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Abstract 

 

This research aimed to find novel features that can be used to discriminate 

between speech and music in the time domain for the purpose of data retrieval. 

The study used speech and music data that were recorded in standard anechoic 

chambers and sampled at 44.1 kHz. 

Two types of new features were found and thoroughly examined: the Ratio of 

Silent Frames (RSF) feature and the Time Series Events (TSE) set of features. 

The Receiver Operating Characteristics (ROC) curves were used to assess each 

one of the proposed features as well as certain relevant features from the 

literature for the purpose of comparison. The RSF feature introduced up to 8% 

enhancement when compared to a couple of relevant features from the 

literature. One of the TSE set of features provided close to 100% speech/music 

discrimination.
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Chapter 1: Introduction 

 

1.1. Human Auditory System 

Discriminating between different types of audio signals is an easy task for the human 

auditory system. For the first moment one hears a girl screaming he can recognize that from 

the sound of an ambulance passing by. However, this task is considered to be not as trivial for 

machines. Yet, no real-time algorithm exists that can replicate the human auditory system. 

The latter has the capability to carry out many functions that can be broadly categorized into: 

discrimination and separation. The latter function aims to separate mixed sounds from each 

other [1-10], while the former one aims to discriminate between the various types of sounds 

[11-24]. 

This thesis documents novel audio features that can be used for speech/music discrimination. 

Chapter 4 explains the first feature called Ratio of Silent Frames (RSF) and experimentally 

examines its performance. Chapters 5 and 6 explain the second feature called Non Zero 

Crossing Event (NZCE) and also examines its performance experimentally. The thesis also 

provides a comparison between the proposed features and some relevant features that exist in 

the literature. 

The discrimination problem can take many hierarchical levels, the simplest being detection of 

silence [25] where no sound is present. A more advanced hierarchical discrimination method 

is illustrated by figure 1.1 [1] where speech is classified into male, female, or sport announcer 

and music is further classified into different genre [26-29]. Bi-discriminators are systems that 

classify audio signals into one of two types (e.g. noise/speech, silence/non-silence). 
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Speech/music discrimination (SMD) is one such system where audio signals are classified to 

be either speech or music and is the main subject of this study. 

 

Figure 1.1 Hierarchical classification of different types of sound 

 

1.2. About This Thesis 

There is a growing interest in speech processing for various applications; audio type 

classification is a branch in this field of research. At this early stage of development, the 

audio classification algorithms that exist in the literature still have certain research questions 

to be answered. Every new research contributes a novel method to classify audio signals into 

a hierarchy similar to that shown in figure 1.1. Some broad classifications, including this 

Sound

Speech

Male

Female

Sport Announcer

Music

Jazz

Rock

Hip Hop

Disco

Classical

String Quartet

Choir

Orchest

Piano

Others

Country

Others

Others
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thesis, work at the first level; i.e. discriminating between speech and music. Every research 

contributes to the field of classification by either presenting a novel feature or enhancing an 

existing one. Sound features can be defined as mathematical algorithms which can be 

implemented, either by software or hardware, to extract useful information from the signal 

that is not obvious from the raw data. Features are extracted either from the time (temporal) 

domain or the frequency (spectral) domain. In time domain the signal is analysed with respect 

to time, while in the frequency domain the signal is analysed with respect to frequency. 

Spectrograms are sometimes also used to extract features that carry spectral as well as 

temporal information. This thesis is contributing to the time domain features. 

Speech signals are widely known in the literature of speech/music discrimination to carry 

more silence (or low energy) frames than music. Such a fact can be sometimes realized when 

breaking any word into its syllables; e.g. the word “distribution” can be broken into “dist-rib-

u-tion”. This fact has been exploited in the literature. However, every algorithm in the 

literature suggested a different method to detect such silence. The first novel feature 

presented in this thesis is called the Ratio of Silent Frames (RSF) where a new algorithm is 

proposed by means of a different method of silence detection. 

The percentage of Low Energy Frames (LEF) [21, 23, 30] in an audio track is a basic feature 

that is used in the literature to discriminate between speech and music. The proposed RSF 

feature was compared to the LEF feature and found to provide an enhancement of up to 8%. 

More than two decades ago, Kedem Benjamin [16] introduced the Zero Crossing Rate (ZCR) 

as a measure of computing the dominant frequency of a signal in the time domain. He 

suggested that the ZCR is a feature that can be exploited to discriminate between speech and 

music. Since then, researchers have been investigating the usage of this feature for various 

applications [31, 32]. However, the zero crossing events (ZCE) are not the only possible 
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events that could occur in a signal. There are 8 other possible events that have not been 

investigated yet, totalling 9 types of events. This thesis provides detailed investigation of 

these 9 events that could occur in a digital audio signal. After a thorough investigation of 

these events, the Non Zero Crossing Events (NZCE) features are found to provide close to 

zero misclassification. The thesis provides a comparison between the ZCE features and the 

NZCE features in chapters 5 and 6, and shows the clear superiority of the NZCE features 

over the ZCE features. 

In summary, this thesis provides the following main contributions to the field of 

speech/music discrimination: 

1. Introducing two novel features that can be used to discriminate between speech and 

music: 

a. The Ratio of Silent Frames (RSF) feature 

b. The Probability of Non Zero Crossing Events, P(NZCE) features 

2. Applying the Receiver Operating Characteristics (ROC) curves to assess any 

speech/music discrimination feature; applying it to the proposed features as well as 

certain repeated feature from the literature 

3. Thorough analysis of the effect of track length, noise, music genre, and sampling 

frequency when using the P(NZCE) features 

 

1.3. Motivations and Applications 

There are a number of possible applications that might result from being able to label an 

audio signal as either speech or music. In this section, some of them are described in order for 

the reader to appreciate the importance of this field of study. 
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1.3.1. Hearing Aids 

One of the most promising applications for the speech/music discrimination is hearing aids. 

An example of a hearing aid device is demonstrated in figure 1.2. For the user of any hearing 

aid it is very disturbing when suddenly some loud music is played causing most of the time 

annoying sounds due to the loudness and the distortion. The latter is mainly due to clipping in 

the signal as well as due to the amplifier frequency response that is normally designed to 

operate in the range of speech signals. Music hearing aids do exist, but are more costly; i.e. 

ranging from $500 to $3000 [33]. 

The difference in design between speech and music hearing aids is due to two parameters: 

wider spectrum of music versus speech and differing overall intensity.  In the audiology 

world of research, the term Decibels Hearing Level dBHL is used to refer to the sound 

intensity. 0 dBHL is the lowest level a normal person can hear. While speech intensity 

normally ranges from 30 to 35 dBHL; music has a wider range. The latter varies from 20 

dBHL for the brushes of a jazz drummer to 120 dBHL for an electric guitar. Sounds beyond 

85 dBHL could lead to hearing loss [34]. 

 

Figure 1.2 An example of a hearing aid 
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The amplifying circuitry in a speech-hearing aid is normally “oblivious” to these differences 

and amplifies all picked audio signals equally. Hearing aid users are usually advised to turn 

the volume of their music players down while turning the volume of their hearing aid up in 

order to reduce the distortion due to clipping effect; but this would cause a problem when a 

person is talking to them while listening to music as the speech will not be clearly audible to 

them. Alternatively, some users simply turn off their hearing aids if they have no control on 

the music, e.g. in a party or in a shopping area. The way hearing aids behave could be 

changed depending on the environment and the type of sounds in the vicinity of the user [35].  

For this particular application, real time speech/music discrimination is preferred. There is no 

specific maximum latency as the term “real time” cannot be specifically defined. However, as 

a rule of thumb, the lower the latency the better the hearing aid would be. In general, 10 

seconds latency is too long and 10 milliseconds is non-realistic. It is worth mentioning here 

that no study has shown latency below one second, including this study. However, the issue 

of real-time is related to quality. In other words, latency below one second is achievable, but 

at the cost of higher misclassification error; i.e. it‟s a trade-off between delay and quality of 

discrimination. The details of such trade-off will be thoroughly discussed throughout the rest 

of the thesis. 

 

1.3.2. Automatic Speech Recognition (ASR) 

Automatic Speech Recognition (ASR) systems are designed to convert any recognized 

speech signal into written text. In any ASR system a stream of audio input could be passed 

through a pre-processing block to mark each audio segment as either speech (to be translated 

into text) or music (to be rejected). Figure 1.3 illustrates this concept using a block diagram.  
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If a musical signal is passed to an ASR system, while being oblivious to its type, it could lead 

to the wrong translation; i.e. translating the processed sound to the nearest matching text. 

Furthermore, the time wasted in searching for the word corresponding to a music segment 

could significantly affect the speed of the ASR system. Thus the performance of an ASR 

system could be enhanced by adding a speech/music discrimination routine prior to the word 

recognition process. 

The attempt in [20] achieved 91.8% recognition rate after using a speech/music 

discrimination method to identify non-speech signals and excluding them from being 

processed by the ASR system. Regardless of the method used, the ASR‟s performance was 

improved as it was verified in [20]. 

 

 

Figure 1.3 Speech/music discriminator being embedded in an Automatic Speech Recognition 

(ASR) system 
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1.3.3. Automatic Radio Receiver Scanner 

Another application is related to radio receivers. While scanning through radio channels in 

order to listen to music (or news), the scanner would pause at every channel it detects in order 

to allow the user to accept or reject the channel after listening to it for a short while. In a 

highly populated area, with tens of radio channels, this could be a time consuming and 

frustrating work as one will have to pause to listen to every broadcasted channel before 

homing into a preferred (e.g. news) channel. The time consumed until one finds his/her 

favourite type of channel could be reduced by automatically skipping the channel which is 

not of the desired type. A smarter radio receiver could be designed to make such a decision 

based on whether the channel found was broadcasting music or speech [21]. In a digital world 

of radio channels, this task can be achieved by adding some headers at the channel‟s address 

which contains information about the type of audio signal that is being broadcasted. 

However, in an analogue world, this is not usually the case. Furthermore, while listening to 

news there are musical breaks in the middle. A speech-hearing-aid user would prefer not to 

be disturbed by such music, but rather mute the sound until the news is spoken again. 

 

1.3.4. Source-Separation versus Type-Discrimination 

When a number of simultaneous audio sources (e.g. speech, music, flying aeroplane, and a 

ringing telephone) are recorded using one microphone it is difficult to separate one source 

from another. This is known as the “cocktail party problem”. The solution to such a problem 

has resulted in a field of study called Blind Source Separation (BSS) [2-4, 6-9] where a 

system can be designed to extract the various independent sources from their mixture. A 

speech-music separation system is expected to isolate speech and music sources which were 

mixed together. 
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The work and analysis carried out in this thesis is not related to the separation process; rather 

it is related to the discrimination process [1]. The latter implies the ability to identify whether 

the examined signal is speech or music. Hence, it is assumed that the analysed signal is either 

speech or music. Nevertheless, the two systems can complement each other. Once a 

speech/music separator is applied to separate the mixed signals and the original sources have 

been separated from each other into their constituent sources, i.e. speech and music, the 

output of the separator would have two channels. One channel would carry the speech signal 

and the other channel would carry the music signal. It is then important to distinguish 

between the two channels by discriminating between speech and music. In order to achieve 

this discrimination, each channel should be further processed by a speech/music discriminator 

in order to identify each type; figure 1.4. 

 

 

Figure 1.4 Separation of mixed audio sources followed by speech/music discriminators 
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1.3.5. Video segmentation 

Although most video segmentation techniques are based on video analysis [36], audio that 

accompany any video could also be exploited to assist in video segmentation by identifying 

the type of audio present in the scene [37]. Some recent work showed that combining video 

and audio analysis improves the performance of video segmentation [38]. For such 

applications, discriminating between speech and music adds an advantage in defining scenes 

of a particular nature. When it comes to understanding the semantic content of a certain 

video, audio characteristics are equally important, if not more [39]. Moreover, audio-based 

processing requires far less complex processing than processing video.  

 

1.4. Challenges 

Like any project, some challenges were imposed on to this work. Among them was the 

datasets to be used in the assessment of the proposed features. Since a primary investigation 

would usually require the elimination of any impurities (e.g. noise, echo) in the original 

source, the ideal case was to record the data in an anechoic chamber which is designed to 

have the least possible level of echo and noise. Due to the lack of such a facility in the school 

of Engineering, an alternative choice was to seek an existing supplier of such data. No single 

supplier was found to provide both types of audio signals; i.e. speech and music. Instead, 

every supplier provided a different type. In order for the variation of recording apparatus and 

environments not to hinder the comparison between speech and music, it was essential to 

select data suppliers that provided audio recordings with similar specifications.  

Ideally, one would like to have two sets which were recorded in exactly the same setup in 

terms of microphone positioning, chamber dimensions, microphone frequency response, and 

the distance between the sound source and the microphone. Since this was not feasible, the 
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least and most important specification that had to be maintained was the sampling rate of the 

recorded digital audio signals. Also, a certain level of very low noise and echo had to be 

ensured in both datasets. Speech data from University College London (UCL) and music data 

from Real World Computing (RWC) had their data recorded at the same sampling rate; i.e. 

44.1 kHz. Furthermore, all data were collected in a standard anechoic audio chamber as will 

be described in chapter 2. 

Moreover, it is required to compare the proposed features to some of the features from the 

literature. As recognized by many authors, such comparison was not possible due to the lack 

of a unified dataset and a unified assessment method. Every paper used a different dataset and 

had its own way to assess the performance of the proposed features. Most authors had to 

repeat what others have done in order to compare it with their feature/method in light of their 

own framework. Repeating the analysis for all features in the literature is an extremely time 

consuming work that could not be carried out within the time frame of this research. 

Nevertheless, it was important to choose certain closely related features to compare with the 

proposed features. 

 

1.5. Methodology 

Every research adopts a different method to reach its objective. In this thesis a very 

systematic approach was adopted. At first, the various methods in the literature were 

surveyed in order to make sure that whatever is proposed is novel. Initially, both time domain 

and frequency domain methods were investigated. The primary objective of the research was 

to find a method that is of low computational complexity in order to reduce the 

implementation cost both in terms of money and time. The latter is a requirement for real-

time applications. It is known that working in the frequency domain would imply more 
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complex algorithms than working in the time domain. Thus, it was decided to pursue the 

study in the time domain. After finding a research gap that needed to be filled the appropriate 

data were acquired from specialized suppliers.  

Computer codes were scripted to analyse the novel methods as well as the ones from the 

literature. Although analysing every relevant feature involves scripting many pages of codes 

as shown in Appendix A, this was necessary to reach a fair conclusion about the comparison 

between the novel features and the relevant ones from the literature. Parameters that are of a 

significant role to the novel proposed methods were also examined in order to reach a 

conclusion about the effect of their variation. 

 

1.6. Thesis Structure 

This chapter is followed by six more chapters as briefly described below. 

 Chapter 2: Research Requirements:  

This chapter details the data used in the analysis throughout the thesis, the 

environment where the data were recorded, the equipment used in recording the 

data, and the programming tool utilized to analyse the proposed features as well as 

examine certain relevant features from the literature. 

 Chapter 3: Extraction of Audio Features:  

This chapter lists some of the relevant features that exist in the literature of 

speech/music discrimination and describes how they are computed. The chosen 

time domain features are related to the novel features presented in chapters 4, 5, 

and 6. Some frequency domain features are also presented for completion of the 

literature review and to illustrate their level of complexity compared to the simpler 

time domain features. 
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 Chapter 4: Ratio of Silent Frames:  

This chapter introduces a novel feature called the Ratio of Silent Frames (RSF) 

and provides a thorough investigation of its performance compared to two other 

relevant features from the literature. 

 Chapter 5: Time Series Events (TSE):  

This chapter investigates the various possible events that could occur in any audio 

signal and shows a couple of important events that no one has investigated yet 

prior to the write up of this thesis. The chapter provides a thorough analysis of the 

two features in order to show that they can reach close to 100% speech/music 

discrimination. 

 Chapter 6: Further Analysis of the Time Series Events:  

Compared to the feature introduced in chapter 4, the features introduced in chapter 

5 provided higher performance. Thus, this chapter provides further analysis of the 

TSE features that were discussed in chapter 5. Certain significant parameters of 

the TSE features are analysed in order to evaluate the significance of varying their 

values in the context of the speech/music discrimination problem. 

 Chapter 7: Conclusion: 

This chapter summarizes the outcomes and contributions of this thesis and 

provides some of the possible future work that could emerge from the contributed 

features. 
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1.7. Summary 

The first chapter of this thesis provided an introduction to the thesis and how it fits in the 

wider relevant fields of research. It defined the main goal of this study and some of the 

motivations and applications where the outcome of this study could be applied. The 

methodology followed in producing this thesis was briefly described. The structure of the 

thesis was also explained describing the contents of each chapter and showing how it links to 

the rest of the chapters in the context of the speech/music discrimination problem. 

The following chapter will provide details about the data used in this study to assess certain 

audio features from the literature as well as the proposed novel features.  
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Chapter 2: Research Requirements 

 

 

2.1. Research Requirements 

In order to carry out the experiments related to this research both speech and music audio 

data had to be either recorded or obtained from an authentic data supplier. Three obstacles 

have ledto the procurement of the audio data from professional suppliers instead of recording 

them in-house: 

1. Lack of facilities at the School of Engineering at Durham University 

2. In order to examine different types of music (genre) it was required to have 

professional musicians that can compose various types of music; e.g. classic, pop, 

jazz, etc. 

3. In order to collect a wide range of speakers, it was required to have participating 

speakers from various age ranges and from both genders; something that would take 

time beyond the time frame of this project. 

For the reasons above, it was more practical to purchase standard research audio data that 

meet certain criteria.  

Two suppliers were identified that produced such data for the sole purpose of research. Each 

chosen data supplier recorded their audio data in an anechoic audio chamber, so that similar 

quality of sound was maintained when carrying out the comparison between speech and 

music. Also, equal sampling rate was ensured in order for this factor not affect the 

comparison. Nevertheless, the effect of changing the sampling rate was investigated in 
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chapter 6. More about the specifications of each type of data will be detailed in the following 

sections of this chapter. 

 

2.2. Datasets 

The core objective of this research is to extract and analyse certain audio features in the time 

domain. In order to carry out adequately rigorous analysis and to assess each audio feature 

proposed in this thesis, as well as some features from the literature for comparison, two types 

of datasets were acquired: 

1. University College London (UCL) [40] speech dataset 

2. Real World Computing (RWC) [41-43] music dataset 

Both datasets are sampled at the same rate (44.1 kHz) in order to compare speech to music 

using any proposed feature. Furthermore, both datasets were recorded in an anechoic audio 

chamber. Such chambers are designed to be echo-free. Technically, the echo level cannot be 

zero. 

The term Reverberation Time (RT) is used to define how low the echo is [44]. RT is an 

acoustical property of all architectural spaces. By convention, it is defined as the time taken 

for sound reflections to decrease by 60dB after the sound source ceases. Thus, it is sometimes 

referred to as RT60. It can be computed from equation 2.1: 

RT60 = k 
V

S
      (2.1) 

Where the parameters in the equation are defined as follows: 

k: a constant; 0.163sm
1

, 
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S: total effective surface absorption of a room; a sum of all the surface areas in the room 

multiplied by their respective absorption coefficients() which express the absorption factor 

of materials at given frequencies, 

V: volume of the room 

 

2.2.1. UCL Anechoic Chamber 

The UCL anechoic chamber is shown in figure 2.1. Reflection of sound off the walls is 

reduced by inward-pointing pyramid shapes. The chamber is like a room inside another room; 

i.e. inner walls and outer walls. The UCL chamber used glass-fibre wedges. The outer walls 

are 33cm thick and the inner room is formed of metallic acoustic panels mounted on a 

floating floor. The inner wall of the chamber was separated from the outer wall by a cavity 

that is about 15cm wide. The room is also equipped with a ceiling mounted monitor used to 

prompt the speaker sitting behind the sound level meter. 

 

Figure 2.1 Speech recording at UCL anechoic chamber, [40] 
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The walls and ceilings are lined with 20cm×20cm×60cm wedges and the floor with 

20cm×20cm×48cm wedges. Above the floor wedges are a gridded working area constructed 

from 60cm×45cm removable panels. These had a large 5cm grid size to minimise reflections. 

The reverberation time for the room is 20 milliseconds. 

 

2.2.2. UCL Measuring Equipment 

A Brüel & Kjær 2231 sound level meter was used for recording at a sample rate of 44.1 kHz. 

Its picture is shown in figure 2.2. The meter was placed approximately 30 cm from the mouth 

of the speaker and at 15° deflection on the transverse plane. Each speaker was asked to either 

read a certain text (e.g. a story, sentences, words) or to describe a scene after viewing it (e.g. 

cartoon). Recorded data were saved into audio files of the format “.wav”.  

A condenser microphone of type 4165 was attached to the sound level meter. The frequency 

response of the microphone is shown in figure 2.3. It can be observed that the microphone 

has almost a flat response. This is the case when positioned at 0° elevation. If the microphone 

is positioned at different elevations, then its response can be corrected according to the curves 

in figure 2.4. The microphone‟s specifications can be summarized as in table 2.1.The 

microphone measures the sound pressure level (SPL) in dB and any recorded voltage 

corresponds to a certain SPL. For the type 4165 condenser microphone, the voltage and SPL 

are related by equation (2.1) below: 

Voltage Precision = 45.7 mV/Pa     (2.1) 

This means, 1 Volt corresponds to 21.88 Pascal; i.e. 21.88 N/m
2
. However, the recorded 

reading is voltage, not pressure. It is always normalized to maximum 1 Volt and minimum 1 

Volt. 



 

19 

 

 

 

(a)                (b) 

Figure 2.2 (a) Brüel & Kjær 2231 sound level meter; (b) type 4165 condenser microphone 

 

Figure 2.3 Frequency response for various microphones showing type 4165 condenser 

microphone 
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Figure 2.4 Correction to be added to the frequency response of the condenser microphone 

depending on its orientation 

 

Sensitivity 45.7 mV/Pa 

Frequency 2 Hz –20 kHz 

Dynamic Range 24 – 146 dB 

Temperature – 10 to +50°C 

Polarization 200 V 

 

Table 2.1 Specifications of the condenser microphone used by UCL to record speech data 

 

2.2.3. UCL Speech Dataset 

After describing the chamber where the UCL data were recorded and the instruments used to 

record the data, this section describes the data acquired from UCL. The diversity of the data 

content in terms of gender and age was an important element which enriched the data making 
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the analysis suitable for all types of speech; i.e. any of the subclasses of speech are labelled as 

speech in general regardless of gender or age. 

The database contains recordings of 45 speakers with South-Eastern English accent. The 

speakers were taken from both genders and involved both adults as well as children. The data 

involved words spoken by 18 women, 15 men, 6 girls, and 6 boys. The total length of the 

spoken individual words was about 95 minutes. That is equal to 5700 seconds of spoken 

words. All data were sampled at 44.1 kHz which covers the spectrum up to 22.05 kHz. 

 

 

Figure 2.5 An audio signal from UCL dataset showing an utterance of the word “that” 

 

Figure 2.5 shows an example where the word “that” was uttered by a male speaker. The 

various regions of the uttered word are clearly marked. It can be observed that the voiced 

segment has relatively higher energy than the unvoiced segments. For that reason, using 

energy alone to detect silence can lead to high misclassification error. The last segment in 
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figure 2.5 carries no information about the signal; this is where the speaker has finished 

speaking and null signal is recorded. Normally, such segments are discarded prior to the 

analysis. This can be done by segmenting the audio track into long-frames, e.g. 500 

milliseconds. Such a frame is examined for silence. If it was found to be a silent frame, then 

it is discarded from the original sound track. Silence detection is discussed in more details in 

section 3.2.5 and in chapter 4. 

 

2.2.4. RWC Music Dataset 

The Music dataset was provided by Real World Computing (RWC) [41-43]. The data was 

recorded in an environment similar to that used by UCL; i.e. similar noise and echo levels. 

The dataset is composed of 315 musical pieces divided into 5 sets as structured below; 

sampled at 44.1 kHz.  

1. Popular Music Database (100 songs) &Royalty-Free Music Database (15 songs): 

1. 80 songs in the style of Japanese popular music  

2. 20 songs in the style of Western popular music 

3. 5 well-known children's Japanese songs 

4. 10 well-known standard popular English songs 

2. Classical Music Database (50 pieces): 

1. Symphonies: 4 pieces  

2. Concerti: 2 pieces  

3. Orchestral music: 4 pieces  

4. Chamber music: 10 pieces  

5. Solo performances: 24 pieces  

6. Vocal performances: 6 pieces  

http://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-p.html
http://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-r.html
http://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-c.html
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3. Jazz Music Database (50 pieces): 

1. Instrumentation variations: 35 pieces (5 pieces × 7 instrumentations)  

2. Style variations: 9 pieces  

3. Fusion (crossover): 6 pieces  

4. Music Genre Database (100 pieces)  

1. 10 main genre categories (popular, rock, dance, jazz, Latin, classical, marches, 

world, vocals, and traditional Japanese music) and 33 subcategories: 99 pieces (33 

subcategories × 3 pieces)  

2. A cappella (1 piece) 

5. Musical Instrument Sound Database (50 instruments)  

1. A total of about 150 musical-instrument performances (generally 3 variations each 

for 50 types of musical instruments)  

 

 

Figure 2.6 An audio signal from RWC dataset showing one second of pop music 
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The amplitude of both of the speech and music signals was normalized so that they range 

from minimum 1 to maximum +1. The pop music signal in figure 2.6 shows almost no 

silence at all and no segments with low energy. However, this may not always be the case. 

More rigorous analysis will be carried out later on in chapter 4 where the ratio of low energy 

frames will be investigated using what is called Low Energy Frames (LEF) feature. 

The power spectral density of the speech and music signals is illustrated in figure 2.7 which 

is produced from the UCL and RWC data. In general, music has got higher power spectral 

density than speech. 

 

 

Figure 2.7 The power spectral density of speech and music 

 

Most of the power is at the lower frequencies and it decays at the higher frequencies. Since 

the sampling rate used is 44.1 kHz, the maximum frequency that can be obtained is at half the 
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1. The highest psd can be observed at about 500 Hz which is the fundamental 

frequency. 

2. Throughout the spectrum, music always has higher psd than speech; this might 

vary from one signal to another, the statistical analysis of the variation of the psd at 

every frequency is not the subject of this study; a sample of speech and music is 

only shown here for demonstration. 

 

2.3. Simulation Tool 

MATLAB was used throughout this work to simulate and experiment with the datasets using 

the proposed methods. It was chosen due to its simple and powerful script programming. 

Although it is a generic programming tool, it is supported by several toolboxes associated 

with different fields of computations. 

The Signal Processing Toolbox was the one applied for most of the experiments. It is very 

handy in importing the audio formats provided by the supplier, which was the „wav‟ format. 

Each „wav‟ file was read by the software and stored as a vector of samples for further 

processing. The toolbox has other capabilities like playing an audio file, filtering, and re-

sampling it (either up-sampling or down-sampling). The built-in functions of MATLAB are 

not sufficient to carry out all of the tasks required for either the discrimination or the analysis 

of the proposed system. Certain other functions had to be scripted to simulate the prescribed 

features and to conduct the analysis afterwards. These scripts can be found in appendix A at 

the end of this thesis. 

Listing 2.1 shows an example of a script that reads a “speech.wav” file, stores its raw time 

series samples as a vector “A” and its sampling frequency as a constant “fs”. If the signal is 

longer than 3 seconds, then only the first 3 seconds of the signal are saved into vector B, 



 

26 

 

otherwise the entire signal is saved into vector B. The script then plots the signal in the time 

domain.  

 

Listing 2.1An example of a MATLAB script which reads an audio file and plots its waveform 

% Read an audio file and save its raw data (A) and its  

% sampling frequency (Fs) 

[A,Fs]=wavread(“speech.wav”); 

% Store up to 3 seconds of the signal into vector (B) 

If length(A)> 3*Fs 

B = A (1: 3 * Fs); 

Else 

B = A; 

End 

Time = (1 : length(B))/Fs; 

plot(Time, B),  

xlabel(„Time, Seconds‟) 

ylabel(„Amplitude, Volts‟) 

 



 

27 

 

2.4. Summary 

Chapter two has described in detail the data that were acquired and applied throughout the 

thesis for the assessment of all proposed audio features as well as any compared features 

from the literature. The chapter also provided a description of the environment where the data 

were recorded and its noise and echo levels. The instruments used to record the data were 

illustrated. Details of the types of music and instruments that composed the data were also 

provided.The following chapter will provide a background about the speech/music 

discrimination problem and how it was tackled in the literature.  
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Chapter 3: Audio Features 

 

 

 

3.1. Introduction 

This chapter is written to provide the reader with a background about what has been achieved 

so far in this field of research. The chapter mainly covers audio features that have been 

suggested by other researchers in order to be used for discriminating between speech and 

music. 

In order to discriminate between speech and music signals, their raw samples are inadequate. 

They do not give discriminative information about their nature; i.e. being speech or music. 

Nevertheless certain features can be extracted from these raw data. The primary goal of every 

research in this field is to find such features. In this chapter, an overview of most of the 

features found in the literature will be provided for the reader to get an insight of the subject. 

In most of the proposed discrimination systems, it is assumed that the signal is either speech 

or music. However, audio signals could also be classified into many other classes [21]; e.g. 

noise, silence, and mixture of speech and music. In such more complex situations one might 

consider the system to be a speech detector or a music detector. In that case, the system will 

mark the signal, with some certainty, as either speech or music. 
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3.2.  Time Domain Features 

The various audio features can be categorized into two broad domains as illustrated in figure 

3.1: Time domain and Frequency domain. This section describes some of the temporal (time 

domain) features. For convention, it is important to define the structure of the audio signals 

analysed throughout this thesis.  

 

 

Figure 3.1 Audio features with examples from each category 
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Audio features are extracted at two levels [39]:  

1. Short-term (frame) level which last about 10 to 30 milliseconds within which the 

audio signal is more stationary. 

2. Long-term (track) level which go from 1 second up to tens of seconds. Such long 

intervals are also referred to in the literature as a “clip” or “window”. Throughout 

this thesis, the term track is adopted. 

Both levels are illustrated in figure 3.2. A long track that has a stream of N samples is split 

into a number of frames M. Each frame would then contain R samples. While some 

applications consider a certain amount of overlap between consequent frames, other 

applications do not. 

 

Figure 3.2 A stream of tracks that is split into M frames; each frame has R samples 

 

For example, when sampling at fs = 44.1 kHz, a track of 5 seconds would contain N = 5 × 

44100 = 220500 samples. If each track is split into 20 millisecond frames, then each frame 

would contain R = 20 × 10 
3

× 44100 = 882 samples and there will be M = 250 frames in 

each 5 seconds track. 
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3.2.1. Root Mean Square (RMS) 

The root mean square (RMS) of a signal is an indication of the power content in the signal. 

The RMS power of a particular audio frame can be found using [31] equation 3.1: 

RMS = 
 x2(n)N

n=1

N
      (3.1) 

Where N is the number of samples in each frame and x(n) is the audio signal at sample n.  

The RMS is a feature that is used at the frame level instead of the track level.  RMS is used in 

the literature to identify other features as will be evident in chapter 4. The RMS power is 

sometimes loosely called by different names; e.g. volume, loudness, and energy. The latter 

name (i.e. energy), however, is normally computed as described in the following section. 

 

3.2.2. Energy 

The energy of any signal x(n) is a very fundamental characteristic [45, 46]. It can be 

computed using equation 3.2.  

𝐸 ≡   𝑥(𝑛) 2
𝑛      (3.2) 

Regardless of the scale on the energy axis, it can be observed that most of speech frames have 

relatively low energy. Music, on the other hand, is not restricted in the low level range; it 

exists in almost every range of energy. 

 

3.2.2. Percentage of Low Energy Frames (LEF) 

This is a feature that can be extracted in the time domain. Splitting a sound track (e.g. 1 

second long) into small frames (e.g. 20 ms) would produce a number of frames (e.g. 50 
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frames). The RMS power of each frame is then computed using equation 3.1. The mean RMS 

is then computed. Low energy frames are then labelled. A low energy frame is a frame whose 

RMS is less than 50% of the mean RMS; i.e. 0.5 RMSave. 

This feature was exploited by Scheirer and Slaney [30] and by Saad et. al. [21]. The latter 

showed performance of correct classification for speech to be 95% and for music to be 85%. 

General performance of speech and music discrimination was shown to be 90% indicating 

10% general misclassification. 

If a threshold is used to discriminate between speech and music (e.g. at LEF = 40%) then up 

to 96% of speech frames can be correctly labelled as speech while about 30% of music will 

be misclassified as speech. There is always a trade-off between correct classification and 

misclassification. Section 3.5 will provide more discussion about how to measure this trade-

off and how to choose the optimum threshold for best performance of any feature. 

The answer to “how is the optimum threshold chosen for the LEF feature?” is presented in 

chapter 4 where the LEF feature is compared to other features. 

 

3.2.3. Modified Low Energy Ratio (MLER) 

The previously mentioned audio feature (LEF) was modified by Wang et. al.[23] to represent 

a single feature system that provided more than 97% classification accuracy in spite of its low 

computational load. 

The modified feature was named “Modified Low Energy Ratio” (MLER); and was computed 

using the equation: 

MLER=
1

2𝑀
  𝑆𝑔𝑛 𝑙𝑜𝑤𝑡𝑕𝑟𝑒𝑠 − 𝐸 𝑚  + 1 𝑀

𝑚=1    (3.3) 
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lowthres =
1

M
 E(m)

M
m=1      (3.4) 

where: M is the total number of frames in a track, E(m) is the short time energy of the m
th

 

frame, and  is a control coefficient which decides how low E(m) needs to be so that the 

frame is considered as “low energy”.  

Sgn(x) is by convention defined as below: 

Sgn(x) =  
+1            , 𝑥 > 0
   0             , 𝑥 = 0
−1           , 𝑥 < 0

      (3.5) 

 

While  was set to 0.5 in the LEF feature, it is varied in the MLER and a range of [0.05 to 

0.12] was recommended. While ( = 0.5) provided 11.75% average misclassification, ( = 

0.1) provided about 4% average misclassification; as far as the test data used by Wang et. al. 

in [23]. 

 

3.2.4.  Zero Crossing Rate (ZCR) 

This feature was first introduced by Kedem in [16] who related it to the dominant frequency 

of a signal. It is a count of the number of times an audio signal crosses the level of 

zeroamplitude in the time domain. Prior to counting, the mean of the signal is deducted in 

order to remove any DC component from the signal.  

Assuming a discrete signal with a series of samples [S1, …, SN] with zero mean, the 

following set of equations were used by Kedem to count the number of times the signal 

crosses the level of zero amplitude: 
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Putting the mean (zero) as the threshold that the signal crosses, 

Xt =  
1,         St  ≥  0
0,         St<  0

       , t = 1, 2, …, N    (3.6) 

The function: 

dt = (Xt – Xt1)
2
     (3.7) 

is an indicator of whether a crossing occurred (dt = 1) or not (dt = 0). Thus, the ZCR is 

simply: 

D =   dk
N
k=2       (3.8) 

For a single sinusoidal frequency, there are two crossings; thus 2 Crossings/Cycle. Assume 

that within a cycle of T seconds, there are D crossings. The duration of that cycle can also be 

expressed as (N-1)×t, where t is the sampling period. Hence, the following relation: 

Number of crossings per second = 
t)1N(

D


crossings/second  (3.9) 

Frequency is defined as the number of cycles/second. Therefore, one can use units to 

conclude the frequency as follows: 

Frequency = 
t)1N(

D


crossings/second ÷ 2 crossings/cycle   (3.10) 

f = 
t)1N(2

D


 cycles /second = 

t)1N(2

D


Hz   (3.11) 

Radial Frequency = 2f = 
t)1N(

D 

t)1N(2

D
..2







  rad/second  (3.12) 

The dominant digital frequency is then computed using: 
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 = D/(N-1) rad     (3.13) 

The sampling period in practice is computed from the sampling frequency, fs, using: 

t = 1/fs     (3.14) 

Therefore, if the number of zero crossings is to be used for estimating the dominant 

frequency, one must consider the sampling frequency: 

f = sf
)1N(2

D


cycles sec

1
 (Hz)    (3.15) 

To illustrate the usage of ZCR for the estimation of normalized
1
 dominant radial frequency, 

we used an example of a signal with two distinct frequencies:  

Zt = A cos (1t) + B cos (2t)    (3.16) 

Given the radial frequencies:  

1 = 1 rad/sec;  2 = 3 rad/sec 

Consider the following three cases of A and B: 

i. Neither frequencies is dominant (A = B = 10) results in a dominant frequency 0 = 

2.147 rad/sec which lies somewhere between the two frequencies; figure 3.3. 

ii. One frequency is more dominant than the other (A = 2; B = 10) results in a dominant 

frequency 0 = 2.9679 which is much closer to the dominant frequency (figure 3.4). 

iii. A low pass filter is used to remove the higher frequency (A ≈ 2; B ≈ 0) resulting in 

0.9946) as expected. 

 

                                                 
1 Normalization implies assuming unit sampling period, where all frequencies are divided by fs; some text refer to it 
as digital frequency. 
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Figure 3.3 Case (i) where both frequency components are equally dominant 

 

 

Figure 3.4 Case (ii) where one frequency is dominant 

 

The ZCR is a fast and approximate method to estimate the dominant frequency while 

avoiding the spectral analysis like the Fourier Transform. However, it has two significant 

drawbacks: 

1. it gives no information about the rest of the spectrum (the less dominant frequencies.) 

2. if two frequencies are equally dominant, the ZCR gives a third frequency that lies 

somewhere in between (average), while giving absolutely no information about the 

real spectral content. 

The ZCR is not useful when used alone. However, it could be exploited in association with 

other features. For example, the correlation between the ZCR and the RMS of audio frames 

was exploited in [31]. While the ZCR and RMS are independent for music, they are somehow 
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correlated for speech. A normalized correlation function was defined to compute the 

correlation between the two features as in the equation below. 

𝐶𝑧 =
 𝐴 𝑖 𝑍(𝑖)𝑁
𝑖=1

2𝐴𝑥−𝐴𝑛−𝐴𝑚
      (3.17) 

Where Axis the maximum RMS among all frames within an audio track, An is the minimum 

RMS among all frames within an audio track, and Am is the median RMS of the frames 

constituting an audio track. If Cz is close to zero, then the track is classified as speech, 

otherwise it is classified as music. An empirical threshold is used for this classification. Using 

such correlation algorithm 90% of music was correctly classified while 60% of speech was 

correctly classified.  

 

3.2.4.  Pitch 

The fundamental frequency for any audio signal is called pitch. This feature cannot be 

accurately measured, but can be estimated. Different methods exist that can be used to 

estimate the pitch of an audio signal. Each method has a different accuracy and complexity, 

therefore the choice is application dependent. Musical instrument sounds can be identified 

from their pitches [27]. 

In general the pitch information of an audio signal can be extracted using either temporal or 

spectral analysis. While the pitch frequency for speech is in the range 50-450 Hz, it is much 

wider for music [39].The maximum anticipated frequency range of pitch is that for female 

speech (500-600 Hz). Therefore, the speech is normally low-pass filtered at a frequency of 1 

kHz. Thus, it is normally down sampled to 1 kHz [45]. 
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A number of methods exist that can be used to estimate the pitch of an audio signal. The 

details of each method can be found in the corresponding references provided. Some of the 

methods are: 

1. Gold-Rabiner pitch extractor [47] 

2. Autocorrelation methods [39]: The Autocorrelation Function and the Average 

Magnitude Difference Function (AMDF) 

3. Simplified Inverse Filter Tracking (SIFT) Algorithm [48] 

Much more can be found about pitch determination of speech signals in particular from [49]. 

Examination of the pitch contour of any track after computing the pitch of each frame could 

lead to various speech/music discrimination methods. For instance, non-pitch-ratio (NPR) is 

the “percentage of frames without pitch” [39]; a feature that can measure the ratio of 

unvoiced or noise frames. Apart from the NPR, Liu et. al. [50] utilized two other features to 

capture the pitch variation: 

1. Similar Pitch Ratio (SPR): the percentage of frames in an audio track that has a 

pitch value that is similar to the previous frame. When neighbouring frames have 

similar pitch, a smooth pitch contour is obtained for voiced or music frames 

within a track. 

2. Pitch Standard Deviation (PSTD): this feature measure the level of variation 

within the pitch contour. 

 

3.2.5. Silence 

When listening to any news radio channel it can be observed that in every talk there is a lot of 

pauses. Silence is not a feature, but rather a general term that is used to imply, theoretically, 
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zero energy in a particular frame. In practice, a threshold is defined below which a frame is 

considered to be silent. However, energy alone is not sufficient to define silent frames. 

Speech can be classified into voiced speech (e.g. the segment “ee” in the word “sheet”) or 

unvoiced speech (e.g. the segment “sh” in the same word) [45]. Because unvoiced speech has 

low energy their frames would be classified as silent frames. 

In terms of tracks and frames, one can realize that every track would contain a number of 

frames that are silent. Music, on the contrary, has far less silence than speech. Regardless of 

the method used to identify silent frames within a track, this feature is always beneficial and 

could be exploited to discriminate between speech and music. 

Liu et. al. [50] proposed a feature called non-silence-ratio (NSR) where they identified the 

frames within a track that were not silent and computed the ratio of these frames to the total 

number of frames within a track. Low energy unvoiced speech frames could be classified as 

silent frames. To avoid that, they incorporated the ZCR feature beside the volume to identify 

silent frames. They used two preset thresholds: one for what they called volume (RMS) and 

another one for the ZCR. A frame was considered to be silent if the volume (RMS) was 

below its preset threshold and the ZCR was below its preset threshold. If both conditions 

were satisfied, then the examined frame was considered to be silent. By computing the ratio 

of non-silent frames, they obtained what they called the non-silence-ratio (NSR) feature to 

discriminate between speech and music. A silence-related feature is presented in chapter 4 

which provides further enhancement and has some advantages over the NSR feature. 

Silence was also exploited by Panagiotakis and Tziritas [31] by detecting silent intervals 

using the RMS and the ZCR features such that any frame that fulfils any of the following 

criteria is classified as a silent frame: 
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1. RMS is less than threshold T1 

2. RMS is less than 10% of the maximum RMS or less than the threshold T2 

3. ZCR = 0 

After detecting the silent intervals, the neighbouring silent intervals are grouped. Audible 

(non-silent) intervals are also grouped. Silent Intervals Frequency (Fv) is defined as the 

number of silent intervals in each segment (track). Setting an empirical threshold it was 

reported by Panagiotakis and Tziritas [31] that almost always for speech Fv> 0.6, while for 

65% of music tracks, Fv< 0.6. 

 

3.3. Frequency Domain Features 

Some researchers have chosen to exploit the spectral features of audio signals [51]. Some of 

these features are explained in the following subsections. Features from the frequency 

domain are not the subject of this thesis, but are briefly mentioned here for completion of the 

literature review as well as to show the relative level of computational load in comparison to 

the time domain features. 

Prior to computing any of the frequency domain features, the signal can be transformed from 

the time domain to the frequency domain using the Discrete Fourier Transform (DFT). The 

Inverse Discrete Fourier Transform (IDFT) can be used to transform the signal back to the 

time domain, but is normally not necessary in the context of feature extraction. Both the DFT 

and IDFT can be obtained as in equations (3.18) and (3.19), respectively [46]: 

DFT: 

𝑋 𝑘 =  𝑥(𝑛)𝑁−1
𝑛=0 𝑒−𝑗2𝜋𝑘𝑛/𝑁  k = 0, 1, 2, . . . , N1  (3.18) 
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IDFT: 

𝑥 𝑛 =  
1

𝑁
 𝑋(𝑘)𝑁−1
𝑘=0 𝑒𝑗2𝜋𝑘𝑛 /𝑁

 n = 0, 1, 2, . . . , N1  (3.19) 

The relative level of complexity is evident from this transform when compared to the time 

domain features which are directly taken from the time series of samples. Further 

computational load is added to each frequency domain feature by the feature extraction 

algorithm detailed in the following subsections. 

 

3.3.1. Spectral Roll-off point (SR) 

This feature was introduced by [30] and is defined in [21] as a means of measuring the 

frequency below which 95% of the power resides. Mathematically, this is expressed using: 

SR = K,  where    𝑋 𝑓 = 0.95 𝑋[𝑓]𝑓𝑓<𝐾   (3.20) 

Where X[f ] is the power of the audio signal at the corresponding frequency f, and K is the 

spectral roll-off point on the frequency axis that satisfy the condition in equation 3.20. Using 

this feature, Saad et. al. [21] obtained a low performance of 65% discrimination between 

speech and music. 

 

3.3.2. Spectral Flux (SF) 

The summation of the differences between adjacent samples in a signal‟s spectrum for a 

single frame is known as the spectral flux [21]. Once computed using: 

𝑆𝐹 =    𝑋[𝑘] −  𝑋[𝑘 − 1]  𝑘     (3.21) 
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The average of the spectral flux for all frames is then computed as the feature to be extracted. 

Exploiting such feature resulted in 89% correct speech/music discrimination when 

investigated by Saad et. al. [21] to classify their data. 

 

3.3.3. Spectral Centroid (SC) 

As the name indicates, this feature represents the central point in the signal‟s spectral power 

distribution in a frame of samples. On average, the SC for speech is low compared to that for 

music. Also, the SC for voiced speech is lower than for unvoiced speech signals. 

SC for a frame of an audio signal can be computed as: 

𝑆𝐶 =
 𝑘𝑋[𝑘]𝑘

 𝑋[𝑘]𝑘
     (3.22) 

Where k is an index corresponding to a frequency (or a band of frequencies) whose power is 

X[k]. Furthermore, better results were obtained by [21] when using the second moment; i.e. 

replacing k by k
2
 as in the following equation: 

𝑆𝐶 =
 𝑘2𝑋[𝑘]𝑘

 𝑋[𝑘]𝑘
     (3.23) 

An average performance of 82.5% was obtained when using the second moment to compute 

the spectral centroid. 

The spectral centroid is sometimes also called “brightness”. Although most researchers 

attempt to investigate and thoroughly analyse individual features, they tend to combine/fuse 

features into one algorithm [21, 30, 52]. Sound-fisher [53], for example, is a sound-retrieval-

software that is commercially available for customers. It makes use of certain audio features 
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(e.g. pitch, loudness, and brightness) in order to “fish” within a given database for audio files 

that “sound like” a given audio file. 

 

3.4. Assessment and Comparison 

The lack of a unified systematic evaluation procedure for all discrimination methods makes it 

practically infeasible to compare newly proposed features to every other feature in the 

literature. Furthermore, each researcher uses a different dataset to assess his work. Thus, for 

an ideal and comprehensive comparison, every newly proposed feature should be tested 

against older ones using the same dataset. Such exhaustive examination of every feature is 

beyond the time frame of this thesis. Alternatively selected relevant features are examined. 

The solution of any discrimination problem has three dimensions: feature extraction, 

definition of an algorithm, and choosing a classifier. An idealcomparative study, which is not 

the objective of this thesis,should compare all previously proposed features and algorithms 

against each other using the same datasets while maintaining the same criteria (e.g. track 

length, frame length, number of test tracks, sampling rate, echo level, and noise level) in 

order to identify the superiority of one feature (or set of features) over the others. However, a 

feasible goal that this thesis attempts to achieve is to fill a gap of research that has been left 

without discussion. Moreover, certain relevant features were selected to carry out some 

comparison with the proposed features for the purpose of assessment. 

The aim of this thesis is to present a set of novel features for the purpose of speech/music 

discrimination in the time domain and to investigate the performance of using each one of 

them individually. 
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Throughout this thesis, each relevant audio feature is examined using the same dataset to 

compare their individual performance to discriminate between speech and music digital audio 

signals. Further work could be carried out beyond this thesis to investigate the optimum set of 

features that suits a certain application. Real-time applications (e.g. speech recognition 

systems, hearing aids, etc.) would require features with low computational load and low 

latency. Data storage and retrieval applications, on the other hand, do not have such 

restrictions on time and thus would only be limited by implementation cost (e.g.software and 

hardware). The features proposed in this thesis were found to be more suitable for data 

retrieval. 

 

3.5.  ROC Curves 

A Receiver Operating Characteristics (ROC) curve is a visual technique that is used to 

evaluate classifier performance [54, 55]. Assume a binary classifier that detects one of two 

types of signals (e.g. positive and negative). The problem is considered as a detection 

problem; i.e. detecting one type (e.g. positive) with the possibility that the other type is also 

detected by mistake. 

Figure 3.5 shows an example of a certain feature whose probability of occurrence (i.e. 

distribution) is plotted against the feature‟s magnitude for speech and music signals. There is 

a clear overlap between the two types of audio signals. The overlap region contains certain 

probability of detecting either type by mistake while aiming to find the other one. 

 Thus, there is always a trade-off between true positive rates1 (correctly detecting a positive 

signal) and false positive rates2 (falsely detecting a negative signal). These are analogous to 

                                                 
1
Also known as hit rate 

2
Also known as false alarm 
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the detection of either speech or music. Any speech detection should be assessed by its true 

positive rate (correctly detecting a speech signal) and false positive rate (falsely detecting a 

music signal); and vice versa for music detection. 

 

Figure 3.5 Example of the overlap between the distributions of two features 

 

The true positive rate (TP) of a classifier is estimated using: 

TP ≈ Positives Correctly Classified
Total Positives

    (3.24) 

The false positive rate (FP) of a classier is estimated using: 

FP ≈ Negatives Incorrectly Classified
Total Negatives

   (3.25) 

Figure 3.5 shows a threshold that is used to discriminate between speech and music. Placing 

the threshold at each point along the x-axis and sweeping the whole range of magnitudes 

Threshold 
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would give a pair of TP and FP at each threshold. Plotting the TPversus the FP would 

produce the ROC curve for the examined feature. The ROC curve technique will be used for 

evaluating the performance of detecting either speech or music using various types of 

features throughout the rest of the thesis. Appendix A shows listings A1 and A2 used to 

compute the ROC curves for any pair of distributions. 

Both TP and FP have values ranging from 0 to 1. An ideal classifier should have TP =1 and 

FP = 0. Practically, this scenario is rarely met. Nevertheless, if the TP is plotted against the 

FP, a graph/curve can be obtained that illustrates the relation between the two values as 

shown in figure 3.6. 

 

 

Figure 3.6 The space of ROC curves 
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The significance of certain points on the ROC curves is as described below: 

1. Point A shows 60% hit rate with 5% false alarm 

2. Point B has a higher hit rate (75%) but at the expense of higher false alarm (40%) 

3. Point C has equal hit rate and false alarm (70%); this is referred to as random 

performance. Any classifier that falls on this line performs no better than a random 

toss of a coin. 

4. Point D is an ideal situation where the signal is correctly classified 100% of the time. 

5. Point E falls below the random performance. Any classifier that falls in this region of 

the space performs worse than a random guess and should not be used. 

 

3.6. Summary 

Chapter 3 provided a background about the audio features that exist in the literature both in 

the time domain and the frequency domain. It also discussed the methodology that will be 

used to assess any proposed feature in order to compare with other features from the 

literature. 

The following chapter will present the first novel feature that is contributed to the field of 

speech/music discrimination and evaluate its performance.  
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Chapter 4: Ratio of Silent Frames 

 

 

4.1. Energy of Audio Frames 

Thorough analysis of the energy of audio frames has led to the exploitation of this 

fundamental feature. In this chapter two features from the literature are discussed: the 

percentage of Low Energy Frames (LEF) feature and the Modified Low Energy Ratio 

(MLER). In this chapter, a novel feature is proposed and compared to these two features: the 

Ratio of Silent Frames (RSF). 

The proposed feature is based on the fact that there are more silent frames in a speech audio 

track than in a music audio track [50]. The energy and the zero crossing rate of a certain 

frame are used to detect silent frames. The ratio of silent frames (RSF) gives indication of 

whether the analysed signal is speech or music. ROC curves are then used to compare the 

performance of the LEF, MLER and RSF features. 

 

4.2. Percentage of Low Energy Frames (LEF) 

This is a feature that can be extracted from sampled sound tracks in the time domain. The 

energy of a signal x(r) that has R samples can usually be obtained from equation (4.1): 

E≡  x r  2R
r=1      (4.1) 

However, the word “energy” is loosely used in the literature and the energy of a signal is 

defined by its Root Mean Square (RMS) power instead. The latter being an indication of the 
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frame energy. The term “volume” is sometimes used instead and is computed from the RMS 

power [50].The codes scripted to compute the RMS power and the energy of any signal can 

be found in Appendix A; listings A3 and A4, respectively. 

The LEF feature is defined as the proportion of frames with RMS power less than 50% of the 

mean RMS power within a one second window [21]. It is also used in [56] under the name 

“Low Short-Time Energy Ratio” (LSTER). The code scripted to compute the LEF feature of 

any input signal is shown in listing A5. 

First, a sound track, x[n] consisting of N samples, where n is the sample number, is split into 

a series of smaller frames consisting of R samples each to give a fixed number of frames, M. 

This is illustrated in figure 3.2. 

For example, splitting 1 second track, consisting of 44100 samples into M = 50 frames gives 

frames of 20 ms duration. At a sampling frequency fs = 44.1 kHz, each frame will consist of 

R = 20 ×10
3

 × 44100 = 882 samples.  

The root mean square of the m
th 

frame, RMSm, is then computed using equation (4.2): 

RMSm =   x2(r)R
r=1

R
 ,  whereR=

N

M
   (4.2) 

The mean RMS of the total M frames (i.e.RMS      ) is then computed using equation (4.3): 

RMS       =
1

M
 RMSm

M
m=1      (4.3) 

Low energy frames are those frames that satisfy the criteria: 

RMSm< 0.5 RMS       
     (4.4) 
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This feature was exploited by Saad et. al. [21] and Scheirer and Slaney [30]. On their test 

data, Saad et. al. reported 5% error on speech detection and 15% error on music detection; i.e. 

10% general classification error. On the other hand, Scheirer and Slaney reported 14 % ± 3.6 

% error of classification; i.e. between 10.4% and 17.6%. The discrepancy between these two 

results could be due to not unifying the method of assessment and the tested data. Variation 

in sampling frequency, frame duration, overlap between frames, and noise level in each 

dataset are parameters that could influence their outcome.  

 

4.3. Modified Low Energy Ratio (MLER) 

Wang et. al [23] had an attempt to enhance the LEF feature. They investigated the effect of 

using a different threshold. Instead of using 0.5 RMS        as a threshold they scanned the whole 

range of possible thresholds in order to find the optimum range replacing the coefficient 0.5 

by a control coefficient called . They named the modified feature “Modified Low Energy 

Ratio” (MLER) and computed its value using the following set of equations. 

MLER = 
1

2M
  Sgn lowthreshE m  +1 M

m=1    (4.5) 

lowthresh =
1

M
 E(m)

M
m=1      (4.6) 

Where: E(m) is the short time energy of the m
th

 frame,  is a control coefficient which 

decides how low E(m) needs to be so that the frame is considered as “low energy”, and 

Sgn(x) is by convention defined as below: 

Sgn(x) =  
1            , x>0

   0            , x=0

1            ,x<0

      (4.7) 
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Instead of using the RMS power, Wang et. al. used the short time energy in order to mark low 

energy frames. The code scripted to compute the energy is shown in listing A4.  

While was fixed to 0.5  in the basic LEF feature, it was varied in the MLER and a range of 

[0.05 to 0.12] was recommended. The code scripted to compute the MLER feature of any 

signal is shown in listing A6. The data tested by Wang et. al [23] demonstrated an 

enhancement of about 8% in the average misclassification as compared to the basic LEF 

feature. Their contribution involved the change of the control coefficient () and using the 

short time energy instead of the RMS power. 

 

4.4. Ratio of Silent Frames (RSF) Feature 

When an audio track is split into a number of frames (e.g. 50 frames) a certain number of 

frames are found to carry no sound (i.e. silent frames). The fact that there are more silent 

frames in speech than in music can be exploited to discriminate between speech and music. 

The Zero Crossing Rate (ZCR) of a particular signal corresponds to the number of times a 

signal crosses its zero level in one second [16]. Furthermore, it is known that the ZCR for 

silent frames is far less than any other type of audio frames [25]. 

Splitting any one-second audio track into M frames, each containing R samples, and has Dm 

zero crossings; its ZCRm can be computed as given in equation (4.8): 

ZCRm = 
Dm

R1
  crossings/sample   (4.8) 

After computing the ZCR of the m
th

 frame that has R samples, its energy Em is computed 

using equation (4.9): 

Em≡  x(r) 2R
r=1       (4.9) 
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The energy could also be represented by the RMS power as in the LEF feature; i.e. using 

equation (4.2): 

RMSm=  
 x2(r)R

r=1

R
 ,  whereR=

N

M
    (4.2) 

Then the product of the two parameters, Em and ZCRm, is computed using equation (4.10): 

Sm = Em × ZCRm     (4.10) 

The threshold which determines whether a particular frame has low energy or not is then 

computed using equation (4.11): 

Sth =
1

M
 Sn

M
n=1      (4.11) 

where  is a control coefficient whose value ranges from 0 to 1. 

The whole range of  was examined and found that the values ranging from 0.05 to 0.15 give 

the best performance of this feature; this matches with the MLER range of . The value 0.1 

was chosen to compare with LEF and MLER. The last step is to compute the RSF parameter 

using equation (4.12). 

RSF= 
1

2M
  Sgn Sth − Sm +1 M

m=1    (4.12) 

where Sgn(x) is computed from equation (4.7). 

Low energy unvoiced speech frames could be misclassified as silent frames. To avoid that, Z. 

Liu et. al.[50] incorporated the ZCR feature beside the energy to identify low energy frames. 

They had two preset thresholds: one for what they called volume (RMS) and another one for 

the ZCR. A frame was considered to be silent if the volume (RMS) was below its preset 
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threshold and the ZCR was below its preset threshold. If both conditions were satisfied, then 

the examined frame was considered to be silent. By computing the ratio of non-silent frames, 

they obtained what they called the Non Silence Ratio (NSR) feature to discriminate between 

speech and music. At a first glance, the method used by Z. Liu et. al .[50] seems similar to 

the one proposed in this chapter. Thorough comparison between the two methods implies the 

following discrepancies: 

1.  The RSF algorithm uses the short time energy while the NSR uses the volume 

(RMS). While the latter is only an indication of energy, the former is an exact 

measure of the frame‟s energy. 

2. The RSF algorithm uses one parameter (S) while the NSR uses two separate 

parameters (RMS and ZCR). This implies that NSR needs three steps: verifying 

the criteria (threshold) of the first parameter (i.e. RMS threshold), verifying the 

criteria (threshold) of the second parameter (ZCR threshold), and finally verifying 

that both criteria are met. While the first two criteria can be examined in parallel, 

the third criteria cannot be verified until both of the first two parameters are 

verified. The RSF feature, on the other hand, computes the two parameters (this 

can be done in parallel), computes the S parameter and then verifies the criteria 

(threshold) of the S parameter. 

3. The most significant difference between the RSF and NSR is the generality of 

RSF feature to any corpus of audio data. The two thresholds suggested by Z. Liu 

et. al.[50] are fixed to preset values that suit their data and might not work with 

different datasets; i.e. they need to be re-examined every time a new dataset is 

processed. On the other hand, for the RSF feature the threshold is a ratio of the 

mean value of the examined data. Nevertheless, both LEF and MLER features did 

not consider the ZCR feature. 
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Every study uses a different data set to assess its hypotheses. Comparing a newly proposed 

method to the methods that exist in the literature is usually hindered by this fact. For instance, 

using different sampling rates could influence such comparison, in spite of resampling later 

on to match the sampling frequency between the two data sets. For that reason, we opted to 

use data sets that were acquired at the same sampling frequency and recorded in a similar 

environment in order to demonstrate the performance obtained by using each one of the three 

features: LEF, MLER, and RSF. Listings A8, A9, and A10 show the codes scripted to obtain 

the distribution as well as ROC curves for speech and music using LEF, MLER and RSF 

features, respectively. 

A block diagram is shown in figure 4.1 to illustrate the process of extracting the RSF feature 

from one track of audio. This may not be the most efficient way of implementing this 

algorithm of RSF feature extraction, but it demonstrates one way of doing it. For instance, 

this structure computes the S parameter for all frames in parallel. This might be essential for 

real-time applications to speed up the feature extraction process. However, for data retrieval, 

where time is not crucial, serial processing of frames might be adequate. 

Two databases were used to examine the three features: 

1. Speech database provided by University College London (UCL) [40] 

2. Music database provided by Real World Computing (RWC) [41-43] 

Both sets of data were recorded in an anechoic chamber and sampled at 44.1 kHz.  

Figures 4.2, 4.3 and 4.4 show the distribution of LEF, MLER, and RSF features, respectively. 

They were obtained for speech and music signals when analyzing 3000 speech tracks (1 

second each) and similar number of music tracks. Each audio track was split into 20 ms 

frames (M = 50 frames, R = 44100/50 = 882 samples).  
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Figure 4.1 Block diagram for the RSF feature extraction from an audio track 
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As can be seen from the speech and music distributions in figures 4.2, 4.3 and 4.4 there is an 

overlap that implies certain misclassification error. For example, if a threshold is used to 

discriminate between speech and music (e.g. at LEF = 50%) then it can be found that 86% of 

speech tracks are above this threshold. Thus, 86% of speech signals will be correctly 

classified as speech. At the same time there are also music tracks above the same threshold. 

Using the same threshold, it can be found that 22% of music tracks will be misclassified as 

speech. There is always a trade-off between correct classification and misclassification. 

Choosing an optimum threshold is the subject of the following section. The same procedure 

was repeated for the MLER and RSF features using  = 0.1 as recommended in [23]. The 

following section investigates the method adopted to assess the three features and to compare 

them to each other.  

 

 

Figure 4.2 Distribution of the LEF feature for speech and music 
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Figure 4.3 Distribution of the MLER feature for speech and music 

 

 

Figure 4.4 Distribution of the RSF feature for speech and music 
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4.5. Comparison by ROC Curves 

The ROC curves can be used to compare the performance of the three types of features and to 

find the optimum threshold to be used for speech/music detection. The ROC curves of the 

LEF, MLER, and RSF features are shown in figures 4.5, 4.6, and 4.7, respectively. Choosing 

a particular True Positive (TP) and False Positive (FP) value for either speech or music 

detection is a choice of design. A designer might choose a point on the curve where high true 

positive detection of speech is obtained, while risking high false positive. However, for the 

purpose of comparing the three features discussed in this chapter, the optimum point on the 

ROC curve for each feature was computed where the Euclidian distance to the ideal point, i.e.  

(FP, TP) = (0,1), is minimal; i.e. point D on figure 3.6.  

As described in chapter 3, the Euclidian distance between any point on an the ROC curve, i.e.  

(FP, TP) = (x,y), and the ideal point D, i.e. (FP, TP) = (0,1), is computed using: 

Euclidian Distance =     𝑥 − 0 2 +  𝑦 − 1 2    (4.13) 

It can be observed from figures 4.5, 4.6, and 4.7 that speech ROC curves are different from 

music ROC curves. This means a music detection system is different from a speech detection 

system. For that reason, the optimum threshold for speech detection is different from the 

optimum threshold for music detection. Table 4.1 shows the optimum TP rates and FP rates 

for speech and music detection when using LEF, MLER, and RSF features. It also 

summarizes the enhancement introduced by MLER and RSF features. An enhancement is 

achieved when the TP rate is increased and the FP rate is decreased. 
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Figure 4.5 ROC curves for speech/music detection when using the LEF feature 

 

 

Figure 4.6 ROC curves for speech/music detection when using the MLER feature 
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Figure 4.7 ROC curves for speech/music detection when using the RSF feature 

 

 

TP FP 

Speech Music Speech Music 

LEF 0.893 0.773 0.227 0.107 

MLER 0.894 0.768 0.232 0.106 

RSF 0.915 0.835 0.165 0.085 

MLER Enhancement over LEF 0.1% 0.7% 2% 1% 

RSF Enhancement over LEF 2.4% 8% 27% 20% 

RSF Enhancement over MLER 2.3% 8.7% 29% 19.6% 

 

Table 4.1 True Positive (TP) rates and False Positive (FP) rates for LEF, MLER, and RSF 
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To summarize, the product of the frame‟s energy and its ZCR was utilized to label silent 

frames. The ratio of silent frames (RSF) in a 1-second track was used as a feature for 

speech/music discrimination. The RSF feature enhanced the speech/music discrimination 

significantly over the LEF and MLER features. This was verified experimentally. 

As for the RSF feature of the examined datasets, the following conclusionscan be extracted 

from table 6.1: 

1. Speech detection: 

o TP rate of RSF feature is 2.4% higher than LEF 

o TP rate of RSF feature is 2.3% higher than MLER 

o FP rate of RSF feature is 27% lower than LEF 

o FP rate of RSF feature is 29% lower than MLER 

2. Music detection: 

o TP rate of RSF feature is 8% higher than LEF 

o TP rate of RSF feature is 8.7% higher than MLER 

o FP rate of RSF feature is 29% lower than LEF 

o FP rate of RSF feature is 19.6% lower than MLER 

 

4.6. Summary 

In this chapter a novel feature called the Ratio of Silent Frames (RSF) has been presented and 

analysed. The feature was compared to two other features from the literature: the Low Energy 

Frames (LEF) feature and the Modified Low Energy Ratio (MLER) feature. The RSF feature 

was found to provide significant enhancement over other relevant features. The following 

chapter introduces another novel feature that has been shown to perform better than the RSF 

feature. 
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Chapter 5: Time Series Events (TSE) 

 

5.1.  Introduction 

In the previous chapter, a novel feature was introduced showing certain enhancement to two 

relevant features from the literature. In this chapter, another novel feature is introduced 

showing far better performance in discriminating between speech and music.  

Let us start by revisiting a very fundamental feature for audio signals: the zero crossing rate 

(ZCR) [16]. It has been widely used in the literature to discriminate between speech and 

music [1, 21, 23, 30, 31] and can be computed using the script shown in listing A11. 

However, its compliment feature (Non-ZCR) has not been investigated [11, 12]. This chapter 

provides a novel contribution to this field of research by: 

1. Defining 9 types of Time Series Events [11] and investigating their probability of 

occurrence in an audio signal; i.e. speech and music, 

2. Introducing a novel speech/music discrimination feature: the probability of the 

occurrence of the Non Zero Crossing Events, and 

3. Applying Receiver Operating Characteristics (ROC) curves and using them to assess 

the novel speech/music discrimination feature [12]. 

 

5.2. Time Series Events 

A digital signal is composed of a series of samples that vary in time. This variation makes 

each sample in the signal fall in one of three regions: Positive amplitude (+), null amplitude 

(0), or negative amplitude (). Figure 5.1 illustrates this by an example which shows: 
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1. Samples at n = 1, 2, 4, 7, 11, and 12 are above zero (+), 

2. Samples at n = 5, 8, and 9 are null (0), 

3. Samples at n = 3, 6, and 10 are below zero ().  

 

Figure 5.1 A snapshot of a series of samples taken from an audio signal 

 

Any two consequent samples in a time series can form an event; i.e. a time series event. For 

instance, a zero crossing event occurs when a positive sample is followed by a negative 

sample (e.g. samples at n = 2 and n = 3), or vice versa (e.g. samples at n = 10 and n = 11). 

The zero crossing event is not the only possible event that could occur in any digital signal. In 

fact there are 9 possible types of events. These types are listed in table 5.1. An example is 

shown for each type.Every type of event in table 5.1 needs to be investigated 

The probability of the occurrence of each event for any signal can be found using the 

following fundamental equation: 

P(event E) = 
Numberoftimesevent E occured

Total numberofevents
   (5.1) 

Total number of events = N − 1 , where N is the number of samples  (5.2) 
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Event 

No. 

Consequent 

samples 

Example 

Name of Event 

(If applicable) 

Event 1 0 0 

 

 

Event 2 0 + 

 

 

Event 3 0  

 

 

Event 4 +  

 

 

Event 5  0 

 

 

Event 6 + + 

 

Non Zero Crossing Event 

(NZCE + + ) 

Event 7   

 

Non Zero Crossing Event 

(NZCE ) 

Event 8   

 

Zero Crossing Event 

(ZCE + ) 

Event 9   

 

Zero Crossing Event 

(ZCE ) 

 

Table 5.1 All possible events that could occur in a time series of a sampled signal 
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5.3. Probabilities of Events 

In order to compute the probability of the occurrence of every type of event in table 5.1, 

equation 5.1 was applied on two audio tracks: a speech track and a music track. The code 

scripted to carry out this computation is shown in listing A12. Each track was 3 seconds long. 

The probability of the nine various events are illustrated by figure 5.2. The track length was 

arbitrarily chosen to be 3 seconds. However, its effect on the discrimination performance will 

be investigated later in chapter 6. 

 

 

Figure 5.2 The probability of occurrence for every type of event in a 3 seconds speech track 

and a 3 seconds music track, sampled at fs = 44.1 kHz 

 

The following observations can be noticed from figure 5.2: 

1. The first 5 types of events have very low probability of occurrence; i.e. almost zero. 

In general, zero amplitude is seldom recorded. Instead, it would be very low 

amplitude in the vicinity of zero. 
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2. The Non Zero Crossing Events (NZCEand NZCE) show relatively high 

probability of occurrence and significant discrepancy between the two types of 

signals. Specifically, music has a probability of around 0.45 for both types of events. 

However, speech has a probability of 0.3 for NZCEand 0.65 for NZCE. The latter 

discrepancy is a property that could be exploited to discriminate between speech and 

music. 

3. The Zero Crossing Events (ZCEand ZCE) show relatively low probability of 

occurrence with some discrepancy between the two types of signals. 

 

5.4. Distributions 

The results shown in the previous section may not necessarily be true for every speech and 

music track. The validity of any scientific experiment depends on its repeatability. The same 

experiment should be repeated for a large number of times and the distributions of the 

outcome of the experiment are then considered. For such statistical validity, 3000 speech 

tracks and 3000 music tracks were tested. Each track was 3 seconds long. 

The total time of the examined data was 9000 seconds; i.e. 150 minutes of speech and 150 

minutes of music (totalling 5 hours). For each track the probability of every significant event 

explained in the previous section was analysed and will be discussed in the following 

subsections. 

 

5.4.1. Non zero crossing events (NZCE) 

Figures 4.3 and 4.4 show the distributions of the probability of the two types of NonZero 

Crossing Events (NZCE) and (NZCE), respectively. The probability of the occurrence of 
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each type of the NZCE‟s could be either computed using listing A12 or listing A13. In order 

to get the distribution of the probability of these two events, a stream of sound was collected 

from the dataset and split into equal tracks (3 seconds each), removing any long silence, and 

computing the probability of any examined event to occur as shown in listing A14. When 

repeating this process for 3000 tracks as in listing A15, a distribution was obtained 

characterizing the events. It is evident that this feature has insignificant overlap (green shaded 

area) between the speech and music distributions; i.e. the likelihood of misclassifying speech 

as music, or vice versa, is very small. 

 

 

 

Figure 5.3 Distribution of the P(NZCE for speech and music when examining 3000 

speech tracks and 3000 music tracks each 3 seconds long, sampled at fs = 44.1 kHz 

 

Threshold 
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By visual inspection of the two distributions in figure 5.3, it can be observed that setting a 

threshold at the probability of 0.4 would provide an acceptable discrimination between 

speech and music whereas a threshold of 0.55 would be more appropriate in figure 5.4. 

Nevertheless, determining the optimum threshold can also be obtained using a Receiver 

Operating Characteristics (ROC) curve (section 3.5). 

 

 

 

Figure 5.4 Distribution of the P(NZCE for speech and music when examining 3000 

speech tracks and 3000 music tracks each 3 seconds long, sampled at fs = 44.1 kHz 

 

5.4.2. Zero crossing events (ZCE) 

Figure 5.5 shows the distribution of the probability of ZCE. A similar distribution was 

obtained for the other type of ZCE. Listing A15 was also used to obtain this distribution.  

Threshold 
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It can be observed that the amount of overlap between speech and music tracks is relatively 

large (green shaded area) when compared to any of the NZCE types. 

Due to such obvious overlap, every type of ZCE seems to perform much worse than any type 

of NZCE. In spite of the overlap between the speech and music distributions, the Zero 

Crossing Rate (ZCR) feature is still a useful characteristic that was exploited many times in 

the literature [16, 31, 32]. It is normally used in conjunction with other features to form a 

vector of parameters for the purpose of discriminating between speech and music. However, 

when used alone it does not seem to be as good. This feature was exploited in chapter 4 for 

the purpose of detecting silent frames in an audio track in order to discriminate between 

speech and music. 

 

 

Figure 5.5 Distribution of the P(ZCE) for speech and music when examining 3000 speech 

tracks and 3000 music tracks each 3 seconds long, sampled at fs = 44.1 kHz 
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5.5. Sets of Events 

The individual events discussed in the previous sections can be grouped into sets that share 

similar definitions. Figure 5.6 shows a Venn diagram that illustrates the space of events 

which contains three major sets. Comparing the distributions of these sets of events would 

help in explaining why the complete NZCE set does not have a significant advantage over the 

ZCE set. 

 

Figure 5.6 Venn diagram for the sets of events and their elements 

 

In the following subsections, every set is treated as a single type of event. For example, when 

computing the probability of ZCE, every event of the type (+ ) or ( +) is counted as an 

occurrence of ZCE. Splitting the whole space into just two broad categories (i.e. ZCE and 

NZCE) makes them a compliment of one another. This makes the two distributions to be 

mirror images of each other. The sets would seem to hide the useful information that are 

provided by their elements; i.e. individual events. 

For any set of two possible events, 

P(Event AEvent B) = P(Event A) + P(Event B) – P(Event AEvent B)  (5.3) 
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Every two events among the 9 possible events are considered to be disjoint. In other words, if 

one event occurs in a pair of consequent samples, the possibility of another type of event to 

occur at the same time is null. Mathematically this can be expressed as: 

P(Event AEvent B) =      (5.4) 

Substituting equation 5.4 into equation 5.3 results in equation 5.5: 

P(Event AEvent B) = P(Event A) + P(Event B)   (5.5) 

This explains why a set would mask the information provided by an individual type of event. 

The ZCE of both types in the set [(+ , ( +)] had low probability; i.e. in the range [0 to 

0.15]. Their summation is expected to be in the same vicinity. On the other hand, the NZCE 

of both types [(+ +), ()] had relatively much higher probabilities summing up to be closer 

to 1. In order to verify this, the peak of each distribution was used to examine equation 5.5 

for the NZCE case.  

Table 5.2 shows the results of summing the peak of the speech and music distributions for 

NZCE for all three types (+ +,, and 0 0). The summation of the individual probabilities is 

equal to the probability of the NZCE set. 

The set named “other events” in the Venn diagram has close to zero probability of 

occurrence. In fact, in some audio signals, they never occurred at all. Therefore, they carry no 

information that is worth analysing in the context of speech/music discrimination. 

  



 

72 

 

Event Type 

Peak Probability of Event Occurrence 

Speech Music 

NZCE+ + 0.320 0.470 

NZCE 0.645 0.475 

NZCE0 0 0.010 0.010 

 Probabilities 0.975 0.955 

NZCE set 0.975 0.955 

 

Table 5.2 Summation of the peak of distributions for both elements in the NZCE set 

 

5.5.1.  ZCE set 

The union of the two types of ZCE features: ZCE+  and ZCE + is referred to here as the ZCE 

set. Computing the probability of this set to occur implies counting every type of ZCE 

regardless of which type it is. After computing the probability of the ZCE set to occur in 

every track for 3000 tracks, a distribution can be obtained to analyse the distributions for 

speech and music signals. The distribution that results from this set is shown in figure 5.7. 

The overlap between the speech and music distributions is relatively much more significant 

than any of its constituent elements. 

When comparing figure 5.5 and figure 5.7 we can see that they are different. This is because 

figure 5.5 shows the distribution of one type of ZCE; i.e. ZCEThe other figure, figure 5.7, 

shows the distribution for the whole set of ZCE types; i.e. summation of ZCE and ZCE. 
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5.5.2. NZCE set 

The union of the two types of NZCE features: NZCE+  and NZCE here is referred to as the 

NZCE set. Like the ZCE set, the NZCE set suffers from significant overlap between the 

speech and music distributions. It is evident from figure 5.7 and figure 5.8 that the ZCE and 

the NZCE sets are mirror images of each other. This is expected since the total space of 

events is composed of these two main categories: NZCE set and ZCE set; see figure 5.6. It 

seems that the events that are useful in discriminating between speech and music are masked 

by the sets they belong to. 

 

 

Figure 5.7 Distribution of the P(ZCE set) for speech and music tracks 
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Figure 5.8 Distribution of the P(NZCE set) for speech and musictracks 

 

5.6.  Mathematical Model 

The investigation carried out so far implies that the events of type (+ +) and () are the best 

events to be used in discriminating between speech and music signals. The probability of 

either event can be computed using equation 5.6 below: 

P(NZCE) = 
 [𝑆𝑖𝑔𝑛  𝑆 𝑛  .𝑆𝑖𝑔𝑛  𝑆 𝑛+1  ]𝑁−1
𝑛=1

𝑁−1
   (5.6) 

Where:  N is the number of samples in the signal, 

Sign (X) is defined based on the type of the NZCE as follows: 
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Case 1: NZCE + + 

 𝑆𝑖𝑔𝑛 𝑋 =  
1 𝑋 > 0
0 𝑋 = 0
0 𝑋 < 0

      (5.7) 

Case 2: NZCE  

 𝑆𝑖𝑔𝑛 𝑋 =  
0 𝑋 > 0
0 𝑋 = 0
1 𝑋 < 0

      (5.8) 

Using such a mathematical expression to compute the probability of the NZCE makes their 

simulation or implementation faster than counting events one by one. 

 

5.7.  ROC Curves for Time Series Events (TSE) 

The ROC curves can be used to achieve two goals: i) compare the performance of the various 

types of events and ii) find the optimum threshold to be used for speech/music detection. 

Consider the example of the radio receiver that scans for news channels by trying to detect 

detection of speech. Choosing between high probability of correct detection of news (speech) 

while also risking higher probability of false alarms (music) is a choice of design. A designer 

might choose a point on the curve where high true positive detection of speech is obtained, 

while risking high false positive. Nevertheless, it is recommended to choose a point on the 

curve where the Euclidian distance to the ideal point is minimal; i.e. point D on figure 3.6 

where  (FP, TP) = (0,1).The Euclidian distance between any point on a ROC curve, e.g. (FP, 

TP) = (x,y), and the ideal point D, i.e. at (FP, TP) = (0,1), is computed using: 

Euclidian Distance =     𝑥 − 0 2 +  𝑦 − 1 2    (5.9) 
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This is computed for the four significant individual events as well as the two sets of events 

they belong to. Another useful figure of merit is the area under the ROC curve which ranges 

from 0 to 1. The ideal curve illustrated in figure 3.6 has got the area 1 under its curve; i.e. the 

area of the 1 × 1 square. On the other hand, the random performance (which contains the 

point C) curve has an area of 0.5.  Thus, the area under the ROC curve is another useful 

comparative parameter that can be used to compare any two features. 

Figures 5.9and5.10 show the ROC curves for the two types of NZCE: (+ +) and (). It is 

evident that they are very close to the ideal curve. The two types of NZCE are not the same, 

and they are expected to be different; their distributions are different as demonstrated in 

figures 5.3 and 5.4. In fact, the distributions of the two types are mirror images of each other 

and are compliment of each other within the same NZCE set. In general, their performance is 

above 95%; i.e. optimum TP rate > 0.95.On each ROC curve, the optimum TP rate and FP 

rate, the optimum threshold, and the area under each ROC curve for both speech and music 

detection cases are also summarized. There is always slight difference between the optimum 

threshold for detecting speech and that for detecting music. This is expected since the 

distributions are not symmetrical. 

Figure 5.11 illustrates the ROC curves for detecting speech and music using the P(ZCE+ ). 

Similar ROC curves were obtained for the P(ZCE). For both types, the optimum TP rate is 

about 0.79 and 0.82 for speech and music detection, respectively. In general, about 80% 

performance is achievable for every type of the ZCE features in comparison to more than 

95% in case of NZCE types of events. This implies that the NZCE features improve the true 

positive (TP) detection by 15% compared to the ZCE features.  
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Figure 5.9 ROC curves for using P(NZCE) to analyse 3000 tracks, 3 seconds each 

 

Figure 5.10 ROC curves for using P(NZCE) to analyse 3000 tracks, 3 seconds each 
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Figure 5.11 ROC curves for using P(ZCE) to analyse 3000 tracks, 3 seconds each 

 

Figures 5.12 and 5.13 show the ROC curves for the two main sets in the space of events: 

NZCE set and ZCE set, respectively. When comparing these curves to the ZCE individual 

types of events, i.e. P(ZCE) and P(ZCE), there is no significant difference in 

performance. The four of them are far from the ideal curve. For the examined datasets, tables 

5.3 and 5.4 summarize the performance parameters of the ROC curves for detecting speech 

and music, respectively. 

In order to compare the six features that have been examined, all ROC curves are plotted on 

the same graph in figure 5.14. The superiority of the two individual types of NZCE features is 

very obvious. It is also evident that both of the individual ZCE features as well as the set of 

ZCE and set of NZCE features all coincide with each other giving the lowest performance. 
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Figure 5.12 ROC curves for using P(NZCE set) to analyse 3000 tracks, 3 seconds each 

 

Figure 5.13 ROC curves for using P(NZCE set) to analyse 3000 tracks, 3 seconds each 
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Parameter 

Feature 

Optimum 

TP rate 

Optimum 

FP rate 

Optimum 

Threshold 

Euclidian 

Distance
1 

Area under 

ROC curve 

NZCE + + 0.9517 0.0483 0.3820 0.0532 0.9916 

NZCE  0.9797 0.0203 0.5256 0.0236 0.9974 

ZCE +  0.8213 0.1787 0.0225 0.2734 0.9043 

ZCE  0.8217 0.1783 0.0225 0.2732 0.9043 

NZCE set 0.8103 0.1897 0.9588 0.2730 0.9044 

ZCE set 0.8103 0.1897 0.0424 0.2730 0.9044 

 

Table 5.3 Summary of ROC curve parameters of examined features for speech detection 

Parameter 

Feature 

Optimum 

TP rate 

Optimum 

FP rate 

Optimum 

Threshold 

Euclidian 

Distance
1 

Area under 

ROC curve 

NZCE + + 0.9777 0.0483 0.3808 0.0532 0.9923 

NZCE  0.9880 0.0203 0.5268 0.0236 0.9974 

ZCE +  0.7930 0.1787 0.0212 0.2734 0.9043 

ZCE  0.7930 0.1783 0.0212 0.2732 0.9043 

NZCE set 0.8037 0.1897 0.9600 0.2730 0.9044 

ZCE set 0.8037 0.1897 0.0412 0.2730 0.9044 

 

Table 5.4 Summary of ROC curve parameters for examined features when detecting music 

                                                 
1Euclidean distance is computed at the optimum TP and FP rates 
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Figure 5.14 ROC curves for all examined features plotted for comparison 

 

5.8.  Delta P(NZCE) 

By observing figure 5.2, it can be noticed that there is a significant discrepancy between the 

P(NZCE) and the P(NZCE) for the speech track. However, there is no such discrepancy 

between the two features for the music track; i.e. they are equal. Such discrepancy between 

the two types of NZCE features could be exploited by investigating the usage of delta NZCE 

as defined below: 

 P(NZCE) = | P(ZCE)    P(ZCE) |   (5.10) 

Using the feature defined in equation 5.10 might introduce one more feature that can be 

obtained by using the time series events for the discrimination between speech and music. In 
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order to examine the performance of the  P(NZCE) feature, 3000 speech tracks and 3000 

music tracks of 3 seconds duration each were examined; see listings A16 and A17. 

 

Figure 5.15 The distributions of  P(NZCE) for speech and music 

 

Figure 5.15 illustrates the distributions that were obtained when using  P(NZCE) as a feature 

for both speech and music audio tracks. It is evident from these distributions that there is 

slight overlap between the speech and the music distributions. To assess the amount of 

correct and false detection of either speech or music, ROC curves are utilized again as 

illustrated in figure 5.16. Optimum speech and music detection can be achieved for 

thresholds of 0.23 and 0.24, respectively. This results in 93.8% of correct speech detection 

while 12.3% of music tracks being misclassified as speech. Optimum music detection, on the 

other hand, provides about 88% correct classification at the cost of 6% misclassification. 

Threshold 
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While this feature performs far better than any ZCE feature, the NZCE features are still the 

best features in the space of events.In conclusion, using individual NZCE features, i.e. 

P(NZCE) and P(NZCE), is better than the  P(NZCE) feature. The latter is better than 

the ZCE features. 

 

Figure 5.16 ROC curve for using  P(NZCE) to detect speech audio tracks 

 

5.9. Classification by clustering 

Consider the case where an audio signal is identified by two features at the same time instead 

of a single feature. Using a pair of features in the form of (f1, f2) to describe a signal would 

lead to a different way of classification. So far, several individual features have been 

thoroughly examined to assess their performance in discriminating between speech and 

music.  
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The following fundamental features were examined individually: 

1. ZCE features:  

a. P(ZCE)  

b. P(ZCE) 

2. NZCE features: 

a. P(NZCE) 

b. P(NZCE) 

Any two features could be used to form the desired pair (f1, f2). The following figures 

illustrate what happens when f2is plotted against f1 for every pair of features. For every track 

of audio two parameters are computed. The first parameter against the second parameter 

would represent a point on the graph. 

As expected from the previous analysis of the four features there should be some overlap 

between the speech and music features. This would appear in figures 5.17 to 5.19 in the form 

of red dots interfering with the blue cluster of dots. A linear discriminator can be represented 

by a straight line whose aim is to distinguish between speech and music pairs. To some 

acceptable level of discrimination, two linearly separable groups can be observed in figures 

5.17 and 5.18.  

Each pair of features results in two distinctly clustered regions of speech and music. Finding 

the optimum classifier is not the aim of this thesis. However, it is important to point out that 

the previous figures illustrate that speech and music can be classified using a simple 

perceptron Neural Network (NN) to form two linearly separable regions. Furthermore, a 

clustering NN could be used to classify audio signals into speech and music as demonstrated 

in figure 5.19. 
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Figure 5.17 A pair of features showing two linearly separable clusters 

 

Figure 5.18 A pair of features showing two linearly separable clusters 
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Figure 5.19 A pair of features showing two linearly separable clusters 

 

5.10.  Summary 

The feature presented in chapter 4 was at the frame level. Its outcome was submitted to the 

IET Journal as an electronics letter and is under review. On the other hand, this chapter 

presents other features at the track level. The outcome of the features proposed in this chapter 

in analysed in both chapters 5 and 6 was presented in two IEEE conferences and can be 

obtained from IEEE Xplore website as shown in figure B.1 in Appendix B. 

Chapter 5 introduced a couple of novel audio features based on the analysis of the possible 

time series events (TSE) that could occur in a digital audio signal. It identified a space of 

events that is composed of 9 possible events and examined the probability of each event to 

occur in speech signals and in music signals. It was found that two types of events had the 
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highest probability of occurrence as well as the highest discrepancy between speech and 

music. They are the event of two successive positive samples, i.e. P(NZCE), and the event 

of two successive negative samples, i.e. P(NZCE). The two types of events formed one set 

in the space of events; i.e. P(NZCE) set. The other set that was examined was the event of a 

zero crossing which existed in two forms, P(ZCE) and P(ZCE), which both had low 

probability of occurrence as well as low discrepancy between speech and music. ROC curves 

were used to compare the four types of events and their two sets. Based on that assessment 

they can be sorted from best to worst as follows: 

1. P(NZCE) Best 

2. P(NZCE)Excellent 

3. P(ZCE), P(ZCE), P(NZCE) set, P(ZCE) setUsable 

4. Other events: P(Event ), P(Event ), P(Event ), P(Event ), P(Event )  Worst 

In this chapter, the possibility of speech/music discrimination by means of clustering of a 

couple of features was also demonstrated. 

The following chapter will analyse the time series events (TSE) even further. It will 

investigate the effect of the track length, noise, music genre, and sampling rate on the 

performance of the TSE features. Chapter 6 will also examine individual music instruments 

as well as various music genres.  
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Chapter 6: Further Analysis of the 

Time Series Events 

 

6.1.  Introduction 

Chapter 5introduced the concept of the time series events (TSE) and the probability of 

occurrence for each type of event. After thorough experimentation and analysis of all features 

it was concluded that two of the features performed the best: the P(NZCE+ +) and the 

P(NZCE).  

This chapter will look into various parameters in order to investigate their significance in the 

context of speech/music discrimination. The ROC curves are again adopted in order to 

illustrate any change in performance when analysing any factor.The closer the curve is to the 

ideal curve the better the discriminator is. This implies a higher True Positive (TP) rate and 

lower False Positive (FP) rate. 

The following parameters and cases will be analysed in the subsequent sections of this 

chapter: 

 the effect of using longer tracks 

 the effect of adding noise to the clean audio 

 the effect of using individual music instruments over a genre of music 

 the effect of testing various music genres 

 the significance of varying the sampling rate 
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6.2. Track Length 

Real time applications consider time delays to be crucial in their design. Although the word 

“real” is application-dependent, system designers try to minimize the delay of the processing 

system while maintaining an acceptable performance. This leads to a trade-off between 

performance and processing delay. The latter is dependent on the complexity of the 

algorithm, the circuitry of the hardware used, and the length of the processed data. 

In a speech/music discrimination system the track length of an audio signal is a predominant 

factor. In this section, the effect of varying the track length is investigated. Starting with a 

track length of 0.25 of a second, the track length was gradually increased in steps of 0.25 of a 

second until a track of 10 seconds was reached. The code scripted to carry out this analysis is 

shown in listing A18. While the shortest track (0.25 of a second) is expected to result in a big 

overlap between the speech and music distributions, the longest track length (10 seconds) is 

expected to have far less overlap. While the track length is increased, the number of analysed 

tracks was kept constant at 3000 tracks. In other words, 3000 speech tracks and 3000 music 

tracks were analysed and used to obtain the distributions that were used to produce the 

distributions in the following figures. 

The figures on the following page show the amount of overlap between speech and music 

distributions for various track lengths. It can be seen from figures 6.1 to 6.4 that increasing 

the track length has a significant effect on reducing the overlap between the speech and music 

distributions. This relates back to the probability theory. Computing the probability of an 

event becomes more accurate when the number of events is increased; i.e. higher population. 

Thus, increasing the track length is expected to provide better performance. 
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Figure 6.1 Distribution of P(NZCEand P(NZCEfor 3000 speech/music tracks; each 

0.25  seconds long 

(a) 

(b) 
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Figure 6.2 Distribution of P(NZCEand P(NZCEfor 3000 speech/music tracks; each 

0.75  seconds long 

(a) 

(b) 
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Figure 6.3 Distribution of P(NZCE and P(NZCEfor 3000 speech/music tracks; each 

2.5 seconds long 

(a) 

(b) 
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Figure 6.4 Distribution of P(NZCE and P(NZCEfor 3000 speech/music tracks; each 10 

seconds long 

(a) 

(b) 
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Throughout all cases in figures 6.1 to 6.4 it can be observed that the P(NZCE) is better than 

the P(NZCE). Furthermore, the distributions can be divided into 3 regions: definitely 

speech, definitely music, and fuzzy region; i.e. overlap shaded area. The overlap is reduced to 

almost zero for the case of 10 seconds for the P(NZCE) shown in figure 6.4. 

In order to appreciate how critical the choice of track length can be, consider for example the 

case of a radio receiver that scans for news channels while skipping music channels. The 

designer wants to guarantee the detection of the correct type of channel spending adequate 

time to count the number of NonZero Crossing Events. Thus, it is required to have a buffer of 

sufficient size to hold a sample recorded from the analysed radio channel. Once a definite 

classification is made about the type of channel, the radio receiver would either store the 

frequency of that channel, if it was broadcasting speech, or skip to the next channel if it was 

broadcasting music. However, if the outcome of the analysis is in the fuzzy region, the 

system would buffer another track and analyse it in an attempt to make more certain 

decisions about the analysed radio channel. The designer of such a system can choose 

between the following options: 

1. A big buffer (e.g. 10 seconds) with higher certainty of type detection and very 

small fuzzy region, leading to waiting longer to get an output 

2. A small buffer (e.g. 2 seconds) with lower certainty of type detection and 

relatively bigger fuzzy region 

If the second choice was selected, the system might be designed in such away as to iterate the 

detection process several times before it is able to make a certain decision about the analysed 

channel. However, after 5 iterations, both options would cost roughly an equal amount of 

time.   
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Furthermore, ROC curves can be used to measure the performance of the P(NZCE) and 

P(NZCE)  as the track length is increased it becomes more obvious as shown in figure 6.5. 

Changing the track length from 0.25 of a second to 1 second shows significant enhancement 

in detecting speech. However, there is insignificant enhancement when comparing 1 second 

to 5 seconds. For real-time applications, it might not be worth it the delay for such little 

enhancement. In data retrieval systems any slight enhancement is of a significant value since 

there is no restriction on the track length.  

The influence of increasing the track length can also be demonstrated by observing the 

optimum point on each ROC curve. Figure 5.6 illustrates the performance obtained when 

using various track lengths for both features: P(NZCE) and P(NZCE). For the former 

one, when detecting speech at 0.25 seconds track length, 0.72 True Positive (TP) rate was 

obtained at the cost of 0.15 False Positive (FP) rate. However, when detecting music at the 

same track length, 0.85 TP rate was obtained at the cost of 0.28 FP rate. Thus, there is certain 

discrepancy between speech and music detection performance at very low track length. 

The discrepancy between speech detection and music detection performance vanishes as the 

track length was increased. At about 0.75 seconds track length, speech detection and music 

detection TP/FP rates almost coincide with each other. Also, it can be noticed that there is no 

significant enhancement beyond one second track length. Another figure of merit that has 

been discussed previously is the Euclidian distance from the optimum (TP, FP) coordinate to 

the ideal point (0,1). As the track length was increased, the Euclidian distance reduced. This 

is illustrated in figure 6.7. Each graph in figure 6.7 shows two curves for speech and music 

that coincide with each other; thus only one curve is visible. There is a distinct reduction in 

Euclidian distance between 0.25 seconds and 1 second. Beyond one second the distance is 

improved slightly, yet insignificantly. 
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Figure 6.5 ROC curves enhancement as a result of increasing the track length when detecting 

speech and music tracks 

(a) 

(b) 



 

97 

 

 

 

Figure 6.6 TP and FP rates of as a function of track length for the P(NZCE) and the 

P(NZCE) feature 

(a) 

(b) 
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Figure 6.7 Optimal Euclidian Distance as a function of track length for the P(NZCE+ +) 

feature and the P(NZCE) feature 

(a) 

(b) 
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6.3. Effect of Noise 

In the spectrum of audio signals, noise could take several forms. One type of noise was 

selected to assess the influence of noise on the proposed features, normally distributed noise 

is sometimes also called Gaussian noise and has the probability density function (PDF) 

shown in figure 6.8. The probability density function for a Gaussian distribution can be 

modelled using equation (6.1): 

𝑝 𝑥 =  
1

𝜎 2𝜋
𝑒𝑥𝑝  −

(𝑥−𝜇)2

2𝜎2      (6.1) 

Where  is the standard deviation,  is the mean, and exp is the exponential function. 

A special case where  = 1, and  = 0 is called the standard normal distribution, and with 

these parameters equation (6.1) can be simplified to the form in equation (6.2) whose 

distribution is illustrated in figure 6.8. 

 

 

Figure 6.8 The probability density function (PDF) of Gaussian Noise with zero mean 
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𝑝 𝑥 =  
1

 𝜋
𝑒𝑥𝑝  −

1

2
𝑥2      (6.2) 

By looking at the spectrum illustrated in figure 6.9 it can be observed that the Gaussian noise 

is flat throughout the whole spectrum while the speech and music power spectral density is 

higher at the lower frequencies and is lower at the higher frequencies. 

There exist many types of noise which can be related to its spectrum via equation (6.3): 

𝑆 𝑓 ∝
1

𝑓
𝑛      (6.3) 

Where f is the frequency and n is a factor that can take various values depending on the type 

of noise.  

Table 5.1 shows these types and their corresponding n value. The analysis carried out in the 

following experiments are for the case of n = 0; i.e. white noise.  The power spectral density 

for the white noise is shown in figure 6.9 as compared to that of speech and music signals. 

 

Type of Noise (other names) Name by colour n 

Azure noise Blue noise [57] -1 

Normal (Gaussian) White noise [58, 59] 0 

1/f noise (flicker noise) Pink noise [60-63] 1 

Brownian noise Red noise [59] 2 

Silence
1
 Black noise [57] > 2 

 

Table 6.1 Types of 1/(f 
n
) noise and their corresponding n values 

                                                 
1 Noise that has a frequency spectrum of predominantly zero power level over all frequencies (few narrow bands or 
spikes may be accepted) 
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Figure 6.9 The power spectral density of speech, music, and Gaussian noise 

 

Prior to investigating the effect of adding noise to any audio signal on the various time series 

events, let us look at the white noise alone. How does its distribution look like on the 

probability axis? By comparing the distributions of speech and popular music to the white 

Gaussian noise the figures (6.10 to 6.15) can be obtained for various types of events. The 

analysis is carried out on 3000 speech tracks, 3000 music tracks, and 3000 simulated 

Gaussian noise tracks. Each track is 3 seconds long and sampled at 44.1 kHz. Refer to listing 

A19 for the code scripted to carry out the experiments in this section. 

By observing figures (6.10 to 6.15) it can be noticed that the three classes of audio, i.e. 

speech, music, and noise, can be clearly distinguished from each other using any of the two 

NZCE types (i.e. NZCE and NZCE.  The three types of audio fall into three distinct 

bands of probabilities. Figures 6.14 and 6.15 show the ZCE set and the NZCE set, 
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respectively. Although both sets cannot clearly discriminate between speech and music, they 

can still be used to distinguish between intelligible sounds (i.e. speech and music) and noise. 

 

Figure 6.10 The distribution of the P(NZCE) feature for speech, music, and noise 

 

Figure 6.11 The distribution of the P(NZCE) feature for speech, music, and noise 



 

103 

 

 

Figure 6.12 The distribution of the P(ZCEfeature for speech, music, and noise 

 

 

Figure 6.13 The distribution of the of P(ZCE) feature for speech, music, and noise 



 

104 

 

 

Figure 6.14 The distribution of the P(NZCE set) for speech, music, and noise 

 

 

Figure 6.15 The distribution of the P(ZCE set) for speech, music, and noise 
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Having shown the distribution of the three types of audio signals (speech, music, and noise) 

let us now examine some noisy speech and music. The audio signals that are used to examine 

the various audio features throughout this thesis were recorded in an anechoic chamber where 

noise is very minimal; i.e. close to zero. To be more realistic, 60 seconds of room noise was 

recorded and linearly added to every 60 seconds of speech and music.  

Figure 6.16 and figure 6.17 show5 seconds of the recorded room noise and its probability 

density function, respectively. The P(NZCE) and P(NZCE) distributions were then 

obtained. The Signal to Noise Ratio (SNR) was then computed from: 

𝑆𝑁𝑅 = 20 𝑙𝑜𝑔
𝑅𝑀𝑆𝑠𝑝𝑒𝑒𝑐 𝑕

𝑅𝑀𝑆𝑛𝑜𝑖𝑠𝑒
    (6.4) 

The RMS power can be computed as explained in chapter 3; equation 3.1. 

 

Figure 6.16 Room noise (5 seconds) recorded using a commercial condenser microphone 

Room noise as measured from commercial condenser 

microphone 
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Figure 6.17 Probability Density Function (PDF) of 60 seconds of room noise recorded using 

a commercial condenser microphone 

 

Figure 6.18 shows the distributions of the P(NZCE) of two levels of SNR. There is certain 

obvious overlap introduced by reducing the SNR from about 55 dB down to about 33 dB. To 

examine the effect of increasing the noise power, the recorded noise is amplified by a 

constant gain. Each time the room noise is amplified further and added to the speech and 

music, the two features are re-examined to analyse the effect of the SNR. In terms of 

audibility, as noise becomes more dominant (i.e. noise power increased) the noisy-speech 

would sound more like pure noise.  

Because each feature has a different distribution, the effect of increasing the noise power on 

the amount of overlap is expected to be different. This is best illustrated by the following 

figures. The figures (6.19 to 6.22) illustrate, by various means, how sensitive TSE features 
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are to noise. The higher the noise power is, i.e. lower SNR, the lower the TP rate and the 

higher the FP rate. In other words, the proposed TSE features are not robust to noise. It would 

work well in low noise environments.  

All means of assessing the implications of noise on speech/music discrimination using the 

P(NZCE) and P(NZCE) features show how sensitive the two features are to the 

surrounding noise. In noisy environments the examined audio data could be highly 

misclassified into the wrong class. However, it is highly unlikely for the recorded audio data 

to be so low SNR. News broadcast, for instance are recorded in very low noise and RT60 

ratings. So, a radio channel scanner is expected to have clean speech; i.e. noise level close to 

the ones provided by the UCL anechoic chamber. 

 

 

Figure 6.18 The distribution of the P(NZCE) for 3000 noisy speech and music tracks with 

SNR = 33 dB 
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Figure 6.19 Effect of the SNR on the ROC curves of the P(NZCE) for noisy speech and 

music tracks; 3 seconds each 

(a) 

(b) 
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Figure 6.20 Effect of the SNR on the ROC curves of the P(NZCE) for noisy speech and 

music tracks; 3 seconds each 

(a) 

(b) 
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Figure 6.21 Effect of the SNR on the TP and FP rates of the P(NZCE) and the P(NZCE) 

for noisy speech and music tracks; 3 seconds each 

(a) 

(b) 
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Figure 6.22 Effect of SNR on the P(NZCE) and the P(NZCE) on the Euclidian Distance 

of the ROC curves of noisy speech and music tracks; 3 seconds each 

 

(a) 

(b) 
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6.4. Individual music instruments 

The analysis carried out so far used popular music for comparison with speech. It is important 

to consider individual instruments instead of a set of instruments as in normal popular songs. 

Let us set a hypothesis that an individual instrument would behave in the same way as a 

group of instruments. In order to verify this hypothesis, the P(NZCE) and P(NZCE) 

features were tested for 64 different instruments against the same set of speech. Figures 

6.23and6.24 illustrate the P(NZCE) and P(NZCE) of speech tracks as well as 6 different 

instruments, respectively. Figure 6.25 shows examples of the 6 instruments. Although each 

instrument shows a different distribution, they share the same band of probability and are 

very distinguishable from the speech distribution. The ROC curves are not produced here 

since the similarity between individual instruments and popular music (i.e. a group of 

instruments) has been proven in principle. 

 

Figure 6.23 Distribution of the P(NZCE) for speech and 6 individual instruments 

(accordion, Baritone Sax, classic guitar,electric bass, electric guitar, and pianoforte) 
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Figure 6.24 Distribution of the P(NZCE) for speech and 6 individual instruments 

(accordion, Baritone Sax, classic guitar, electric bass, electric guitar, and pianoforte) 

 

 

Figure 6.25 Examples of the examined instruments (accordion, Baritone Sax, classic guitar, 

electric bass, electric guitar, and pianoforte) 

Accordion 

Electric bass 
Pianoforte 

Electric Guitar 

Classic Guitar 

Baritone Sax 
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6.5. Music genres 

In order to investigate whether the NZCE features apply to all types of music, various types 

of music were tested.  The RWC genre music database contained 10 main categories: 

1. popular,  

2. rock,  

3. dance,  

4. jazz,  

5. Latin,  

6. classical,  

7. marches,  

8. world,  

9. vocals, and  

10. traditional Japanese music.  

Each one of the 10 genres (categories)was examined individually; 3000 tracks from each 

genre. Each track was 3 seconds long. It was found that all musical genres lie within the same 

distribution of music as in the popular songs. It was found that regardless of the type of music 

being examined the NZCE distributions of all music genres behave in the same way. 

 

6.6. Sampling rate 

The last parameter that is investigated in this section is the effect of the sampling rate on the 

two novel features introduced in this thesis: the P(NZCE) and P(NZCE). It has been 

emphasized throughout this study to maintain the same sampling rate for both speech and 

music. The sampling rate is related to the number of samples per second in any audio track. 
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For a sampling rate of 44.1 kHz there are 44100 samples in every one second track. The 

number of samples in any track of certain duration, t seconds, can be computed from the 

sampling frequency fsusing the equation: 

Number of samples = fs × t     (6.4) 

The higher the sampling frequency used the higher the number of samples within a track of 

sound. For the features extracted from time series events the probability of any event is 

obtained by counting the number of times an event occurs and dividing by the number 

possible events. The latter is related to the number of samples by the equation: 

Number of events = Number of samples – 1     (6.5) 

Furthermore, the accuracy of computing any probability of any event increases by increasing 

the population of events; i.e. number of samples. This is what made long tracks (e.g. 10 

seconds) perform better than shorter tracks (e.g. 0.25 a second). Therefore increasing the 

sampling frequency is expected to increase the accuracy of computing the probability of any 

of time series events. The effect of the track length on the performance of each feature was 

examined by increasing the track length gradually from 0.25 second up to 10 seconds. In a 

similar manner the sampling rate is examined by down sampling the audio signals from 44.1 

kHz down to 22.05 kHz, 16 kHz, 8 kHz, 4 kHz, 2 kHz, and 1 kHz. Each down-sampling is 

preceded by a low pass filter at half the sampling frequency. The track length is maintained at 

the minimum acceptable length of 3 seconds. 

The P(NZCE) feature is sensitive to the sampling frequency. Figure 6.26 shows that 

resampling down to 22.05, 16, and 8 kHz is less significantly sensitive than 4, 2, and 1 kHz. 

This is equally true for detecting speech and music. The code scripted to analyse the effect of 

down-sampling is shown in listing A20. 
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The conjugate features, P(NZCE) on the other hand is far less significantly sensitive to the 

sampling rate. Figures 6.27 and 6.28 show the ROC curves obtained when detecting speech 

and music, respectively.  

To further demonstrate the superiority of the P(NZCE) over the P(NZCE) feature in 

terms of their sensitivity to the sampling frequency, figures 6.29 and 6.30 illustrate two 

parameters extracted from the ROC curves: the Euclidian Distance measured from the 

optimum TP/FP rate of each ROC curve to the optimum TP/FP rate of the ideal ROC curve. 

 

6.7. Summary 

This chapter has thoroughly investigated the effect of varying the track length from ¼ of a 

second up to 10 seconds. It was found that the higher the track length the lower the 

misclassification. Likewise, the effect of down sampling from 44.1 kHz to frequencies as low 

as 4 kHz has significant effect on the P(NZCE) and insignificant effect on the P(NZCE). 

The analysis in chapter 5 examined one type of music: the pop music. In this chapter, other 

types of music genres were analysed to examine the validity of the results on various types of 

music. Furthermore, individual instruments playing tones at an increasing pitch were also 

examined and verified to be consistent with all other types of music. 
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Figure 6.26 Effect of sampling frequency on speech/music detection using P(NZCE) 

(a) 

(b) 
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Figure 6.27 Effect of sampling frequency on speech detection using P(NZCE) 

(a) 

(b) 
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Figure 6.28 Effect of sampling frequency on music detection using P(NZCE) 

  

(a) 

(b) 
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Figure 6.29 Effect of sampling frequency on the TP/FP rates when detecting speech/music 

when using P(NZCE) and P(NZCE) features 

(a) 

(b) 
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Figure 6.30 Effect of sampling frequency on the Euclidian Distance when using P(NZCE) 

and P(NZCE) features for detecting speech/music 

(a) 

(b) 
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Chapter 7: Conclusion 

 

 

7.1. Introduction 

Research in the field of speech/music discrimination (SMD) is continuously trying to move 

forward. The fundamental ingredient to any SMD system is the extraction of audio features. 

Whether this is done in time domain or frequency domain, any contribution is presented in 

the form of a novel feature or an enhancement of an existing feature. 

This thesis has contributed to the SMD field of research by presenting a novel feature called 

the Probability of Non Zero Crossing Events, P(NZCE), and by enhancing an existing feature 

called the percentage of Low Energy Frames (LEF) feature. Both contributions were 

examined experimentally as in chapters 4, 5, and 6 by using standard data from speech and 

music suppliers. Various parameters were also examined. This chapter will provide a 

summary of the findings achieved from this study and the possible future work that could be 

carried forward. 

 

7.2. Contributions 

Any digital signal is composed of a series of samples that are either positive, negative, or 

zero. Every pair of consecutive samples forms an event. There are 9 different possible events 

that could occur in any digital signal. The probability of the occurrence of each type of event 

varies from one type to another.  
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After investigating all of the 9 different types of events, it was found that the best 

discriminating features are obtained from the Probability of Non Zero Crossing Events, 

P(NZCE). They are of two types:  

1. consecutive positive samples; P(NZCE) 

2. consecutive negative samples; P(NZCE) 

In general, the P(NZCE) feature performs better than the P(NZCE) feature. It is not clear 

why the two types of NZCE show slight discrepancy in performance. Further research needs 

to be conducted to investigate this discrepancy. 

Many parameters were investigated to examine how they would affect the performance of 

these two features. The following recommendations can be stated about each of them: 

 Track length: should be at least 1 second. Longer tracks would provide better 

performance. 10 seconds track would provide error-free discrimination. 

 Noise level: the higher the noise level, the higher the misclassification. Noise 

reduction is essential prior to using the time series events features. 

 Sampling rate: higher sampling rates imply higher number of samples within an audio 

track; thus more accurate estimation of the probability of any event. The P(NZCE) 

is more sensitive to sampling rate than the P(NZCE) feature. 

 

The thesis has also contributed another feature to the SMD field of research: the Ratio of 

Silent Frames (RSF) feature. The percentage of silence within an audio track is a fundamental 

feature that can be exploited to discriminate between speech and music. Although this 

exploitation is not completely new, the approach used to identify the silent frames is 

different. The presented approach was compared to two existing features in the literature and 
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was found to provide some significant enhancement. It increased the rate of correct detection 

of speech and music by about 2% and 8%, respectively. At the same time it reduced the 

misclassification of speech and music by 27% and 29%, respectively. 

Another contribution that this thesis has provided to the SMD field of research is the 

application of the ROC curves to assess any audio feature. They provided a visual means to 

identify the rate of correct detection of a certain type of audio signals (e.g. speech) while also 

considering any misclassification due to any possible overlap with the other type (e.g. music). 

It is recommended to adopt this method to assess any feature suggested in the future by other 

researchers. 

 

7.3. Future Work 

Any research in any field would normally open doors for future contributions. This thesis has 

left three doors open. The first one is to investigate the effect of using classifiers other than a 

simple threshold. For example, clustering (as suggested in section 6.4), neural networking, 

and fuzzy classifiers. 

The second one is related to fusion of features. The methodology adopted in this study was to 

present and assess individual features. Nevertheless, individual features could be combined to 

form a vector of features that might lead to better classifiers.  

The third one is related to the hardware implementation of the proposed features. All of the 

proposed features were implemented by software. None of them were implemented by 

hardware. This work can be taken forward towards practical applications, (e.g. embedded in a 

radio channel scanner, embedded in an ASR system, or embedded in a hearing aid device) in 

order to examine its performance in real time and within a particular application. A latency of 
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at least 1 second is expected for acceptable performance. However, it could be made 

adjustable by the user based upon his/her convenience. Issues of timing, registering, sampling 

frequency, miniaturization, and cost efficiency could be investigated.  
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Appendix A: MATLAB Codes 

 

Listing A1 

Code scripted as a function that computes the parameters of a ROC curve of any pair of 

distributions where distribution a is lower than distribution b 

% This function takes two inputs (a,b) and computes the ROC curve 
% parameters as explained below: 
% 
% FP:       Vector of False positive rates 
% TP:       Vector of True positive rates 
% Distance: Eucledian Distance from (a,b) to (0,1) at current threshold 
% opt_TP:   Optimum True Positive Rate 
% opt_FP:   Optimum False Positive Rate 
% opt_thr:  Optimum threshold for lowest Eucledian Distance from (a,b) to 

(0,1) 

 

 
function [FP,TP,Distance,opt_TP,opt_FP,opt_thr] = roc(a, b) 

 
% Initial values declared 

 
          n = 0;             % Initial counter 
          N = length(a);     % Number of samples in class (a) 
         FP = zeros(N-1,1);  % Vector of FP rates 
         TP = zeros(N-1,1);  % Vector of TP rates 
upper_limit = 1;             % Inital upper limit of samples 
   Distance = 1e6;           % Initial Distance set to large value 

 
% Scan the whole range  

 
while upper_limit <= N - 1 
    n = n + 1; 
    TP(n,1) = sum(a(1:upper_limit))/sum(a);        % Compute TP 
    FP(n,1) = sum(b(1:upper_limit))/sum(b);        % Compute FP 
          upper_limit = upper_limit + 1;           % Increment upper_limit 
temp_Distance = sqrt((TP(n,1)-1)^2+(FP(n,1)-0)^2); % Eucledian Distance 
if temp_Distance < Distance                    % Check for lower distance 
    Distance = temp_Distance;                      % Update Distance 
      opt_TP = TP(n,1);                            % Update Optimum TP rate 
      opt_FP = FP(n,1);                            % Update Optimum FP rate 
     opt_thr = upper_limit/N;                      % Update Optimum 

threshold 
end 
end 
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Listing A2 

Code scripted as a function that computes the parameters of a ROC curve of any pair of 

distributions where distribution b is lower than distribution a 

% This function takes two inputs (a,b) and computes the ROC curve 
% parameters as explained below: 
% 
% FP:       Vector of False positive rates 
% TP:       Vector of True positive rates 
% Distance: Eucledian Distance from (a,b) to (0,1) at current threshold 
% opt_TP:   Optimum True Positive Rate 
% opt_FP:   Optimum False Positive Rate 
% opt_thr:  Optimum threshold for lowest Eucledian Distance from (a,b) to 

(0,1) 

 

 
function [FP,TP,Distance,opt_TP,opt_FP,opt_thr] = roc2(a, b) 

 
% Initial values declared 

 
          n = 0;            % Initial counter 
          N = length(a);    % Number of samples in class (a) 
         FP = zeros(N-1,1); % Vector of FP rates 
         TP = zeros(N-1,1); % Vector of TP rates 
lower_limit = N;            % Inital lower limit of samples 
   Distance = 1e6;          % Initial Distance set to large value 

 
% Scan the whole range  

 
while lower_limit >= 1 
    n = n + 1; 
    TP(n,1) = sum(a(lower_limit: N))/sum(a);       % Compute TP 
    FP(n,1) = sum(b(lower_limit: N))/sum(b);       % Compute FP 
          lower_limit = lower_limit - 1;           % Increment upper_limit 
temp_Distance = sqrt((TP(n,1)-1)^2+(FP(n,1)-0)^2); % Eucledian Distance 
if temp_Distance < Distance                    % Check for lower distance 
    Distance = temp_Distance;                      % Update Distance 
      opt_TP = TP(n,1);                            % Update Optimum TP rate 
      opt_FP = FP(n,1);                            % Update Optimum FP rate 
     opt_thr = lower_limit/N;                      % Update Optimum 

threshold 
end 
end 
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Listing A3 

Code scripted as a function that computes the RMS of any input signal 

 

function power = rms(x) 

 
power = sqrt(sum(x.^2)/length(x)); 

 

 

 

Listing A4 

Code scripted as a function to compute the energy of any input signal 

 
function ENERGY = energy(signal) 

 
ENERGY = sum(signal.^2); 

 

 

 

Listing A5 

Code scripted as a function to compute the LEF feature of any input signal 

 

% This function splits the input signal into frames 
% and computes the RMS for each frame; 
% the percentage of frames having RMS above the mean RMS is computed. 

 
function LOW_ENERGY_FRAMES = LEF(signal, fs, split) 

 
size = length(signal);            % length of the input signal 

 
sln = floor(split * fs);          % segment length = split second(s) 

 
segments = floor(size/sln);       % Number of segments 

 
RMS = zeros(segments,1);          % Reserve a zero vector 

 
for r = 1 : segments 
        segment = signal((r-1)*sln+1:r*sln); 
       RMS(r,1) = rms(segment); 
end 

 
threshold = 0.5 * mean(RMS); 

 
LOW_ENERGY_FRAMES = length(find(RMS<threshold))/length(RMS)*100; 
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Listing A6 

Code scripted as a function to compute the MLER feature of any input signal 

 

% This function splits the input signal into frames 
% and computes the ENERGY for each frame; 
% the percentage of frames having ENERGY above the mean RMS is computed. 

 
function MODIFIED_LOW_ENERGY_RATIO = MLER(signal, fs, split, delta) 

 
size = length(signal);            % length of the input signal 
sln = floor(split * fs);          % segment length = split second(s) 
segments = floor(size/sln);       % Number of segments 
ENERGY = zeros(segments,1);       % Reserve a zero vector 

 
for r = 1 : segments 
        segment = signal((r-1)*sln+1:r*sln); 
    ENERGY(r,1) = energy(segment); 
end 

 
threshold = delta * mean(ENERGY); 

 
MODIFIED_LOW_ENERGY_RATIO = ... 

length(find(ENERGY<threshold))/length(ENERGY)*100; 

 

 

 

Listing A7 

Code scripted as a function to compute the RSF feature of any input signal 

% This function computes the RSF feature of any input signal 

 
functionRATIO_OF_SILENT_Frames = RSF(signal, fs, split, delta) 

 
         N = length(signal);     % length of the input signal 
       sln = floor(split * fs);  % segment length = split second(s) 
  segments = floor(N/sln);       % Number of segments 
ENERGYxZCR = zeros(segments,1);  % Reserve a zero vector 

 
for r = 1 : segments 
        segment = signal((r-1)*sln+1:r*sln); 
ENERGYxZCR(r,1) = energy(segment)*zcrPT(segment); 

 
end 

 
thresh = delta * mean(ENERGYxZCR); 
RATIO_OF_SILENT_Frames = ... 

length(find(ENERGYxZCR<thresh))/length(ENERGYxZCR)*100; 
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Listing A8 

Code scripted to analyse the application of LEF feature for speech/music discrimination 

 

% The Low Energy Frames (LEF) feature is used to analyze speech and music 
% for comparison. 

 

 
%% Declare constants 
clear all 
            fs = 44100; 
 target_tracks = 3000; 
             r = 1; % accumulated stream of sound 
         split = 20e-3; 
     LEFspeech = []; 
      LEFmusic = []; 

 
 speech_folder = 'C:\DATA\SPEECH\UCL\WORDS\am\amword'; 
  music_folder = 'C:\DATA\MUSIC\pop_music\popmusic'; 

 
speech_counter = 0; 
 music_counter = 0; 

 
%% Obtain LEF for each frame 
analyzed_tracks = 0; 

 
while analyzed_tracks < target_tracks 

 
% Analyze speech signals 

 
duration = 0; 
 speech_ = []; 

 
while duration < r*fs 
if speech_counter >= 1915 
        speech_counter = 0; 
end 
speech_counter  = speech_counter + 1; 
     speech = wavread([speech_folder,num2str(speech_counter)]); 
     speech = speech(:,1); 
    speech_ = [speech_; speech]; 
   duration = length(speech_); 
end 

 
   speech = speech_(1:r*fs); 
   speech = speech-mean(speech); 
   speech = speech/max(abs(speech)); 
LEFspeech = [LEFspeech; LEF(speech, fs, split)]; 
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Listing A8 (Continued ...) 

 

% Analyze pop music signals  

 
duration = 0; 
  music_ = []; 
while duration < r*fs 
if music_counter >= 4094 
        music_counter = 0; 
end 
music_counter  = music_counter + 1; 
     music = wavread([music_folder,num2str(music_counter)]); 
     music = music(:,1); 
    music_ = [music_; music]; 
   duration = length(music_); 
end 

 
   music = music_(1:r*fs); 
   music = music-mean(music); 
   music = music/max(abs(music)); 
LEFmusic = [LEFmusic; LEF(music, fs, split)]; 

 
     A1 = length(LEFspeech); 
     A2 = length(LEFmusic); 

 
analyzed_tracks = min([A1, A2]); 
end 

 
LEFspeech = LEFspeech(1:analyzed_tracks); 
 LEFmusic = LEFmusic(1:analyzed_tracks); 

 
save LEF_results 

 
%% %%%%%%%%%%%%%%%%%%%%%%%%% LEF Distributions  %%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

Bins = 1 : 4 : 100; 

 
[LEFspeechY, LEFspeechX] = rhist(LEFspeech, Bins); 
[LEFmusicY,  LEFmusicX ] = rhist(LEFmusic, Bins); 

 
LEFspeechY = 100 * LEFspeechY; 
 LEFmusicY = 100 * LEFmusicY; 

 
[FP_speech_LEF,TP_speech_LEF,Distance_speech_LEF,optimum_TP_speech_LEF,... 
 optimum_FP_speech_LEF,speech_LEF_threshold] = roc2(LEFspeechY, LEFmusicY); 
[FP_music_LEF,TP_music_LEF,Distance_music_LEF,optimum_TP_music_LEF,... 
    optimum_FP_music_LEF,music_LEF_threshold] = roc(LEFmusicY, LEFspeechY); 
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Listing A8 (Continued ...) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% plot Distributions %%%%%%%%%%%%%%%%%%%%% 

 
figure('color','white'); hold on 
plot(LEFspeechX, LEFspeechY, 'b', 'LineWidth', 3) 
plot(LEFmusicX,  LEFmusicY,  'r', 'LineWidth', 3) 
title('Distribution of the LEF feature') 
xlabel('Percentage of Low Energy Frames (LEF), %') 
ylabel('Percentage of tracks, %') 
legend('Speech', 'Music') 
xlim([0 100]) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Plot ROC Curves %%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
figure('color','white') 
xlim([0 1]), ylim([0 1]) 
plot(FP_speech_LEF, TP_speech_LEF, 'b', FP_music_LEF, TP_music_LEF, 'r',... 
'Linewidth', 3) 
xlabel(['False Positive (FP) Rate']) 
ylabel(['True Positive (TP) Rate']) 
title(['ROC Curves for LEF Feature']) 
legend('Speech detection', 'Music detection') 
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Listing A9 

Code scripted to analyze the application of MLER feature for speech/music discrimination 

 

% The Modified Low Energy Ratio (MLER) feature is used to analyze speech 
% and music for comparison; delta used = 0.1 

 
%% Declare constants 
clear all 
            fs = 44100; 
 target_tracks = 3000; 
             r = 1; % accumulated stream of sound 
         split = 20e-3; 
    MLERspeech = []; 
     MLERmusic = []; 
         delta = 0.1; 

 
 speech_folder = 'C:\DATA\SPEECH\UCL\WORDS\am\amword'; 
  music_folder = 'C:\DATA\MUSIC\pop_music\popmusic'; 

 
speech_counter = 0; 
 music_counter = 0; 

 
%% Obtain MLER for each frame 
analyzed_tracks = 0; 
while analyzed_tracks < target_tracks 

 
 

% Analyze speech signals 
duration = 0; 
 speech_ = []; 
while duration < r*fs 
if speech_counter >= 1915 
        speech_counter = 0; 
end 
speech_counter  = speech_counter + 1; 
     speech = wavread([speech_folder,num2str(speech_counter)]); 
     speech = speech(:,1); 
    speech_ = [speech_; speech]; 
   duration = length(speech_); 
end 
   speech = speech_(1:r*fs); 
   speech = speech-mean(speech); 
   speech = speech/max(abs(speech)); 
MLERspeech = [MLERspeech; MLER(speech, fs, split, delta)]; 
 

  



 

141 

 

Listing A9 (Continued ...) 

% Analyze pop music signals  
 

duration = 0; 
  music_ = []; 
while duration < r*fs 
if music_counter >= 4094 
        music_counter = 0; 
end 

 

music_counter  = music_counter + 1; 
     music = wavread([music_folder,num2str(music_counter)]); 
     music = music(:,1); 
    music_ = [music_; music]; 
   duration = length(music_); 
end 

 
   music = music_(1:r*fs); 
   music = music-mean(music); 
   music = music/max(abs(music)); 
MLERmusic = [MLERmusic; MLER(music, fs, split, delta)]; 

 
     A1 = length(MLERspeech); 
     A2 = length(MLERmusic); 

 
analyzed_tracks = min([A1, A2]); 

 
end 

 
MLERspeech = MLERspeech(1:analyzed_tracks); 
 MLERmusic = MLERmusic(1:analyzed_tracks); 

 
save MLER_results 

 
%% %%%%%%%%%%%%%%%%%%%%%%%%%% MLER Distributions %%%%%%%%%%%%%%%%%%%%%%%%% 
Bins = 1 : 4 : 100; 

 
[MLERspeechY, MLERspeechX] = rhist(MLERspeech, Bins); 
[MLERmusicY,  MLERmusicX ] = rhist(MLERmusic, Bins); 

 
MLERspeechY = 100 * MLERspeechY; 
 MLERmusicY = 100 * MLERmusicY; 

 
[FP_speech_MLER,TP_speech_MLER,Distance_speech_MLER,... 
optimum_TP_speech_MLER,optimum_FP_speech_MLER,speech_MLER_threshold] = ... 
                                             roc2(MLERspeechY, MLERmusicY); 
[FP_music_MLER,TP_music_MLER,Distance_music_MLER,... 
optimum_TP_music_MLER,optimum_FP_music_MLER,music_MLER_threshold] = ... 
                                              roc(MLERmusicY, MLERspeechY); 
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Listing A9 (Continued ...) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Plot Distributions %%%%%%%%%%%%%%%%%%%%%% 
figure('color','white'); hold on 
plot(MLERspeechX, MLERspeechY, 'b', 'LineWidth', 3) 
plot(MLERmusicX,  MLERmusicY,  'r', 'LineWidth', 3) 
title('Distribution of the MLER feature') 
xlabel('Modified Low Energy Ratio (MLER), %') 
ylabel('Percentage of tracks, %') 
legend('Speech', 'Music') 
xlim([0 100]) 

 

%%%%%%%%%%%%%%%%%%%%%%% Plot ROC Curves %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
figure('color','white') 
xlim([0 1]), ylim([0 1]) 
plot(FP_speech_MLER, TP_speech_MLER, 'b', FP_music_MLER, TP_music_MLER, 

'r', 'Linewidth', 3) 
xlabel(['False Positive (FP) Rate']) 
ylabel(['True Positive (TP) Rate']) 
title(['ROC Curves for MLER Feature']) 
legend('Speech detection', 'Music detection') 
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Listing A10 

Code scripted to analyze the application of RSF feature for speech/music discrimination 

% The Ratio of Silent Frames (RSF) feature is used to analyze speech and  
% music for comparison; 

 
%% Declare constants 
            fs = 44100; 
 target_tracks = 3000; 
             r = 1;                           % accumulated stream of sound 
         split = 20e-3; 
    RSFspeech = zeros(target_tracks,1); 
     RSFmusic = zeros(target_tracks,1); 
         delta = 0.1; 

 
 speech_folder = 'C:\DATA\SPEECH\UCL\WORDS\am\amword'; 
  music_folder = 'C:\DATA\MUSIC\pop_music\popmusic'; 

 
speech_counter = 0; 
 music_counter = 0; 

 
%% Obtain RSF for each track 
for track = 1 : target_tracks 
% Analyze speech signals 
duration = 0; 
 speech_ = []; 

 
while duration < r*fs 
if speech_counter >= 1915 
        speech_counter = 0; 
end 
speech_counter  = speech_counter + 1; 
     speech = wavread([speech_folder,num2str(speech_counter)]); 
     speech = speech(:,1); 
    speech_ = [speech_; speech]; 
   duration = length(speech_); 
end 

 
   speech = speech_(1:r*fs); 
   speech = speech-mean(speech); 
   speech = speech/max(abs(speech)); 
RSFspeech(track)= RSF(speech, fs, split, delta); 
 

% Analyze pop music signals  
duration = 0; 
  music_ = []; 

 
while duration < r*fs 
if music_counter >= 4094 
        music_counter = 0; 
end 
music_counter  = music_counter + 1; 
     music = wavread([music_folder,num2str(music_counter)]); 
     music = music(:,1); 
    music_ = [music_; music]; 
   duration = length(music_); 
end 
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Listing A10 (Continued ...) 

 
   music = music_(1:r*fs); 
   music = music-mean(music); 
   music = music/max(abs(music)); 
RSFmusic(track)= RSF(music, fs, split, delta); 

 
end 

 
save RSF_results 

 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RSF %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Bins = 1 : 4 : 100; 

 
[RSFspeechY, RSFspeechX] = rhist(RSFspeech, Bins); 
[RSFmusicY,  RSFmusicX ] = rhist(RSFmusic,  Bins); 

 
RSFspeechY = 100 * RSFspeechY; 
 RSFmusicY = 100 * RSFmusicY; 

 
[FP_speech_RSF,TP_speech_RSF,Distance_speech,... 
    optimum_TP_speech_RSF,optimum_FP_speech_RSF,speech_RSF_threshold] = ... 
                                               roc2(RSFspeechY, RSFmusicY); 
[FP_music_RSF,TP_music_RSF,Distance_music_RSF,... 
       optimum_TP_music_RSF,optimum_FP_music_RSF,music_RSF_threshold] = ... 
                                                roc(RSFmusicY, RSFspeechY); 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% plot distributions %%%%%%%%%%%%%%%%%%%%%%%%%% 
figure('color','white'); hold on 
plot(RSFspeechX, RSFspeechY, 'b', 'LineWidth', 3) 
plot(RSFmusicX,  RSFmusicY,  'r', 'LineWidth', 3) 
title('Distribution of the RSF feature) 
xlabel('Ratio of Silent Frames (RSF), %') 
ylabel('Percentage of tracks, %') 
legend('Speech', 'Music') 
xlim([0 100]) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Plot ROC Curves %%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
figure('color','white') 
xlim([0 1]), ylim([0 1]) 
plot(FP_speech_RSF, TP_speech_RSF, 'b', FP_music_RSF, TP_music_RSF, 'r', 

'Linewidth', 3) 
xlabel(['False Positive (FP) Rate']) 
ylabel(['True Positive (TP) Rate']) 
title(['ROC Curves for RSF Feature using Energy']) 
legend('Speech detection', 'Music detection') 
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Listing A11 

Code scripted as a function to be used for computing the Zero Crossing Rate (ZCR) of any 

input signal 

 

% This function computes the zcr using the definition proposed by: 
% Panagiotakis and Tziritas 

 
function count = zcrPT(x) 

 
signs = abs(sign(x(2:length(x))) - sign(x(1:length(x)-1))); 

 
N = length(x)-1; 

 
count = 0.5 * sum(signs) / N ; 
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Listing A12 

Code scripted as a function to compute the probability of the occurrence of all possible 

events in any given input signal 

% This function computes the probabilities of each of the 9 possible events 
% that could occur in an audio signal. The events are as illustrated below: 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                          % 
%E1) ---x---x--- zero then zero            % 
%                                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%           x                              % 
%E2) ---x------- zero then positive        % 
%                                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                          % 
%E3) ---x------- zero then negative        % 
%           x                              % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%       x                                  % 
%E4) -------x--- positive then zero        % 
%                                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                          % 
%E5) -------x--- negative then zero        % 
%       x                                  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%           x                              % 
%       x                                  % 
%E6) ----------- positive then positive    % 
%                                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                          % 
%E7) ----------- negative then negative    % 
%      x                                   % 
%           x                              % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%       x                                  % 
%E8) ----------- positive then negative    % 
%           x                              % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%           x                              % 
%E9) ----------- negative then positive    % 
%       x                                  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function Probabilities = events_probabilities(signal) 

 
N = length(signal)-1; 
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Listing A12 (Continued ...) 

 
  E1 = 0; % 0 0 
  E2 = 0; % 0 + 
  E3 = 0; % 0 - 
  E4 = 0; % + 0 
  E5 = 0; % - 0 
  E6 = 0; % + + 
  E7 = 0; % - - 
  E8 = 0; % + - 
  E9 = 0; % - + 
E167 = 0; % nzcr count = E1 or E6 or E7 
 E89 = 0; %  zcr count = E8 or E9 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for r = 1 : N 
if signal(r) == 0  & signal(r+1) == 0    % 0 0  
        E1 = E1   + 1; 
      E167 = E167 + 1; 
elseif signal(r) == 0  & signal(r+1) >  0    % 0 + 
        E2 = E2 + 1; 
elseif signal(r) == 0  & signal(r+1) <  0    % 0 - 
        E3 = E3 + 1; 
elseif signal(r) >  0  & signal(r+1) == 0    % + 0 
        E4 = E4 + 1; 
elseif signal(r) <  0  & signal(r+1) == 0    % - 0 
        E5 = E5 + 1; 
elseif signal(r) >  0  & signal(r+1) >  0    % + + 
        E6 = E6   + 1; 
      E167 = E167 + 1; 
elseif signal(r) <  0  & signal(r+1) <  0    % - - 
        E7 = E7   + 1; 
      E167 = E167 + 1; 
elseif signal(r) >  0  & signal(r+1) <  0    % + - 
        E8 = E8   + 1; 
       E89 = E89  + 1; 
elseif signal(r) <  0  & signal(r+1) >  0    % - + 
        E9 = E9   + 1; 
       E89 = E89  + 1; 
end 
end 

 
% Divide by the number of events to compute the probability 

 
Probabilities = [E1, E2, E3, E4, E5, E6, E7, E8, E9, E167, E89]/N; 
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Listing A13 

Code scripted as a function to be used for computing the probability of the occurrence of the 

two types of Non-Zero Crossing Events (NZCE) for any input signal 

 

 

% This function computes the probability of the NZCE for the two types: 
% positive and negative. 

 
function [P_NZCE_pos, P_NZCE_neg] = P_NZCE(input) 

 
N = length(input); 

 
positive = zeros(1,N); 
negative = zeros(1,N); 

 
positive(find(input>0)) = 1; 
negative(find(input<0)) = 1; 

 
count_positive = sum(positive(2:N).*positive(1:N-1)); 
P_NZCE_pos = count_positive/(N-1); 

 
count_negative = sum(negative(2:N).*negative(1:N-1)); 
P_NZCE_neg = count_negative/(N-1); 

 

 

Listing A14 

Code scripted as a function to be used for computing the probability of the occurrence of the 

two types of Non-Zero Crossing Events (NZCE) for any input signal, after splitting the input 

into tracks of certain duration of seconds. 

 

% This function splits the input signal into tracks of "split" seconds 
% each and computes the probability of each event for each track and  
% returns a vector of probabilities ( 9 individuals + 2 sets) 

 
function P = events_probabilities_per_track(signal,fs,split) 

 
      size = length(signal);              % length of the input signal 

 
       sln = floor(split * fs);           % segment length = split seconds 

 
  segments = floor(size/sln);             % Number of segments 

 
         P = zeros(segments,11);          % Reserve a zero vector 

 
for r = 1 : segments 
    segment = signal((r-1)*sln+1:r*sln); 
     P(r,:) = events_probabilities(segment); 
end 
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Listing A15 

Code scripted to obtain the distribution of the probability of the occurrence of the 9 types of 

Events for 3000 sound tracks of 3 seconds duration each. 

% Probability of 9 different events and 2 categories; the stream being 
% split into tracks. Histogram of 3000 frames to show validity of method 

 
%% Declare constants and empty matrices 
clear all 
             fs = 44100; % Sampling Frequency 
              r = 60;    % Accumulate 60 seconds 
  target_tracks = 3000;  % Target number of tracks to be analyzed 
analyzed_tracks = 0;     % Analyzed number of tracks 
          split = 3;     % Each r seconds are split into split seconds 

 
Events_speech = [];  % Empty matrix to hold probabilities of events for 

speech 
   Events_pop = [];  % Empty matrix to hold probabilities of events for 

music    

 
speech_folder = 'C:\DATA\SPEECH\UCL\WORDS\am\amword'; % Folder containing 

speech data 
   pop_folder = 'C:\DATA\MUSIC\pop_music\popmusic';   % Folder containing 

music data 

 
speech_counter = 0;     % Initialize Speech Files Counter 
   pop_counter = 0;     % Initialize Music Files Counter 

 
%% Compute probabilities of events for each type of audio 

 
while analyzed_tracks < target_tracks  % Repeat analysis until 

target_tracks reached 

 
% Analyze speech signals 

 
duration = 0; 
 speech_ = []; 

 
while duration < r*fs 
if speech_counter >= 1915 
        speech_counter = 0; 
end 
speech_counter  = speech_counter + 1; 
     speech = wavread([speech_folder,num2str(speech_counter)]); 
     speech = speech(:,1); 
     speech = remove_silent_frames(speech, fs, 500e-3, 0.1); 
    speech_ = [speech_; speech]; 
   duration = length(speech_); 
end 

 
   speech = speech_(1:r*fs); 
   speech = speech-mean(speech); 
   speech = speech/max(abs(speech)); 
Ps_speech = events_probabilities_per_track(speech,fs,split); 

  



 

150 

 

Listing A15 (Continued ...) 

 
% Analyze pop music signals 

 
duration = 0; 
    pop_ = []; 
while duration < r*fs 
if pop_counter == 4094 
        pop_counter = 0; 
end 
pop_counter = pop_counter + 1; 
    pop = wavread([pop_folder,num2str(pop_counter)]);  
    pop = pop(:,1); 
    pop = remove_silent_frames(pop, fs, 500e-3, 0.1); 
   pop_ = [pop_; pop]; 
 duration = length(pop_); 
end 
    pop = pop_(1:fix(r*fs)); 
    pop = pop-mean(pop); 
    pop = pop/max(abs(pop)); 
 Ps_pop = events_probabilities_per_track(pop,fs,split); 

 
% Store each type of audio signal in its matrix 

 
  Events_speech = [Events_speech; Ps_speech]; 
     Events_pop = [Events_pop;       Ps_pop]; 

 
% Compute the number of tracks analyzed so far for each type of audio 

 
[Rows1,Columns1] = size(Events_speech); 
[Rows2,Columns2] = size(Events_pop); 

 
analyzed_tracks = min([Rows1, Rows2]); 

 
[num2str(analyzed_tracks),' tracks completed .. '] 

 
end 

 
Events_speech = Events_speech(1:target_tracks,:); 
   Events_pop = Events_pop(1:target_tracks,:); 

 
save speech_pop 
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Listing A15 (Continued ...) 

%% -------------------- plot P(NZCE) (event + +) -------------------- 

 
Bins = 0:0.0125:1; % Bins used for histograms 

 
event = 6; 

 
[Events_speech_Y, Events_speech_X] = rhist(Events_speech(:,event), Bins); 
[Events_pop_Y,       Events_pop_X] = rhist(Events_pop(:,event),    Bins); 

 
Events_speech_Y = 100 * Events_speech_Y; 
   Events_pop_Y = 100 * Events_pop_Y; 

 
figure('color','white'), hold on 

 
plot(Events_speech_X, Events_speech_Y,  'b', 'LineWidth', 3) 
plot(Events_pop_X,    Events_pop_Y,     'r', 'LineWidth', 3) 
legend('Speech', 'Pop Music') 

 
xlim([0 1]) 
xlabel('Probability of Event') 
ylabel('Percentage of tracks, %') 
title(['P(NZCE_+ _+); ' ,num2str(target_tracks),' tracks; ', ... 
                                        num2str(split), ' seconds each']); 

 
% Detect speech in a speech/music database 

 
[FP_speech_6,TP_speech_6,Distance_speech_6, ... 
                    opt_TP_speech_6,opt_FP_speech_6,opt_thr_speech_6] = ... 
                                        roc(Events_speech_Y, Events_pop_Y); 

 
figure('color','white'), hold on 
plot(FP_speech_6,TP_speech_6, 'b', 'LineWidth', 3) 

 
text(0.5, 0.5,'speech') 
text(0.05,0.4,'Optimum TP rate') 
text(0.5, 0.4,num2str(opt_TP_speech_6)) 
text(0.05,0.3,'Optimum FP rate') 
text(0.5, 0.3,num2str(opt_FP_speech_6)) 
text(0.05,0.2,'Optimum Threshold') 
text(0.5, 0.2,num2str(opt_thr_speech_6)) 
text(0.05,0.1,'Area Under Curve') 
text(0.5, 0.1,num2str(trapz(FP_speech_6,TP_speech_6))) 

 
% Detect music in a speech/music database 

 
[FP_music_6,TP_music_6,Distance_music_6, ... 
                    opt_TP_music_6,opt_FP_music_6,opt_thr_music_6] = ... 
                                       roc2(Events_pop_Y, Events_speech_Y); 
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Listing A15 (Continued ...) 

 
plot(FP_music_6,TP_music_6, 'r', 'LineWidth', 3) 
title('ROC Curves Using P(NZCE_+ _+)') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend('Speech','Pop Music') 

 
text(0.8,0.5,'Music') 
text(0.8,0.4, num2str(opt_TP_music_6)) 
text(0.8,0.3, num2str(opt_FP_music_6)) 
text(0.8,0.2, num2str(opt_thr_music_6)) 
text(0.8,0.1, num2str(trapz(FP_music_6,TP_music_6))) 

 
axis([-0.01 1 0 1.01]) 

 
%% -------------------- plot P(NZCE) (event - -) -------------------- 

 
event = 7; 

 
[Events_speech_Y, Events_speech_X] = rhist(Events_speech(:,event), Bins); 
[Events_pop_Y,       Events_pop_X] = rhist(Events_pop(:,event),    Bins); 

 
Events_speech_Y = 100 * Events_speech_Y; 
   Events_pop_Y = 100 * Events_pop_Y; 

 
figure('color','white'), hold on 

 
plot(Events_speech_X, Events_speech_Y,  'b', 'LineWidth', 3) 
plot(Events_pop_X,    Events_pop_Y,     'r', 'LineWidth', 3) 
legend('Speech', 'Pop Music') 

 
xlim([0 1]) 
xlabel('Probability of Event') 
ylabel('Percentage of tracks, %') 
title(['P(NZCE_- _-); ' ,num2str(target_tracks),' tracks; ', ... 
                                        num2str(split), ' seconds each']); 

 
% Detect speech in a speech/music database 

 
[FP_speech_7,TP_speech_7,Distance_speech_7, ... 
                    opt_TP_speech_7,opt_FP_speech_7,opt_thr_speech_7] = ... 
                                       roc2(Events_speech_Y, Events_pop_Y); 

 
figure('color','white'), hold on 
plot(FP_speech_7,TP_speech_7, 'b', 'LineWidth', 3) 

  



 

153 

 

Listing A15 (Continued ...) 

text(0.5, 0.5,'speech') 
text(0.05,0.4,'Optimum TP rate') 
text(0.5, 0.4,num2str(opt_TP_speech_7)) 
text(0.05,0.3,'Optimum FP rate') 
text(0.5, 0.3,num2str(opt_FP_speech_7)) 
text(0.05,0.2,'Optimum Threshold') 
text(0.5, 0.2,num2str(opt_thr_speech_7)) 
text(0.05,0.1,'Area Under Curve') 
text(0.5, 0.1,num2str(trapz(FP_speech_7,TP_speech_7))) 

 
% Detect music in a speech/music database 
[FP_music_7,TP_music_7,Distance_music_7, ... 
                    opt_TP_music_7,opt_FP_music_7,opt_thr_music_7] = ... 
                                        roc(Events_pop_Y, Events_speech_Y); 

 
plot(FP_music_7,TP_music_7, 'r', 'LineWidth', 3) 
title('ROC Curves Using P(NZCE_- _-)') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend('Speech','Pop Music') 

 
text(0.8,0.5,'Music') 
text(0.8,0.4, num2str(opt_TP_music_7)) 
text(0.8,0.3, num2str(opt_FP_music_7)) 
text(0.8,0.2, num2str(opt_thr_music_7)) 
text(0.8,0.1, num2str(trapz(FP_music_7,TP_music_7))) 

 
axis([-0.01 1 0 1.01]) 

 
%% -------------------- plot P(ZCE) (event + -) -------------------- 

 
Bins = 0:0.00125:1; % Bins used for histograms 

 
event = 8; 

 
[Events_speech_Y, Events_speech_X] = rhist(Events_speech(:,event), Bins); 
[Events_pop_Y,       Events_pop_X] = rhist(Events_pop(:,event),    Bins); 

 
Events_speech_Y = 100 * Events_speech_Y; 
   Events_pop_Y = 100 * Events_pop_Y; 

 
figure('color','white'), hold on 

 
plot(Events_speech_X, Events_speech_Y,  'b', 'LineWidth', 3) 
plot(Events_pop_X,    Events_pop_Y,     'r', 'LineWidth', 3) 
legend('Speech', 'Pop Music') 

 
xlim([0 0.2]) 
xlabel('Probability of Event') 
ylabel('Percentage of tracks, %') 
title(['P(ZCE_+ _-); ' ,num2str(target_tracks),' tracks; ', ... 
                                        num2str(split), ' seconds each']); 
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Listing A15 (Continued ...) 

 
% Detect speech in a speech/music database 

 
[FP_speech_8,TP_speech_8,Distance_speech_8, ... 
                    opt_TP_speech_8,opt_FP_speech_8,opt_thr_speech_8] = ... 
                                        roc(Events_speech_Y, Events_pop_Y); 

 
figure('color','white'), hold on 
plot(FP_speech_8,TP_speech_8, 'b', 'LineWidth', 3) 

 
text(0.5, 0.5,'speech') 
text(0.05,0.4,'Optimum TP rate') 
text(0.5, 0.4,num2str(opt_TP_speech_8)) 
text(0.05,0.3,'Optimum FP rate') 
text(0.5, 0.3,num2str(opt_FP_speech_8)) 
text(0.05,0.2,'Optimum Threshold') 
text(0.5, 0.2,num2str(opt_thr_speech_8)) 
text(0.05,0.1,'Area Under Curve') 
text(0.5, 0.1,num2str(trapz(FP_speech_8,TP_speech_8))) 

 
% Detect music in a speech/music database 

 
[FP_music_8,TP_music_8,Distance_music_8, ... 
                    opt_TP_music_8,opt_FP_music_8,opt_thr_music_8] = ... 
                                       roc2(Events_pop_Y, Events_speech_Y); 

 
plot(FP_music_8,TP_music_8, 'r', 'LineWidth', 3) 
title('ROC Curves Using P(ZCE_+ _-)') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend('Speech','Pop Music') 

 
text(0.8,0.5,'Music') 
text(0.8,0.4, num2str(opt_TP_music_8)) 
text(0.8,0.3, num2str(opt_FP_music_8)) 
text(0.8,0.2, num2str(opt_thr_music_8)) 
text(0.8,0.1, num2str(trapz(FP_music_8,TP_music_8))) 

 
axis([-0.01 1 0 1.01]) 

 
%% -------------------- plot P(ZCE) (event - +) -------------------- 

 
event = 9; 

 
[Events_speech_Y, Events_speech_X] = rhist(Events_speech(:,event), Bins); 
[Events_pop_Y,       Events_pop_X] = rhist(Events_pop(:,event),    Bins); 

 
Events_speech_Y = 100 * Events_speech_Y; 
   Events_pop_Y = 100 * Events_pop_Y; 
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Listing A15 (Continued ...) 

figure('color','white'), hold on 

 
plot(Events_speech_X, Events_speech_Y,  'b', 'LineWidth', 3) 
plot(Events_pop_X,    Events_pop_Y,     'r', 'LineWidth', 3) 
legend('Speech', 'Pop Music') 

 
xlim([0 0.2]) 
xlabel('Probability of Event') 
ylabel('Percentage of tracks, %') 
title(['P(ZCE_- _+); ' ,num2str(target_tracks),' tracks; ', ... 
                                        num2str(split), ' seconds each']); 

 
% Detect speech in a speech/music database 

 
[FP_speech_9,TP_speech_9,Distance_speech_9, ... 
                    opt_TP_speech_9,opt_FP_speech_9,opt_thr_speech_9] = ... 
                                        roc(Events_speech_Y, Events_pop_Y); 

 
figure('color','white'), hold on 
plot(FP_speech_9,TP_speech_9, 'b', 'LineWidth', 3) 

 
text(0.5, 0.5,'speech') 
text(0.05,0.4,'Optimum TP rate') 
text(0.5, 0.4,num2str(opt_TP_speech_9)) 
text(0.05,0.3,'Optimum FP rate') 
text(0.5, 0.3,num2str(opt_FP_speech_9)) 
text(0.05,0.2,'Optimum Threshold') 
text(0.5, 0.2,num2str(opt_thr_speech_9)) 
text(0.05,0.1,'Area Under Curve') 
text(0.5, 0.1,num2str(trapz(FP_speech_9,TP_speech_9))) 

 
% Detect music in a speech/music database 

 
[FP_music_9,TP_music_9,Distance_music_9, ... 
                    opt_TP_music_9,opt_FP_music_9,opt_thr_music_9] = ... 
                                       roc2(Events_pop_Y, Events_speech_Y); 

 
plot(FP_music_9,TP_music_9, 'r', 'LineWidth', 3) 
title('ROC Curves Using P(ZCE_- _+)') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend('Speech','Pop Music') 

 
text(0.8,0.5,'Music') 
text(0.8,0.4, num2str(opt_TP_music_9)) 
text(0.8,0.3, num2str(opt_FP_music_9)) 
text(0.8,0.2, num2str(opt_thr_music_9)) 
text(0.8,0.1, num2str(trapz(FP_music_9,TP_music_9))) 

 
axis([-0.01 1 0 1.01]) 
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Listing A15 (Continued ...) 

%% ----------------- plot NZCE set (0 0 or + + or - -) ----------------- 

 
event = 10; 

 
[Events_speech_Y, Events_speech_X] = rhist(Events_speech(:,event), Bins); 
[Events_pop_Y,       Events_pop_X] = rhist(Events_pop(:,event),    Bins); 

 
Events_speech_Y = 100 * Events_speech_Y; 
   Events_pop_Y = 100 * Events_pop_Y; 

 
figure('color','white'), hold on 

 
plot(Events_speech_X, Events_speech_Y,  'b', 'LineWidth', 3) 
plot(Events_pop_X,    Events_pop_Y,     'r', 'LineWidth', 3) 
legend('Speech', 'Pop Music') 

 
xlim([0.7 1]) 
xlabel('Probability of Event') 
ylabel('Percentage of tracks, %') 
title(['P(NZCE set); ' ,num2str(target_tracks),' tracks; ', ... 
                                        num2str(split), ' seconds each']); 

 
% Detect speech in a speech/music database 

 
[FP_speech_10,TP_speech_10,Distance_speech_10, ... 
                 opt_TP_speech_10,opt_FP_speech_10,opt_thr_speech_10] = ... 
                                       roc2(Events_speech_Y, Events_pop_Y); 

 
figure('color','white'), hold on 
plot(FP_speech_10,TP_speech_10, 'b', 'LineWidth', 3) 

 
text(0.5, 0.5,'speech') 
text(0.05,0.4,'Optimum TP rate') 
text(0.5, 0.4,num2str(opt_TP_speech_10)) 
text(0.05,0.3,'Optimum FP rate') 
text(0.5, 0.3,num2str(opt_FP_speech_10)) 
text(0.05,0.2,'Optimum Threshold') 
text(0.5, 0.2,num2str(opt_thr_speech_10)) 
text(0.05,0.1,'Area Under Curve') 
text(0.5, 0.1,num2str(trapz(FP_speech_10,TP_speech_10))) 

 
% Detect music in a speech/music database 

 
[FP_music_10,TP_music_10,Distance_music_10, ... 
                    opt_TP_music_10,opt_FP_music_10,opt_thr_music_10] = ... 
                                        roc(Events_pop_Y, Events_speech_Y); 

 
plot(FP_music_10,TP_music_10, 'r', 'LineWidth', 3) 
title('ROC Curves Using P(NZCE set)') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend('Speech','Pop Music') 
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Listing A15 (Continued ...) 

 
text(0.8,0.5,'Music') 
text(0.8,0.4, num2str(opt_TP_music_10)) 
text(0.8,0.3, num2str(opt_FP_music_10)) 
text(0.8,0.2, num2str(opt_thr_music_10)) 
text(0.8,0.1, num2str(trapz(FP_music_10,TP_music_10))) 

 
axis([-0.01 1 0 1.01]) 

 
%% -------------------- plot ZCE set (+ - or - +) -------------------- 

 
event = 11; 

 
[Events_speech_Y, Events_speech_X] = rhist(Events_speech(:,event), Bins); 
[Events_pop_Y,       Events_pop_X] = rhist(Events_pop(:,event),    Bins); 

 
Events_speech_Y = 100 * Events_speech_Y; 
   Events_pop_Y = 100 * Events_pop_Y; 

 
figure('color','white'), hold on 

 
plot(Events_speech_X, Events_speech_Y,  'b', 'LineWidth', 3) 
plot(Events_pop_X,    Events_pop_Y,     'r', 'LineWidth', 3) 
legend('Speech', 'Pop Music') 

 
xlim([0 0.3]) 
xlabel('Probability of Event') 
ylabel('Percentage of tracks, %') 
title(['P(ZCE set); ' ,num2str(target_tracks),' tracks; ', ... 
                                        num2str(split), ' seconds each']); 

 
% Detect speech in a speech/music database 

 
[FP_speech_11,TP_speech_11,Distance_speech_11, ... 
                 opt_TP_speech_11,opt_FP_speech_11,opt_thr_speech_11] = ... 
                                        roc(Events_speech_Y, Events_pop_Y); 

 
figure('color','white'), hold on 
plot(FP_speech_11,TP_speech_11, 'b', 'LineWidth', 3) 

 
text(0.5, 0.5,'speech') 
text(0.05,0.4,'Optimum TP rate') 
text(0.5, 0.4,num2str(opt_TP_speech_11)) 
text(0.05,0.3,'Optimum FP rate') 
text(0.5, 0.3,num2str(opt_FP_speech_11)) 
text(0.05,0.2,'Optimum Threshold') 
text(0.5, 0.2,num2str(opt_thr_speech_11)) 
text(0.05,0.1,'Area Under Curve') 
text(0.5, 0.1,num2str(trapz(FP_speech_11,TP_speech_11))) 
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Listing A15 (Continued ...) 

% Detect music in a speech/music database 
 

[FP_music_11,TP_music_11,Distance_music_11, ... 
                    opt_TP_music_11,opt_FP_music_11,opt_thr_music_11] = ... 
                                       roc2(Events_pop_Y, Events_speech_Y); 
plot(FP_music_11,TP_music_11, 'r', 'LineWidth', 3) 
title('ROC Curves Using P(ZCE set)') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend('Speech','Pop Music') 
text(0.8,0.5,'Music') 
text(0.8,0.4, num2str(opt_TP_music_11)) 
text(0.8,0.3, num2str(opt_FP_music_11)) 
text(0.8,0.2, num2str(opt_thr_music_11)) 
text(0.8,0.1, num2str(trapz(FP_music_11,TP_music_11))) 
axis([-0.01 1 0 1.01]) 

 
%% -------------------- Compare all ROC curves -------------------- 
figure('color','white'), hold on 
plot(FP_speech_6, TP_speech_6,  'b', 'LineWidth', 3) 
plot(FP_speech_7, TP_speech_7,  'r', 'LineWidth', 3) 
plot(FP_speech_8, TP_speech_8,  'k', 'LineWidth', 3) 
plot(FP_speech_9, TP_speech_9,  'k', 'LineWidth', 3) 
plot(FP_speech_10,TP_speech_10, 'k', 'LineWidth', 3) 
plot(FP_speech_11,TP_speech_11, 'k', 'LineWidth', 3) 
title('ROC Curves for Speech Detection') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend('P(NZCE_+ _+)','P(NZCE_- _-)',... 
'P(ZCE_+ _-)','P(ZCE_- _+)',... 
'P(NZCE set)','P(ZCE set)') 
axis([-0.01 1 0 1.01]) 

 
%% -------------------- Summary of parameters -------------------- 

 
'Speech detection' 
[opt_TP_speech_6, opt_FP_music_6, opt_thr_speech_6, Distance_speech_6, 

trapz(FP_speech_6, TP_speech_6 ) 
 opt_TP_speech_7, opt_FP_music_7, opt_thr_speech_7, Distance_speech_7, 

trapz(FP_speech_7, TP_speech_7 ) 
 opt_TP_speech_8, opt_FP_music_8, opt_thr_speech_8, Distance_speech_8, 

trapz(FP_speech_8, TP_speech_8 ) 
 opt_TP_speech_9, opt_FP_music_9, opt_thr_speech_9, Distance_speech_9, 

trapz(FP_speech_9, TP_speech_9 ) 
opt_TP_speech_10,opt_FP_music_10,opt_thr_speech_10,Distance_speech_10,trapz

(FP_speech_10,TP_speech_10) 
opt_TP_speech_11,opt_FP_music_11,opt_thr_speech_11,Distance_speech_11,trapz

(FP_speech_11,TP_speech_11)] 

 
'Music detection' 
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Listing A15 (Continued ...) 

 [opt_TP_music_6, opt_FP_music_6, opt_thr_music_6, Distance_music_6, 

trapz(FP_music_6, TP_music_6 ) 
 opt_TP_music_7, opt_FP_music_7, opt_thr_music_7, Distance_music_7, 

trapz(FP_music_7, TP_music_7 ) 
 opt_TP_music_8, opt_FP_music_8, opt_thr_music_8, Distance_music_8, 

trapz(FP_music_8, TP_music_8 ) 
 opt_TP_music_9, opt_FP_music_9, opt_thr_music_9, Distance_music_9, 

trapz(FP_music_9, TP_music_9 ) 
 

opt_TP_music_10,opt_FP_music_10,opt_thr_music_10,Distance_music_10,trapz(FP

_music_10,TP_music_10) 
 

opt_TP_music_11,opt_FP_music_11,opt_thr_music_11,Distance_music_11,trapz(FP

_music_11,TP_music_11)] 

 
%% -------------------- Pairs of features -------------------- 

 
figure('color','white'), hold on 
plot(Events_speech(:,6), Events_speech(:,7), 'b.', 'LineWidth', 3) 
plot(Events_pop(:,6),    Events_pop(:,7),    'r.', 'LineWidth', 3) 
legend('Speech', 'Pop Music') 
xlabel('P(NZCE_+ _+)') 
ylabel('P(NZCE_- _-)') 
title(['P(NZCE_- _-) against P(NZCE_+ _+) for ' , ... 
     num2str(target_tracks),' tracks; ', num2str(split), ' seconds each']); 
axis([0.2 1 0 0.8]) 

 
figure('color','white'), hold on 
plot(Events_speech(:,6), Events_speech(:,8), 'b.', 'LineWidth', 3) 
plot(Events_pop(:,6),    Events_pop(:,8),    'r.', 'LineWidth', 3) 
legend('Speech', 'Pop Music') 
xlabel('P(NZCE_+ _+)') 
ylabel('P(ZCE_+ _-)') 
title(['P(ZCE_+ _-) against P(NZCE_+ _+) for ' , ... 
     num2str(target_tracks),' tracks; ', num2str(split), ' seconds each']); 
axis([0 1 0 0.2]) 

 

 
figure('color','white'), hold on 

 
plot(Events_speech(:,7), Events_speech(:,8), 'b.', 'LineWidth', 3) 
plot(Events_pop(:,7),    Events_pop(:,8),    'r.', 'LineWidth', 3) 
legend('Speech', 'Pop Music') 
xlabel('P(NZCE_- _-)') 
ylabel('P(ZCE_+ _-)') 
title(['P(ZCE_+ _-) againts P(NZCE_- _-) for ' , ... 
     num2str(target_tracks),' tracks; ', num2str(split), ' seconds each']); 
axis([0 1 0 0.2]) 
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Listing A16 

Code scripted as a function to be used for computing the probability of the variation in 

positive and negative NZCE, known as NZCE 

 

% This function computes the probability of the variation in NZCE between 
% positive and negative types of NZCE. 

 
function Probability = delta_P_NZCE(input) 

 
N = length(input); 

 
positive = zeros(1,N); 
negative = zeros(1,N); 

 
positive(find(input>0)) = 1; 
negative(find(input<0)) = 1; 

 
count_positive = sum(positive(2:N).*positive(1:N-1)); 
count_negative = sum(negative(2:N).*negative(1:N-1)); 

 
Probability = abs(count_positive-count_negative)/(N-1); 

 

 

 

Listing A17 

Code scripted for computing the probability of the variation in positive and negative NZCE, 

known as NZCE, for each track when splitting a stream of audio into short tracks, e.g. 3 

seconds each 

 

% This function splits the input signal into tracks of "split" seconds each 
% and computes the probability of delta NZCE to occur in each track. 

 
function Probability = delta_nzce_per_track(signal, fs, split) 

 
       size = length(signal);              % length of the input signal 

 
        sln = floor(split * fs);           % segment length = split seconds 

 
   segments = floor(size/sln);             % Number of segments 

 
Probability = zeros(segments,1);            % Reserve a zero vector 

 
for r = 1 : segments 
    segment = signal((r-1)*sln+1:r*sln); 
Probability(r,1) = delta_P_NZCE(segment); 
end 
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Listing A18 

Code scripted for examining the effect of varying the track length on  the probability of the 

positive and negative NZCE 
 

% Analysis of the effect of changing the track length on the NZCE++/NZCE-- 

 
%% Declare constants and empty matrices 
clear all 
             fs = 44100; % Sampling Frequency 
              r = 60;    % Accumulate 60 seconds 
  target_tracks = 3000;  % Target number of tracks to be analyzed 

 
range = [0.25, 0.5, 0.75, 1.0, 1.25, 2.5, 5.0, 10]; %range of track lengths 

 
  Pos_PNZCE_speech_track = []; 
     Pos_PNZCE_pop_track = []; 
  Neg_PNZCE_speech_track = []; 
     Neg_PNZCE_pop_track = []; 

 
speech_folder='C:\DATA\SPEECH\UCL\WORDS\am\amword'; %Folder containing 

speech 
   pop_folder='C:\DATA\MUSIC\pop_music\popmusic';   %Folder containing 

music 

 
speech_counter = 0;     % Initialize Speech Files Counter 
   pop_counter = 0;     % Initialize Music Files Counter 

 
%% Compute probabilities of events for each type of audio 

 
for track_length = 1 : length(range);     
Pos_PNZCE_speech = []; 
Neg_PNZCE_speech = []; 
   Pos_PNZCE_pop = []; 
   Neg_PNZCE_pop = []; 

 
split = range(track_length); 

 
analyzed_tracks = 0;                   % Analyzed number of tracks 

 
while analyzed_tracks < target_tracks  % Repeat analysis until 

target_tracks 

 
% Analyze speech signals 

 
duration = 0; 
 speech_ = []; 

 
while duration < r*fs 
if speech_counter >= 1915 
        speech_counter = 0; 
end 
speech_counter  = speech_counter + 1; 
speech = 

wavread([speech_folder,num2str(speech_counter)]);speech=speech(:,1); 
    speech_ = [speech_; speech]; duration = length(speech_); 
end 
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Listing A18 (Continued ...) 

   speech = speech_(1:r*fs); 
   speech = speech-mean(speech); speech = speech/max(abs(speech)); 

 
[PNZCE_pos_speech, PNZCE_neg_speech] = pnzce_per_track(speech,fs,split); 

 
% Analyze pop music signals 

 
duration = 0; 
    pop_ = []; 
while duration < r*fs 
if pop_counter == 4094 
        pop_counter = 0; 
end 
pop_counter = pop_counter + 1; 
    pop = wavread([pop_folder,num2str(pop_counter)]);  
    pop = pop(:,1); 
   pop_ = [pop_; pop]; 
 duration = length(pop_); 
end 
    pop = pop_(1:fix(r*fs)); pop = pop-mean(pop); pop = pop/max(abs(pop)); 

 
[PNZCE_pos_pop, PNZCE_neg_pop] = pnzce_per_track(pop,fs,split); 

 
% Store each type of audio signal in its matrix 

 
  Pos_PNZCE_speech = [Pos_PNZCE_speech; PNZCE_pos_speech]; 
  Neg_PNZCE_speech = [Neg_PNZCE_speech; PNZCE_neg_speech]; 
     Pos_PNZCE_pop = [Pos_PNZCE_pop;    PNZCE_pos_pop]; 
     Neg_PNZCE_pop = [Neg_PNZCE_pop;    PNZCE_neg_pop]; 

 
% Compute the number of tracks analyzed so far for each type of audio 

 
[Rows1,Columns1] = size(Pos_PNZCE_speech); 
[Rows2,Columns2] = size(Pos_PNZCE_pop); 
 analyzed_tracks = min([Rows1, Rows2]); 

 
[num2str(analyzed_tracks),' tracks completed .. each of length = ', ... 
                                                num2str(split), ' seconds'] 
end 

 
% Update the main matrix holding results of all tracks 

 
Pos_PNZCE_speech_track = [Pos_PNZCE_speech_track; ... 
                                      Pos_PNZCE_speech(1:target_tracks)']; 
   Pos_PNZCE_pop_track = [Pos_PNZCE_pop_track; ... 
                                      Pos_PNZCE_pop(1:target_tracks)'   ]; 
Neg_PNZCE_speech_track = [Neg_PNZCE_speech_track; ... 
                                      Neg_PNZCE_speech(1:target_tracks)']; 
   Neg_PNZCE_pop_track = [Neg_PNZCE_pop_track; ... 
                                      Neg_PNZCE_pop(1:target_tracks)'   ]; 
end 

 
save speech_pop_track_length 
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Listing A18 (Continued ...) 

%% -------------------- plot P(NZCE) (event + +) -------------------- 
 

Bins = 0:0.0125:1; % Bins used for histograms 

 
  opt_TP_speech_track = []; 
  opt_FP_speech_track = []; 
 opt_thr_speech_track = []; 
Distance_speech_track = []; 
ROC_area_speech_track = []; 

 
  opt_TP_music_track = []; 
  opt_FP_music_track = []; 
 opt_thr_music_track = []; 
Distance_music_track = []; 
ROC_area_music_track = []; 

 
figure('color','white'), hold on 
figure('color','white'), hold on 

 
for track_length = 1 : length(range); 

 
split = range(track_length); 

 
[NZCE_speech_Y, NZCE_speech_X] = 

rhist(Pos_PNZCE_speech_track(track_length,:)', Bins); 
[NZCE_pop_Y,    NZCE_pop_X   ] = 

rhist(Pos_PNZCE_pop_track(track_length,:)',    Bins); 

 
NZCE_speech_Y = 100 * NZCE_speech_Y; 
   NZCE_pop_Y = 100 * NZCE_pop_Y; 

 
figure('color','white'), hold on 
plot(NZCE_speech_X, NZCE_speech_Y,  'b', 'LineWidth', 3) 
plot(NZCE_pop_X,    NZCE_pop_Y,     'r', 'LineWidth', 3) 
legend('Speech', 'Pop Music') 
xlim([0 1]) 
xlabel('P(NZCE_+ _+)') 
ylabel('Percentage of tracks, %') 
title(['P(NZCE_+ _+); ' ,num2str(target_tracks),' tracks; ', ... 
                                         num2str(split), ' seconds each']); 

 
% Detect speech in a speech/music database 

 
[FP_speech,TP_speech,Distance_speech,opt_TP_speech,opt_FP_speech,... 
                          opt_thr_speech] = roc(NZCE_speech_Y, NZCE_pop_Y); 
  opt_TP_speech_track = [opt_TP_speech_track;  opt_TP_speech]; 
  opt_FP_speech_track = [opt_FP_speech_track;  opt_FP_speech]; 
 opt_thr_speech_track = [opt_thr_speech_track; opt_thr_speech]; 
Distance_speech_track = [Distance_speech_track;Distance_speech]; 
ROC_area_speech_track = [ROC_area_speech_track;trapz(FP_speech,TP_speech)]; 

 
figure(1), plot(FP_speech,TP_speech, 'b', 'LineWidth', 3) 
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Listing A18 (Continued ...) 

% Detect music in a speech/music database 

 
[FP_music,TP_music,Distance_music,opt_TP_music,opt_FP_music,... 
                          opt_thr_music] = roc2(NZCE_pop_Y, NZCE_speech_Y); 

 
  opt_TP_music_track = [opt_TP_music_track;   opt_TP_music]; 
  opt_FP_music_track = [opt_FP_music_track;   opt_FP_music]; 
 opt_thr_music_track = [opt_thr_music_track;  opt_thr_music]; 
Distance_music_track = [Distance_music_track; Distance_music]; 
ROC_area_music_track = [ROC_area_music_track; trapz(FP_music,TP_music)]; 

 
figure(2), plot(FP_music,TP_music, 'r', 'LineWidth', 3) 

 
end 

 
figure(1) 
title('ROC Curves Using P(NZCE_+ _+) to detect speech') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend('0.25 second','0.5 second', '0.75 second', '1 second', ... 
'1.25 second', '2.5 second', '5 second', '10 second') 

 
axis([-0.01 1 0 1.01]) 

 
figure(2) 
title('ROC Curves Using P(NZCE_+ _+) to detect music') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend('0.25 second','0.5 second', '0.75 second', '1 second', ... 
'1.25 second', '2.5 second', '5 second', '10 second') 

 
axis([-0.01 1 0 1.01]) 

 
figure('color','white'), grid, hold on 
plot(range, opt_TP_speech_track, 'b.-', 'LineWidth', 3) 
plot(range, opt_TP_music_track,  'r.-', 'LineWidth', 3) 
plot(range, opt_FP_speech_track, 'b--', 'LineWidth', 3) 
plot(range, opt_FP_music_track,  'r--', 'LineWidth', 3) 
title('Effect of Increasing Track Length on TP/FP rates for P(NZCE_+ _+)') 
xlabel('Track Length, seconds') 
ylabel('TP/FP Rates') 
legend('Speech TP Rate', 'Music TP Rate', ... 
'Speech FP Rate', 'Music FP Rate') 

 
figure('color','white'), grid, hold on 
plot(range, Distance_speech_track, 'b', 'LineWidth', 3) 
plot(range, Distance_music_track,  'r', 'LineWidth', 3) 
title('Effect of Track Length on Euclidian Distance for P(NZCE_+ _+)') 
xlabel('Track Length, seconds') 
ylabel('Euclidian Distance') 
legend('Speech', 'Music') 
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Listing A18 (Continued ...) 

%% -------------------- plot P(NZCE) (event - -) -------------------- 

 
Bins = 0:0.0125:1; % Bins used for histograms 

 
  opt_TP_speech_track = []; 
  opt_FP_speech_track = []; 
 opt_thr_speech_track = []; 
Distance_speech_track = []; 
ROC_area_speech_track = []; 

 
  opt_TP_music_track = []; 
  opt_FP_music_track = []; 
 opt_thr_music_track = []; 
Distance_music_track = []; 
ROC_area_music_track = []; 

 
figure('color','white'), hold on 
figure('color','white'), hold on 

 
for track_length = 1 : length(range); 

 
split = range(track_length); 

 
[NZCE_speech_Y, NZCE_speech_X] = 

rhist(Neg_PNZCE_speech_track(track_length,:)', Bins); 
[NZCE_pop_Y,    NZCE_pop_X   ] = 

rhist(Neg_PNZCE_pop_track(track_length,:)',    Bins); 

 
NZCE_speech_Y = 100 * NZCE_speech_Y; 
   NZCE_pop_Y = 100 * NZCE_pop_Y; 

 
figure('color','white'), hold on 
plot(NZCE_speech_X, NZCE_speech_Y,  'b', 'LineWidth', 3) 
plot(NZCE_pop_X,    NZCE_pop_Y,     'r', 'LineWidth', 3) 
legend('Speech', 'Pop Music') 
xlim([0 1]) 
xlabel('P(NZCE_- _-)') 
ylabel('Percentage of tracks, %') 
title(['P(NZCE_- _-); ' ,num2str(target_tracks),' tracks; ', ... 
                                         num2str(split), ' seconds each']); 

 
% Detect speech in a speech/music database 

 
[FP_speech,TP_speech,Distance_speech,opt_TP_speech,opt_FP_speech,... 
                         opt_thr_speech] = roc2(NZCE_speech_Y, NZCE_pop_Y); 

 

 
  opt_TP_speech_track = [opt_TP_speech_track;  opt_TP_speech]; 
  opt_FP_speech_track = [opt_FP_speech_track;  opt_FP_speech]; 
 opt_thr_speech_track = [opt_thr_speech_track; opt_thr_speech]; 
Distance_speech_track = [Distance_speech_track;Distance_speech]; 
ROC_area_speech_track = [ROC_area_speech_track;trapz(FP_speech,TP_speech)]; 

 
figure(1) 
plot(FP_speech,TP_speech, 'b', 'LineWidth', 3) 
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Listing A18 (Continued ...) 

 
% Detect music in a speech/music database 

 
[FP_music,TP_music,Distance_music,opt_TP_music,opt_FP_music,... 
                           opt_thr_music] = roc(NZCE_pop_Y, NZCE_speech_Y); 

 
  opt_TP_music_track = [opt_TP_music_track;   opt_TP_music]; 
  opt_FP_music_track = [opt_FP_music_track;   opt_FP_music]; 
 opt_thr_music_track = [opt_thr_music_track;  opt_thr_music]; 
Distance_music_track = [Distance_music_track; Distance_music]; 
ROC_area_music_track = [ROC_area_music_track; trapz(FP_music,TP_music)]; 

 
figure(2) 
plot(FP_music,TP_music, 'r', 'LineWidth', 3) 

 
end 

 
figure(1) 
title('ROC Curves Using P(NZCE_- _-) to detect speech') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend('0.25 second','0.5 second', '0.75 second', '1 second', ... 
'1.25 second', '2.5 second', '5 second', '10 second') 

 
axis([-0.01 1 0 1.01]) 

 
figure(2) 
title('ROC Curves Using P(NZCE_- _-) to detect music') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend('0.25 second','0.5 second', '0.75 second', '1 second', ... 
'1.25 second', '2.5 second', '5 second', '10 second') 

 
axis([-0.01 1 0 1.01]) 

 
figure('color','white'), grid, hold on 
plot(range, opt_TP_speech_track, 'b.-', 'LineWidth', 3) 
plot(range, opt_TP_music_track,  'r.-', 'LineWidth', 3) 
plot(range, opt_FP_speech_track, 'b--', 'LineWidth', 3) 
plot(range, opt_FP_music_track,  'r--', 'LineWidth', 3) 
title('Effect of Track Length on TP/FP rates for P(NZCE_- _-)') 
xlabel('Track Length, seconds') 
ylabel('TP/FP Rates') 
legend('Speech TP Rate', 'Music TP Rate', ... 
'Speech FP Rate', 'Music FP Rate') 

 

 
figure('color','white'), grid, hold on 
plot(range, Distance_speech_track, 'b', 'LineWidth', 3) 
plot(range, Distance_music_track,  'r', 'LineWidth', 3) 
title('Effect of Track Length on Euclidian Distance for P(NZCE_- _-)') 
xlabel('Track Length, seconds') 
ylabel('Euclidian Distance') 
legend('Speech', 'Music') 
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Listing A19 

Code scripted to examine the effect of room noise on the discrimination process using either 

types of NZCE. 

 

% Probability of 9 different events and 2 categories; tracks being 
% split into frames. Histogram of 3000 frames to show validity of method 

 
%% Declare constants and empty matrices 
clear all 
               fs = 44100;   % Sampling Frequency 
                r = 60;      % Accumulate 300 seconds ( 5 minutes ) to from  
% a single audio track 
    target_tracks = 3000;    % Target number of tracks to be analyzed 
            split = 3;       % Each r seconds are split into split seconds 

 
P_NZCE_pos_Noisy_speech = []; % P(NZCE++) for noisy speech 
P_NZCE_neg_Noisy_speech = []; % P(NZCE--) for noisy speech 
 P_NZCE_pos_Noisy_music = []; % P(NZCE++) for noisy music 
 P_NZCE_neg_Noisy_music = []; % P(NZCE--) for noisy music 

 
SNR_speech = []; % Signal to Noise Ratio using RMS Power for speech 
 SNR_music = []; % Signal to Noise Ratio using RMS Power for music 

 
    speech_folder = 'C:\DATA\SPEECH\UCL\WORDS\am\amword'; 
       pop_folder = 'C:\DATA\MUSIC\pop_music\popmusic'; 

 
   speech_counter = 0; 
      pop_counter = 0; 

 
%% Record 60 seconds of room noise 

 
% room_noise = wavrecord(60*fs,fs); 
% room_noise = room_noise - mean(room_noise); 
% wavwrite(room_noise, fs, 'room_noise.wav') 

 
room_noise = wavread('room_noise'); 
      time = (1:length(room_noise))/fs; 

 
%% Display Probability Density Function of the Room Noise 

 

 
[y,x] = rhist(room_noise,100); 

 
figure('color','white') 
plot(time,room_noise); 
xlabel('Time, seconds') 
ylabel('Amplitude, V') 
title('Room noise as measured from a commercial condensor microphone') 
axis([0 5 -0.01 0.01]) 
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Listing A19 (Continued ...) 

 

figure('color','white') 
plot(x,y, 'LineWidth', 3) 
xlabel('Amplitude, V') 
ylabel('Probability Density') 
title('Probability Density Function of Room Noise') 
xlim([-.01 0.01]) 

 
%% Compute probabilities of events for each type of audio 

 
noise = room_noise; 

 
for noise_gain = 0.1 : 0.3 : 3 

 
P_NZCE_pos_speech = []; 
P_NZCE_neg_speech = []; 
 P_NZCE_pos_music = []; 
 P_NZCE_neg_music = []; 

 
  analyzed_tracks = 0;  % Analyzed number of tracks 

 
while analyzed_tracks < target_tracks 

 
% Analyze speech signals 

 
duration = 0; 
 speech_ = []; 

 
while duration < r*fs 
if speech_counter >= 1915 
        speech_counter = 0; 
end 
speech_counter  = speech_counter + 1; 
         speech = wavread([speech_folder,num2str(speech_counter)]); 
         speech = speech(:,1); 
        speech_ = [speech_; speech]; 
       duration = length(speech_); 
end 

 
      speech = speech_(1:r*fs); 
      speech = speech-mean(speech); 
      speech = speech/max(abs(speech)); 
Noisy_speech = speech + noise_gain*noise; 
[P_NZCE_pos_speech_, P_NZCE_neg_speech_] = ... 
                                    pnzce_per_track(Noisy_speech,fs,split); 
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Listing A19 (Continued ...) 

% Analyze pop music signals 

 
duration = 0; 
    pop_ = []; 
while duration < r*fs 
if pop_counter == 4094 
        pop_counter = 0; 
end 
pop_counter = pop_counter + 1; 
        pop = wavread([pop_folder,num2str(pop_counter)]);  
        pop = pop(:,1); 
       pop_ = [pop_; pop]; 
   duration = length(pop_); 
end 
        pop = pop_(1:fix(r*fs)); 
        pop = pop-mean(pop); 
        pop = pop/max(abs(pop)); 
  Noisy_pop = pop + noise_gain*noise;     
[P_NZCE_pos_music_, P_NZCE_neg_music_] = ... 
                                     pnzce_per_track(Noisy_pop, fs, split); 

 
% Compute the number of tracks analyzed so far for each type of audio 

 
P_NZCE_pos_speech = [P_NZCE_pos_speech; P_NZCE_pos_speech_]; 
P_NZCE_neg_speech = [P_NZCE_neg_speech; P_NZCE_neg_speech_]; 
 P_NZCE_pos_music = [P_NZCE_pos_music;  P_NZCE_pos_music_]; 
 P_NZCE_neg_music = [P_NZCE_neg_music;  P_NZCE_neg_music_]; 

 
[A1, B1] = size(P_NZCE_pos_speech); 

 
[A2, B2] = size(P_NZCE_pos_music); 

 
analyzed_tracks = min([A1, A2]); 

 
[num2str(analyzed_tracks),' tracks analyzed'] 

 
end 

 

 
SNR_speech_ = 20*log10(rms(speech)/rms(noise_gain*noise)); 

 
 SNR_music_ = 20*log10(rms(pop)/rms(noise_gain*noise)); 

 
[' SNR for speech = ', num2str(SNR_speech_), ' dB'] 

 
[' SNR for music  = ', num2str(SNR_speech_), ' dB'] 

 

 
SNR_speech = [SNR_speech; SNR_speech_]; 

 
 SNR_music = [SNR_music;  SNR_music_]; 
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Listing A19 (Continued ...) 

 

P_NZCE_pos_Noisy_speech = [P_NZCE_pos_Noisy_speech; ... 
                                      P_NZCE_pos_speech(1:target_tracks)']; 
P_NZCE_neg_Noisy_speech = [P_NZCE_neg_Noisy_speech; ... 
                                      P_NZCE_neg_speech(1:target_tracks)']; 
 P_NZCE_pos_Noisy_music = [P_NZCE_pos_Noisy_music;  ... 
                                       P_NZCE_pos_music(1:target_tracks)']; 
 P_NZCE_neg_Noisy_music = [P_NZCE_neg_Noisy_music;  ... 
                                       P_NZCE_neg_music(1:target_tracks)']; 
end 

 

 
save Noisy_Speech_Noisy_music 

 
%% -------------------- plot P(NZCE) (event + +) -------------------- 

 
Bins = 0:0.0125:1; % Bins used for histograms 

 
  opt_TP_Noisy_speech_pos = []; 
  opt_FP_Noisy_speech_pos = []; 
 opt_thr_Noisy_speech_pos = []; 
Distance_Noisy_speech_pos = []; 
ROC_area_Noisy_speech_pos = []; 

 
   opt_TP_Noisy_music_pos = []; 
   opt_FP_Noisy_music_pos = []; 
  opt_thr_Noisy_music_pos = []; 
 Distance_Noisy_music_pos = []; 
 ROC_area_Noisy_music_pos = []; 

 
figure('color','white'), hold on 
figure('color','white'), hold on 

 
for noise_case = 1: 10 

 
[NZCE_speech_Y, NZCE_speech_X] = 

rhist(P_NZCE_pos_Noisy_speech(noise_case,:)', Bins); 
[NZCE_pop_Y,    NZCE_pop_X   ] = 

rhist(P_NZCE_pos_Noisy_music(noise_case,:)',  Bins); 

 
NZCE_speech_Y = 100 * NZCE_speech_Y; 
   NZCE_pop_Y = 100 * NZCE_pop_Y; 

 
figure('color','white'), hold on 
plot(NZCE_speech_X, NZCE_speech_Y,  'b', 'LineWidth', 3) 
plot(NZCE_pop_X,    NZCE_pop_Y,     'r', 'LineWidth', 3) 
legend('Speech', 'Pop Music') 
xlim([0 1]) 
xlabel('P(NZCE_+ _+)') 
ylabel('Percentage of tracks, %') 
title(['P(NZCE_+ _+); ' ,num2str(target_tracks),' tracks; ', 'SNR = ', ... 
num2str(SNR_speech(noise_case)), 'dB; ', num2str(split), ' seconds each']); 
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Listing A19 (Continued ...) 

 
% Detect speech in a speech/music database 

 
[FP_speech,TP_speech,Distance_speech,opt_TP_speech,opt_FP_speech,... 
                          opt_thr_speech] = roc(NZCE_speech_Y, NZCE_pop_Y); 

 
ROC_Area_speech = trapz(FP_speech,TP_speech); 

 
  opt_TP_Noisy_speech_pos = [opt_TP_Noisy_speech_pos;   opt_TP_speech]; 
  opt_FP_Noisy_speech_pos = [opt_FP_Noisy_speech_pos;   opt_FP_speech]; 
 opt_thr_Noisy_speech_pos = [opt_thr_Noisy_speech_pos;  opt_thr_speech]; 
Distance_Noisy_speech_pos = [Distance_Noisy_speech_pos; Distance_speech]; 
ROC_area_Noisy_speech_pos = [ROC_area_Noisy_speech_pos; ROC_Area_speech]; 

 
figure(1) 
plot(FP_speech,TP_speech, 'b', 'LineWidth', 3) 

 
% Detect music in a speech/music database 

 
[FP_music,TP_music,Distance_music,opt_TP_music,opt_FP_music,... 
                          opt_thr_music] = roc2(NZCE_pop_Y, NZCE_speech_Y); 

 
ROC_Area_music = trapz(FP_music,TP_music); 

 
  opt_TP_Noisy_music_pos = [opt_TP_Noisy_music_pos;   opt_TP_music]; 
  opt_FP_Noisy_music_pos = [opt_FP_Noisy_music_pos;   opt_FP_music]; 
 opt_thr_Noisy_music_pos = [opt_thr_Noisy_music_pos;  opt_thr_music]; 
Distance_Noisy_music_pos = [Distance_Noisy_music_pos; Distance_music]; 
ROC_area_Noisy_music_pos = [ROC_area_Noisy_music_pos; ROC_Area_music]; 

 
figure(2) 
plot(FP_music,TP_music, 'r', 'LineWidth', 3) 

 
end 

 
figure(1) 
title('ROC Curves Using P(NZCE_+ _+) to detect speech') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend(['SNR = ', num2str(SNR_speech(1)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(2)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(3)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(4)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(5)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(6)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(7)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(8)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(9)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(10)), ' dB'] ) 

 
axis([-0.01 1 0 1.01]) 
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Listing A19 (Continued ...) 

 
figure(2) 
title('ROC Curves Using P(NZCE_+ _+) to detect music') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend(['SNR = ', num2str(SNR_music(1)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(2)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(3)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(4)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(5)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(6)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(7)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(8)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(9)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(10)), ' dB'] ) 

 
axis([-0.01 1 0 1.01]) 

 
figure('color','white'), grid, hold on 
plot(SNR_speech, opt_TP_Noisy_speech_pos, 'b.-', 'LineWidth', 3) 
plot(SNR_music,  opt_TP_Noisy_music_pos,  'r.-', 'LineWidth', 3) 
plot(SNR_speech, opt_FP_Noisy_speech_pos, 'b--', 'LineWidth', 3) 
plot(SNR_music,  opt_FP_Noisy_music_pos,  'r--', 'LineWidth', 3) 
title('Effect of SNR on the TP/FP rates for P(NZCE_+ _+)') 
xlabel('SNR, dB') 
ylabel('TP/FP Rates') 
legend('Speech TP Rate', 'Music TP Rate', ... 
'Speech FP Rate', 'Music FP Rate') 

 
figure('color','white'), grid, hold on 
plot(SNR_speech, Distance_Noisy_speech_pos, 'b', 'LineWidth', 3) 
plot(SNR_music, Distance_Noisy_music_pos,   'r', 'LineWidth', 3) 
title('Effect of SNR on the Euclidian Distance for P(NZCE_+ _+)') 
xlabel('SNR, dB') 
ylabel('Euclidian Distance') 
legend('Speech', 'Music') 

 
%% -------------------- plot P(NZCE) (event - -) -------------------- 

 
Bins = 0:0.0125:1; % Bins used for histograms 

 
  opt_TP_Noisy_speech_neg = []; 
  opt_FP_Noisy_speech_neg = []; 
 opt_thr_Noisy_speech_neg = []; 
Distance_Noisy_speech_neg = []; 
ROC_area_Noisy_speech_neg = []; 

 
   opt_TP_Noisy_music_neg = []; 
   opt_FP_Noisy_music_neg = []; 
  opt_thr_Noisy_music_neg = []; 
 Distance_Noisy_music_neg = []; 
 ROC_area_Noisy_music_neg = []; 
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Listing A19 (Continued ...) 

 
figure('color','white'), hold on 
figure('color','white'), hold on 

 
for noise_case = 1: 10 

 
[NZCE_speech_Y, NZCE_speech_X] = 

rhist(P_NZCE_neg_Noisy_speech(noise_case,:)', Bins); 
[NZCE_pop_Y,    NZCE_pop_X   ] = 

rhist(P_NZCE_neg_Noisy_music(noise_case,:)',  Bins); 

 
NZCE_speech_Y = 100 * NZCE_speech_Y; 
   NZCE_pop_Y = 100 * NZCE_pop_Y; 

 
figure('color','white'), hold on 
plot(NZCE_speech_X, NZCE_speech_Y,  'b', 'LineWidth', 3) 
plot(NZCE_pop_X,    NZCE_pop_Y,     'r', 'LineWidth', 3) 
legend('Speech', 'Pop Music') 
xlim([0 1]) 
xlabel('P(NZCE_- _-)') 
ylabel('Percentage of tracks, %') 
title(['P(NZCE_- _-); ' ,num2str(target_tracks),' tracks; ', 'SNR = ', ... 
num2str(SNR_speech(noise_case)), 'dB; ', num2str(split), ' seconds each']); 

 
% Detect speech in a speech/music database 

 
[FP_speech,TP_speech,Distance_speech,opt_TP_speech,opt_FP_speech,... 
                         opt_thr_speech] = roc2(NZCE_speech_Y, NZCE_pop_Y); 

 
ROC_Area_speech = trapz(FP_speech,TP_speech); 

 
  opt_TP_Noisy_speech_neg = [opt_TP_Noisy_speech_neg;   opt_TP_speech]; 
  opt_FP_Noisy_speech_neg = [opt_FP_Noisy_speech_neg;   opt_FP_speech]; 
 opt_thr_Noisy_speech_neg = [opt_thr_Noisy_speech_neg;  opt_thr_speech]; 
Distance_Noisy_speech_neg = [Distance_Noisy_speech_neg; Distance_speech]; 
ROC_area_Noisy_speech_neg = [ROC_area_Noisy_speech_neg; ROC_Area_speech]; 

 
figure(1) 
plot(FP_speech,TP_speech, 'b', 'LineWidth', 3) 

 
% Detect music in a speech/music database 

 
[FP_music,TP_music,Distance_music,opt_TP_music,opt_FP_music,... 
                           opt_thr_music] = roc(NZCE_pop_Y, NZCE_speech_Y); 
ROC_Area_music = trapz(FP_music,TP_music); 

 
  opt_TP_Noisy_music_neg = [opt_TP_Noisy_music_neg;   opt_TP_music]; 
  opt_FP_Noisy_music_neg = [opt_FP_Noisy_music_neg;   opt_FP_music]; 
 opt_thr_Noisy_music_neg = [opt_thr_Noisy_music_neg;  opt_thr_music]; 
Distance_Noisy_music_neg = [Distance_Noisy_music_neg; Distance_music]; 
ROC_area_Noisy_music_neg = [ROC_area_Noisy_music_neg; ROC_Area_music]; 
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Listing A19 (Continued ...) 

 
figure(2) 
plot(FP_music,TP_music, 'r', 'LineWidth', 3) 

 
end 

 
figure(1) 
title('ROC Curves Using P(NZCE_- _-) to detect speech') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend(['SNR = ', num2str(SNR_speech(1)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(2)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(3)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(4)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(5)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(6)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(7)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(8)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(9)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_speech(10)), ' dB'] ) 
axis([-0.01 1 0 1.01]) 

 
figure(2) 
title('ROC Curves Using P(NZCE_- _-) to detect music') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend(['SNR = ', num2str(SNR_music(1)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(2)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(3)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(4)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(5)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(6)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(7)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(8)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(9)),  ' dB'], ... 
       ['SNR = ', num2str(SNR_music(10)), ' dB'] ) 
axis([-0.01 1 0 1.01]) 

 
figure('color','white'), grid, hold on 
plot(SNR_speech, opt_TP_Noisy_speech_neg, 'b.-', 'LineWidth', 3) 
plot(SNR_music,  opt_TP_Noisy_music_neg,  'r.-', 'LineWidth', 3) 
plot(SNR_speech, opt_FP_Noisy_speech_neg, 'b--', 'LineWidth', 3) 
plot(SNR_music,  opt_FP_Noisy_music_neg,  'r--', 'LineWidth', 3) 
title('Effect of SNR on the TP/FP rates for P(NZCE_- _-)') 
xlabel('SNR, dB'); ylabel('TP/FP Rates') 
legend('Speech TP Rate', 'Music TP Rate', ... 
'Speech FP Rate', 'Music FP Rate') 

 
figure('color','white'), grid, hold on 
plot(SNR_speech, Distance_Noisy_speech_pos, 'b', 'LineWidth', 3) 
plot(SNR_music, Distance_Noisy_music_pos,   'r', 'LineWidth', 3) 
title('Effect of SNR on the Euclidian Distance for P(NZCE_- _-)') 
xlabel('SNR, dB'); ylabel('Euclidian Distance'); legend('Speech', 'Music') 
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Listing A20 

Code scripted to examine the effect of down-sampling the audio signal prior to computing the 

NZCE features. 

% Examine the effect of downsampling the audio files to lower sampling 
% rates. 

 
%% Declare constants and empty matrices 
clear all 
               fs = 44100;   % Sampling Frequency 
                r = 60;      % Accumulate 300 seconds ( 5 minutes ) to from  
% a single audio track 
    target_tracks = 3000;    % Target number of tracks to be analyzed 
  analyzed_tracks = 0;       % Analyzed number of tracks 
            split = 3;       % Each r seconds are split into split seconds 

 
 PNZCE_pos_speech1 = []; PNZCE_neg_speech1 = []; 
 PNZCE_pos_speech2 = []; PNZCE_neg_speech2 = []; 
 PNZCE_pos_speech3 = []; PNZCE_neg_speech3 = []; 
 PNZCE_pos_speech4 = []; PNZCE_neg_speech4 = []; 
 PNZCE_pos_speech5 = []; PNZCE_neg_speech5 = []; 
 PNZCE_pos_speech6 = []; PNZCE_neg_speech6 = []; 
 PNZCE_pos_speech7 = []; PNZCE_neg_speech7 = []; 

 
  PNZCE_pos_music1 = [];  PNZCE_neg_music1 = []; 
  PNZCE_pos_music2 = [];  PNZCE_neg_music2 = []; 
  PNZCE_pos_music3 = [];  PNZCE_neg_music3 = []; 
  PNZCE_pos_music4 = [];  PNZCE_neg_music4 = []; 
  PNZCE_pos_music5 = [];  PNZCE_neg_music5 = []; 
  PNZCE_pos_music6 = [];  PNZCE_neg_music6 = []; 
  PNZCE_pos_music7 = [];  PNZCE_neg_music7 = []; 

 

 
    speech_folder = 'C:\DATA\SPEECH\UCL\WORDS\am\amword'; 
     music_folder = 'C:\DATA\MUSIC\pop_music\popmusic'; 

 
   speech_counter = 0; 
    music_counter = 0; 

 
    fs1 = fs;  
    fs2 = 22050;    % Down-sampling to 22.05 kHz 
    fs3 = 16000;    % Down-sampling to 16 kHz 
    fs4 = 8000;     % Down-sampling to  8 kHz 
    fs5 = 4000;     % Down-sampling to  4 kHz 
    fs6 = 2000;     % Down-sampling to  2 kHz 
    fs7 = 1000;     % Down-sampling to  1 kHz 

 

 

  



 

176 

 

Listing A20 (Continued ...) 

%% Compute probabilities of events for each type of audio 

 
while analyzed_tracks < target_tracks 

 
% Analyze speech signals 

 
duration = 0; 
 speech_ = []; 

 
while duration < r*fs 
if speech_counter >= 1915 
        speech_counter = 0; 
end 
speech_counter  = speech_counter + 1; 
     speech = wavread([speech_folder,num2str(speech_counter)]); 
     speech = speech(:,1); 
    speech_ = [speech_; speech]; 
   duration = length(speech_); 
end 

 
   speech = speech_(1:r*fs); 
   speech = speech-mean(speech); 
  speech1 = speech/max(abs(speech)); 
  speech2 = resample(speech,fs2,fs1);  speech3 = resample(speech,fs3,fs1); 
  speech4 = resample(speech,fs4,fs1);  speech5 = resample(speech,fs5,fs1); 
  speech6 = resample(speech,fs6,fs1);  speech7 = resample(speech,fs7,fs1); 

 
[PNZCE_pos_speech1_,PNZCE_neg_speech1_]=pnzce_per_track(speech1,fs1,split); 
[PNZCE_pos_speech2_,PNZCE_neg_speech2_]=pnzce_per_track(speech2,fs2,split); 
[PNZCE_pos_speech3_,PNZCE_neg_speech3_]=pnzce_per_track(speech3,fs3,split); 
[PNZCE_pos_speech4_,PNZCE_neg_speech4_]=pnzce_per_track(speech4,fs4,split); 
[PNZCE_pos_speech5_,PNZCE_neg_speech5_]=pnzce_per_track(speech5,fs5,split); 
[PNZCE_pos_speech6_,PNZCE_neg_speech6_]=pnzce_per_track(speech6,fs6,split); 
[PNZCE_pos_speech7_,PNZCE_neg_speech7_]=pnzce_per_track(speech7,fs7,split); 

 
clear speech1speech2speech3speech4speech5speech6speech7 

 
% Analyze pop music signals  

 
duration = 0; 
 music_ = []; 

 
while duration < r*fs 
if music_counter >= 4094 
        music_counter = 0; 
end 
music_counter  = music_counter + 1; 
     music = wavread([music_folder,num2str(music_counter)]); 
     music = music(:,1); 
    music_ = [music_; music]; 
   duration = length(music_); 
end 
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Listing A20 (Continued ...) 

 
   music = music_(1:r*fs); 
   music = music-mean(music); 
  music1 = music/max(abs(music)); 
  music2 = resample(music,fs2,fs1);  music3 = resample(music,fs3,fs1); 
  music4 = resample(music,fs4,fs1);  music5 = resample(music,fs5,fs1); 
  music6 = resample(music,fs6,fs1);  music7 = resample(music,fs7,fs1); 

 
[PNZCE_pos_music1_,PNZCE_neg_music1_] = pnzce_per_track(music1,fs1,split); 
[PNZCE_pos_music2_,PNZCE_neg_music2_] = pnzce_per_track(music2,fs2,split); 
[PNZCE_pos_music3_,PNZCE_neg_music3_] = pnzce_per_track(music3,fs3,split); 
[PNZCE_pos_music4_,PNZCE_neg_music4_] = pnzce_per_track(music4,fs4,split); 
[PNZCE_pos_music5_,PNZCE_neg_music5_] = pnzce_per_track(music5,fs5,split); 
[PNZCE_pos_music6_,PNZCE_neg_music6_] = pnzce_per_track(music6,fs6,split); 
[PNZCE_pos_music7_,PNZCE_neg_music7_] = pnzce_per_track(music7,fs7,split); 

 
clear music1music2music3music4music5music6music7 

 
 PNZCE_pos_speech1 = [PNZCE_pos_speech1; PNZCE_pos_speech1_];  
 PNZCE_neg_speech1 = [PNZCE_neg_speech1; PNZCE_neg_speech1_]; 
 PNZCE_pos_speech2 = [PNZCE_pos_speech2; PNZCE_pos_speech2_];  
 PNZCE_neg_speech2 = [PNZCE_neg_speech2; PNZCE_neg_speech2_]; 
 PNZCE_pos_speech3 = [PNZCE_pos_speech3; PNZCE_pos_speech3_];  
 PNZCE_neg_speech3 = [PNZCE_neg_speech3; PNZCE_neg_speech3_]; 
 PNZCE_pos_speech4 = [PNZCE_pos_speech4; PNZCE_pos_speech4_];  
 PNZCE_neg_speech4 = [PNZCE_neg_speech4; PNZCE_neg_speech4_]; 
 PNZCE_pos_speech5 = [PNZCE_pos_speech5; PNZCE_pos_speech5_];  
 PNZCE_neg_speech5 = [PNZCE_neg_speech5; PNZCE_neg_speech5_]; 
 PNZCE_pos_speech6 = [PNZCE_pos_speech6; PNZCE_pos_speech6_];  
 PNZCE_neg_speech6 = [PNZCE_neg_speech6; PNZCE_neg_speech6_]; 
 PNZCE_pos_speech7 = [PNZCE_pos_speech7; PNZCE_pos_speech7_];  
 PNZCE_neg_speech7 = [PNZCE_neg_speech7; PNZCE_neg_speech7_]; 

 
  PNZCE_pos_music1 = [PNZCE_pos_music1;  PNZCE_pos_music1_ ];  
  PNZCE_neg_music1 = [PNZCE_neg_music1;  PNZCE_neg_music1_ ]; 
  PNZCE_pos_music2 = [PNZCE_pos_music2;  PNZCE_pos_music2_ ];  
  PNZCE_neg_music2 = [PNZCE_neg_music2;  PNZCE_neg_music2_ ]; 
  PNZCE_pos_music3 = [PNZCE_pos_music3;  PNZCE_pos_music3_ ];  
  PNZCE_neg_music3 = [PNZCE_neg_music3;  PNZCE_neg_music3_ ]; 
  PNZCE_pos_music4 = [PNZCE_pos_music4;  PNZCE_pos_music4_ ];  
  PNZCE_neg_music4 = [PNZCE_neg_music4;  PNZCE_neg_music4_ ]; 
  PNZCE_pos_music5 = [PNZCE_pos_music5;  PNZCE_pos_music5_ ];  
  PNZCE_neg_music5 = [PNZCE_neg_music5;  PNZCE_neg_music5_ ]; 
  PNZCE_pos_music6 = [PNZCE_pos_music6;  PNZCE_pos_music6_ ];  
  PNZCE_neg_music6 = [PNZCE_neg_music6;  PNZCE_neg_music6_ ]; 
  PNZCE_pos_music7 = [PNZCE_pos_music7;  PNZCE_pos_music7_ ];  
  PNZCE_neg_music7 = [PNZCE_neg_music7;  PNZCE_neg_music7_ ]; 

 

 
% Compute the number of tracks analyzed so far for each type of audio 
    A1 = length(PNZCE_pos_speech1); 
    A2 = length(PNZCE_pos_music1); 

 
analyzed_tracks = min([A1, A2]); 
[num2str(analyzed_tracks),' tracks completed .. '] 

 
end 
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Listing A20 (Continued ...) 

 
PNZCE_pos_speech1 = PNZCE_pos_speech1(1:target_tracks); 
PNZCE_neg_speech1 = PNZCE_neg_speech1(1:target_tracks); 
 PNZCE_pos_music1 = PNZCE_pos_music1(1:target_tracks); 
 PNZCE_neg_music1 = PNZCE_neg_music1(1:target_tracks); 

 
PNZCE_pos_speech2 = PNZCE_pos_speech2(1:target_tracks); 
PNZCE_neg_speech2 = PNZCE_neg_speech2(1:target_tracks); 
 PNZCE_pos_music2 = PNZCE_pos_music2(1:target_tracks); 
 PNZCE_neg_music2 = PNZCE_neg_music2(1:target_tracks); 

 
PNZCE_pos_speech3 = PNZCE_pos_speech3(1:target_tracks); 
PNZCE_neg_speech3 = PNZCE_neg_speech3(1:target_tracks); 
 PNZCE_pos_music3 = PNZCE_pos_music3(1:target_tracks); 
 PNZCE_neg_music3 = PNZCE_neg_music3(1:target_tracks); 

 
PNZCE_pos_speech4 = PNZCE_pos_speech4(1:target_tracks); 
PNZCE_neg_speech4 = PNZCE_neg_speech4(1:target_tracks); 
 PNZCE_pos_music4 = PNZCE_pos_music4(1:target_tracks); 
 PNZCE_neg_music4 = PNZCE_neg_music4(1:target_tracks); 

 
PNZCE_pos_speech5 = PNZCE_pos_speech5(1:target_tracks); 
PNZCE_neg_speech5 = PNZCE_neg_speech5(1:target_tracks); 
 PNZCE_pos_music5 = PNZCE_pos_music5(1:target_tracks); 
 PNZCE_neg_music5 = PNZCE_neg_music5(1:target_tracks); 

 
PNZCE_pos_speech6 = PNZCE_pos_speech6(1:target_tracks); 
PNZCE_neg_speech6 = PNZCE_neg_speech6(1:target_tracks); 
 PNZCE_pos_music6 = PNZCE_pos_music6(1:target_tracks); 
 PNZCE_neg_music6 = PNZCE_neg_music6(1:target_tracks); 

 
PNZCE_pos_speech7 = PNZCE_pos_speech7(1:target_tracks); 
PNZCE_neg_speech7 = PNZCE_neg_speech7(1:target_tracks); 
 PNZCE_pos_music7 = PNZCE_pos_music7(1:target_tracks); 
 PNZCE_neg_music7 = PNZCE_neg_music7(1:target_tracks); 

 

 
save PNZCE_downsampling 

 
%% %%%%%%%%%%%%%%%%%%%%%%%%%% plot P(NZCE) (event + +) %%%%%%%%%%%%%%%%%%%% 
Bins = 0:0.0125:1; 

 
% Sampling at 44.1 kHz 

 
[ Events_speech1_Y, Events_speech1_X ] = rhist(PNZCE_pos_speech1, Bins); 
[ Events_music1_Y,  Events_music1_X  ] = rhist(PNZCE_pos_music1,  Bins); 

 
Events_speech1_Y = 100 * Events_speech1_Y; 
 Events_music1_Y = 100 * Events_music1_Y; 

 
% Sampling at 22.05 kHz 

 
[ Events_speech2_Y, Events_speech2_X ] = rhist(PNZCE_pos_speech2, Bins); 
[ Events_music2_Y,  Events_music2_X  ] = rhist(PNZCE_pos_music2,  Bins); 
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Listing A20 (Continued ...) 

 

Events_speech2_Y = 100 * Events_speech2_Y; 
 Events_music2_Y = 100 * Events_music2_Y; 

 
% Sampling at 16 kHz 

 
[ Events_speech3_Y, Events_speech3_X ] = rhist(PNZCE_pos_speech3, Bins); 
[ Events_music3_Y,  Events_music3_X  ] = rhist(PNZCE_pos_music3,  Bins); 

 
Events_speech3_Y = 100 * Events_speech3_Y; 
 Events_music3_Y = 100 * Events_music3_Y; 

 
% Sampling at 8 kHz 

 
[ Events_speech4_Y, Events_speech4_X ] = rhist(PNZCE_pos_speech4, Bins); 
[ Events_music4_Y,  Events_music4_X  ] = rhist(PNZCE_pos_music4,  Bins); 

 
Events_speech4_Y = 100 * Events_speech4_Y; 
 Events_music4_Y = 100 * Events_music4_Y; 

 
% Sampling at 4 kHz 

 
[ Events_speech5_Y, Events_speech5_X ] = rhist(PNZCE_pos_speech5, Bins); 
[ Events_music5_Y,  Events_music5_X  ] = rhist(PNZCE_pos_music5,  Bins); 

 
Events_speech5_Y = 100 * Events_speech5_Y; 
 Events_music5_Y = 100 * Events_music5_Y; 

 
% Sampling at 2 kHz 

 
[ Events_speech6_Y, Events_speech6_X ] = rhist(PNZCE_pos_speech6, Bins); 
[ Events_music6_Y,  Events_music6_X  ] = rhist(PNZCE_pos_music6,  Bins); 

 
Events_speech6_Y = 100 * Events_speech6_Y; 
 Events_music6_Y = 100 * Events_music6_Y; 

 
% Sampling at 1 kHz 

 
[ Events_speech7_Y, Events_speech7_X ] = rhist(PNZCE_pos_speech7, Bins); 
[ Events_music7_Y,  Events_music7_X  ] = rhist(PNZCE_pos_music7,  Bins); 

 
Events_speech7_Y = 100 * Events_speech7_Y; 
 Events_music7_Y = 100 * Events_music7_Y; 

 

 
% Detect speech in a speech/music database 

 
[FP1,TP1,Distance1,opt_TP1,opt_FP1,opt_thr1] = ... 
                                    roc(Events_speech1_Y, Events_music1_Y); 

 
[FP2,TP2,Distance2,opt_TP2,opt_FP2,opt_thr2] = ... 
                                    roc(Events_speech2_Y, Events_music2_Y); 
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Listing A20 (Continued ...) 

[FP3,TP3,Distance3,opt_TP3,opt_FP3,opt_thr3] = ... 
                                    roc(Events_speech3_Y, Events_music3_Y); 

 
[FP4,TP4,Distance4,opt_TP4,opt_FP4,opt_thr4] = ... 
                                    roc(Events_speech4_Y, Events_music4_Y); 

 
[FP5,TP5,Distance5,opt_TP5,opt_FP5,opt_thr5] = ... 
                                    roc(Events_speech5_Y, Events_music5_Y); 

 
[FP6,TP6,Distance6,opt_TP6,opt_FP6,opt_thr6] = ... 
                                    roc(Events_speech6_Y, Events_music6_Y); 

 
[FP7,TP7,Distance7,opt_TP7,opt_FP7,opt_thr7] = ... 
                                    roc(Events_speech7_Y, Events_music7_Y); 

 
figure('color','white'), hold on 
plot(FP1,TP1, 'k',   'LineWidth', 3); plot(FP2,TP2, 'r',   'LineWidth', 3) 
plot(FP3,TP3, 'g',   'LineWidth', 3); plot(FP4,TP4, 'b',   'LineWidth', 3) 
plot(FP5,TP5, 'r--', 'LineWidth', 3); plot(FP6,TP6, 'g--', 'LineWidth', 3) 
plot(FP7,TP7, 'b--', 'LineWidth', 3) 
axis([-0.01 1.01 -0.01 1.01]) 

 
title('ROC Curves Using P(NZCE_+ _+) to Detect Speech') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend('44.1 kHz','22.05 kHz','16 kHz','8 kHz','4 kHz','2 kHz','1 kHz') 

 
sampling = [fs1; fs2; fs3; fs4; fs5; fs6; fs7]/1000; 
Distance = [Distance1; Distance2; Distance3; ... 
            Distance4; Distance5; Distance6; Distance7]; 

 
  opt_TP = [opt_TP1; opt_TP2; opt_TP3; opt_TP4; opt_TP5; opt_TP6; opt_TP7]; 
  opt_FP = [opt_FP1; opt_FP2; opt_FP3; opt_FP4; opt_FP5; opt_FP6; opt_FP7]; 

 
figure('color','white'), hold on 
plot(sampling, Distance, 'b', 'LineWidth', 3) 

 
figure('color','white'), hold on 
plot(sampling, opt_TP, 'b',   'LineWidth', 3) 
plot(sampling, opt_FP, '--b', 'LineWidth', 3) 

 
% Detect music in a speech/music database 

 
[FP1,TP1,Distance1,opt_TP1,opt_FP1,opt_thr1] = ... 
                                    roc2(Events_music1_Y, 

Events_speech1_Y); 

 
[FP2,TP2,Distance2,opt_TP2,opt_FP2,opt_thr2] = ... 
                                    roc2(Events_music2_Y, 

Events_speech2_Y); 

 
[FP3,TP3,Distance3,opt_TP3,opt_FP3,opt_thr3] = ... 
                                    roc2(Events_music3_Y, 

Events_speech3_Y); 
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Listing A20 (Continued ...) 

 

[FP4,TP4,Distance4,opt_TP4,opt_FP4,opt_thr4] = ... 
                                    roc2(Events_music4_Y, 

Events_speech4_Y); 

 
[FP5,TP5,Distance5,opt_TP5,opt_FP5,opt_thr5] = ... 
                                    roc2(Events_music5_Y, 

Events_speech5_Y); 

 
[FP6,TP6,Distance6,opt_TP6,opt_FP6,opt_thr6] = ... 
                                    roc2(Events_music6_Y, 

Events_speech6_Y); 

 
[FP7,TP7,Distance7,opt_TP7,opt_FP7,opt_thr7] = ... 
                                    roc2(Events_music7_Y, 

Events_speech7_Y); 

 
figure('color','white'), hold on 
plot(FP1,TP1, 'k',   'LineWidth', 3); plot(FP2,TP2, 'r',   'LineWidth', 3) 
plot(FP3,TP3, 'g',   'LineWidth', 3); plot(FP4,TP4, 'b',   'LineWidth', 3) 
plot(FP5,TP5, 'r--', 'LineWidth', 3); plot(FP6,TP6, 'g--', 'LineWidth', 3) 
plot(FP7,TP7, 'b--', 'LineWidth', 3) 
axis([-0.01 1.01 -0.01 1.01]) 

 
title('ROC Curves Using P(NZCE_+ _+) to Detect Music') 
xlabel('False Positive Rate (FP)') 
ylabel('True Positive Rate (TP)') 
legend('44.1 kHz','22.05 kHz','16 kHz','8 kHz','4 kHz','2 kHz','1 kHz') 

 
Distance = [Distance1; Distance2; Distance3; ... 
            Distance4; Distance5; Distance6; Distance7]; 

 
  opt_TP = [opt_TP1; opt_TP2; opt_TP3; opt_TP4; opt_TP5; opt_TP6; opt_TP7]; 
  opt_FP = [opt_FP1; opt_FP2; opt_FP3; opt_FP4; opt_FP5; opt_FP6; opt_FP7]; 

 
figure('color','white'), hold on 
plot(sampling, Distance, 'r', 'LineWidth', 3) 

 
figure(3) 
plot(sampling, opt_TP, 'r',   'LineWidth', 3) 
plot(sampling, opt_FP, '--r', 'LineWidth', 3) 
title('Optimum TP/FP Rates from P(NZCE_+ _+) ROC Curves') 
xlabel('Sampling Frequency, kHz') 
ylabel('TP/FP Rates') 
legend('Speech TP Rate','Speech FP Rate','Music TP Rate','Music FP Rate') 
xlim([0 44.1]) 
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Listing A20 (Continued ...) 

%% %%%%%%%%%%%%%%%%%%%%%%%%%% plot P(NZCE) (event - -) %%%%%%%%%%%%%%%%%%%% 

 
Bins = 0:0.0125:1; 

 
% Sampling at 44.1 kHz 

 
[ Events_speech1_Y, Events_speech1_X ] = rhist(PNZCE_neg_speech1, Bins); 
[ Events_music1_Y,  Events_music1_X  ] = rhist(PNZCE_neg_music1,  Bins); 

 
Events_speech1_Y = 100 * Events_speech1_Y; 
 Events_music1_Y = 100 * Events_music1_Y; 

 
% Sampling at 22.05 kHz 

 
[ Events_speech2_Y, Events_speech2_X ] = rhist(PNZCE_neg_speech2, Bins); 
[ Events_music2_Y,  Events_music2_X  ] = rhist(PNZCE_neg_music2,  Bins); 

 
Events_speech2_Y = 100 * Events_speech2_Y; 
 Events_music2_Y = 100 * Events_music2_Y; 

 
% Sampling at 16 kHz 

 
[ Events_speech3_Y, Events_speech3_X ] = rhist(PNZCE_neg_speech3, Bins); 
[ Events_music3_Y,  Events_music3_X  ] = rhist(PNZCE_neg_music3,  Bins); 

 
Events_speech3_Y = 100 * Events_speech3_Y; 
 Events_music3_Y = 100 * Events_music3_Y; 

 
% Sampling at 8 kHz 

 
[ Events_speech4_Y, Events_speech4_X ] = rhist(PNZCE_neg_speech4, Bins); 
[ Events_music4_Y,  Events_music4_X  ] = rhist(PNZCE_neg_music4,  Bins); 

 
Events_speech4_Y = 100 * Events_speech4_Y; 
 Events_music4_Y = 100 * Events_music4_Y; 

 
% Sampling at 4 kHz 

 
[ Events_speech5_Y, Events_speech5_X ] = rhist(PNZCE_neg_speech5, Bins); 
[ Events_music5_Y,  Events_music5_X  ] = rhist(PNZCE_neg_music5,  Bins); 

 
Events_speech5_Y = 100 * Events_speech5_Y; 
 Events_music5_Y = 100 * Events_music5_Y; 

 
% Sampling at 2 kHz 

 
[ Events_speech6_Y, Events_speech6_X ] = rhist(PNZCE_neg_speech6, Bins); 
[ Events_music6_Y,  Events_music6_X  ] = rhist(PNZCE_neg_music6,  Bins); 

 
Events_speech6_Y = 100 * Events_speech6_Y; 
 Events_music6_Y = 100 * Events_music6_Y; 
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Listing A20 (Continued ...) 

% Sampling at 1 kHz 

 
[ Events_speech7_Y, Events_speech7_X ] = rhist(PNZCE_neg_speech7, Bins); 
[ Events_music7_Y,  Events_music7_X  ] = rhist(PNZCE_neg_music7,  Bins); 

 
Events_speech7_Y = 100 * Events_speech7_Y; 
 Events_music7_Y = 100 * Events_music7_Y; 

 
% Detect speech in a speech/music database 

 
[FP1,TP1,Distance1,opt_TP1,opt_FP1,opt_thr1] = ... 
                                   roc2(Events_speech1_Y, Events_music1_Y); 

 
[FP2,TP2,Distance2,opt_TP2,opt_FP2,opt_thr2] = ... 
                                   roc2(Events_speech2_Y, Events_music2_Y); 

 
[FP3,TP3,Distance3,opt_TP3,opt_FP3,opt_thr3] = ... 
                                   roc2(Events_speech3_Y, Events_music3_Y); 

 
[FP4,TP4,Distance4,opt_TP4,opt_FP4,opt_thr4] = ... 
                                   roc2(Events_speech4_Y, Events_music4_Y); 

 
[FP5,TP5,Distance5,opt_TP5,opt_FP5,opt_thr5] = ... 
                                   roc2(Events_speech5_Y, Events_music5_Y); 

 
[FP6,TP6,Distance6,opt_TP6,opt_FP6,opt_thr6] = ... 
                                   roc2(Events_speech6_Y, Events_music6_Y); 

 
[FP7,TP7,Distance7,opt_TP7,opt_FP7,opt_thr7] = ... 
                                   roc2(Events_speech7_Y, Events_music7_Y); 

 
figure('color','white'), hold on 
plot(FP1,TP1, 'k',   'LineWidth', 3); plot(FP2,TP2, 'r',   'LineWidth', 3) 
plot(FP3,TP3, 'g',   'LineWidth', 3); plot(FP4,TP4, 'b',   'LineWidth', 3) 
plot(FP5,TP5, 'r--', 'LineWidth', 3); plot(FP6,TP6, 'g--', 'LineWidth', 3) 
plot(FP7,TP7, 'b--', 'LineWidth', 3) 
axis([-0.01 1.01 -0.01 1.01]) 

 
title('ROC Curves Using P(NZCE_- _-) to Detect Speech') 
xlabel('False Negitive Rate (FP)') 
ylabel('True Negitive Rate (TP)') 
legend('44.1 kHz','22.05 kHz','16 kHz','8 kHz','4 kHz','2 kHz','1 kHz') 

 
sampling = [fs1; fs2; fs3; fs4; fs5; fs6; fs7]/1000; 
Distance = [Distance1; Distance2; Distance3; ... 
            Distance4; Distance5; Distance6; Distance7]; 

 
  opt_TP = [opt_TP1; opt_TP2; opt_TP3; opt_TP4; opt_TP5; opt_TP6; opt_TP7]; 
  opt_FP = [opt_FP1; opt_FP2; opt_FP3; opt_FP4; opt_FP5; opt_FP6; opt_FP7]; 

 
figure(2) 
plot(sampling, Distance, 'b--', 'LineWidth', 3) 
title('Euclidian Distance for Speech ROC Curves') 
xlabel('Sampling Frequency, kHz'); ylabel('Euclidian Distance') 
legend('P(NZCE_+ _+)', 'P(NZCE_- _-)') 
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Listing A20 (Continued ...) 

 
figure('color','white'), hold on 
plot(sampling, opt_TP, 'b',   'LineWidth', 3) 
plot(sampling, opt_FP, '--b', 'LineWidth', 3) 

 
% Detect music in a speech/music database 
[FP1,TP1,Distance1,opt_TP1,opt_FP1,opt_thr1] = ... 
                                    roc(Events_music1_Y, Events_speech1_Y); 

 
[FP2,TP2,Distance2,opt_TP2,opt_FP2,opt_thr2] = ... 
                                    roc(Events_music2_Y, Events_speech2_Y); 

 
[FP3,TP3,Distance3,opt_TP3,opt_FP3,opt_thr3] = ... 
                                    roc(Events_music3_Y, Events_speech3_Y); 

 
[FP4,TP4,Distance4,opt_TP4,opt_FP4,opt_thr4] = ... 
                                    roc(Events_music4_Y, Events_speech4_Y); 

 
[FP5,TP5,Distance5,opt_TP5,opt_FP5,opt_thr5] = ... 
                                    roc(Events_music5_Y, Events_speech5_Y); 

 
[FP6,TP6,Distance6,opt_TP6,opt_FP6,opt_thr6] = ... 
                                    roc(Events_music6_Y, Events_speech6_Y); 

 
[FP7,TP7,Distance7,opt_TP7,opt_FP7,opt_thr7] = ... 
                                    roc(Events_music7_Y, Events_speech7_Y); 

 
figure('color','white'), hold on 
plot(FP1,TP1, 'k',   'LineWidth', 3); plot(FP2,TP2, 'r',   'LineWidth', 3) 
plot(FP3,TP3, 'g',   'LineWidth', 3); plot(FP4,TP4, 'b',   'LineWidth', 3) 
plot(FP5,TP5, 'r--', 'LineWidth', 3); plot(FP6,TP6, 'g--', 'LineWidth', 3) 
plot(FP7,TP7, 'b--', 'LineWidth', 3) 
axis([-0.01 1.01 -0.01 1.01]) 

 
title('ROC Curves Using P(NZCE_- _-) to Detect Music') 
xlabel('False Negitive Rate (FP)') 
ylabel('True Negitive Rate (TP)') 
legend('44.1 kHz','22.05 kHz','16 kHz','8 kHz','4 kHz','2 kHz','1 kHz') 

 
Distance = [Distance1; Distance2; Distance3; ... 
            Distance4; Distance5; Distance6; Distance7]; 

 
  opt_TP = [opt_TP1; opt_TP2; opt_TP3; opt_TP4; opt_TP5; opt_TP6; opt_TP7]; 
  opt_FP = [opt_FP1; opt_FP2; opt_FP3; opt_FP4; opt_FP5; opt_FP6; opt_FP7]; 

 
figure(5) 
plot(sampling, Distance, 'r--', 'LineWidth', 3) 
title('Euclidian Distance for Music ROC Curves') 
xlabel('Sampling Frequency, kHz') 
ylabel('Euclidian Distance') 
legend('P(NZCE_+ _+)', 'P(NZCE_- _-)') 
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Listing A20 (Continued ...) 

 
figure(7) 
plot(sampling, opt_TP, 'r',   'LineWidth', 3) 
plot(sampling, opt_FP, '--r', 'LineWidth', 3) 
title('Optimum TP/FP Rates from P(NZCE_- _-) ROC Curves') 
xlabel('Sampling Frequency, kHz') 
ylabel('TP/FP Rates') 
legend('Speech TP Rate','Speech FP Rate','Music TP Rate','Music FP Rate') 
xlim([0 44.1]) 
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Appendix B: Publications 

The following two papers were published in two IEEE conferences. They are the outcome of 

chapter 4. Both papers can be obtained from IEEE Xplore website as shown in figure B.1. A 

third paper is submitted to IET for publication and is under review. 

 

Figure B.1: IEEE publications in two conferences: ICSP 2008 in Beijing, (China) and 

SSD’09 in Djerba (Tunisia) 

 


