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Abstract 

Abnormal fatty acid metabolism and availability are landmarks of metabolic diseases, 

which in turn are associated with aberrant DNA methylation profiles. To understand the 

role of fatty acids in disease epigenetics, we sought DNA methylation profiles 
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specifically induced by arachidonic (AA) or oleic acid (OA) in cultured cells and 

compared those with published profiles of normal and diseased tissues. THP-1 

monocytes were stimulated with AA or OA and analyzed using Infinium 

HumanMethylation450 BeadChip (Illumina) and Human Exon 1.0 ST array (Affymetrix). 

Data were corroborated in mouse embryonic fibroblasts. Comparisons with publicly 

available data were conducted by standard bioinformatics. AA and OA elicited a 

complex response marked by a general DNA hypermethylation and hypomethylation in 

the 1-200 μM range, respectively, with a maximal differential response at the 100 μM 

dose. The divergent response to AA and OA was prominent within the gene body of 

target genes, where it correlated positively with transcription. AA-induced DNA 

methylation profiles were similar to the corresponding profiles described for palmitic 

acid, atherosclerosis, diabetes, obesity, and autism, but relatively dissimilar from OA-

induced profiles. Furthermore, human atherosclerosis grade-associated DNA 

methylation profiles were significantly enriched in AA-induced profiles. Biochemical 

evidence pointed to -oxidation, PPAR-alpha, and sirtuin 1 as important mediators of 

AA-induced DNA methylation changes. In conclusion, AA and OA exert distinct effects 

on the DNA methylome. The observation that AA may contribute to shape the 

epigenome of important metabolic diseases, supports and expands current diet-based 

therapeutic and preventive efforts. 
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Introduction 

An organism’s fatty acid (FA) pool reflects both composition of the diet and 

endogenous synthesis. Furthermore, abnormal FA levels have long been recognized to 

participate in metabolic diseases such as diabetes.1 Since metabolic diseases are 

frequently associated with aberrant DNA methylation profiles2, it is conceivable that 

FAs are among factors that mediate remodeling of the epigenome in response to 

dietary composition, the cell’s metabolic status and pathogenic signals. In humans, 

only a handful of studies have investigated a link between DNA methylation and fat 

intake, focusing on specific genes associated with FA metabolism, inflammation and 

regulation of circadian rhythms.3–8 Furthermore, a recent genome-wide study 

comparing peripheral whole blood methylation profiles to both quantity and quality of 

dietary fat intake in adolescents, found a larger number of methylation changes 

associated with the latter.9 In that study, DNA methylation profiles associated with 

polyunsaturated:saturated FA ratio were related to pathways regulated by the 

peroxisome proliferator-activated receptor  (PPAR-) and adipogenesis. Conversely, 

no pathways were identified of DNA methylation profiles associated with the 

monounsaturated:saturated FA ratio. In addition, numerous mouse model studies have 

addressed short and long term epigenetic effects of diets containing variable 

combinations of specific FAs.8,10 

Although diet-based studies are important as they recognize the complexity of the 

organism's response to nutrients, mechanistic insights can be gained by a simplified 

complementary approach based on the manipulation of individual FA levels. 

Accordingly, the effects of short FAs, such as butyrate, on DNA methylation have been 

long recognized.11 In addition, very low-density lipoprotein (VLDL) elicited a global DNA 

hypermethylation response that is markedly stronger than the one induced by low- or 

high-density lipoprotein in cultured human THP-1 macrophages.12,13 The fact that VLDL 

is characteristically rich in triglycerides suggests that FAs might be mediators of the 

epigenetic responses to VLDL. Accordingly, arachidonic acid (AA) induces DNA 
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hypomethylation in human umbilical vein endothelial cells at 3 μM concentration, 

globally and of angiogenesis regulator kinase insert domain receptor gene 

promoter.14,15 Another study demonstrated that 100 μM eicosapentaenoic acid (EPA) 

directly modifies the methylation status of CCAAT / enhancer-binding protein delta 

gene.16 As for cellular disease models, palmitic acid (PA) was shown to induce global 

DNA hypermethylation in primary human myocytes and ex vivo human pancreatic islet 

cells at a 500 μM and 1 mM dose, respectively, affecting targets such as the PPAR- 

co-activator 1A gene.17,18 Furthermore, a recent study in a cellular model of hepatic 

cancer has shown that a mixture of oleic acid (OA) and PA elicits hypermethylation of 

selected imprinted gene promoters.19 Possible mechanisms of epigenetic regulation by 

FAs include binding to PPARs, a family of transcription factors that regulate numerous 

metabolic processes via ligand-dependent transcriptional activation and repression.20,21 

Currently, it is unknown whether the above-described epigenetic effects are FA-

specific, as is the contribution of FAs to disease-related methylation profiles. To 

understand those issues, we focused on the two long-chain unsaturated FAs, OA and 

AA, which are known to exert generally opposite cellular inflammatory responses.22–24 

We studied the effects of these particular FAs on the epigenome and transcriptome of 

THP-1 cells, a widely accepted human monocyte model25, and compared our results to 

available DNA methylation data of several human diseases and normal tissues. The 

implications of our results are discussed in the context of current knowledge of 

epigenetic regulation by lipid components and dietary factors, and their contribution to 

disease risk. 

Results 

Effects of the pure AA and OA on global DNA methylation in cultured cells 

We first examined the effects of the pure FAs, AA, and OA, on global DNA methylation,  

i.e., total normalized 5mdC content in cultured human THP-1 monocytes. Stimulation 

experiments were carried out for 24 hours using FAs in the 0-200 μM concentration 

range. These concentration are below or within the reported circulating FA range—see, 
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for example, Higashiyama et al.26 The rationale for using a 24-hour stimulation is that 

epigenetic responses to lipoproteins were observed in THP-1 macrophages, a 

differentiated version of THP-1 monocytes.12,13 In accordance with a similar study of 

AA-stimulated THP-1 cells, where cell proliferation was scored based on 3H-thymidine 

incorporation27, FAs did not affect cell proliferation as assessed by cell counting. 

Overall, AA and OA elicited distinct responses. AA induced a dose-dependent DNA 

hypermethylation peaking at the 100 μM dose and amounting to a ~10.5% increase in 

5mdC content at 100 μM relative to the 1 μM dose (Figure 1A). In turn, OA induced a 

weaker response, with an overall DNA hypomethylation at 100 μM relative to the 1 μM 

dose. Noticeably, the effect of OA was significantly different from the one of the vehicle 

BSA only at doses >100 μM. Neither OA nor BSA elicited statistically significant 

responses relative to unstimulated cells or cells stimulated with the 1 μM of any FA, up 

to the 50 μM dose. To validate the divergent AA and OA dose responses, a 24-hour 

co-stimulation experiment, in which one FA was held constant at 100 μM concentration 

while the other varied between 1-100 μM, was performed. The results confirmed the 

distinct DNA methylation responses to AA and OA in THP-1 cells [Figure 1B; note that 

the respective responses at 100 μM were not different (P=0.08)]. Importantly, the 

observed AA- and OA-induced DNA methylation changes were not specific for THP-1 

monocytes, as human embryonic kidney 293 cells also displayed distinct responses to 

these FAs following a 24-hour stimulation (Supplementary Figure 1). These 

experiments were exhaustively repeated and their results were consistent across time 

(2004-2013), cell culture laboratories, and THP-1 cell stocks (Sweden, Mexico, and 

Spain for either), HPLC platforms (Mexico and Spain), and total 5mdC assays (HPLC-

based or the ELISA-based MethylFlash system). 

 As an independent validation of the total 5mdC data, we performed an ALU-

specific methylation assay. ALUs are an abundant transposon family and have often 

been used as a surrogate of total 5mdC determination.28 In accordance with total 5mdC 

data, AA induced a significant dose-dependent increase in ALU methylation while OA 
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showed a tendency to hypomethylation, although not statistically significant in the 1-

100 μM range (Figure 1C). 

Effects of AA and OA on specific CpG site methylation 

To detail genomic regions undergoing FA dose-dependent differential DNA methylation 

at the CpG level resolution, we analyzed THP-1 monocytes stimulated with 1, 10, or 

100 μM AA or OA, using the Infinium HumanMethylation450 BeadChip arrays (450K 

array). The platform represents >485,000 intergenic and intragenic, non-repeated 

element CpGs.29,30 The rationale for using 100 μM as maximal dose was that it yielded 

the most divergent effects between the two FAs in the total 5mdC assay. 

 Unsupervised clustering analysis of 450K array data showed that the FA-

induced methylation profiles were more divergent at 100 μM FA dose compared to the 

relatively similar 1 and 10 μM-dose profiles (Figure 2), mirroring global 5mdC data 

(compare with Figure 1A). Next, we sought evidence for an AA dose-dependent DNA 

hypermethylation response and an opposite one for OA in 450K array data. We 

restricted our analysis to cells challenged with increasing—1, 10 and 100 μM—FA 

doses, as the unstimulated cell data reflect a non-physiological FA-free situation. A 

further reason for not including BSA-stimulated cells in the 450K array analysis, was 

that global 5mdC data indicated that the global trend of OA-induced DNA 

hypomethylation was statistically different from the corresponding BSA data set. Before 

conducting a detailed analysis of the 450K array data, we validated the methylation 

profiles of 11 CpGs corresponding to 6 genes by pyrosequencing. Genes were 

randomly selected among CpGs with absolute >0.1 between 1-100 μM AA. In all 

cases, pyrosequencing reproduced the DNA methylation profile of the 7 CpGs 

represented on the 450K array and additional flanking 4 CpGs (Supplementary 

Figure 2). Subsequently, we sought autosomal CpGs that showed dose-dependent 

DNA methylation profiles, i.e., CpGs with statistically significant FA dose-dependent 

DNA methylation changes. We initially set a Δβ>0.2 between the extreme 1 and 100 

μM FA doses as a stringent criterion to identify FA dose-dependent profiles. Such a 
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filtering yielded 283 and 135 CpGs for AA and OA, respectively, a figure that is 

inconsistent with the global 5mdC data shown above. We therefore reasoned that FAs 

imposed small and widespread CpG methylation changes. Consequently, CpGs 

displaying an absolute Δβ>0.005 between consecutive FA doses (i.e., with absolute 

Δβ>0.01 between the extreme 1 and 100 μM FA doses) were considered for further 

analysis. We first separated the CpG sets for each FA into two subsets that displayed a 

positive or negative Δβ between extreme FA doses, and performed a Spearman's 

correlation test separately on the CpGs subsets. This allowed us to perform a one-

tailed test using an absolute r>0.985 threshold value corresponding to P<0.05, for each 

subset. Those CpGs will be referred to as AACpGs or OACpGs. The analysis identified 

57,187 AACpGs and 48,917 OACpGs, corresponding to 14,483 and 13,914 genes, 

respectively (a complete list of AACpGs and OACpGs can be provided upon request). 

The absolute Δβs between 100 and 1 μM FA doses ranged between 0.29-0.01 for the 

two sets compounded. None of the AACpGs or OACpGs reached the genome-wide 

significance threshold of P<10-7. A minority of AACpGs (6,432 or 11.2%) overlapped 

with OACpGs, corresponding to 3,722 genes. 

Biological significance of AACpGs and OACpGs 

Although the AA- and OA-induced differential methylation did not reach genome-wide 

significance, a substantial number of converging findings support a pathobiological 

significance for AACpGs and OACpGs.  

First, in agreement with global DNA methylation data, a general tendency for AA-

induced hypermethylation and OA-induced hypomethylation was observed, i.e., the 

majority of AACpGs (76.4%) and OACpGs (74.7%) showed dose-dependent hyper- 

and hypo-methylation, respectively (P=6.7x10-32, Chi-square test; Figure 3). Likewise, 

the compounded weight of hypermethylated AACpGs was higher than the 

hypomethylated counterparts: the sum of Δβs between 100 and 1 μM AA was 1,661.3 

and -408.7 for the two sets, respectively. Conversely, the net effect of OACpGs was 

hypomethylation, since the sum of Δβs between 100 and 1 μM OA was 381.6 and -
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1,308.7 for the hyper- and hypo-methylated OACpG set, respectively. This overall 

divergent DNA methylation profile included the 6,432 common CpGs between the 

AACpG and OACpG sets, as the M values between 100 and 1 μM FA doses showed a 

negative correlation between the two sets (r=-0.14, P<10-6). 

Second, at the gene level, most AACpGs and OACpGs co-localized to gene 

bodies and promoters and, at the same time, were remarkably divergent for the 

direction of DNA methylation change. For all overlapping genes, AACpG and OACpGs 

showed hyper- and hypo-methylation, respectively, between extreme FA doses (P<10-5 

in all cases). This tendency was particularly evident of genes that harbored >50 

AACpG or AOCpG/gene, which included protein tyrosine phosphatase, receptor type, 

N polypeptide 2 (PTPRN2), mitotic arrest deficient-like 1 (MAD1L1), PR domain 

containing 16 (PRDM16), tenascin-XB (TNXB), regulatory-associated protein of mTOR 

(RPTOR), inositol-1,4,5-trisphosphate 5-phosphatase (INPP5A), adenosine 

deaminase, RNA-specific, B2 (ADARB2), sidekick cell adhesion molecule 1 (SDK1), 

ATPase, class VI, type 11A (ATP11A), tubulin folding cofactor D (TBCD), and disco-

interacting protein homolog 2 (DIP2C). Furthermore, such divergence in FA-specific 

methylation profiles was also observed of at least two large intergenic regions 

spanning 605.7 kb and 758.0 kb in size on chromosome 4 and 8, respectively. Figure 

4 shows illustrative examples of reciprocal AA- or OA-induced methylation profiles of 

three genes that showed more >50 AACpG or AOCpG/gene and of the intergenic 

region on chromosome 8. All, or only overlapping AACpGs and OACpGs, are shown 

(left and right panels, respectively). 

Third, functional annotation analysis using the top 150 genes ranked by number 

of differentially methylated AACpG and OACpGs, normalized by the number of probes 

present in the 450K array for a given gene (N-CpGs), revealed significant enrichments 

for the G protein-coupled receptor (GPCR) and olfactory signaling pathways 

(REACT_14797 and hsa04740, respectively; Supplementary Table 1). Conversely, no 

signaling pathways were identified for the top 150 genes ranked by Δβ (DB-CpGs) 
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(Supplementary Table 1). Remarkably, functional gene analysis of differentially 

expressed genes between 100 and 1 μM AA and OA doses revealed a significant 

enrichment of the same GPCR signaling pathway (FDR<10-4 in both cases; see 

paragraph below ―FA-induced CpG methylation and gene expression‖). Notably, the 

average absolute Δβ value of the top 150 N-AACpG and N-OACpGs were ~4-fold 

smaller relative to DB-AACpG and DB-OACpGs (0.045 and 0.041 versus 0.174 and 

0.161 on average, respectively; Supplementary Table 2), again pointing to small but 

biologically relevant effects. 

Fourth, we compared AACpG or OACpG to a study addressing the effects of 

PA on the DNA methylome of primary human pancreatic islets, a model of pro-

inflammatory free FA-induced diabetes.18 Notably, reminiscent of the effects of AA in 

THP-1 monocytes, PA induces a net DNA hypermethylation relative to pancreatic islets 

stimulated with FA-free BSA alone. In a first instance, we asked whether any 

differentially methylated CpGs were shared by the two studies, i.e., the dose-

dependent AACpGs and OACpGs, and PA-induced differentially methylated CpGs 

(PACpGs). Remarkably, despite significant experimental design differences between 

the PA-stimulated pancreatic islet model and AA- or OA-stimulated THP-1 cells, 

including FA concentration (1 mM and 1-100 μM range), incubation time (48 and 24 

hours) and cell type (pancreatic islets and THP-1 monocytes), a 10-12% overlap 

between CpGs was observed. A total of 445 CpGs corresponding to 430 genes, were 

common to the AACpG, OACpG and PACpG datasets (referred to as FACpGs; 

Supplementary Table 3). A functional annotation analysis revealed a significant 

enrichment for regulation by a number of transcription factors, including the biologically 

plausible CCAAT/enhancer binding protein (C/EBP), alpha (CEBPA), a critical activator 

of adipocyte-specific genes (FDR=8.2x10-7) and PPAR- (FDR=0.03), but not the 

related PPAR- (FDR=0.33).31,32 Furthermore, we found that the M-values between 

AACpGs and PACpGs were positively correlated (r=0.21, P=1.20x10-5) and the 

majority (72.8%) were hypermethylated in both sets. Conversely, no correlation 
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between the OACpGs and PACpGs was observed (r=0.08, P=0.10) and the majority 

(70.3%) of FACpGs were hypo- and hyper-methylated in the two sets, respectively. 

Furthermore, akin to AA and OACpGs, functional analysis of the top 150 normalized 

(number of differentially methylated CpG divided by the number of probes in the 450K 

array) PACpGs revealed enrichment in G-protein and olfactory signal transduction 

pathways (Supplementary Table 1). These data suggested a functional divergence 

between AA and PA on the one hand, and OA on the other hand with respect to DNA 

methylation. 

The analogies between FA-stimulated THP-1 cells and a model of pancreatic 

inflammation raised the question whether similar coincidences exist within a range of 

human diseases. To address that issue, we compared AACpGs and OACpGs to the 

450K array-based human DNA methylation profiling datasets that were available to 

date. These datasets covered a wide range of disease typology and conditions, i.e., 

metabolic diseases (atherosclerosis, obesity, type 2 diabetes)33–35, psychiatric 

disorders (autism—Brodmann areas 10 and 24 profiling—and schizophrenia)36,37, 

cancer (leukemia, colorectal carcinoma, hepatocellular carcinoma, blood from breast 

cancer patients),38–41 and aging42 (Supplementary Table 4). The inclusion of the 

mentioned studies is justified by the general relevance of FAs as suppliers of energy 

and biologically active metabolites, and their recognized involvement in psychiatric 

disorders (reviewed in43). In addition, the comparative analysis included 450K array-

based DNA methylation profiles of eight non-diseased tissues.44 The portion of 

differentially methylated CpGs identified in each study, that overlapped AACpG or 

OACpGs ranged between 12-17%. Furthermore, despite differences in Δβ cut-off 

between arrays (Supplementary Table 4) we observed no significant correlation 

between the extent of overlap and Δβ cut-off values. Excluding the breast cancer blood 

dataset, which did not represent the disease target tissue, we observed a notably lower 

overlap in cancer compared to metabolic, psychiatric and normal tissue sets (P<0.01 in 

all comparisons, Scheffé post-hoc test; aging was not included in the analysis given 



 

12 
 

that it represented a single study). Since we found no correlation between extent of 

overlap and number of differentially methylated CpGs yielded by each study (r=-0.12, 

n=20, P=0.62), our data suggested a non-random overlap despite the relatively high 

number of AACpGs and OACpGs. Gene function analysis for the top 150 N-CpG-

harboring genes revealed a common significant enrichment in the GPCR signaling 

pathway among the cancer and autism (BA24) profiles (FDR<10-2 in all cases), but not 

in normal tissue samples, suggesting an underlying biological specificity (in italics in 

Supplementary Table 1). 

Next, we compared the methylation state of AACpGs and OACpGs to that of 

differentially methylated CpGs identified in diseased or normal tissue. Clustering 

analysis of CpG methylation levels (Δβ) averaged by gene, clearly showed that the AA- 

and PA-induced profiles were more similar to each other than to OA-induced profiles. 

Furthermore, the former clustered with metabolic disease, aging and autism profiles, 

whereas cancer, schizophrenia and normal tissue-specific profiles grouped away from 

FAs (Figure 5A). These patterns were readily observed in the clustering analysis of the 

top 50 genes, ranked by the number of overlapping CpGs (Figure 5B). For example, 

the majority of genes were consistently hypermethylated following stimulation with AA 

or PA but hypomethylated following stimulation with OA. The top 50 genes included all 

of the genes harboring >50 AACpG/gene (see above), three of which ranked highest in 

both lists, i.e., PRDM16, PTPRN2, and MAD1L1. 

Fifth, we asked whether AACpGs significantly overlap with a set of 450K array 

methylation profiles obtained in human aortic atherosclerotic lesions of varying 

histological severity.45 That study identified 1,985 autosomal CpGs, which significantly 

change their methylation status with lesion progression (grade-CpGs), mostly by 

drifting towards hypermethylation as lesion grade increases. Grade-CpGs were 

significantly enriched in AACpGs, as 510 CpGs overlapped between the two sets and 

324 showed the same methylation trend, mostly (311 out of 324) towards 

hypermethylation both in response to increasing AA doses and with lesion progression 
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(P=0.011 for enrichment, hypergeometric test). A list of the 324 overlapping and 

concordant CpGs between the two sets is shown in Supplementary Table 5. 

Sixth, AA- and OA-induced DNA methylation profiles showed a degree of 

specificity for sequences with specific epigenetic and functional signatures. As for 

preference for hypo- or hyper-methylated sequences, we analyzed the distribution of 

the AACpG and OACpG across-values. We observed a clear enrichment of the 

initially hypermethylated group, i.e., at 1 μM FA dose for both AACpGs and OACpGs, 

that was independent of the direction of methylation change (Supplementary Figure 

3). As for gene compartments and GC content, hypermethylated AACpGs preferentially 

mapped to sites within open sea (i.e., >4 kb from the nearest CpG island), whereas 

hypomethylated AACpGs mapped preferentially to CpG islands (P=0.031 and P=0.009, 

respectively, compared to the 450K array probe distribution; Supplementary Figure 

4). No other CpG set showed any significant mapping preference. 

Overall, these findings support a broad biological significance and instructive 

mechanism(s), rather than random seeding, for the overall comparatively small AA- 

and OA-induced DNA methylation profiles. 

FA-induced CpG methylation and gene expression 

To assess the impact of dose-dependent changes in DNA methylation on gene 

expression, RNA was extracted from the same cells used to produce 450K array data 

and analyzed using the Affymetrix Human Exon 1.0 ST platform. To probe for an 

association between expression and DNA methylation, we focused on AACpGs and 

OACpGs that colocalized to exonic regions, i.e., 23,436 and 18,591 CpGs, 

respectively. Of the latter, we correlated the dose-dependent changes in DNA 

methylation with the corresponding changes in expression values for each exon probe 

(Figure 6A). While DNA methylation changes in any genomic context showed both 

positive and negative associations with transcription, context-dependent correlations 

were uncovered; in particular, a negative correlation in the promoter, 5’UTR and first 

exon and a positive correlation within gene body and 3’UTR regions. Importantly, 
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average exonic Δβ values between the 100 and 1 μM FA dose were higher of AACpGs 

compared to OACpGs (0.023 and -0.021, respectively). Since this mirrored the overall 

tendency of all AACpG and OACpGs, we concluded that gene body methylation was 

more frequently associated with an increase, rather than a decrease, in transcription. 

RT-PCR analysis of genes that showed a high number of opposite dose-dependent 

changes in DNA methylation following stimulation with AA and OA, also supported a 

tendency for a positive association between gene body methylation and expression for 

some of the genes analyzed (Figure 6B,C). Furthermore, functional gene analysis 

revealed a significant enrichment in GPCR signaling (FDR<10-4 in both cases), 

mirroring the functional enrichment observed in FA-induced methylation profiles (see 

above). 

Factors mediating FA-induced changes in DNA methylation 

To explore potential mechanisms underlying AA- and OA-induced changes in DNA 

methylation, we focused on PPAR- and PPAR-, given that both are expressed in 

THP-1 cells and that FAs, or derivatives thereof, are known ligands of these nuclear 

receptors.46,31 First, because the above presented functional annotation data suggested 

a potential role for PPAR-, but not PPAR- in regulating FACpG methylation and, 

second, due to the link between G-protein cannabinoid receptor signaling pathway and 

PPAR- transcription pathway,47,48 we examined the effects of the PPAR- and PPAR-

 antagonists GW6471 and GW9662, respectively, on the FA-induced methylation 

responses. GW6471, significantly and substantially, inhibited global DNA 

-dependent fashion, while no 

effect was observed in cells stimulated with OA (Figure 7A,B). As for GW9662, neither 

AA- nor OA-induced methylation responses were significantly affected. Carnitine 

palmitoyltransferase-1 (CPT1), an enzyme that regulates the import of long-chain FA 

transport into the mitochondria, is a known target of PPAR- PPAR- 

antagonist, etomoxir, an inhibitor of CPT1, significantly inhibited global DNA 
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-dependent fashion (Figure 

7A), while no significant effect of cells stimulated with OA was observed (Figure 7B). 

Numerous data lend support to complex interactions between PPARs and 

sirtuins, the latter of which also regulate transcriptional networks of critical metabolic 

processes via their NAD+ dependent histone deacetylase activity.49 To understand 

whether sirtuins played a role in the FA methylation responses, mouse embryonic 

fibroblasts (MEFs) obtained from SIRT1-, SIRT2-, or SIRT6-null mice and their 

These particular sirtuins were chosen due to their facultative or preferential nuclear 

location and prior evidence for their regulatory roles in FA oxidation (reviewed in49). 

Importantly, both AA and OA elicited methylation responses in WT MEFs, which were 

comparable to those observed in human THP-1 cells. However, among the analyzed 

mutant MEFs, AA-, and OA-specific DNA methylation responses were only significantly 

inhibited in SIRT1-null cells (Figure 8A). As further validation of SIRT1 participation in 

AA-induced hypermethylation, we examined the effects of SIRT1 inhibitors, sirtinol and 

splitomycin, in THP-1 monocytes. Both inhibitors led to reduced levels of DNA 

deacetylase inhibitor with a preference for non-NAD+ dependent histone deacetylases, 

failed to elicit any effects (Figure 8B). 

Discussion 

We have uncovered distinct DNA methylation profiles induced by AA and OA, two 

unsaturated FAs generally known for their pro-inflammatory and anti-inflammatory 

properties, respectively. Our global, ALU-specific and individual CpG methylation data 

obtained in various laboratories across a long period of time (see Results), consistently 

show divergent effects of the two FAs in the analyzed dose range, i.e., AA and OA 

induce DNA hypermethylation and hypomethylation, respectively, both in human and 

mouse cultured cells. A comparative analysis of publicly available human DNA 

methylome data, further confirm the biological relevance of these findings, despite the 
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different criteria used to identify relevant CpG loci. The pro-inflammatory FAs AA and 

PA induce markedly similar DNA methylation profiles, compared to the corresponding 

OA-induced profiles. Yet, FA-induced methylation and expression profiles are both 

enriched in the GPCR signaling function, suggesting antagonistic effects on common 

cellular pathways. Those similarities are further supported when comparing FA-induced 

profiles with disease- and normal tissue-specific corresponding data. AA and PA 

cluster together with metabolic diseases (atherosclerosis, obesity, type 2 diabetes), 

aging, and autism. OA, on the other hand, clusters more weakly with the latter 

conditions. This clustering therefore closely reflects the known distinct pathobiological 

properties of AA and PA on the one side, and OA in the other. Furthermore, several of 

the identified target genes are relevant from a nutritional and evolutionary perspective. 

For example, a 12-week supplementation with AA and DHA in baboons is associated 

with downregulation of PTPRN2 in the cerebral cortex.50 Likewise, an association 

between DNA methylation, a sequence variant of PTPRN2 and islet insulin secretion 

has also recently been identified.51 In turn, TNXB is one of the two genes showing 

population-specific polymorphisms associated with dietary adaption to fat, milk, and 

meat.52 These associations, although independent and converging, are not definite 

proof of causality. Also, the effects of FAs presented here are quantitatively modest, 

reflecting the 10% or less change in DNA methylation profiles that was detected in 

response to FA, high-fat diet and exercise.18,53,54 Despite these limitations, the data 

provide testable hypotheses to better understand the regulation of the DNA methylome 

by FAs and possibly to improve diet-based strategies to improve human health. 

 These comparisons offer a number of insights into the pathophysiological 

relevance of the epigenetic responses to FAs. In the case of human atherosclerosis, 

we show concordance with two previously published studies. First, the histological 

grade-associated CpGs45 are significantly enriched in AACpGs. Second, 16 of the most 

represented genes across the analyzed DNA methylation profiling studies, are densely 

hypermethylated in the early stages of the aortic atherosclerosis and display a direction 
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of DNA methylation change that is concordant with the one of AA and PA.33 In both 

atherosclerosis and AA-stimulated cells, hypermethylation is prominent within the body 

of these genes. Taken together, these comparative data suggest that a portion of the 

DNA hypermethylation that characterizes atherosclerosis in its initial phases and during 

the progression of the stable vascular lesion33,45, may be seeded by circulating pro-

inflammatory FAs or their metabolites. Coupled with evidence that hypomethylating 

agents can slow the progression of the vascular lesion55, our observations may lead to 

testable nutritional strategies to reprogram or safeguard the vascular epigenome. As 

for autism, the involvement of AA in that condition has been established by early 

prospective studies documenting the effects of AA-depleted infant formulas on autism 

risk and by a recent comparative study of red blood cell AA content between autistic 

patients and controls.56,57 Another finding of our study is the divergence of type 2 

diabetes DNA methylation profiles from the ones of AA and, notably, PA. The 

hypermethylated loci identified in both AA- and PA-stimulated cells show a distant, if 

any, resemblance to the corresponding profiles in diabetes, thus revealing a set of 

CpGs that do not model the involvement of free pro-inflammatory FAs in diabetes. 

Additionally, we show that FA-induced profiles are relatively distant from normal tissue-

specific ones. This result is expected, as due to the ubiquitous access of circulating 

FAs to organs and tissues, it is likely that FAs seed DNA methylation profiles that 

represent common features of the majority of the organism´s epigenomes. Incidentally, 

our findings confirm and expand the previous observation that normal blood displays a 

strikingly unique DNA methylation profile, compared to the other tissues and diseases 

tested.44 In addition to all these considerations, it is noteworthy that the specificity of 

the overlap with a number of published studies constitutes a powerful independent 

validation of our 450K array-based results.  

Pathways linked to -oxidation play a pivotal role in determining FA-related 

methylation profiles. We show that AA-induced DNA hypermethylation is sensitive to 

inhibition of FA import to mitochondria and is downstream to PPAR- and SIRT1, two 
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central regulators of FA metabolism and -oxidation.48 THP-1 monocytes, in contrast to 

cancer cells in general, rely more on -oxidation than glycolysis for energy production 

and AA has been shown to be a substrate for -oxidation in THP-1 cells.58,59 Both these 

observations support the effects of -oxidation inhibition in our model system. Indeed, 

the comparatively small overlap between cancer and FA-induced DNA methylation 

profiles may be explained by the Warburg effect which states that cancer cells mainly 

produce ATP from glycolysis even in conditions of hypoxia.60 Following this logic, the 

DNA hypomethylation observed in diabetes is a predictable consequence of the 

defective mitochondrial activity associated with that disease.61 In general, blockage of 

the mitochondrial machinery rapidly shifts ATP production to glycolysis to assure cell 

survival. We assume that such an adaptation takes place in THP-1 cells following 

exposure to -oxidation inhibitor etomoxir, suggesting that inhibition of AA-induced 

DNA hypermethylation by etomoxir does not result from reduced ATP supply to 

chromatin modifiers. On the other hand, the OA-induced hypomethylation response is 

not affected by these inhibitors. This suggests that the distinct AA and OA-induced 

methylation profiles might relate to FA-specific differences in -oxidation. Indeed, both 

in vitro and a recent in-vivo dietary study in humans show that OA relative to other FAs, 

such as PA and EPA, is a poor substrate of -oxidation62–64, although the opposite has 

also been reported.65 Alternatively, the increased levels of specific intermediate -

oxidation products observed in PA- relative to OA-stimulated human skeletal muscle 

cells could also explain part, or all of, the PA-induced methylation.62 Although our data 

contrast with the predominant view that SIRT1 is activated solely in condition of 

starvation, NAD+ independent SIRT1-mediated upregulation of oxidative metabolism 

has been reported in several other studies.66–68 Finally, the observation that SIRT1 

participates in the AA-induced DNA hypermethylation response in MEFs, indicates that 

the corresponding response observed in THP-1 cells is not a cancerous cell-restricted, 

p53- and MIR34a-dependent event.69 
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The PPAR- specific regulation of AA-induced DNA methylation, presumably 

reflects the observation that polyunsaturated FAs are more potent activators of PPAR-

 than PPAR-.70 The involvement of PPAR-, but not PPAR-, is further supported by 

the results of the functional annotation analysis of FACpG-harboring genes. SIRT6 can 

also be activated by long-chain FAs, in particular OA, and contributes to regulation of 

-oxidation.71,72 However, knockdown of SIRT6 in MEFs had no effect on FA-induced 

changes in DNA methylation. 

Our observation that AA and OA participate in shaping metabolic disease-

specific DNA methylomes through -oxidation, PPAR-  and sirtuin 1 signaling, has 

potential implications for diet-oriented therapy and prevention. Indeed, it has been 

argued that the high-fat, low-carbohydrate ketogenic diet, which is successful in clinical 

management of patients with inborn errors of metabolism and pharmacoresistant 

epilepsy, may be beneficial in a much broader range of diseases than previously 

recognized.73,74 Conversely, a low-fat, low-carbohydrate diet can lead to normalization 

of  cell function and insulin resistance in individuals with type 2 diabetes.75 However, 

whether or not a shift in substrate preference toward fat oxidation lowers disease risk is 

still heavily debated. For example, prolonged dietary administration of the PPAR- 

agonist WY-14643, is associated with a gradual decreased in global and LINE DNA 

methylation and hepatocarcinogenesis in mice.76,77 Furthermore, the differential 

tumorigenic responses of xenotransplanted leukemia cells THP-1 or NB4 exposed to 

either a high-fat or high-carbohydrate diet78, underlines the importance of 

understanding energy metabolism of disease subtypes prior to dietary interventions. 

Furthermore, we uncover a positive correlation between gene body methylation and 

expression in THP-1 cells. That correlation represents the behavior of a majority, but 

not all genes, underlining a complex association between transcription and gene body 

methylation. Similar conclusions have been drawn in several genome-wide studies of 

DNA methylation with recent reports suggesting that gene body methylation increases 
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gene expression levels.79,80 

Methods 

Cell culture 

THP-1 monocytes were cultured in RPMI-1640 medium (Gibco) supplemented with 

2mM L-Glutamine (Sigma), 10% fetal calf serum (Gibco) and 1% 

Penicillin/Streptomycin (Gibco). Cells were never allowed to grow above a 1-1.5x106 

cells/ml concentration. MEFs obtained from SIRT1- or SIRT6-null mice were a kind gift 

from Dr. Raúl Mostoslavsky (Harvard University, Boston, USA) and Dr. Eva Bober 

(MPI, Bad Nauheim, Germany), respectively. SIRT2-null MEFs were generated by 

standard procedures from SIRT2-null mice. WT MEFs were derived from littermates of 

each mutant mice strain. MEFs and HEK293T cells were grown in the same conditions 

as THP-1 monocytes but with DMEM as medium. Pure FAs (Sigma) were conjugated 

with cell culture-grade FA-free BSA (fraction V, FA-free, Sigma no. 820022) to achieve 

a FA:BSA 6:1 ratio, essentially as described.81 Typically, 5-6x106 cells in 10 ml medium 

were stimulated with 100x BSA-FA mix in 2% FCS. Exclusion of trypan blue was used 

as a criterion for viability. The inhibitors etomoxir, GW9662, GW6471, sirtinol, 

splitomycin or trichostatin A (TSA) were used at the concentrations and experimental 

conditions reported in previous studies.82,83 At least three technical and biological 

replicates were performed for each experiment, excluding microarray experiments. 

Global DNA methylation 

DNA was extracted from cultured cells by standard methods (DNeasy system, Qiagen). 

For the measurement of global DNA methylation levels, 5-methyl-2'-deoxycytidine 

(5mdC) and 2'-deoxyguanosine (dG) were determined by an HPLC-based method.84 

Normalized 5mdC levels were calculated as percentage 5mdC/dG. When indicated, 

global DNA methylation was measured by the MethylFlash system (Epigentek). The 

assay yielded 5mdC values as percentage of PicoGreen-quantified input DNA (wt/wt). 

Each value was multiplied by four to obtain a final value comparable to that obtained by 

the HPLC-based method. The MethylFlash assay yielded responses to AA and OA in 
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THP-1 monocytes, that were consistent with the ones obtained by the HPLC-based 

5mdC quantitation, except for baseline (unstimulated cells) values that were 5% lower 

(P>0.05, data corresponding to a total of 15 and 21 experiments, respectively).  

ALU repeat methylation 

ALU element methylation was determined according to Sirivanichsuntorn and 

collaborators.28 Briefly, bisulfite-treated DNA was amplified by PCR with the ALU-

specific primers AluF: 5’-GGY GYG GTG GTT TAY GTT TGT AA-3’ and AluR: 5’-TTA 

ATA AAA ACR AAA TTT CAC CAT ATT AAC CAA AC-3’ as follows: 95°C for 30s, 

53°C for 20s (40 cycles), and 72°C for 20s. Subsequently, the 117 bp ALU amplicon 

was digested overnight at 65°C with TaqI (Invitrogen). The resulting products, ranging 

between 42 and 117 bp depending on the methylation states of ALU elements, were 

separated by gel electrophoresis, stained with GelRed and quantified using ImageLab 

(BioRad).  

DNA methylation arrays 

To identify targets of FA-induced DNA methylation we used the Infinium 

HumanMethylation450 BeadChip platform (Illumina). Three biological replicates were 

pooled in equal proportion for each FA concentration. Pooling effectively averages the 

data and reduces noise.85 DNA quality checks, bisulfite modification, hybridization, data 

normalization with the GenomeStudio software (Illumina) and Beta value calculation 

were carried out as described elsewhere.29,86 SNP-proximal probes and probes with a 

detection P-value >0.05, i.e., not statistically different from the background, were 

discarded as reported.45 The methylation level for each cytosine, expressed as a -

value, was calculated as the fluorescence intensity ratio of methylated to unmethylated 

versions of each probe. Beta values ranged between 0 (unmethylated) and 1 

(methylated). Logit-transformed -values (M-values) were used in statistical tests 

unless indicated.87 or Δβ values were used for data description, due to their more 

intuitive nature. The annotation relating to CpG islands (CGIs) uses the following 
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nomenclature: "shore", each of the 2 kb-sequences flanking a CGI; "shelf", each of the 

2 kb-sequences next to a shore; "open sea", DNA not included in shores, shelves or 

CGIs.29 TSS200 or TSS1500 indicate the region between position -200 bp or -1,500 bp 

and the Transcription Start Site (TSS), respectively. When a cytosine mapped to 

different genic elements due to the presence of multiple alternative transcripts, all 

mapping variants were counted. Functional gene annotation was analyzed with the 

DAVID tool (http://david.abcc.ncifcrf.gov/). 450K array data are accessible in NCBI's 

Gene Expression Omnibus88 with the accession number GSE67331. DNA methylation 

array data of selected CpGs were validated by pyrosequencing (PyroMark Q96 ID, 

Qiagen). Sequences of pyrosequencing primers are shown in Supplementary Table 

6. 

Expression arrays 

Genome expression was analyzed by Human Exon 1.0 ST arrays (Affymetrix) and we 

used the Affymetrix Expression ConsoleTM software (version 1.3) and Robust Multichip 

Average algorithm (RMA) to normalize and analyze array data. The library used was 

the HuEx-1_0-st-v2.r2.pgf with the probe set HuEx-1_0-st-

v2.r2.dt1.hg18.extended.mps (gene level) and HuEx-1_0-st-v2.r2.dt1.hg18.full.mps 

(exon level). Expression array data are accessible in NCBI's Gene Expression 

Omnibus88 with the accession number GSE57076. Validation of selected targets was 

performed by semi-quantitative PCR normalized to GAPDH expression levels. 

Statistics 

The Kruskal-Wallis test was performed to test for differences in DNA methylation levels 

between treatments or doses for continuous variables. If the overall comparison was 

significant, samples were re-analyzed by ANOVA followed by Scheffé's post-hoc test to 

identify specific different groups. When comparing two groups, the Mann-Whitney U 

test (unpaired samples) or the Wilcoxon test (paired samples). The Chi-square test was 

applied to compare percentages. Correlations were tested by calculating the Pearson's 

correlation coefficient and the associated p value. Tests were performed with the 
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Statistica software (StatSoft) or Excel statistics tools (Microsoft Office 2011 for 

Macintosh). The significance of CpG enrichment was estimated with the 

hypergeometric test using an online tool 

(www.geneprof.org/GeneProf/tools/hypergeometric.jsp). 

Abbreviations and acronyms 

450K array, Infinium HumanMethylation450 BeadChip 

5mdC, 5-methyl-2'-deoxycytidine 

AA, arachidonic acid 

AACpG, AA-induced differentially methylated CpG 

CGI, CpG island 

CpG, 5'-CG-3' dinucleotide 

DB-CpG, CpG scored by Δβ 

EPA, eicosapentaenoic acid 

FACpG, differentially methylated CpG common to the AACpG, OACpG and 

PACpG sets 

FDR, false discovery rate 

MEF, mouse embryonic fibroblasts 

N-CpG, number of CpGs normalized by dividing the number of differentially 

methylated CpGs by the total number of CpGs represented in the 450K array for a 

given gene 

OA, oleic acid 

OACpG, OA-induced differentially methylated CpG 

PA, palmitic acid 

PACpG, PA-induced differentially methylated CpG 

PPAR, peroxisome proliferator-activated receptor 

SIRT, sirtuin. Official acronyms were used for all genes. 
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Figure 1 - Effects of pure FAs on global DNA methylation in THP-1 monocytes. A, FA 

dose-response following a 24-hour stimulation. B, co-stimulation with AA and 

OA, in which each FA was held constant at the 100 μM dose (symbols in graph 

A) and the other varied between 1-100 μM (indicated as "variable FA" in the 

horizontal axis legend). Data in A were obtained by the HPLC-based 5mdC 
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Figure 1 - Effects of pure FAs on global DNA methylation in THP-1 monocytes.  A, FA dose-
response following a 24 hour stimulation. B, co-stimulation with AA and OA, in which each FA 
was held constant at the 100 μM dose (symbols in graph A) and the other varied between 1-100 

μM (indicated as "variable FA" in the horizontal axis legend). Data in A were obtained by the 
HPLC-based 5mdC quantitation, data in B by the MethylFlash assay (see text for details). Data 

points represent averages and SD values. The horizontal dashed line indicates the value 
corresponding to unchallenged (control) cells. The latter value differs in panels A and B because 
of the different assays used. C, ALU methylation levels. Symbols are as in A. In all cases, asterisks 
indicate the significance of the difference in comparison with the respective 1 μM dose. 

Horizontal brackets in A indicate the AA or OA doses at which the response is significantly 
different from the response to the vehicle BSA. *, p<0.05; **, p<0.01 (Scheffé post hoc test). 
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quantitation, data in B by the MethylFlash assay (see text for details). Data 

points represent averages and SD values. The horizontal dashed line indicates 

the value corresponding to unchallenged (control) cells. The latter value differs 

in panels A and B because of the different assays used. C, ALU methylation 

levels. Symbols are as in A. In all cases, asterisks indicate the significance of 

the difference in comparison with the respective 1 μM dose. Horizontal brackets 

in A indicate the AA or OA doses at which the response is significantly different 

from the response to the vehicle BSA. *, P<0.05; **, P<0.01 (Scheffé post hoc 

test). 
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Figure 2 – Unsupervised clustering analysis of high-density DNA methylation array 

(450K array)-based analysis of FA dose-dependent CpG methylation. 
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Figure 2 – Unsupervised clustering analysis of high-density DNA methylation array (450k 

array)-based analysis of FA dose-dependent CpG methylation.
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Figure 3 - Distribution of hypermethylated and hypomethylated AACpGs and OACpGs. 

The AACpG and OACpG sets are ordered for increased Δβ between the two extreme 

FA doses. The horizontal dashed lines indicate the overall average Δβ for each CpG 

set. 
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Figure 3 – Distribution of hypermethylated and hypomethylated AACpGs and 

OACpGs. The AACpG and OACpG sets are ordered for increased Delta-Beta 
between the two extreme FA doses. The horizontal dashed lines indicate the 
overall average Delta-Beta for each CpG set.
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Figure 4 - Examples of locus-specific methylation profiles of AACpGs and OACpGs. 

Graphs on the left show the changes in DNA methylation of AACpGs (solid circles) and 

OACpGs (open squares). P indicates the position and number of CpGs mapping to 

promoters. Graphs on the right show the Δβ values of common CpGs to the AACpG 
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Figure 4 - Examples of locus-specific methylation profiles of AACpGs and OACpGs. Graphs on the left show the 
changes in DNA methylation of AACpGs (solid circles) and OACpGs (open squares). P indicates the position and 
number of CpGs mapping to promoters. Graphs on the right show the Delta-Beta values of common CpGs to the 
AACpG and OACpG sets in each gene or intergenic region. p values refer to unpaired (left) and paired (right) non-

parametric tests (Mann-whitney U test and Wilcoxon test, respectively). 
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and OACpG sets in each gene or intergenic region. P-values refer to unpaired (left) 

and paired (right) non-parametric tests (Mann-Whitney U test and Wilcoxon test, 

respectively). 

  



 

43 
 

 

Figure 5 - Clustering analysis of CpGs that are common to AACpG or OACpG or both, 

and to the indicated disease and normal tissue DNA methylation profiles. A, Overall 

data clustering. B, Top 50 genes ranked by the number of harbored CpGs included in 
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the clustering analysis. Asterisks indicate the top 11 genes ranked by the number of 

AACpG/gene. Red and blue, hypermethylation and hypomethylation, respectively. The 

tissue origin or relation is indicated for non-normal tissue samples as follows: Ad, 

adipose tissue; Ao, aorta; Bl, blood; Br, brain; In, intestine; Li, liver; Pa, pancreas. 
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Figure 6 - Effects of dose-dependent changes in DNA methylation on gene expression. 
A,  Correlation between 100-1 μM AA or OA Δβ and expression array-based 
corresponding expression levels. B, RT-PCR analysis of selected genes following AA 
and AO stimulation of THP-1 cells for 24 hours at 1 and 100 μM concentration. C, 
GAPDH RNA-normalized expression. The bars for each gene indicate, left to right: 1 
μM AA, 100 μM AA, 1 μM OA, 100 μM OA, respectively.  
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Figure 7 - Participation of PPARs and -oxidation in AA- or OA-induced global DNA 

methylation changes. THP-1 monocytes were stimulated with 100 μM FA for 24 hours 

following a 1 hour  pre-stimulation with inhibitors of -oxidation (etomoxir), PPAR- 

(GW6471) or PPAR-(GW9662). Data are represented as difference in DNA 

methylation between AA and AO-stimulated and unstimulated cells. The corresponding 

inhibitor concentration is indicated (μM). Statistical significance is in comparisons with 
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Figure 7 - Participation of PPARs and beta-oxidation in AA- or OA-induced global DNA methylation 
changes. THP-1 monocytes were stimulated with 100 μM FA for 24 hours following a 1 hour-
prestimulation with inhibitors of beta-oxidation (etomoxir), PPAR-alpha (GW6471) or PPAR-gamma 
(GW9662). Data are represented as difference in DNA methylation between AA and AO-stimulated 

and unstimulated cells. The corresponding inhibitor concentration is indicated (μM). Statistical 
significance is in comparisons with cells grown in the absence of any inhibitor (C). The horizontal 
dashed line indicates the baseline (unstimulated cells) level. For statistics symbols and test, see 
legend of Figure 1.
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cells grown in the absence of any inhibitor (C). The horizontal dashed line indicates the 

baseline (unstimulated cells) level. For statistics symbols and test, see legend of Figure 

1. 
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Figure 8 - Participation of histone deacetylases in AA- or OA-induced global DNA 

methylation changes. A, DNA methylation response in MEFs genetically null for SIRT1, 

-2, or -6 (indicated as "null") and matched WT controls, stimulated with 100 μM AA or 

OA for 24 hours, or unstimulated (U). Statistical significance is in comparison with 

corresponding WT cells. B, Effects of inhibitors of SIRT1 (sirtinol, splitomycin) and 

broad range histone deacetylases (TSA) on the 100 μM AA-induced response. For 

statistics symbols and test, see legend of Figure 1. 
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Figure 8 - Participation of histone deacetylases in AA- or OA-induced global DNA 
methylation changes. A, DNA methylation response in MEFs genetically null for SIRT1, -2 or 
-6 (indicated as "null") and matched WT controls, stimulated with 100 μM AA or OA for 24 
hours, or unstimulated (U). Statistical significance is in comparison with corresponding WT 
cells. B, Effects of inhibitors of SIRT1 (sirtinol, splitomycin) and broad range histone 
deacetylases (TSA) on the 100 μM AA-induced response. For statistics symbols and test, see 
legend of Figure 1.
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