1	Development of Hepatitis C Virus Production Reporter Assay Systems Using Two
2	Different Hepatoma Cell Lines
3	
4	Midori Takeda, ¹ Masanori Ikeda, ^{1*} Yasuo Ariumi, ^{1, 3} Takaji Wakita, ² and Nobuyuki
5	Kato ¹
6	
7	¹ Department of Tumor Virology, Okayama University, Graduate School of Medicine,
8	Dentistry, and Pharmaceutical Sciences, Okayama, Japan
9	² Department of Virology II, National Institute of Infectious Disease, Tokyo, Japan
10	
11	Key words: HCV; adaptive mutation; NS5B; renilla luciferase; HuH-7; Li23
12	
13	*Corresponding author. Mailing address: Department of Tumor Virology, Okayama
14	University, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences,
15	Okayama 700-8558, Japan
16	Phone: +81-86-235-7386.

17	FAX: +81-86-235-7392.
18	e-mail: maikeda@md.okayama-u.ac.jp
19	
20	³ Current address: Center For AIDS Research, Kumamoto University, Kumamoto
21	860-0811, Japan.
22	
23	Running title: HCV production reporter assay systems
24	
25	
26	
27	Abstract: 250 words
28	Text: 5062 words (w/o Refs.)
29	Figures and Tables: Tables, 0; Figures, 6
30	Supplementary Figures: 3
31	
32	

34 Summary

36	The hepatitis C virus (HCV) infection system was developed using the HCV JFH-1
37	strain (genotype 2a) and HuH-7 cells, and this cell culture is so far the only robust
38	production system for HCV. In patients with chronic hepatitis C, the virological effects
39	of pegylated interferon and ribavirin therapy differ depending on the HCV strains and
40	genetic background of the host. Recently, we reported the hepatoma-derived Li23 cell
41	line, in which the JFH-1 life cycle was reproduced at a level almost equal to that in the
42	HuH-7-derived cell line. To monitor the HCV life cycle more easily, we here developed
43	JFH-1 reporter assay systems using both the HuH-7- and Li23-derived cell lines.
44	To identify the genetic mutations by long-term cell culture, HCV RNAs in HuH-7 at
45	130 days after infection were amplified and subjected to sequence analysis to find the
46	adaptive mutation for robust viral replication. We identified two mutations, H2505Q
47	and V2995L, in the NS5B region. V2995L but not H2505Q enhanced JFH-1 RNA
48	replication. However, we found that H2505Q but not V2995L enhanced HCV RNA

49	replication of the strain O (genotype 1b). We also selected highly permissive D7 cells
50	by serial subcloning of Li23 cells. The expression level of claudin-1 and Niemann-Pick
51	C1-like 1 in D7 cells is higher than that in parental Li23 cells.
52	In this study, we developed HCV JFH-1 reporter assay systems using two distinct
53	hepatoma cell lines, HuH-7 and Li23. The mutations in NS5B resulted in different
54	effects on strains O and JFH-1 HCV RNA replication.
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	

66 Introduction

68	Hepatitis C virus (HCV) infection frequently causes chronic hepatitis and leads to
69	liver cirrhosis and hepatocellular carcinoma. The elimination of HCV by antiviral
70	reagents seems to be the most efficient therapy to prevent the fatal state of the disease.
71	HCV belongs to the <i>Flaviviridae</i> family and contains a positive single-stranded RNA
72	genome of 9.6 kb. The HCV genome encodes a single polyprotein precursor of
73	approximately 3000 amino acid residues, which is cleaved by host and viral protease
74	into at least 10 proteins in the following order: Core, envelope 1 (E1), E2, p7,
75	non-structural 2 (NS2), NS3, NS4A, NS4B, NS5A, and NS5B (Kato, 2001; Kato et
76	<i>al.</i> , 1990; Tanaka <i>et al.</i> , 1996).
77	The evaluation of anti-HCV reagents was difficult before the development of the
78	HCV replicon system by Lohmann et al. in 1999 (Lohmann et al., 1999). The HCV

- 79 replicon system enabled investigation of the anti-HCV reagents and the cellular factors
- 80 involved in HCV RNA replication. Following the introduction of the replicon system,

81	the genome-length HCV RNA replication systems and reporter assay systems were also
82	developed (Ikeda et al., 2005; Ikeda et al., 2002; Lohmann et al., 2001;
83	Pietschmann et al., 2002). In 2005, an HCV infection system was developed using
84	the genotype 2a JFH-1 strain (Lindenbach et al., 2005; Wakita et al., 2005;
85	Zhong et al., 2005). The JFH-1 infection system has been used to study not only the
86	viral RNA replication, but also viral infection and release. This HCV cell culture system
87	was developed using the human hepatoma cell line HuH-7 and thus far HuH-7 is the
88	only cell line to exhibit robust HCV production. Therefore, we intended to test the
89	susceptibility of various other cell lines to HCV RNA replication. Recently we
90	reported that the hepatoma cell line Li23 supported robust HCV RNA replication (Kato
91	et al., 2009). Li23 was also susceptible to authentic JFH-1 infection (Kato et al.,
92	2009). Microarray analysis revealed that HuH-7 and Li23 cells exhibited distinct gene
93	expression profiles (Mori et al., 2010). For example, we identified 3 genes (New York
94	esophageal squamous cell carcinoma 1, β -defensin-1, and galectin-3) showing
95	Li23-specific expression. Using HuH-7 and Li23 cells in combination with HCV strain
96	O (genotype 1b), we developed drug assay systems, OR6 and ORL8, respectively, by

97	introducing the renilla luciferase (RL) gene (Ikeda et al., 2005; Kato et al., 2009).
98	We found and reported that the sensitivities to anti-HCV reagents were different
99	between the HuH-7 and Li23 assay systems. For example, the Li23 assay system was 10
100	times more sensitive to ribavirin than the HuH-7 assay system (Mori et al., 2011).
101	Methotrexate showed very strong anti-HCV activity in the Li23 assay system, although
102	it showed very weak anti-HCV activity in the HuH-7 assay system (Ueda et al., 2011).
103	These results encouraged us to develop a JFH-1 reporter assay system using HuH-7 and
104	Li23 cells. This JFH-1 reporter assay system not only facilitated the monitoring of the
105	viral infection and release, but also provided us with new information that could be
106	missed in these steps when using only a HuH-7 assay system. However, the extension
107	of the size of the viral genome by introducing exogenous genes (RL and
108	encephalomyocarditis virus internal ribosomal site (EMCV-IRES)) reduced the
109	efficiency of HCV RNA replication. To overcome this issue, we tried to improve the
110	efficiency of HCV RNA replication by introducing adaptive mutations and by
111	subcloning the parental cells.

Here, we developed JFH-1 HCV production reporter assay systems in HuH-7- and

113	Li23-derived cells using adaptive mutations and subcloned cells, which monitor the life
114	cycle of HCV with luciferase activity. We also tested the effect of the mutations in
115	NS5B from JFH-1 strain on RNA replication of the specific genotype 1b O strain.
116	
117	
118	Results
119	
120	HCV mutations caused by long-term cell culture. The efficiency of HCV RNA
121	replication depends on viral genetic mutations, host cells, and viral genome size. For
122	development of the HCV reporter assay system, use of a longer viral genome reduced
123	the efficiency of viral replication. To compensate for this issue, we tried to introduce
124	adaptive mutations into the JFH-1 genome. We examined the viral sequences of JFH-1

125at 130 days after infection to HuH-7-derived RSc cells. We performed reverse

transcription polymerase chain reaction (RT-PCR) for 3 parts of the viral genome, Core 126

to NS2, NS3 to NS5A, and NS5B to 3'X. These 3 parts were separated by the AgeI, 127

SpeI, BsrGI, and XbaI sites on the viral genome. We introduced PCR products into the 128

129 cloning vector and 3 independent clones were subjected to sequencing analysis.

130	In the Core to NS2 region between the AgeI and SpeI sites (designated as AS), there
131	were 8 common mutations with amino acid substitutions, Lysine to Glutamate at amino
132	acid position 78 (K78E) in Core, P251L and A351D in E1, V402A, I414T, K715N in
133	E2, Y771C in p7, and D962G in NS2 (Fig. 1a). In the NS3 to NS5A region between
134	SpeI and BsrGI sites (designated as SB), there were 8 common mutations with amino
135	acid substitutions, V1460I, M1611T in NS3, and I2270T, Q2307R, S2363L, M2392T,
136	S2426A, and C2441S in NS5A (Fig.1b). In the NS5B to 3'X region between the BsrGI
137	and XbaI sites (designated as BX), there was only 1 common mutation with an amino
138	acid substitution, V2995L in NS5B (Fig. 1c). The determined sequences were examined
139	for further study to enhance HCV RNA replication in the JFH-1 reporter assay.
140	
141	The effect of genetic mutations on HCV RNA replication. To monitor the viral
142	life cycle more easily, we constructed dicistronic JFH-1 with a reporter gene, pJR/C-5B.
143	The first cistron contained the RL gene and was translated by HCV IRES. The second

144 cistron contained the JFH-1 open reading frame and was translated by EMCV IRES.

145This construct facilitated monitoring of all steps of the viral life cycle by the 146 quantification of RL activity. However, the use of a longer viral genome resulted in less 147replication efficiency. We tested the effect of amino acid substitution caused during 148long-term cell culture on HCV RNA replication. 149The amino acid substitution clusters from 3 independent clones in Core to NS2 (AS-1, AS-2, AS-3) were introduced into pJR/C-5B. The in vitro-transcribed HCV RNA was 150151introduced into HuH-7-derived RSc cells, and the RL activities were monitored at 24, 15248, and 72 hours after electroporation (Fig. 2a). AS-3 exhibited higher replication efficiency than the wild type (WT). However, the replication efficiency of AS-2 was 153almost equal to that of the WT and AS-1 exhibited lower replication efficiency than the 154WT. AS-3 possessed the highest replication efficiency among the tested JFH-1 mutants; 155at 72 hours the luciferase value of this clone was approximately 100 times that at 24 156157hours. The three pJR/C-5B constructs with mutations in NS3 to NS5A (SB-2, SB-3, and SB-4) 158were transcribed and introduced into RSc cells to compare the efficiency of HCV RNA 159

160 replication (Fig. 2b). Unexpectedly, RL activity was not increased over the 72 hours

after electroporation and exhibited a pattern similar to JFH-1 without the GDD motif.
This result indicates that the mutation in NS3 to NS5A exhibited negative efficiency on
HCV RNA replication.

- Finally, we tested the effect of the mutations in the NS5B region on HCV RNA replication. BX-2 contains 2 mutations with amino acid substitution (H2505Q and V2995L) and BX-7 contains only V2995L (Fig. 2c). JFH-1 with mutation(s) of BX-2 or BX-7 exhibited strong enhancement of HCV RNA replication. These results indicate that V2995L works as a strong replication-enhancing mutation (REM) in JFH-1 HCV RNA replication.
- 170

171	The mutations in NS5B differently enhanced 1b and 2a HCV RNA replication.
172	V2995L in NS5B is a common substitution in 3 clones and H2505Q is conserved in 2
173	clones (BX-2 and BX-10). We examined the corresponding amino acids at positions
174	2995 and 2505 in genotype 1b replication-competent HCV strains, O, 1B-4, and KAH5
175	(Fig. 3a) (Nishimura et al., 2009). The histidine at amino acid position 2505 in
176	JFH-1 is conserved in O, 1B-4, and KAH5 at the corresponding amino acid position

177	2482. The valine at amino acid position 2995 in JFH-1 is an alanine in O, 1B-4, and
178	KAH5 at the corresponding amino acid position 2972 (Fig. 3a). It is not clear whether
179	or not the adaptive mutation found in genotype 2a is effective in genotype 1b HCV.
180	Therefore, we investigated the effect of V2995L and/or H2505Q substitution on
181	genotype 1b HCV RNA replication. We introduced V2995L and/or H2505Q
182	substitution into the subgenomic replicon, pOR/3-5B (HCV-O). In contrast to the case
183	of JFH-1, H2505Q but not V2995L enhanced HCV-O RNA replication (Fig. 3b). These
184	results indicate that the mutations in NS5B derived from JFH-1 functioned differently in
185	genotype 1b HCV-O RNA replication.
186	
187	
188	HCV infection in the HuH-7- and Li23-derived cell lines. The choice of host
189	cells is important for the efficiency of HCV RNA replication as well as viral genetic
190	mutations. The cured cells such as HuH-7.5, HuH-7.5.1, and our RSc cells exhibit

- 191 higher replication efficiency than that of their parental HuH-7 cells (Ariumi et al.,
- 192 2007; Blight et al., 2002; Zhong et al., 2005). Therefore, we examined whether or

193	not subcloned Li23 cells may enhance HCV RNA replication. We performed serial
194	subcloning of Li23 cells from Li23-derived ORL8c cells by the limiting dilution method
195	(Fig. 4a). ORL8c cells are a cured cell line, in which genome-length HCV RNAs were
196	eliminated by interferon (IFN) treatment (Kato et al., 2009). The subclonal
197	Li23-derived cell lines were selected from among 50-100 independent single cells in
198	96-well plates by 3-round limiting dilution from ORL8c cells (sFig. 1a). First, L8c15
199	cells were selected from their parental ORL8c cells by limiting dilution. Then, C22 cells
200	were selected from their parental L8c15 cells by limiting dilution. And finally, D7 cells
201	were selected from C22 cells by limiting dilution (sFig.1b). Together, these steps
202	resulted in the selection of 3 subclonal cell lines that respectively exhibited the strongest
203	replication efficiency in each round selection. The lineages of the selected cell lines
204	after 3 rounds of subcloning were L8c15, C22, and D7 cells, respectively.
205	We tested the subcloned cells for their HCV infectivities in comparison with HuH-7
206	and HuH-7-derived RSc cells. We previously reported that RSc cells could highly
207	support HCV replication and production (Kato et al., 2009). Li23 and its derived
208	ORL8c, L8c15, C22, and D7 cells were infected using the supernatant from JR/C-5B

209	with BX-2 mutants replicating RSc cells at a moi of 0.2 (Fig. 4b and 4c). The RL
210	activities were determined at 24, 48, 72, and 96 hours after infection and focus-forming
211	units (FFUs)/ml were determined at 48 hours after infection. The efficiency of HCV
212	infectivity was highest in D7 cells, followed in order by C22, L8c15, and Li23 cells.
213	The HCV RNA replication in D7 cells was almost equal to that in RSc cells. These
214	results suggest that the subcloned cell lines exhibit higher susceptibility to HCV
215	infection than that of their parental cells.
216	Next, we further characterized the susceptibility of D7 cells to HCV infection in
217	comparison with RSc cells, because D7 cells exhibited the highest susceptibility to
218	HCV infection among the Li23-derived cell lines. D7 cells also exhibited the highest
219	production and release of Core into the supernatant among the parental
220	C22-derived subclonal cells (sFig. 1b). The susceptibility of the HCV reporter assay
221	system to HCV infection was examined using HuH-7- and Li23-derived cells.
222	Supernatants from JR/C-5B with AS-3 or with BX-2 mutations replicating RSc cells
223	were used as inocula. The supernatant from authentic JFH-1 replicating RSc cells was
224	used as a positive control. RSc and D7 cells were inoculated with each HCV containing

225	supernatant and the number of FFUs/ml was determined at 48 hours after infection. As
226	shown in Fig. 4(d), the values of FFUs/ml for AS-3 were 2.5 x 10^4 and 1.0 x 10^4 in RSc
227	and D7 cells, respectively. The values of FFUs/ml for BX-2 were 3.1 x 10^4 and 1.8 x
228	10^4 in RSc and D7 cells, respectively. The values of FFUs/ml for authentic JFH-1 were
229	2.9×10^5 and 1.2×10^5 in RSc and D7 cells, respectively. These results indicate that the
230	infectivities of these 3 inocula were almost equal between RSc and D7 cells.
231	Next we examined Core expression after infection of HCV to RSc and D7 cells, as
232	D7 cells exhibited the highest infectivity among the Li23-derived cell lines (Fig. 4e).
233	Core was detected at 2, 3, and 4 days after infection of the supernatant from JR/C-5B
234	with BX-2-infected RSc cells. Although the Core expression in D7 cells was slightly
235	weaker than that in RSc cells, the signal of Core in HCV-infected D7 cells was equal to
236	that in stable ORL8 cells. These results suggest that the JFH-1 reporter assay system in
237	Li23 cells is useful not only for the RL assay but also for Core expression.
238	

239 The expression of HCV receptors in parental and subclonal hepatoma cell lines. 240 We further tested the expression of HCV receptors, CD81, scavenger receptor class B

241	member I (SR-BI), claudin-1 (CLDN1), and occludin (OCLN). We also examined the
242	expression of the recently reported HCV entry factor, Niemann-Pick C1-like 1
243	(NPC1L1) (Sainz et al. 2012). The expression levels of CD81 in Li23 and its subclonal
244	cells were higher than that in HuH-7 and RSc cells (Fig. 5a). Although, the expression
245	of CD81 in Li23-derived cell lines were lower than that in parental Li23 cells,
246	interestingly the expression levels of CD81 increased, when the rounds of selection
247	were going on. There is no tendency in the expression of SR-BI among the cell lines
248	tested (Fig. 5b). The expressions of CLDN1 in Li23-derived cells were higher than that
249	in parental Li23 cells (Fig. 5c). The expression levels of OCLN in Li23 and its
250	subclonal cells were higher than those in HuH-7 and RSc cells (Fig. 5d). Finally, the
251	expressions of NPC1L1 in Li23-derived cell lines were higher than that in parental Li23
252	cells (Fig. 5e). It is noteworthy that the expression level of NPC1L1 in RSc cells was
253	approximately 2 log (10) lower than that in parental HuH-7 cells. Taken these results
254	together, the expressions of OCLN and NPC1L1 in Li23-derived cells were higher than
255	that in parental Li23 cells.

257	Life cycle of the HCV reporter assay system in Li23-derived cells. We
258	investigated whether or not D7 cells produce infectious HCV. First, D7 cells were
259	inoculated using the supernatant from JR/C5B with BX-2 in RSc cells, and the
260	supernatant was stocked at 17 days after infection. Then, the supernatant derived from
261	the D7 cells was used as an inoculum for reinfection to naïve D7 cells. RL activities
262	were determined at 2, 6, 10, and 14 days after reinfection (Fig. 6). The RL activity was
263	increased after reinfection in D7 cells and reached a plateau at 10 days after reinfection.
264	These data indicate that the JFH-1 reporter assay system is also useful for monitoring
265	the HCV life cycle in Li23-derived cell lines.
266	
267	
268	
269	Discussion
270	
271	In this study, we developed an HCV production reporter assay system using 2
272	distinct hepatoma cell lines, HuH-7 and Li23. The robust HCV RNA replication and

273	viral production were achieved by the introduction of REMs into the structural
274	region or into the NS5B region. These REMs were obtained from JFH-1-infected
275	long-term cell culture. The two REMs in NS5B (H2505Q and V2995L substitutions)
276	derived from JFH-1 had different effects on genotype 1b HCV-O RNA replication, and
277	2a JFH-1 RNA replication. Furthermore, the subcloned Li23-derived D7 cells produced
278	by serial limiting dilution supported this HCV production reporter assay system.
279	Several groups have reported JFH-I reporter virus systems (Koutsoudakis et al.,
280	2006; Marcello et al., 2006; Pietschmann et al., 2002; Wakita et al., 2005).
281	However, robust reporter virus production was limited within the study using
282	HuH-7-derived cells. Therefore, we attempted to developed a JFH-1 reporter virus assay
283	system using our previously reported line of Li23 cells (Kato et al., 2009).
284	The introduction of RL and EMCV-IRES genes into the HCV gene lengthened the
285	genome size of HCV by approximately 1.9 kb and led to a reduction in the efficiency of
286	HCV RNA replication. To overcome this disadvantage, we adopted the following
287	strategies: (1) Introduce the REMs; (2) Select the cloned Li23-derived cells with a
288	highly permissive host condition by the serial limiting dilution method. For the first

289	purpose, we performed sequence analyses for HCV RNA from JFH-1-infected RSc
290	cells. The mutations from Core to the NS2 or NS5B region enhanced HCV RNA
291	replication. However, the combination of these mutations from two different regions
292	reduced HCV RNA replication (sFigs. 2a-c). The reason for this result may be that these
293	2 mutation clusters were obtained from distinct RT-PCR amplified clones and they were
294	not necessarily located on the same viral genome. It had been reported that the
295	combination of REMs exhibited an antagonistic effect on HCV RNA replication
296	(Lohmann et al., 2001). For the second purpose, we selected the highly permissive
297	Li23-derived clonal cells by the limiting dilution method. We obtained 3 Li23-derived
298	subclonal cell lines, L8c15, C22, and D7, in order from parental Li23-derived ORL8c
299	cells. The efficiency of infectivity was highest in D7 cells, followed in order by C22,
300	L8c15, and Li23 cells. D7 cells were highly permissive for infection of HCV with
301	NS5B mutations.
302	As shown in Fig. 3(a), the histidine at amino acid position 2505 in JFH-1 was

- 303 conserved in the replication competent O, 1B-4, and KAH5 strains at the corresponding
- amino acid position 2482. The valine at amino acid position 2995 in JFH-1 was alanine

305	in O, 1B-4, and KAH5 strains at the corresponding amino acid position 2972. The
306	REMs in genotype 1b HCV were usually obtained by the selection with neomycin after
307	HCV RNA electroporation. Pietschmann et al. reported that the REM impaired the
308	infectious viral production (Pietschmann et al., 2009). Most of the REMs were
309	located in the NS3 and NS5A regions (Abe et al., 2007; Blight et al., 2002;
310	Lohmann et al., 2001; Pietschmann et al., 2002). NS5A is a key molecule for
311	viral production and REMs affect the phosphorylation status of NS5A and the
312	interaction with Core (Kato et al., 2008; Masaki et al., 2008; Tellinghuisen et al.,
313	2008). In contrast, our REMs in NS5B were obtained in JFH-1-infected long-term cell
314	culture without drug selection. Taking this information into account, we considered that
315	H2505Q in NS5B might not interfere with the genotype 1b viral production. We
316	attempted to apply this REM from genotype 2a to genotype 1b and found that H2505Q
317	enhanced replication of the genotype 1b HCV-O replicon. We are currently
318	investigating whether or not our NS5B REM could enhance genotype 1b HCV
319	production. As for the amino acid substitution at 2995 in JFH-1 (2972 in genotype 1b),
320	we should be careful in interpretation, because the backgrounds at this position are

321	different between genotypes 2 and 1. HCV database (http://s2as02.genes.nig.ac.jp/)
322	analysis revealed that the consensus amino acid at 2995 in genotype 2 and at 2972 in
323	genotype 1 was valine and alanine, respectively. Furthermore, alanine and valine are not
324	found at 2995 in genotype 2 and at 2972 in genotype 1, respectively. These observations
325	indicate that amino acid substitution between alanine and valine at these positions may
326	be lethal for both genotype HCVs. Amino acid at 2995 in genotype 2 (2972 in genotype
327	1) is just upstream of cis-acting replication element in NS5B. Therefore, RNA at this
328	position may affect the HCV RNA replication. To clarify this issue, further study will
329	be needed.
329 330	be needed. A comparative study using HuH-7- and Li23-based JFH-1 reporter assay systems
329 330 331	be needed. A comparative study using HuH-7- and Li23-based JFH-1 reporter assay systems would be expected to reveal new information on the viral entry and release steps,
329 330 331 332	be needed. A comparative study using HuH-7- and Li23-based JFH-1 reporter assay systems would be expected to reveal new information on the viral entry and release steps, because the backgrounds of these cells are different. Our recent study on these cells
329 330 331 332 333	be needed. A comparative study using HuH-7- and Li23-based JFH-1 reporter assay systems would be expected to reveal new information on the viral entry and release steps, because the backgrounds of these cells are different. Our recent study on these cells revealed the difference in sensitivities to anti-HCV reagents, including ribavirin and
 329 330 331 332 333 334 	be needed. A comparative study using HuH-7- and Li23-based JFH-1 reporter assay systems would be expected to reveal new information on the viral entry and release steps, because the backgrounds of these cells are different. Our recent study on these cells revealed the difference in sensitivities to anti-HCV reagents, including ribavirin and methotrexate (Mori <i>et al.</i> , 2011; Ueda <i>et al.</i> , 2011). Furthermore, the IL28B genotype
 329 330 331 332 333 334 335 	be needed. A comparative study using HuH-7- and Li23-based JFH-1 reporter assay systems would be expected to reveal new information on the viral entry and release steps, because the backgrounds of these cells are different. Our recent study on these cells revealed the difference in sensitivities to anti-HCV reagents, including ribavirin and methotrexate (Mori <i>et al.</i> , 2011; Ueda <i>et al.</i> , 2011). Furthermore, the IL28B genotype was different between HuH-7 and Li23 cells. The IL28B genotype (rs8099917) of

337 sensitive to pegylated IFN and ribavirin (Ikeda et al. unpublished data).

338	Recently, it was reported that stable expression of miR122 enhanced JFH-1 HCV
339	production in Hep3B and HepG2 (Kambara et al., 2011; Narbus et al., 2011). It is
340	noteworthy that the expression of miR122 in Li23-derived cells was almost the same as
341	that in HuH-7 cells (sFig. 3). The high level expression of miR122 in Li23 cells may be
342	one of the reasons that Li23 cells can support HCV production as robust as that in
343	HuH-7 cells among the hepatocyte-derived cell lines. Interestingly, the expression
344	levels of miR122 are higher in ORL8c, L8c15, and D7 cells, but not in C22 cells than
345	that in parental Li23 cells (sFig. 3). This result suggests that the expression level of
346	miR122 may partly contribute to the fitness of HCV replication and production.
347	So far, we have only little information regarding the mechanism that subclonal
348	cells support HCV replication and production more efficiently than the parental cells. In
349	this study, we found that the expression levels of CLDN1 and NPC1L1 in Li23-derived
350	subclonal cells were higher than those in the parental Li23 cells. These results suggest
351	that high expression level of these entry factors in the Li23-derived subclonal cells may
352	contribute to enhance the viral entry. In the course of the experiment to determine the

368	Cell cultures. RSc cells and ORL8c cells were derived from the cell lines HuH-7
367	
366	Materials and Methods
365	
364	
363	the life cycle of HCV.
362	strains in viral RNA replication. These findings will become useful tools in the study of
361	REMs (V2995L and H2505Q substitutions) in NS5B on genotypes 2a and 1b HCV
360	NP1C1L were higher than those in the parental Li23 cells. We found different effects of
359	HuH-7-derived RSc and Li23-derived D7 cells. The expression levels of CLDN1 and
358	In summary, we have developed JHF-1 reporter assay systems using
357	cells. Further study will be needed to clarify this issue.
356	HCV entry, (2) unknown entry factor compensate for NPC1L1 in the entry step in RSc
355	possible mechanisms for this are (1) very low expression of NPC1L1 is enough for
354	cells expressed very low level of NPC1L1 compared with the parental HuH-7 cells. The
353	expression levels of NPC1L1 in HuH-7- and Li23-derived cell lines, we found that RSc

RT-PCR and sequencing analysis. RSc cells were infected with cell 377 378 culture-grown HCV (HCVcc) and cultured for 130 days. Total RNAs from these cells were prepared using an RNeasy extraction kit (Qiagen, GmbH, Germany). These 379 380 RNA samples were used for RT-PCR in order to amplify the Core to NS2 region (4.0 381 kb), NS3 to NS5A region (3.6 kb), and NS5B to 3'X region (1.9 kb). RT was performed 382with the Oligo dA23 primer, 5'-AAAAAAAAAAAAAAAAAAAAAAAAA.''. The 383 following primer pair was employed to amplify the Core to NS2 region: for JFH-1/AgeI, 384 5'-CCCAAGCTTACCGGTGAGTACACCGGAATTGC-3'; and for JFH-1/SpeIR,

385 5'-TGCCATGTGCCTTGGATAGGTACG -3'. The JFH-1/*Spe*I: primer pair 386 5'-CCCAGGGGTACAAAGTACTAGTGC-3' and JFH-1/BsrGIR: 387 5'-CCCAAGCTTTACCTTTTTAGCCCTCTGTGAGGC-3' was employed to amplify 388 NS3 NS5A region. JFH-1/*BsrG*I: to The primer pair 389 5'-CCGCTCGAGACCCTTTGAGTAACTCGCTGTTGC-3' JFH-1/XbaIR: and 390 5'-GCTCTAGACATGATCTGCAGAGAGAGACCAGTTAC-3' was employed to amplify 391 NS5B to 3'X region. SuperScript III reverse transcriptase (Invitrogen, Carlsbad, CA) 392 and KOD-plus DNA polymerase (Toyobo, Osaka, Japan) were used for RT and PCR, 393 respectively. PCR products were ligated into pBluescript II and 3 independent clones 394 were subjected to sequencing analysis. 395 396 Plasmid construction. pJR/C-5B plasmid is a dicistronic HCV JFH-1 construct. 397 The RL genes and HCV open reading frame were introduced in the first cistron and in 398 the second cistron, respectively. To construct this plasmid, we fused the JFH-1 5'

400 products were ligated into pFGR-JFH-1 (GenBank Accession No. AB237837) at the

399

5'untranslated region (UTR) region with the RL gene by overlap PCR, and the PCR

401	AgeI	and	PmeI	sites.	For	the	first	PCR,	the	primer	pair
402	5'-GCC	GCCTA	GCCATC	GCGTT	AGTAT	ΓG	-3'	(for	J	5dC)	and
403	5'-AA(GCCAT	GGCCG(GCCCTG	GGCG	ACGG	ITGGT	GTTTCT	TTTG	G-3'	(for
404	J5dCR)) was	employ	red to	ampli	fy the	e 5'U	ΓR, and	l the	primer	pair
405	5'-AA0	CCGTC	GCCCAC	GGGCCG	GCCA	TGGCI	ГТССА.	AGGTG1	TACGA	CCCC-3'	(for
406	JRL) ar	nd 5'-T(CGAAAT	CTCGT	GATGO	GCAGG	GTTGG-	-3' (for JI	RLR) w	as employ	ed to
407	amplify	the RI	region.	These fir	st PCR	produc	ets were	used in t	the seco	ond PCR a	s the
408	templat	es. For	the seco	ond PCR,	, the pr	rimer p	air J5d0	C and JR	LR wa	is employe	ed to
409	amplify	v 5'UTR	and RL.	KOD-plı	ıs DNA	polym	erase wa	as used fo	or PCR.		
410	The H2	2505H a	and/or A2	2995 mut	tations	were in	troduce	d into th	e HCV	-O replico	on by
411	QuickC	Change r	nutagenes	sis (Strata	igene, L	.a Jolla,	CA) as	described	d previo	ously (Iked	la <i>et</i>
412	<i>al.</i> , 200	02).									
413											

414 **Luciferase reporter assay.** For the luciferase assay, $1.0 \sim 1.5 \times 10^4$ 415 HCV-harboring cells were plated onto 24-well plates in triplicate and were cultured for 416 24 to 96 hours after electroporation or infection, as described previously (Ikeda *et al.*, 417 2005). The cells were harvested with renilla lysis reagent (Promega, Madison, WI) and418 subjected to RL assay according to the manufacturer's protocol.

419

420 Western blot analysis. The preparation of cell lysates, sodium dodecyl 421 sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and immunoblotting were 422 performed as described previously (Kato *et al.*, 2003). The antibodies used in this study 423 were Core- (CP11; Institute of Immunology, Tokyo, Japan) and β-actin antibody 424 (AC-15; Sigma, St. Louis, MO). Immunocomplexes were detected with a Renaissance 425 enhanced chemiluminescence assay (Perkin Elmer Life Science, Boston, MA).

426

427 **HCV infection and determination of FFU.** To determine FFU/ml, 6 x 10³ cells 428 were plated onto a 96-well plate 24 hours before infection. The supernatant of HCV 429 RNA-replicating cells was serially diluted and was used as an inoculum. Forty-eight 430 hours after infection, the cells were fixed and Core was stained with anti-Core antibody 431 and HRP-conjugated mouse anti-IgG antibody. Then, the expression of Core was 432 visualized with a DAB substrate kit (DAKO). The culture supernatants and cells were

433	collected for quantification of the Core by enzyme-linked immunosorbent assay
434	(ELISA) (Mitsubishi Kagaku Bio-Clinical Laboratories, Tokyo, Japan).
435	
436	The quantitative RT-PCR analysis. The quantitative RT-PCR analysis for HCV
437	receptors was performed using real-time LightCycle PCR (Roche Diagnostics, Basel,
438	Switzerland) as described previously (Ikeda et al., 2005). The primer pairs for CD81,
439	SR-BI, CLDN1, and OCLN were previously reported by Nakamuta et al. (Nakamuta et
440	al., 2011). The primer pair, NPC1L1: 5'-agatettettettecgeetee-3' and NPC1L1R:
441	5'-tgccagagccgggttaac-3' was used for NPC1L1.
442	
443	Statistical analysis. The luciferase activities were statistically compared between
444	the various treatment groups using Student's t -test. P values of less than 0.05 were
445	considered statistically significant. The mean \pm standard deviation is determined from at
446	least three independent experiments.
447	

448 Acknowledgements

449	The authors would like to thank Masayo Takemoto, Takashi Nakamura and Keiko
450	Takeshita for their technical assistance. This work was supported by grants-in-aid for
451	research on hepatitis from the Ministry of Health, Labor, and Welfare of Japan.
452	
453	
454	
455	
456	
457	References
458	
459	
460	Abe, K., Ikeda, M., Dansako, H., Naka, K. & Kato, N. (2007). Cell
461	culture-adaptive NS3 mutations required for the robust replication of
462	genome-length hepatitis C virus RNA. Virus Res 125, 88-97.
463	Ariumi, Y., Kuroki, M., Abe, K., Dansako, H., Ikeda, M., Wakita, T.
464	& Kato, N. (2007). DDX3 DEAD-box RNA helicase is required for

465	hepatitis C virus RNA replication. J Virol 81, 13922-13926.
466	Blight, K. J., McKeating, J. A. & Rice, C. M. (2002). Highly
467	permissive cell lines for subgenomic and genomic hepatitis C virus
468	RNA replication. <i>J Virol</i> 76 , 13001-13014.
469	Ikeda, M., Abe, K., Dansako, H., Nakamura, T., Naka, K. & Kato,
470	N. (2005). Efficient replication of a full-length hepatitis C virus
471	genome, strain O, in cell culture, and development of a luciferase
472	reporter system. Biochem Biophys Res Commun 329, 1350-1359.
473	Ikeda, M., Yi, M., Li, K. & Lemon, S. M. (2002). Selectable
474	subgenomic and genome-length dicistronic RNAs derived from an
475	infectious molecular clone of the HCV-N strain of hepatitis C virus
476	replicate efficiently in cultured Huh7 cells. J Virol 76, 2997-3006.
477	Kato, N. (2001). Molecular virology of hepatitis C virus. Acta Med
478	<i>Okayama</i> 55 , 133-159.
479	Kato, N., Hijikata, M., Ootsuyama, Y., Nakagawa, M., Ohkoshi, S.,
480	Sugimura, T. & Shimotohno, K. (1990). Molecular cloning of the

481	human hepatitis C virus genome from Japanese patients with non-A,
482	non-B hepatitis. Proc Natl Acad Sci USA 87, 9524-9528.
483	Kato, N., Mori, K., Abe, K., Dansako, H., Kuroki, M., Ariumi, Y.,
484	Wakita, T. & Ikeda, M. (2009). Efficient replication systems for
485	hepatitis C virus using a new human hepatoma cell line. Virus Res
486	146 , 41-50.
487	Kato, N., Sugiyama, K., Namba, K., Dansako, H., Nakamura, T.,
488	Takami, M., Naka, K., Nozaki, A. & Shimotohno, K. (2003).
489	Establishment of a hepatitis C virus subgenomic replicon derived from
490	human hepatocytes infected in vitro. Biochem Biophys Res Commun
491	306 , 756-766.
492	Kato, T., Choi, Y., Elmowalid, G., Sapp, R. K., Barth, H.,
493	Furusaka, A., Mishiro, S., Wakita, T., Krawczynski, K. &
494	Liang, T. J. (2008). Hepatitis C virus JFH-1 strain infection in
495	chimpanzees is associated with low pathogenicity and emergence of an
496	adaptive mutation. <i>Hepatology</i> 48 , 732-740.

497	Koutsoudakis, G., Kaul, A., Steinmann, E., Kallis, S., Lohmann,
498	V., Pietschmann, T. & Bartenschlager, R. (2006).
499	Characterization of the early steps of hepatitis C virus infection by
500	using luciferase reporter viruses. J Virol 80, 5308-5320.
501	Lindenbach, B. D., Evans, M. J., Syder, A. J., Wolk, B.,
502	Tellinghuisen, T. L., Liu, C. C., Maruyama, T., Hynes, R. O.,
503	Burton, D. R., McKeating, J. A. & Rice, C. M. (2005).
504	Complete replication of hepatitis C virus in cell culture. Science 309,
505	623-626.
506	Lohmann, V., Korner, F., Dobierzewska, A. & Bartenschlager, R.
507	(2001). Mutations in hepatitis C virus RNAs conferring cell culture
508	adaptation. J Virol 75, 1437-1449.
509	Lohmann, V., Korner, F., Koch, J., Herian, U., Theilmann, L. &
510	Bartenschlager, R. (1999). Replication of subgenomic hepatitis C
511	virus RNAs in a hepatoma cell line. <i>Science</i> 285 , 110-113.
512	Marcello, T., Grakoui, A., Barba-Spaeth, G., Machlin, E. S.,

513	Kotenko, S. V., MacDonald, M. R. & Rice, C. M. (2006).
514	Interferons alpha and lambda inhibit hepatitis C virus replication
515	with distinct signal transduction and gene regulation kinetics.
516	<i>Gastroenterology</i> 131 , 1887-1898.
517	Masaki, T., Suzuki, R., Murakami, K., Aizaki, H., Ishii, K.,
518	Murayama, A., Date, T., Matsuura, Y., Miyamura, T.,
519	Wakita, T. & Suzuki, T. (2008). Interaction of hepatitis C virus
520	nonstructural protein 5A with core protein is critical for the
521	production of infectious virus particles. J Virol 82, 7964-7976.
522	Mori, K., Ikeda, M., Ariumi, Y., Dansako, H., Wakita, T. & Kato, N.
523	(2011). Mechanism of action of ribavirin in a novel hepatitis C virus
524	replication cell system. Virus Res 157, 61-70.
525	Nakamuta, M., Fujino, T., Yada, R., Aoyagi, Y., Yasutake, K.,
526	Kojima, M., Fukuizumi, K., Yoshimoto, T. Harada, N., Yada,
527	M., Kato, M., Kotoh, K., Taketomi, A.,Maehara, Y.,
528	Nakashima, M. & Enjoji, M. (2011). Expression profile of genes

529	associated with entry in HCV-infected human liver. J Med Virol 83,
530	921-927.
531	Nishimura, G., Ikeda, M., Mori, K., Nakazawa, T., Ariumi, Y.,
532	Dansako, H. & Kato, N. (2009). Replicons from genotype 1b
533	HCV-positive sera exhibit diverse sensitivities to anti-HCV reagents.
534	Antiviral Res 82, 42-50.
535	Pietschmann, T., Lohmann, V., Kaul, A., Krieger, N., Rinck, G.,
536	Rutter, G., Strand, D. & Bartenschlager, R. (2002). Persistent
537	and transient replication of full-length hepatitis C virus genomes in
538	cell culture. J Virol 76, 4008-4021.
539	Pietschmann, T., Zayas, M., Meuleman, P., Long, G., Appel, N.,
540	Koutsoudakis, G., Kallis, S., Leroux-Roels, G., Lohmann, V.
541	& Bartenschlager, R. (2009). Production of infectious genotype 1b
542	virus particles in cell culture and impairment by replication
543	enhancing mutations. <i>PLoS Pathog</i> 5 , e1000475.
544	Sainz, B., Jr., Barretto, N., Martin, D. N., Hiraga, N., Imamura,

545	M., Hussain, S., Marsh, K. A., Yu, X., Chayama, K., Alrefai,
546	W. A. & Uprichard, S. L. (2012). Identification of the
547	Niemann-Pck C1-like 1 choresterol absorption receptor as a new
548	hepatitis C virus entry factor. Nat Med 18, 281-285.
549	Tanaka, T., Kato, N., Cho, M. J., Sugiyama, K. & Shimotohno, K.
550	(1996). Structure of the 3' terminus of the hepatitis C virus genome.
551	J Virol 70, 3307-3312.
552	Tellinghuisen, T. L., Foss, K. L. & Treadaway, J. (2008). Regulation
553	of hepatitis C virion production via phosphorylation of the NS5A
554	protein. PLoS Pathog 4, e1000032.
555	Ueda, Y., Mori, K., Ariumi, Y., Ikeda, M. & Kato, N. (2011). Plural
556	assay systems derived from different cell lines and hepatitis C virus
557	strains are required for the objective evaluation of anti-hepatitis C
558	virus reagents. Biochem Biophys Res Commun 409, 663-668.
559	Wakita, T., Pietschmann, T., Kato, T., Date, T., Miyamoto, M.,
560	Zhao, Z., Murthy, K., Habermann, A., Krausslich, H. G.,

561	Mizokami, M., Bartenschlager, R. & Liang, T. J. (2005).
562	Production of infectious hepatitis C virus in tissue culture from a
563	cloned viral genome. <i>Nat Med</i> 11 , 791-796.
564	Zhong, J., Gastaminza, P., Cheng, G., Kapadia, S., Kato, T.,
565	Burton, D. R., Wieland, S. F., Uprichard, S. L., Wakita, T. &
566	Chisari, F. V. (2005). Robust hepatitis C virus infection in vitro.
567	<i>Proc Natl Acad Sci USA</i> 102 , 9294-9299.
568	
569	
570	
571	
572	
573	
574	Figure Legends
575	

577 infection. RT-PCR was performed for HCV RNAs from HuH-7 cells at 130 days after 578JFH-1 infection. PCR products were subcloned into pBluescript II plasmid. (a) Three 579clones of the Core to NS2 region between the AgeI and SpeI sites (AS) were subjected 580to sequencing analysis. (b) Three clones of the NS3 to NS5A region between the SpeI 581and BsrGI sites (SB) were subjected to sequencing analysis. (c) Three clones of the 582NS5B to 3'X region between the BsrGI and XbaI sites (BX) were subjected to sequencing analysis. Closed and open triangles are conservative and nonconservative 583584amino acid substitutions, respectively.

585

Fig. 2. The effect of amino acid substitutions on HCV RNA replication. (a) The Core to NS2 region. (b) The NS3 to NS5A region. (c) NS5B to 3'X region. Amino acid substitutions were introduced into pJR/C5B and *in vitro*-synthesized RNAs were electroporated into HuH-7-derived RSc cells. RL activity was determined at 24, 48, and 72 hours after electroporation. dGDD is a negative control without the GDD motif and WT is a wild type.

593	Fig. 3. The effect of amino acid substitutions in NS5B on genotype 1b and 2a HCV
594	RNA replication. (a) Alignment of amino acids at positions 2505 (JFH-1) and 2482
595	(genotype 1b) and around the adjacent region (upper panel). Alignment of amino acid at
596	positions 2995 (JFH-1) and 2972 (genotype 1b) and around the adjacent region (lower
597	panel). The HCV strains of O, KAH5, and 1B-4 belong to genotype 1b. (b) H2505Q
598	and/or V2995L were introduced into the HCV-O subgenomic replicon (pOR/3-5B), and
599	transcribed RNAs were electroporated into RSc cells. The RL activities were tested at
600	24, 48, and 72 hours after infection. dGDD is a negative control without a GDD motif
601	and WT is a wild type.

Fig. 4. HCV infection in HuH-7- and Li23-derived cell lines. (a) History of the selection
of subclonal Li23-derived cell lines. (b) HuH-7, HuH-7–derived RSc, Li23-derived
ORL8c, L8c15, C22, and D7 cells were inoculated with supernatant from JR/C5B/BX-2
replicating RSc cells. (c) FFUs were determined at 48 hour after infection of HCV to
HuH-7- and Li23-derived cells using the supernatant from JR/C5B/BX-2 replicating
RSc cells. (d) FFUs were determined at 48 hours after infection of HCV to RSc or D7

609	cells using the supernatant from JR/C5B/AS-3- or JR/C5B/BX-2-replicating RSc cells.
610	The supernatant from authentic JFH-1-replicating RSc cells was used as a positive
611	control. (e) The Core expressions in RSc or D7 cells were determined at 1, 2, 3, and 4
612	days after infection of JFH-1 with BX-2 mutations. Lanes 1 and 6 are mock-infected
613	cells. Lanes 2 and 7 are cells at 1 day after infection. Lanes 3 and 8 are cells at 2 days
614	after infection. Lanes 4 and 9 are cells at 3 days after infection. Lanes 5 and 10 are cells
615	at 4 days after infection. Lanes 11 and 12 are OR6c and OR6 cells, respectively. Lanes
616	13 and 14 are ORL8c and ORL8 cells, respectively. OR6 and ORL8 were used as
617	positive controls. OR6c and OR8c were used as negative controls.

Fig. 5. The expression levels of HCV receptors in HuH-7- and Li23-derived cells.
Quantitative RT-PCR was performed for CD81, SR-B1, CLDN1, OCLN, and NPC1L1
as described in Materials and Methods. Relative expression levels of mRNA were
shown, when the expression level of each receptor in HuH-7 was assigned to be 1.
GAPDH was used as an internal control. Experiments were done in triplicate.

- 625 Fig. 6. HCV life cycle in Li23-derived D7 cells. D7 cells were inoculated with the
- 626 supernatant from D7 cells after infection of JFH-1 with BX-2 mutants. RL activities
- 627 were tested at 2, 6, 10, and 14 days after infection.

Takeda et al. Fig. 1a

Takeda et al. Fig. 1b

Takeda et al. Fig. 1c

Hours after electroporation

Takeda et al. Fig. 2a

Takeda et al. Fig. 2b

Takeda et al. Fig. 2c

consensus		TFDRLQVLDD H YRDVLKE		
JFH-1	2495	TFDRTQVLDA H YDSVLKD	2512	
0	2472	TFDRLQVLDD H YRDVLKE	2489	
KAH-5	2472	TFDRLQVLDD H YRDVLKE	2489	
1B-4	2472	TFDRLQVLDD H YRDVLKE	2489	
consensus		PAASRLDLSGWFVAGYSG	GDIYHS	
JFH-1	2982	PEARLLDLSSWFTVGAGG	GDIFHS	3

JFH-1	2982	PEARLLDLSSWFT V GAGGGDIFHS	3005
0	2959	PAASRLDLSGWFV A GYSGGDIYHS	2982
KAH-5	2959	PAASRLDLSGWFV A GYSGGDIYHS	2982
1B-4	2959	PAASRI DI SGWEV A GYSGGDIYHS	2982

Takeda et al. Fig. 3a

Takeda et al. Fig. 3b

Α $Li23 \longrightarrow ORL8c \longrightarrow L8c15 \longrightarrow C22 -$ → D7 Β 1000000 *P* < 0.01 ** 1000000 Luciferase Activity 100000 -**H**uH-7 ** ** 10000 **→**RSc -**D**-Li23 1000 -∕→ORL8c 8 ** **-*-**L8c15 100 -**O**-C22 **-**≁D7 10 1 24 96 48 72 Hours after infection Takeda et al. Fig. 4a and 4b

Takeda et al. Fig. 4c

Takeda et al. Fig. 4d

Takeda et al. Fig. 4e

Takeda et al. Fig. 5a-5d

Takeda et al. Fig. 5e

Takeda et al. Fig. 6

1 Supplementary Figure Legends

 $\mathbf{2}$

3	sFig. 1. Selection of subclonal cell lines derived from Li23 cells.
4	(a) Selection of subclonal cell lines from ORL8c by 3 round limiting dilutions. (b)
5	Selection of D7 cells from parental C22 cells. Nine clonal cell lines derived from
6	Li23-derived C22 cells were examined for their replication efficiency and Core
7	production by RL activity and ELISA.
8	
9	sFig. 2. The effect of amino acid substitutions on HCV RNA replication. (a) The
10	mutations in the Core to NS2 region (AS-3) were tested for their replication efficiency
11	in combination with those of the NS3 to NS5A region (SB-2, SB-3, and SB-4). RL
12	activity was determined at 24, 48, and 72 hours. (b) The mutations in the NS5B to 3'X
13	region (BX-2) were tested for their replication efficiency in combination with those of
14	the NS3 to NS5A region (SB-2, SB-3, and SB-4). RL activity was determined at 24, 48,
15	and 72 hours. (c) The mutations in the Core to NS2 region (AS-3) were tested for their
16	replication efficiency in combination with that of the NS5B to 3'X region (BX-2). RL

activity was determined at 24, 48, and 72 hours. dGDD is a negative control without theGDD motif and WT is a wild type.

20	sFig. 3. Mir122 expression in HuH-7- and Li23-derived cell lines. RNA preparations
21	for HuH-7, RSc, Li23, ORL8c, L8c15, C22, and D7 cells were performed with
22	ISOGEN (Nippon Gene, Tokyo, Japan). The extracted RNAs were subjected to
23	quantitative RT-PCR for miR122 using Mir- X^{TM} miRNA qRT-PCR SYBR [®] Kit
24	(Takara Bio, Shiga, Japan) according to the manufacture's instruction. U6 was used as
25	an internal control.

ORL8c $\xrightarrow{1st}$ L8c15 $\xrightarrow{2nd}$ C22 $\xrightarrow{3rd}$ D7

Β

Α

Takeda et al. sFig. 1a and 1b

Takeda et al. sFig. 2a

Hours after electroporation

Takeda et al. sFig. 2b

Takeda et al. sFig. 2c

Takeda et al. sFig. 3