i=j
For a language U we define the powers (n £ IN) by

= •  U (12)t=l
In particular,

=  e (13)
Uw  = U (14)

T h e n  [/(•) 4^ J  uM  (15)

is the language of all tuples formed by concatenating finitely many elements of U . In formal 
language theory the parentheses around the superscripts usually are dropped; however, 
we are going to use the unparenthesized notation with a different meaning in defining the
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reflexive transitive closure of a binary relation.
The diagonals VA ’'  (n 6 N) on a language V  are defined by

yA, <« J  a/") (16)
xev

In particular,
V A0 =  I *  «  V *  0

( 0 otherwise (17)

V ^  = V (18)
We have y ^ Y '  = (V - l )A" (19)
Consider now some set U from which the tuple components are taken. The length of

a tuple u is denoted by |u| and defined by
H  = 0 (20)

|(a)| =  1 ( a e U ) (21)
|u • v| =  |u| + |v| (22)

The singletca tuple consisting just of the ¿-th (1 < i < |u|) component of a tuple u is
denoted by Ui. So , ,

u = (23)
A relation R is a language such that all tuples in R have equal length. If R  0 this 

length is called the arity  of R and is denoted by ar R. The empty relation 0 is considered 
to have any arity required from the context. With this convention, there are only two 
0-ary relations, viz. 0 and e . Note also that, for relations R ,S  0 the language R » S  is
again a relation with

a r ^ e S )  =  a rR  +  arS (24)
Given a relation R, the language R  1 is called the converse relation of R. For unary R 
we have R 1 = R. Moreover, e 1 =  e.

4 A HIERARCHICAL UNIVERSE OF DISCOURSE

We now want to construct a hierarchy of sets from which our relations will be taken. 
The levels in the hierarchy correspond to those in typed A-calculus: Objects of level n 
will roughly be languages of...  of languages. More precisely, the elements of a language

n
of level n + 1 are nested tuples of languages from level n and below. In the special case 
of relations this leads to relations of higher order. First we give a construction for the set 
Ve  of nested tuples over some set V : We define

= U  (25)
.gn 

where
Vo = V  (26)

K+ i = (Ù  (27)
k=0
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So V”+1 contains all tuples of nesting depth i +  1, and hence V*  consists of all (finitely) 
nested tuples.

Now we can construct our hierarchy of universes l ^ i  £ IN). At the lowest level we start 
with a nonempty denumerable set Z/ of urelem ents which are considered atomic. Then 
we define

%  =  Z/ (28)

^+ 1  =  ? ( ( ( M )  (29)
k-0

According to this definition, consists of all languages the elements of which are nested 
tuples of elements of any Uk  with k < i. In the sequel, we are only considering languages 
and relations from one of these universes.

5 JUNCTION AND COMPOSITION

As auxiliary operation on tuples we need the detachm ent z j  y of a tuple x from the left 
of another tuple y. To make the algebra nicer, we let j return a set of tuples of cardinality 
at most 1. If x is a prefix of y then x \ y  contains the remainder of y after x. Otherwise, if y 
is a prefix of x the operation returns e, the result of erasing x from y “as far as possible”. 
In all other cases it returns the “error value” 0. We define it inductively by

x j  () =  e (30)
O J y  =  v (31)

{ ; J * (3!>

A related operation on languages is forming the left factor as known in formal language
theory. Analogously, we define the de tachm en t x [y of a tuple y from the right of a tuple

* Is, =  (y - 1  J i ’ 1 )"1 (33)
An important dyadic operation on tuples is the junction along common elements. It is 

a generalization of the operation that takes place when two singleton binary relations are 
composed in the usual sense: Denoting relational composition by ; we have

{(a,6)};{(c,d)}  =  (  i f ? =  C.
' ' [ 0  otherwise

This means that a “common factor” of length 1 is erased from the two tuples and the 
remainders are glued together to make up the result. If there is no common factor, the 
tuples are not composable and the empty relation results. We want to generalize this to 
allow composition along k common elements; then e.g. a relation with two results may 
be composed with another one having two arguments. We call the respective operation 
ju n c tio n  and define it using detachment:

U  (x  L2 ) • (z J y) (34)
ld=*

So this operation erases a common part of length k at the right of x and at the left of y 
and concatenates the remainders. If no common part of length k exists, again the “error
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value” 0 results. From the definition the following properties are immediate: 
x ® y  = {* • ! /} ( 35)

|x|-*
X ® £ = (36)
£ ® x  =  J L *  <3 7 )

e ®  e = e (38)
So a fc-junction with e erases up to k components from the respective side of a tuple.

For |x| < k < |y| we have
( u  i f 3 v : \ v x \  = k h v x * u  = y

otherwise (3 9 )

lid
Hence (J  x  ®  V *s s e * remainders of y after occurrences of x in y, this is useful in

*=|x|
specifying pattern matching problems.

Junctions associate:
* ® ( j/®  *) =  ( i ® l i ) ® z  <= |y |> *  + n (40)

As a special case of junction on languages we obtain concatenation:
U ® V  = U * V  (41)

Junction, and hence also concatenation, is contravariant with reversal: 
( ^ © v ) - 1 =  y - 1 ® ^ - 1 (42)

For relation R with ar R  > 0 and k > 0 we define, with n == max(ar R — k, 0), 
dom*A = A @ £ (43)
cod* R = e @ R  (44)

These are the domain and codomain of length k of R, i.e., the languages of all k first 
and k last components of tuples occurring in R. In particular 

o l”o ~ iI e 0i fo/t?he0rw0ise (45)

dom*H = cod*# = R <= k > ar R  (46)
dom*e = cod*e = c (47)

As abbreviations we use
dom R dornj R (48)
cod R == codi R  (49)

Suitable diagonals are neutral w.r.t. junction: Suppose I? is a relation and k < ar R. 
Then

For diagonals, junction leads to a kind of intersection [31]: Suppose R, S  are relations 
with ar R = ar S = k. Then

(dom* H)A2 ®  R = R (50)
R  ®  (cod* K)A2 =  R  (51)

= (A n 5 )A„+n_2 4= m,n>Q (52)
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Junction provides a flexible way of composing relations. Consider e.g. the following 
relations: . ,

R  =  {(a, 6, a +  i, a — 6) | a, 6 g IN}
S  {(a, b, a * b) | a, b £ IN}
T  = {{a, a2} I a e  IN} 

Then
R ® S  = {(a,b,(a + b) * Ça — b)} | a, b g IN} 

vrlicrcàs
S ® T  = {(a, b, (a * b)2) I a, & G IN}

On binary relations ®  coincides with usual relational composition (see e.g. [29]. For 
that reason, we introduce the abbreviation

U -,V = U ® V  (53)
and term it com position in the sequel. Again we obtain a distributive, monotonic and 
strict operation.

Junctions associate:
U ® Ç V ® W ) = Ç U ^ V ^ W  4= V y E V : |y |> f c  +  n (54)

The following association properties are derived from the general law above:
U ,Ç V -,W ) = ÇU ;V)-,W  4= V y G V : |y| > 2 (55)
U » {V -,W ) = Ç U » V ),W  4= V y E V : |y| > 1 (56)
U ,Ç V » W )  =  ( Î7 ;V ) .W  4= V j e  V : |y |> l  (57)

We shall omit parentheses whenever one of these laws applies.
Diagonals enjoy further associativities [31]: Let R, S be relations with ar R = ar S  = k.

Then
^ A m ® ( 5 ® K A") =  ( R ^ ® S ) ® R h n  4= m = n =  1 V (m > 1 A n > 1) (58)

Proof: For m =  n =  1 the result is immediate from (52) and (17). Assume now m > 1 
and n > 1.

®  (5 ®  AA”)
=  {[ by (18,52) &

R ^  ®  (S  A R f - 1

= 4 by (52) ]}
(R  A S ) ^ - *

=  {[by (52) ]}
(R  A ®  KA"

=  {[by (18,52) ]}
( R ^  R ^

■

Further interesting special cases of junction arise when the junction is formed w.r.t. 
the minimum of the arities involved. Suppose k = ar R < ar S. Then

R ®  S  = | J  {v : x • v e  S} 
tea
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In other words, R ® S  is the image of R  under S. Likewise, if k = arT < ar 5, then S © T  
is the inverse image of T  under S .

Suppose now ar R — kk  ==  aarr  SS  aanndd ||zz||  ==  kk  ==  ||yy||..  TThheenn

R ® S  =
( e if Æ n S' 0
[ 0  if Æ n s  =  0 (59)

R ® R  =
( e if R /  0
J 0 if R  =  0 (60)

x (¡) R =
J e  if x G R 

« ® æ  = J 0 if x £  R (61)

x ®  y =
_  J  e if r  =  y 

® 1  -  } 0 if x 0  y (62)

Because these “tests” will be used frequently, we introduce more readable notations for 
them by setting

R /  0 = K ®  R (63)
x G R = x ®  R (64)
x = y = z ®  y (65)

For binary R  and x  G dom R ,y  E cod R we have

x ; R ; y  = < e if x • y E R
0 otherwise (66)

6 CIRCULAR SHIFT

The composition via junction alone still is not flexible enough, since it does not allow the 
consideration of “inner” tuple elements. Consider again

R {(a, &, a + &, a -  6) | a, 6 e IN}
S = {{a,b,a*b) | a, b G IN}

Then it is not possible to feed the “results” a * b of S into the second “argument” b of 
R  using the operations we have so far. To remedy this we introduce the circular left and 
right shifts +-> and ► for rotating the components of a tuple. They sure defined by

<-^x = e © z « z i  (67)
^ x  = z w » a :® e  (68)

Using these, our task is now solved by the expression
^ ( 5 ®  ^ A )

Generally, the junction of P and Q along the k inner components ocurring immediately 
after position n within the tuples of Q is formed by

— n  (P ®  Q)
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7 EXTENSIONALITY

We may decompose relations in a domain-oriented and a range-oriented way: For k < ar R, 
R  = | J  x » x ( ^ ) R  (domain-oriented) (69)

R
R — [J  R ( $ x t z  (range-oriented) (70)

xgcodjH
If we take as our relation R  the partial map representing the dereferencing operation on 
a von Neumann storage, the range-oriented decomposition of R  plays a prominent role in 
the derivation of the garbage collection algorithm presented in [4]; it leads to a chaining 
of all cells which point to a given other cell, so that all these pointers can be adjusted in 
one pass in the compactifying relocation.

From the decomposition properties we also immediately get extensionality and co- 
extensionality:

(V x G dom* R : x (̂ ) R = x (̂ ) S'j R = S (71)
(V x G cod* R : R(Q x = S  (J) x) => R = S  (72)

These properties will be used in “pointwise” calculation of the behaviour of relations.

8 ABSTRACTIONS

We already have used unions of families of languages. This mechanism also provides us 
with a relational analogue of A-abstractions: The typed abstraction

A a G lN .a 2 (73)
can be expressed as , , - , ,

U  ) (7 4 )

Application is then obtained using composition:
(5) ; U

=  -J distributivity J
U  (5); (a) . ( a 2)

aeU
=  ([ since (5) ; (a) =  0 for a 5 ]}

(5) ; (5) .  (52 )
=  c •  (25)
=  (25)

Generally we define for a language V  and relational expression R  in which the identifier
x may occur

Xx E V . R  = | J  x» R (75)
xev

An example of a higher-order abstraction is the cartesian product former 
A V G if , . A W G W.. V • W (i > 0)
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9 PARAMETERIZED TYPES AND POLYMORPHISM

So far we have used only “simple” parameters in abstractions. By the rich structure of 
our universe, however, we may also use sets, i.e., types, as parameters. In this way we 
obtain both parameterized types, such as the type of sequences,

X A z H . A ^  (i > 0)
and polymorphic relations, such as a doubling function

X A z U i - X x z A . x » x  (i >  0)
More intricate examples are obtained in connection with recursion (see below).

Note that this form of polymorphism is not fully general [23], since the abstraction 
requires type information. Nevertheless there are many useful applications without any 
additional theory.

10 PARTIALITY AND STRICTNESS

The above definition of abstractions might give the impression that only left-total relations 
can be defined that way. However, the body R  in

Xx Z V . R
may for certain values of x evaluate to the “error element” 0, i.e., to no proper value at 
all. Hence partial relations with a domain smaller than V  may result.

In composing such partial relations, “undefinedness” propagates, as is immediate from 
the definition of junction. Hence composition is strict, i.e., for functional relations a call- 
by-value semantics results.

11 NON-DETERMIN ACY

Since relations may be one-to-many, they immediately provide a means for handling non- 
determinacy. Union plays the role of non-deterministic choice. In fact, this choice is “an­
gelic” in that the union of two relations provides image values for an argument value 
whenever one of them does. This is mirrored by the neutrality of 0 w.r.t. union, since 0 
plays the role of X as known from denotational semantics.

As pointed out in [7], some caution is necessary with non-deterministic choice at the 
level of functions. Let us briefly explain the reason for the paradox derived in that paper. 
The choice operator is denoted by |] there, and postulates equivalent to the following ones 
are put forward (in functional notation):

(A) f ( x  [] y) =  f( x )  [] f(y )
(B) I f  D ?)(®) = /(* )  0 p(®)

(A) applies also to higher-order functions f .  Moreover, the principle of extensionality is 
required to hold. Together with (B) this implies that

(C) f  0 9 = h where h. d= X x . f(x )  [] g(x)
Consider now the functions id, not : IB —► IB, where IB = {0, L}, and tab : (IB —> B) —» 
(IB) • (IB) defined by

tab(f) *  (/(O),/(L)>
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Now we have
(O,L)D(L,O)

=  ■{[ definition of tab ]}
tab(id) [] tabfnot)

=  i  by (B) J
tabfid [] not)

=  {I by (C) J
tabfh)

= {[ definition of tab ]}
M < W ) )

=  •{[ definition of h J
W )  0 notfO)) .  (»¿(L) 0 not(L))

=  {[ definition of id, not ]}
(0 a L) .  (L 0 0)

=  -Q by (A) applied to (.) • (.) J
(0,L)Q(0,OJO(L1L)D(0101

This is an apparent paradox. It shows that postulating both (A) and (B) is inconsistent 
with extensionality. To retain extensionality, either (A) or (B) has to be dropped.

The relational framework cleanly distinguishes between
{ f} V { g }  = { f ,g } ,  

which should be the interpretation of a non-deterministic choice between f  and g consid­
ered as objects, and

f  U g = h
with h defined as in (C). If we evaluate the relational analogue of the expression

({ /} U { S })(x) 
we obtain

W  ; ( { / }  u {<?})
=
=  -fl by (61) J

0
so that (B) does not hold. However, (A) is valid; relationally it reads

«*) U (y )) ; f  = ( x ) ; f  U {y) ; f  , 
which is just a special case of the distributivity of composition over union. Note that (B) 
entails that the parameter passing mechanism is call-time-choice [16,15,2].

12 ASSERTIONS AND QUANTIFIERS

As we have already seen in Section 5, the nullary relations e and 0 characterize the 
outcomes of certain test operations. More generally, they can be used instead of Boolean 
values; therefore we call relational expressions yielding nullary relations assertions. Note
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that in this view “false” and “undefined” both are represented by 0. Negation is defined
by

0 e (76)
e 0 (77)

For assertions B, C we have e.g. the properties
B » C  = B n c (78)
B e B  = B (79)
B » B  =  0 (80)
B  U B  =  e (81)
B » C  =  B U G (82)

Conjunction and disjunction of assertions are represented by their intersection and union. 
To improve readability, we write B  C  for B  u  C  — B  t  C and B  V C for B  U C.

For assertion B  and arbitrary relation R we have

B* R = R *  B = i f B  =  0 (83)

Hence B  • R  (and R • B) behaves exactly like the expression
B  l> R  =  if B  then R  else error fi

in [24]. In fact, many of the properties of assertions listed there turn out to be special 
cases of properties of concatenation and composition. E.g., shifting of assertions through 
compositions can be done using

R * B ; S  = R ; B e S  (84)
which follows from the above property.

Since there are only two nullary relations, in particular there are no “non-determinate” 
assertions. This avoids many of the side-conditions about determinacy that were necessary 
in CIP-L [2].

Using the concept of assertions we can also define universal and existential quantifica­
tion as well as set comprehension and general non-deterministic choice. Assume that U 
is a language and B  is a relational expression with ar B  =  0 which possibly involves the 
identifier x. Then we set

3 x 6 B : B d=  | J  B  (85)

n  B  (86)

{* e  u  : B} d=  U  B .  x (87)
xeu

Since, as mentioned above, non-deterministic choice is represented by union in the rela­
tional framework, no separate concept is necessary for this. If desired, one could set

some t e U : B  = (J B • x (88)

as well.
From these definitions, it is immediate that 3 , some , and {.} distribute through union
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and hence are monotonic w.r.t. C and strict w.r.t. 0. However, V does not distribute 
through union (and hence is not continuous); however, it is still monotonic.

13 DEPENDENT TYPES

Using comprehension, we can also define dependent types as used in Martin-Lof’s theory 
[19]: Assume that A is a language and B[z] is a relational expression possibly depending 
on the identifier x. We set

II =  { /  C A r e  A. B[x] : / ;  f 1 C A  ( J  B[z])A2 C /-*  ; f }  (89)

The assertion f  O - -®[®] states that the value of x under f  is an element of the
appropriate set B[z], while f  , C AA S A ( (J  B[a:])A2 C / - 1  ; /  requires /  to be

XGA
functional and left-total on A  (see e.g.[28]).

14 CONDITIONAL AND GUARDS

Using assertions we can also define a conditional by

(90)

for assertion B  and relations R, S  of equal types. This plays the role of the expression 
if B  then R  else S  fi .

From this definition, the usual properties of the conditional (as stated e.g. in [20]) are 
easily proved using the properties of concatenation and composition. As an example we 
give an introduction/elimination rule for the conditional:

R  = B  -  |  J  J (91)

Note that no condition about the “definedness” of B  is necessary here.
The concept of the conditional can be generalized to that of a guarded expression 

[2] analogous to  Dijkstra’s guarded commands [12]. Given assertions Bi and relations Ri 
(1 < i < n) we define n

u (B, -+ Ri) [J  B i ,R i  (92)
’=i i=i

A similar definition appears in [21]. Note that, according to the general angelic view 
taken by the relational framework, the semantics differs substantially from Dijkstra’s: 
If two guards open, but one of the corresponding branches is undefined, then the other 
branch is taken. The same angelic behaviour is shown w.r.t. evaluation of the guards in 
case one of the guards is undefined. The guarded expression obeys laws analogous to those 
for the conditional and additional ones concerning the relation between the branches. As 
a simple example we mention

(B  — R) [] (B  -> S) = B  -  (R  U S)
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15 RECURSION

By definition, all sets of the shape P(V), where V is an arbitrary language, form complete 
lattices w.r.t. inclusion. Moreover, all operations except forming the relative complement 
are monotonic (most of them even continuous) w.r.t. inclusion. Hence standard fixpoint 
theory [18,30] applies to this setting. Given an identifier X  for elements of P(V) and 
a context C[X] which again yields elements of P ( y )  and which is monotonic in X , we 
d e n o t e b y  n x  e  P (V ). <7[X]
411(1 u X e P ( V ) .c [ X ]
its least and grea test fixpoint, resp. The type information “e  P(V )” will frequently be 
omitted if it can be reconstructed from C[X]. The extension to simultaneous fixpoints is 
straightforward.

If C[X] is continuous, i.e., distributes over unions of chains, we have the well-known 
iteration [17] for the least fixpoint:

p X  e ? ( V ) .  C[X] = U  ^[0] (93)

with
C°[0] =  0 (94)

C i+ 1 [0] =  Cf^fO]] (95)
By dualizing the powerset lattice one obtains a corresponding iteration for the greatest 
fixpoint if (7[X] is co-continuous, i.e., distributes over intersections of chains.

The recursion mechanism also allows the formation of recursive data types. This is 
illustrated with the following examples.

Given a language A  C e (k > 0) we may form
^ X  e P ( V ^ ) .  e U A » X

to obtain the language A(*\ In particular, if A is a singleton set consisting of a singleton 
tuple (i.e. a letter), we obtain the language IN of natural numbers. Since we have concate­
nation and union available, we obtain the full power of context-free languages (see [13]). 
By using a different recursion with tuple nesting, viz.

? X  e U k . e U (A .X )
we obtain the type of finite lists with elements taken from A. Likewise, binary trees with 
node markings from A  are given by

p X  e U k . e U ( X .  A .X )
Hence we also have the power of a language with variant records. Moreover, by making 
A  into a parameter we get a recursive definition of a parametrized type:

^ r .A A e « t . e u ((A ; r ) . A . ( A ; r ))
A related definition is

X A ^ U k . p .X . e U ( X .A .X )
At this point we remark that our way of treating recursive types is quite similar to 

work reported in [1] and [26]. The main difference to [1] is that we use arbitrary, not 
just binary, relations; moreover, tupling is built-in in our system whereas it needs some 
coding in [1]. The main difference to [26] is that sorts and functions are kept separate
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there whereas they are treated symmetrically in our approach.
The language of repetition-free sequences over a set A  of urelements is given by

P r f  e  P (« o ) . A A  G P(U0) . r u  U  (x) • ( M \* ) ; rf) 
s^A

As an example of a recursive definition of a binary relation we take McCarthy’s [20] 
non-deterministic function that returns for a natural number n  any natural number k 
with k < n: , .

p /e .A x G lN .z  = 0 —» < 1  ., . , 7
[ r  U r  ; pred ; le J 

where pred is the predecessor relation on IN. In conventional notation this would read 
(with [j, i.e., angelic choice, instead of U):

/iZ e .A x G lN .ifx  = Othen x elsez [j le(pred(x)) fi
Let us finally give an example of a higher-order recursion. We choose a polymorphic 

function for the iteration of a binary relation:

{ yAa 1

R  ; ( i ; pred ; it) J
Since we are applying standard fixpoint theory, we can also use the principle of 

com putational induction:
Lemma 15.1

Let GfA] be a monotonic context and P[X] be a continuous predicate. Then from 
P[0] and
V X . P[X ] => P[C[X]]

we may infer P [fiX  . Cpf]].

Here, a predicate P  is continuous if for any chain 
Ho C Hj C • • •

of languages we have
(V i G IN : P ^ ] )  => P (U  Hi]

.eK
For instance, =  and C are continuous. The principle generalizes in a straightforward way 
to simultaneous fixpoints.

As an example, let us prove the following

Lemma 15.2
For a language V, =  ,  y

Proof: As our continuous predicate we choose
P[X] g  v » x  = x , v

The induction base P[0] is trivial. Now assume P[X]. We have to show P[C[X]] 
where C[X] =  e U V  • X . We calculate

V » ( e  U V » X )
= V  u v » v » x
=  {[by the induction hypothesis J

V  U V » X t V
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= (e U V . X ) . V
■

Using this and the properties of least fixpoints one can, moreover, show that 
= n Y . e U V  U V » Y » V

This way of viewing is important in solving the palindrome problem (see e.g. [14]).

16 JOIN
A useful derived operation is provided by a special case of the join operation as used in 
database theory (see e.g. [10]). Given two relations R, S, their ¿-join ii  M S consists of 
all tuples that arise from “glueing” together tuples from R  and from S along k common 
intermediate components. By our previous considerations, the language of ¿-tuples which 
are endings of tuples in R is cod* R  whereas the language of ¿-tuples which are beginnings 
of tuples in S  is dom* S. Hence we define

R&  S  | J  R Q z i x t x Q S  (96)
xgcod* Hndom* S

Using distributivity of junction over union, this can more succinctly be expressed as [31] 
R & S  = R ® (co d k R  0  dom* S )^  ®  S’ (97)

We can state this a bit more generally using the fact that for any x with |z| = ¿ and 
x cod* R  fl dom* S  we have H @ z =  0 or x (¡) S  = 0. This gives

R&  S = R Q T ^ ®  S  4= arT = ¿ A cod*U n  dom*$ C T (98) 
The join is contravariant with reversal, i.e.

(R  A S ) - 1 =  S ' 1 A R - 1 (99)
A special case of the join is nR M S  = R » S  (100)
As an abbreviation we introduce

R M S = R&S  4= ar .R, ar S '> 0  (101)
Then

ar(R M S) = ar R  +  ar S  — 1 (102)
Join and composition are closely related. To explain this we consider two binary rela­

tions R, S  with Q cod R  D dom S:
R ; S  = [ j { x » y : x t z £ R f \ z t y € S }

R M S  = { x » z » y - .  x » z £ . R t \ z » y € . S }

Thus, whereas R ; S  just states whether there is a path from x to y via some point z E Q, 
the relation R M S  consists of exactly those paths x • z • y. In particular, the relations

R
RM R
RM  (RM R)
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consist of the paths of lengths 1,2, 3 ,.. .  in the directed graph with vertex set dom R  U 
cod R  associated with R.

Other interesting special cases arise when the join is taken w.r.t. the minimum of the 
arities involved. Suppose k = ar R  <  ar S. Then

R  A S
=  U  R ® x  • x • x ®  S  

xecodj, fin dom* S
=  | J  z • z ®  5 

xeHndomjS
In other words, R  txl S  is the restriction of S  to R. Likewise, for T  with k = ar T < ar S, 
the language S  A T  is the corestriction of S  to T.

If even ar R  = k =  ar S  we obtain, using (52),
R ^ s = R n s (103)

In particular, if ar R  = k and |z| =  k =  |y|.
R & R  = R (104)

k „ „ k I X if X E RxM  R  = R  txl X = < a  ,c . _ ( 0  if x £ R (105)

k k i  x ii x  = yx M y = y M x = < .  ,
( 0 if x  y (106)

For binary R, x £ dom R, and y 6 cod R  this implies
_ | x • y if x* y € RxM  R M y  = i a  * *[ 0  otherwise (107)

In special cases the join can be expressed by a single junction: Assume ar P = 
Then

k = arQ.

P & R  = P ^ ^ R (108)
R ^ Q  = R ^ Q ^ (109)

Domain and codomain are left and right identities of the join, resp.:
L L

dom^RM  R = R = RM  cod*R <= k < a rR (HO)
By the associativity of junction (54) also join and junction associate:

( R & S ) ® T  = R ^ ( S ® T ) (H l)
R ® ( S ^ T )  = ( R ^ S ^ T (H2)

provided ar S  > k + n.
Another useful pair of laws is

R ^ S ^ T }  = ( M S ) ® ?  4= ar R  = ar S = k < ar T (113)

( R & S ) ® T  = R $ ( S n T )  4= arS = arT = k < ar R (114)

Moreover, also joins associate:
R ^ ( S ^ T )  = ( R ^  4= f c = n V a r S > i t  + n (115)
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1*1
Proof: We define U = | J  U  ”>• T h u s  is  t J l e  s e t  o f  a11 t o P 'l e v e l  components of 

xeRUSUT i=l , .
tuples in R, S, T. Moreover, we set V = Uk  and W  = U". Then

R ft (S  T )

=  ¿[by (98) J
R ® V * ’® ( S @ W ^ ® T )

= -J by the assumption and (54) D 
R ® ( V ^ ® ( S ® W ^ ) ) ® T

= d by (58) J
R ® ( ( V ^ ® S ) ® W ^ ) ® T

= ¿[by the assumption and (54) ]} 
( R ® V ^ ® S ) ® W ^ ® T

= ¿1 by (98) J)
(R ft S) ft T

■
The join also satisfies a number of further idempotence properties. Assume ax R = k. 

T h e n  { P ^ R ) ® S  = { P ^ R ) ® { R ^ S }  = P ® { R ^ S }  (116)

Proof: We only prove the first equality; the proof of the second one is symmetric.
(P&  R )® (R &  S')

= ( P ® R ^ ) ® ( R ^  ® S )
= P ®  R*2 ®  R*2 ®  S
= P ® R ^ 2 ® S
= ( P ^ R ) ® S

By substituting P resp. S  for R we obtain, together with (104) 
P ® ( P & R )  = P ® R  (117)
(R & Q )® Q  = R ® Q  (118)

Iterated joins can be compressed into a single one. Assume ar Pi =  k =  arP2 . Then
P i@ (P 2 f tP )  =  ( P i n P 2) ® P  (119)

(R & Q ^ Q Q t = R ® ( Q ^ Q 2) (120)
P i® (P 2 f tP )  =  P2 ® ( P i f t « )  (121)

( p f tQ i ) ® Q j  =  ( P f t Q 3)® Q i (122)

Proof: We only prove the first equality; the proof of the second one is symmetric. The 
third and fourth equalities are immediate from the first and second one, resp.
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PI ® (P 2 &R)
= PI ®(P2

A’ ® Ä)
=  œ i ® p 2

A 2) ® Â
= (I by (18,52) J

( P in P 2 ) ® Ä

Finally, a relation may be split according to a subset of its domain or codomain. Assume 
P  C dom*P, Q C cod* R. Then by the distributivity of join over union we have

R  =  P ^ P U P ^ P  (123)

R  = R & Q U R & Q  (124)
where P, Q are the relative complements of P, Q w.r.t. dom* R, cod* R, resp.

17 CLOSURES

Consider a binary relation, i.e., a relation R  with ar R =  2 and let V  “=  dom R  U cod R. 
We define the (reflexive and transitive) closure R’ of R  by

Let G be the directed graph associated with R, i.e., the graph with vertex set V  and 
arcs between the vertices corresponding to the pairs in R. We have

R ’ = n X  e P ( V » v ) .T K [X] (125)
where

T«[X] = U R ; X
Fixpoint iteration gives . ,

(126)

JT =  U  * (127)

with
X o = 0 (128)

=  Tal-Xii] (129)
An easy induction shows that

x .  = U (130)
3=0

where, as usual,
^0 yAa (131)

p*+1 = R-R (132)

x ; R  ;y = e if there is a path of length i from x to y in G 
0 otherwise

(133)

Likewise,
x ; R ' ; y = e if there is a path from x to y in G 

0 otherwise (134)

For s C V, the set 3 ; R* gives all points in V  reachable from points in 3 via paths in G,
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whereas R ’; s gives all points in V  from which some point in s can be reached. Finally, 
i e if s and t are connected by some path in G

0 otherwise ( 1 3 5 >

Analogously, we define the path  closure R* of R  by
a H [r] (136)

The path closure consists of all finite paths in G. Hence

where cr^K] =  V  U R  M Y (137)
Fixpoint iteration gives K" = |J (138)

with
.eN

Yo = 0 (139)
K+i = ^[K.] (140)

An easy induction shows that 1-1
Y, = U  j R (141)

where now
3=0

OR  4g y (142)
i+1R  =  A M R (143)

x IX R* t*l y (144)
is the language of all paths between x and y in G.

A sequence s of nodes is a cycle in G iff s G _RM\V  A «—> s G R M\V  or, equivalently, iff 
s G R ^ \V  A s G R *\V . Using this, it is easy to see that (R* n  — R *)\V  = (R* C

is precisely the set of cycles in G.
It should be noted that our definitions of closures also apply to relations of higher arity. 

Hence one could use them on a representation of directed graphs with labelled edges by 
ternary relations R  C (V) • (L) • (V) where V  is the set of nodes and L is the set of edge 
labels. Then H“1 is the set of all sequences (iiliXjZj • • • xn fnZn+i) with r, G V and I, G L 
such that (ziXa • • • xn xn + i) is a path in the graph and (Z1Z2 ■••/„) is the corresponding 
sequence of edge labels. By contrast, R* is the set of all sequences (x/j^ • • • ¡nil} with 
x, y G V  and 1; G L such that there is a path in the graph from x  to y and (Zjlj •■•/„) is 
the sequence of edge labels on that path.

Moving away from the graph view, the path closure also is useful for general binary 
relations. Let e.g. <  be a partial order. Then < M is the language of all <-non-decreasing 
sequences. If < is even a linear order then < M is the language of all sequences which are 
sorted w.r.t. <.

Note that by our definitions, for a language V  of singleton tuples, 
(^ (0 * )), U, •, -w , 0, e) 
(P (V »V ), U, 0,

□, 0, V)
all form Kleene algebras [9].

We now prove two properties of the reflexive transitive closure which will be of use in
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the derivation of a reachability algorithm. To save parentheses, we define for the sequel 
that join binds tighter than composition which, in turn, binds tighter than union.

When computing the points reachable from some set, we can remove all paths starting 
in a set 3 if these are already covered otherwise:
L em m a 17.1

Let V be a language of singleton tuples and assume R  C V • V  and 3,t C V.
T h e n  (1) t-,R* C s i R* U t ; ( M R y

(2) 3 , R ' C s U s ; R ; (3 ixl R)‘
where s “=  V \s.

P roof: (1) by computational induction using the continuous predicate
P[X] K  Y s , t .  t ; X  C 3 ;R* U t ; [ > K R y

The base case P[0] is immediate. For the induction step assume P[Aj. Then

t ; ^ [X ]
= U A ; * )
=  t U t \ R ; X
C {[by the induction hypothesis P[X] specialized to t ; R [}

t U 3 , R" U t - R - ( s ^ R y
= 3 ; R- U t U t ; (3 txl R  U 3 txl R) ; (3 M R)*
= 3 ; R ' U t U t ; s 1*1 R  ; (3 N R y  U t ; 3 txl R; (3 M R y
= {[by (113) D

3 ; R* U t  U (i n  3) ; R  ; (3 Ixl R y  U t ; 3 M R  ; (3 M R)’
= ( b y  i l l s  C s, s M R  C R  and monotonicity ]} 

s ; R* U t U i ; s txl R ; (3 ixl Ry
= s ; R" U t ;  (3 txl R ^

(2) by computational induction using the continuous predicate
Q[X] V 3 . 3 ; X  C 3 U 3 ; R  ; (3 txl R y

The base case Q[0] is immediate. For the induction step assume Q[^f[- Then

; TR[X]
= 3 ;(V A ’ U R \ X )
= 3 U 3 ; R  ; X
C {[by the induction hypothesis <?[X] specialized to 3 ; R ]}

3 U 3 ; R  U 3 , R  ; R ;( s  R)’
= 3 U s ; R  U 3 ; R  ; (3 N R  u  3 txl R ) ; (3 txl R y
= 3 U 3 ; R  U s ; R ; s M  R ; ( s M R y  u 3 ; R ,3  txl f l ; (3 txl R y
= 3 U 3 ; R  ; (3 M R)* U 3 ; R  ; 3 M R ; (3 txl R y

= {[by (113)}
3 U 3 ; fl ; (3 txl fl)* U (3 ; R n 3); R  ; (3 M R y

= {[by monotonicity, since 3 ; R n  3 C 3 }
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3 U s ; R  ; (s N R)”

Corollary 17.2
(1) s; R* U t ; R* = s ; R* U i ; (s N B)’
(2) 3 ; R ' = s U 3 ; R ;  (5 N R)*

Proof: Monotonicity shows the ( 2  ) parts; ( C ) follows from the above lemma. ■
Note that analogous properties do not hold for the path closure, since R M records all 

intermediate points of the paths, whereas R* “forgets” these.

18 EXAMPLE: A SIMPLE REACHABILITY ALGORITHM

We consider the following problem: Given a directed graph, represented by a binary 
relation R  C V • V  over the set V  of singleton tuples of vertices, and a subset 3 C V, 
compute the set of vertices reachable from paths starting in 3. Hence we define (omitting
type information)

reach == À 3 . s ; R‘ (145)
The aim is to derive a recursive variant of reach from this specification. A termination 

case is given by {0} ; reach =  0 ; R* =  0
Another obvious idea is to use the fixpoint property 

R* = U R ; R

(146)

(147)
of the closure. This gives

{3} ; reach
= 3 , R’
= 3 - ( V ^  U R ;R ')
= 3 - ,V ^  U s ;(R ;R * )
= 3 U (s ; R) ; R '
= 3 U {3 ; R} ; reach

However, since there may be cycles in R, there is no guarantee for termination for this 
recursion. The common technique to avoid this is to keep track of the vertices already 
visited. So we embed reach into a function re with a second parameter t which is the set 
of points already visited. Then we need no longer consider paths starting in t. This is 
expressed by

rt =  A t .A l . t  U j ; ( t O ) ’ (148)
where i =  V\t- We have the embedding

{3} ; reach = {s} ; ({0} ; re) (149)
Then,

{0} ; ({t} ; re) =  t (150)
so that we have a termination case. For s 0 we have 3 =  x U s \z  for all x € 3. We 
calculate

{3} ; ({t} ; re)
= t U 3 ; (t N R y
= t U (x U s\x ) ; (t N R)'
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=  t U U (s\x ) ; (i M R)*
=  {[by Corollary 17.2 ]}

t U x U x ; (i txl R) ; (z M t M R y  U (s\x) ; (x  IX! i  M R)*
= t U x U (x ; (i N R) U s\x ) ; (x txl t  M R y
= t U x U (x ; (t txl R) u  s \ x ) ; (x Cl t) M R y
= t U x U (x Cl t ) ; R  U s \ x ) ; (tU x) txl R y
=  t U x U ((x \t) ; R  U s\x ) ; (t U x) txl R y
=  {(x \t) ; R  U s\x}  ; ({x U t} ; re)

Altogether, 
{ t  1

U  {(x\t) ; R U s\x}  ; ({x U t}  ; re) f (151)

Note that this is a tail recursion. Termination is guaranteed, since for each recursive call 
either the first parameter decreases or the second one increases.

19 CONCLUSION

The relational approach offers a surprisingly simple, yet very powerful framework for 
calculational program development. We have given only one example in the present paper; 
however, further (and much more intricate) ones can be obtained by transcribing the 
developments in [25,4,27] into relational notation. It is to  be hoped that the incorporation 
of the basic operations of formed language theory makes the framework also suitable for 
the treatment of parsing and pattern recognition algorithms.

A lot remains to be done. One has to define a suitable notion of refinement between 
relational expressions; a crude approximation, of course, is the superset relation which 
describes the reduction of nondeterminacy but also allows decreasing the “definedness”. 
The main problem is to find a refinement relation w.r.t. which all operators are monotonic. 
A promising candidate is discussed in [14]. Then one needs to show, as in [5], that the 
unfold/fold transformation strategy also is correct when refinement steps are used instead 
of equality steps only.

Next, it has to be investigated how the results of [1] can be expressed in our framework, 
so that larger development steps can be taken.

Finally, since data types are “first-class citizens” in this framework, one should in­
vestigate the possibilities of data type transformations using the rules of the relational 
operators.
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