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Abstract 1  

Persistent hepatitis C virus (HCV) infection frequently causes hepatocellular carcinoma. 2  

However, the mechanisms of HCV-associated hepatocarcinogenesis and disease 3  

progression are unclear. Although the human hepatoma cell line, HuH-7, has been 4  

widely used as the only cell culture system for robust HCV replication, we recently 5  

developed new human hepatoma Li23 cell line-derived OL, OL8, OL11, and OL14 cells, 6  

in which genome-length HCV-RNA (O strain of genotype 1b) efficiently replicates. OL, 7  

OL8, OL11, and OL14 cells were cultured for more than 2 years. We prepared cured 8  

cells from OL8 and OL11 cells by interferon-  treatment. The cured cells were also 9  

cultured for more than 2 years. cDNA microarray and RT-PCR analyses were performed 10  

using total RNAs prepared from these cells. We first selected several hundred highly or 11  

moderately expressed probes, the expression levels of which were upregulated or 12  

downregulated at ratios of more than 2 or less than 0.5 in each set of compared cells 13  

(e.g., parent OL8 cells versus OL8 cells cultured for 2 years). From among these probes, 14  

we next selected those whose expression levels commonly changed during a 2-year 15  

culture of genome-length HCV RNA-replicating cells, but which did not change during 16  



4  

a 2-year culture period in cured cells. We further examined the expression levels of the 1  

selected candidate genes by RT-PCR analysis using additional specimens from the cells 2  

cultured for 3.5 years. Reproducibility of the RT-PCR analysis using specimens from 3  

recultured cells was also confirmed. Finally, we identified 5 upregulated genes and 4 4  

downregulated genes, the expression levels of which were irreversibly altered during 5  

3.5-year replication of HCV RNA. These genes may play key roles in the progression of 6  

HCV-associated hepatic diseases. 7  
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1. Introduction 1  

  Hepatitis C virus (HCV) is a causative agent of chronic hepatitis, which progresses to 2  

liver cirrhosis and hepatocellular carcinoma (HCC) (Choo et al., 1989; Saito et al., 3  

1990; Thomas, 2000). However, the mechanisms of HCV-associated 4  

hepatocarcinogenesis and disease progression are still unclear. HCV is an enveloped 5  

virus with a positive single-stranded 9.6 kb RNA genome, which encodes a large 6  

polyprotein precursor of approximately 3,000 amino acid residues. This polyprotein is 7  

cleaved by a combination of the host and viral proteases into at least 10 proteins in the 8  

following order: Core, envelope 1 (E1), E2, p7, nonstructural protein 2 (NS2), NS3, 9  

NS4A, NS4B, NS5A, and NS5B (Hijikata et al., 1991, 1993; Kato et al., 1990). 10  

  The initial development of a cell culture-based subgenomic replicon system 11  

(Lohmann et al., 1999) and a genome-length HCV RNA-replication system (Ikeda et al., 12  

2002) using genotype 1b strains enabled the rapid progression of investigations into the 13  

mechanisms underlying HCV replication (Bartenschlager, 2005; Lindenbach and Rice, 14  

2005). Furthermore, these RNA replication systems have been improved such that they 15  

have become suitable for the screening of anti-HCV reagents by the introduction of 16  
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reporter genes such as luciferase (Ikeda et al., 2005; Krieger et al., 2001). Moreover, in 1  

2005, an efficient virus production system using the JFH1 genotype 2a strain was 2  

developed using human hepatoma cell line HuH-7-derived cells (Wakita et al., 2005). 3  

However, to date, HuH-7-derived cells are used as the only cell culture system for 4  

robust HCV replication (Bartenschlager and Sparacio, 2007; Lindenbach and Rice, 5  

2005). Most studies of HCV replication or anti-HCV reagents are currently carried out 6  

using a HuH-7-derived cell culture system. Therefore, it remains unclear whether or not 7  

recent advances obtained from the HuH-7-derived cell culture system reflect the general 8  

features of HCV replication or anti-HCV targets. To resolve this issue, we aimed to find 9  

a cell line other than HuH-7 that enables robust HCV replication. We recently found a 10  

new human hepatoma cell line, Li23, that enables efficient HCV RNA replication and 11  

persistent HCV production (Kato et al., 2009b). We further developed Li23-derived 12  

drug assay systems (ORL8 and ORL11) (Kato et al., 2009b), which are relevant to the 13  

HuH-7-derived OR6 assay system (Ikeda et al., 2005). Since we demonstrated that the 14  

gene expression profile of Li23 cells was distinct from that of HuH-7 cells (Mori et al., 15  

2010), we expected to find that the host factors required for HCV replication or 16  
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anti-HCV targets in Li23-derived cells would also be distinct from those in 1  

HuH-7-derived cells. Indeed, we found that treatment of the cells with approximately 10 2  

M (a clinically achievable concentration) of ribavirin, an anti-HCV drug, efficiently 3  

inhibited HCV RNA replication in both the Li23-derived ORL8 and ORL11 assay 4  

systems, but not in the HuH-7-derived OR6 assay system (Mori et al., 2011). We further 5  

demonstrated that more than half of the 26 anti-HCV reagents that have been reported 6  

by other groups as anti-HCV candidates using HuH-7-derived assay systems other than 7  

OR6 assay system exhibited different anti-HCV activities from those of the previous 8  

studies (Ueda et al., 2011). In addition, we observed that the anti-HCV activities 9  

evaluated by the OR6 and ORL8 assay systems were also frequently different (Ueda et 10  

al., 2011). Furthermore, Li23-derived cells showed epidermal growth factor 11  

(EGF)-dependent growth (Kato et al., 2009b)-like immortalized or primary hepatocyte 12  

cells (e.g., PH5CH8 (Ikeda et al., 1998)), whereas HuH-7-derived cells can grow in an 13  

EGF-independent manner. Our findings, when taken together, suggested that a study 14  

using Li23-derived cells might yield unexpected results, since only HuH-7-derived cells 15  

are commonly used in a wide range of HCV studies. 16  
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  Moreover, our findings to date suggested that the long-term replication of HCV RNA 1  

may cause irreversible changes in the gene expression profiles of host cells, yielding an 2  

environment for facilitative viral replication or progression of a malignant phenotype. 3  

To investigate this possibility, we carried out cDNA microarray and reverse 4  

transcription-polymerase chain reaction (RT-PCR) analyses of Li23-derived cells in 5  

order to identify host genes for which expression levels were irreversibly altered by the 6  

long-term replication of HCV RNA. Here we report the identification of such host 7  

genes. 8  

 9  

2. Materials and methods 10  

 2.1. Cell culture 11  

   The Li23 cell line consists of human hepatoma cells from a Japanese male (age 56) 12  

was established and characterized in 2009 (Kato et al., 2009b). Li23 cells were 13  

maintained in modified culture medium for the PH5CH8 human immortalized 14  

hepatocyte cell line (Ikeda et al., 1998), as described previously (Kato et al., 2009b). 15  

Genome-length HCV RNA-replicating cells (Li23-derived OL, OL8, OL11, and OL14 16  

cells) were also maintained in the medium for the Li23 cells in the presence of 0.3 17  
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mg/mL of G418 (Geneticin; Invitrogen, Carlsbad, CA). Cured cells (OL8c and OL11c 1  

cells), from which the HCV RNA had been eliminated by interferon (IFN)-  treatment 2  

(Abe et al., 2007), were cultured in the medium for the Li23 cells. These cells were 3  

passaged every 7 days for 3.5 years. In this study, OL, OL8, OL11, OL14, OL8c, and 4  

OL11c cells were renamed as OL(0Y), OL8(0Y), OL11(0Y), OL14(0Y), OL8c(0Y), 5  

and OL11c(0Y) cells, respectively, to specify the time at which the cells were 6  

established. Two-year cultures of OL(0Y), OL8(0Y), OL11(0Y), OL14(0Y), OL8c(0Y), 7  

and OL11c(0Y) cells were designated as OL(2Y), OL8(2Y), OL11(2Y), OL14(2Y), 8  

OL8c(2Y), and OL11c(2Y) cells, respectively. The 3.5-year cultures of OL8(0Y), 9  

OL11(0Y), OL8c(0Y), and OL11c(0Y) cells were designated as OL8(3.5Y), 10  

OL11(3.5Y), OL8c(3.5Y), and OL11c(3.5Y) cells, respectively. The cured cells 11  

obtained from OL8(2Y) and OL11(2Y) cells by IFN-  treatment (Abe et al., 2007) were 12  

designated as OL8(2Y)c and OL11(2Y)c cells, respectively, and were maintained in the 13  

medium for the Li23 cells. 14  

 15  

2.2. cDNA microarray analysis 16  
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   OL(0Y), OL(2Y), OL8(0Y), OL8(2Y), OL11(0Y), OL11(2Y), OL8c(0Y), 1  

OL8c(2Y), OL11c(0Y), and OL11c(2Y) cells were cultured in the medium without 2  

G418 during a few passages, and then these cells (1 x 106 each) were plated onto 10-cm 3  

diameter dishes and cultured for 2 or 3 days. Total RNAs from these cells 4  

(approximately 70-80% confluency) were prepared using the RNeasy extraction kit 5  

(QIAGEN, Hilden, Germany). The cDNA microarray analysis was performed according 6  

to previously described methods (Kato et al., 2009b; Mori et al., 2010). Differentially 7  

expressed genes were selected by comparing the arrays from the genome-length HCV 8  

RNA-replicating cells, and the selected genes were further compared with the arrays 9  

from the cured cells (see Fig. 2 for details). 10  

 11  

2.3. RT-PCR    12  

  We performed RT-PCR in order to detect cellular mRNA as described previously 13  

(Dansako et al., 2003). Briefly, total RNA (2 g) was reverse-transcribed with M-MLV 14  

reverse trascriptase (Invitrogen) using an oligo dT primer (Invitrogen) according to the 15  

-tenth of the synthesized cDNA was used for the PCR. The 16  
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primers arranged for this study are listed in Table 1.  1  

 2  

2.4. Quantitative RT-PCR analysis  3  

   The quantitative RT-PCR analysis for HCV RNA was performed using a real-time 4  

LightCycler PCR (Roche Diagnostics, Basel, Switzerland) as described previously 5  

(Ikeda et al., 2005; Kato et al., 2009b). Quantitative RT-PCR analysis for the mRNAs of 6  

the selected genes was also performed using a real-time LightCycler PCR. The primer 7  

sets used in this study are listed in Table 1.  8  

 9  

2.5. Western blot analysis  10  

   The preparation of cell lysates, sodium dodecyl sulfate-polyacrylamide gel 11  

electrophoresis, and immunoblotting analysis with a PVDF membrane were performed 12  

as previously described (Kato et al., 2003). The antibodies used for the O strain in this 13  

study were those against Core (CP9, CP11, and CP14 monoclonal antibodies [Institute 14  

of Immunology, Tokyo, Japan]; a polyclonal antibody [a generous gift from Dr. M. 15  

Kohara, Tokyo Metropolitan Institute of Medical Science]), E1 and NS5B (a generous 16  
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gift from Dr. M. Kohara), and NS3 (Novocastra Laboratories, Newcastle upon Tyne, 1  

UK). -actin antibody (Sigma, St. Louis, MO) was used as the control for the amount of 2  

protein loaded per lane. Immunocomplexes were detected by the Renaissance enhanced 3  

chemiluminescence assay (PerkinElmer Life Sciences, Boston, MA). 4  

 5  

2.6. Statistical analysis 6  

   Statistical comparison of the luciferase activities between the treatment groups and 7  

-test. P values of less than 0.05 were 8  

considered statistically significant. 9  

 10  

3. Results 11  

3.1. E fficient replication of genome-length HCV RNA is maintained in long-term cell 12  

culture 13  

   To prepare specimens for the cDNA microarray analysis, genome-length HCV 14  

RNA-replicating OL(0Y), OL8(0Y), OL11(0Y), and OL14(0Y) cells were cultured for 15  

2 years, and were designated as OL(2Y), OL8(2Y), OL11(2Y), and OL14(2Y) cells, 16  
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respectively. Using the total RNA specimens obtained from these cells, the levels of 1  

genome-length HCV RNAs were examined by quantitative RT-PCR analysis. The 2  

results revealed that the levels of the genome-length HCV RNAs had increased in all 3  

cases after a 2-year period of HCV RNA replication (Fig. 1). The levels of HCV 4  

proteins (Core, E1, NS3, and NS5B) were also examined by Western blot analysis. The 5  

E1, NS3, and NS5B were detected in all specimens, except for the Li23 cells, although a 6  

little larger size of E1 was additionally detected in the specimens from 2-year culture 7  

(Fig. 1). This phenomenon may indicate the appearance of additional N-glycosylation 8  

sites by mutations caused during the 2-year replication of the HCV RNA, as observed in 9  

a previous report (Mori et al., 2008). In addition, Core was not detected in the cultures 10  

of OL11(2Y) cells, even when polyclonal anti-Core antibody was used (Fig. 1). A 11  

similar phenomenon was observed in a previous study using HuH-7-derived 12  

genome-length HCV RNA-replicating cells (Kato et al., 2009a). Since we detected the 13  

full-sized HCV RNA by RT-PCR analysis (data not shown), this result suggests that 14  

marked sequence variations within the epitopes of the anti-Core antibody occurred 15  

during long-term cell culture, as was also observed in a previous study using 16  



  
  
  
                                                                                                                                                                                      

   14  

HuH-7-derived cells (Kato et al., 2009a).  1  

 2  

3.2. Selection genes showing irreversible changes with long-term HCV RNA replication  3  

   To identify those genes whose expression levels were irreversibly altered by the 4  

long-term replication of HCV RNA, we performed a combination of cDNA microarray 5  

and RT-PCR analyses using several Li23-derived cell lines. An outline of the selection 6  

process performed in this study is provided in Figure 2. The first microarray analysis I 7  

was carried out by the comparison of OL(0Y) cells versus OL(2Y) cells, OL8(0Y) cells 8  

versus OL8(2Y) cells, and OL11(0Y) cells versus OL11(2Y) cells. In this step, we 9  

selected those genes whose expression levels commonly showed changes in at least two 10  

of three comparative analyses. As regards the selected genes, a microarray analysis II 11  

was performed in which OL8c(0Y) cells were compared to OL8c(2Y) cells, and 12  

OL11c(0Y) cells were compared to OL11c(2Y) cells. In this step, the genes were 13  

excluded from those selected by the microarray analysis I if their expression levels had 14  

changed during the 2-year culture of cured cells. As regards the selected genes, we next 15  

performed a RT-PCR analysis I to examine the reproducibility of changes in gene 16  
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expression levels. In this step, we added the results of a new comparative series, 1  

OL14(0Y) versus OL14(2Y), to arrive at the judgment to advance to the next step of 2  

analysis. We selected genes for which expression levels had changed in more than five 3  

of six comparative series (Fig. 2). At the last step, we confirmed by RT-PCR analysis II 4  

whether or not the expression levels of the selected genes in OL8(2Y) or OL11(2Y) 5  

cells had changed by HCV RNA replication. When the gene expression levels had not 6  

changed in two comparative series (OL8(2Y) versus OL8(2Y)c and OL11(2Y) versus 7  

OL11(2Y)c), the genes were selected as the candidates exhibiting irreversible changes 8  

after 2-year HCV RNA replication. 9  

 10  

3.3. Selection and expression profiles of genes showing upregulated expression during 11  

long-term HCV RNA replication 12  

   The process outlined in Figure 2 was used to identify those genes that exhibited 13  

irreversibly upregulated expression during the 2-year replication of HCV RNA. 14  

Microarray analysis I revealed 1912, 1148, and 1633 probes, the expression levels of 15  

which were upregulated at a ratio of more than 2 in the case of OL(0Y) cells versus 16  
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OL(2Y) cells, OL8(0Y) cells versus OL8(2Y) cells, and OL11(0Y) cells versus 1  

OL11(2Y) cells, respectively. From among these probes, we selected those showing 2  

ratios of more than 4 with an expression level of more than 100 (actual value of 3  

measurement), or those showing ratios of more than 3 with an expression level of more 4  

than 200, or those showing an expression level of 1000. By this selection process, 559, 5  

237, and 368 genes (redundant probes excluded) were assigned in the case of OL(0Y) 6  

cells versus OL(2Y) cells, OL8(0Y) cells versus OL8(2Y) cells, and OL11(0Y) cells 7  

versus OL11(2Y) cells, respectively (Fig. 3A). At this step, we obtained 51 genes as 8  

candidates exhibiting upregulation in more than two of three comparisons. Based on the 9  

results of the subsequent microarray analysis II, we further selected 14 genes from a 10  

total of 51 genes, because the expression levels of the remaining 37 genes increased 11  

during the 2-year culture of cured cells (Fig. 3B). As regards the 14 selected genes, we 12  

performed an RT-PCR analysis I to confirm the results obtained by the cDNA 13  

microarray analysis and to examine the status of gene expression in an additional 14  

comparison of OL14(0Y) cells versus OL14(2Y) cells. This analysis revealed that the 15  

mRNA levels of 6 of 14 genes showed no enhancement in two of four comparative 16  
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series (data not shown). Therefore, in this step, these 6 genes were excluded from the 1  

candidate genes. However, the mRNA levels of the remaining 8 genes (acyl-CoA 2  

synthetase medium-chain family member 3 [ACSM3], angiopoietin 1 [ANGPT1], 3  

cyclin-dependent kinase inhibitor 2C [CDKN2C], phospholipase A1 member A 4  

[PLA1A], Sel-1 suppressor of lin-12-like 3 [SEL1L3], solute carrier family 39 member 4 5  

[SLC39A4], TBC1 domain family member 4 [TBC1D4], and WNT1 inducible signaling 6  

pathway protein 3 [WISP3]) were enhanced in more than three of four comparative 7  

series (Fig. 3C). Furthermore, we demonstrated by RT-PCR analysis II that the 8  

expression levels of these 8 genes did not return to initial levels, even after elimination 9  

of HCV RNA from OL8(2Y) or OL11(2Y) cells (Fig. 3C). It was noteworthy that the 10  

mRNA levels of the ANGPT1 and PLA1A genes were enhanced in all comparative 11  

series (Fig. 3C). 12  

 13  

3.4. Selection and expression profiles of genes showing downregulated expression 14  

during long-term HCV RNA replication  15  

   To obtain genes showing irreversibly downregulated expression during the 2-year 16  
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HCV RNA replication period, we performed a selection of genes according to the 1  

methods described for the selection of upregulated genes. The first microarray analysis I 2  

in this series revealed 1901, 2128, and 1579 probes whose expression levels were 3  

downregulated at a ratio of less than 0.5 in the case of OL(0Y) cells versus OL(2Y) 4  

cells, OL8(0Y) cells versus OL8(2Y) cells, and OL11(0Y) cells versus OL11(2Y) cells, 5  

respectively. From among these probes, we selected those showing ratios of less than 6  

0.25 with an initial expression level of more than 1000 (actual value of measurement), 7  

or those showing ratios of less than 0.33 with an initial expression level of more than 8  

200, or those showing an initial expression level of 100. By this selection process, 828, 9  

622, and 466 genes (redundant probes excluded) were assigned in the case of OL(0Y) 10  

cells versus OL(2Y) cells, OL8(0Y) cells versus OL8(2Y) cells, and OL11(0Y) cells 11  

versus OL11(2Y) cells, respectively (Fig. 4A). At this step, we obtained 236 genes as 12  

candidates showing downregulation in more than two of three comparisons. Based on 13  

the results of the second microarray analysis II, we were able to select 17 genes from a 14  

total of 236 genes, as the expression levels of most of the genes had decreased during 15  

the 2-year culture of cured cells (Fig. 4B). As regards the 17 selected genes, we 16  
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performed an initial RT-PCR analysis I to confirm the results obtained by the microarray 1  

analysis I and to examine the status of gene expression by additional comparison of 2  

OL14(0Y) cells versus OL14(2Y) cells. This analysis revealed that the mRNA levels of 3  

8 of 17 genes showed no suppression in more than two of four comparative series (data 4  

not shown). Therefore, these 8 genes were excluded from the candidate genes in this 5  

step. However, the mRNA levels of the remaining 9 genes (annexin A1[ANXA1], 6  

amphiregulin [AREG], brain abundant, membrane attached signal protein 1 [BASP1], 7  

cell death activator CIDE-3 [CIDEC], carboxypeptidase B2 [CPB2], heat-shock 70 kDa 8  

[HSPA6], peptidase inhibitor 3 [PI3], solute carrier family 1 member 3 9  

[SLC1A3], and thrombospondin type-1 domain-containing protein 4 [THSD4]) were 10  

suppressed in more than three of four comparative series (Fig. 4C). Furthermore, we 11  

demonstrated by RT-PCR analysis II that the expression levels of these 9 genes did not 12  

return to initial levels, even after the elimination of HCV RNA from OL8(2Y) or 13  

OL11(2Y) cells (Fig. 4C). It is noteworthy that the mRNA levels of BASP1, CIDEC, 14  

HSPA6, and PI3 genes were suppressed in all comparative series (Fig. 4C). 15  

 16  
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3.5. Expression profiles of selected genes during 3.5-year replication of HCV RNA 1  

   As described above, we selected 8 upregulated genes and 9 downregulated genes, 2  

the expression levels of which had irreversibly changed after a 2-year period of HCV 3  

RNA replication. However, reproducibility of the RT-PCR analysis using total RNA 4  

specimens prepared from independent recultured cells would be needed or arriving at a 5  

reliable conclusion. Furthermore, in this context, it would also be important to clarify 6  

whether or not these irreversible changes in RNA expression levels remained stable or 7  

were further enhanced during HCV RNA replication if the cells were cultured for a 8  

period of more than 2 years. Since the OL8(2Y), OL8c(2Y), OL11(2Y), and OL11c(2Y) 9  

cells were continuously cultured for a period of up to 3.5 years, they were used as 10  

OL8(3.5Y), OL8c(3.5Y), OL11(3.5Y), and OL11c(3.5Y) cells with the recultured 11  

OL8(0Y), OL8(2Y), OL8c(0Y), OL8c(2Y), OL11(0Y), OL11(2Y), OL11c(0Y), and 12  

OL11c(2Y) cells, respectively, for the RT-PCR analysis in order to address the questions 13  

raised above. We first performed RT-PCR analysis of the genes indicated in Figures 3C 14  

and 4C. The results revealed that most of the genes examined showed reproducible 15  

results, as shown in Figures 3C and 4C (data not shown). However, no reproducible 16  
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results were obtained regarding ACSM3 selected as an upregulated gene and HSPA6 1  

selected as a downregulated gene (data not shown), suggesting that the mRNA levels of 2  

both genes were sensitively affected by the cell culture conditions (e.g., cell density). 3  

Regarding the remaining 7 upregulated and 8 downregulated genes, we next performed 4  

a quantitative RT-PCR analysis using the total RNA specimens prepared from OL8(0Y), 5  

OL8(2Y), OL8(3.5Y), OL11(0Y), OL11(2Y), OL11(3.5Y), OL8c(0Y), OL8c(2Y), 6  

OL8c(3.5Y), OL11c(0Y), OL11c(2Y), and OL11c(3.5Y) cells. 7  

  As regards the upregulated genes, statistically significant differences between their 8  

mRNA levels of HCV RNA-replicating cells and their cured counterparts during the 9  

culture for a period of up to 3.5 years were observed in the case of 5 genes (WISP3, 10  

TBC1D4, ANGPT1, SEL1L3, and CDKN2C) (Fig. 5). However, such a significant 11  

difference was not maintained for a period up to 3.5 years in the case of PLA1A gene 12  

(OL8(3.5Y) cells versus OL8c(3.5Y) cells) and SLC39A4 gene (OL11(3.5Y) cells 13  

versus OL11c(3.5Y) cells) (Fig. 5). These results suggest that the upregulated 14  

expression of PLA1A or SLC39A4 gene is not irreversible change by long-term 15  

replication of HCV RNA. A drastic difference between mRNA levels in HCV RNA- 16  
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replicating cells versus cured cells was observed in the case of the genes WISP3 and 1  

TBC1D4 (Fig. 5). 2  

  As for the downregulated genes, the results revealed that 4 genes (BASP1, CPB2, 3  

ANXA1, and SLC1A3) showed statistically significant differences between their mRNA 4  

levels of HCV RNA-replicating cells and their cured counterparts during the culture for 5  

a period of up to 3.5 years (Fig. 6). However, such a significant difference was not 6  

continuously observed for a period up to 3.5 years in the case of 3 genes (AREG, 7  

CIDEC, and THSD4) (Fig. 6),  although  the  expression  levels  (except  for  AREG  in  the  8  

OL11  series  and  CIDEC  in  the  OL8  series)  at  2  years  in  cell  culture  showed  reproducible  9  

differences,   as  depicted   in  Figure  4C.  Quantitative  RT-­PCR  analysis   revealed   that   the  10  

expression  levels  of  PI3  gene  drastically  decreased  during  3.5-­year  culture  of  cured  cells,  11  

although  PI3  gene  expression  was  very  low  level   in  cured  cells  (Fig.  6).  These  results  12  

suggest  that  the  downregulated  expression  of  AREG,  CIDEC,  THSD4,  or  PI3  gene  is  not  13  

irreversible  change  by  long-­term  replication  of  HCV  RNA.  The most drastic difference 14  

between mRNA levels of HCV RNA-replicating cells and their cured counterparts was 15  

observed in the case of the BASP1 gene (Fig. 6).  16  
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 1  

4. Discussion 2  

   In this study, we performed cDNA microarray and RT-PCR analyses using 3  

genome-length HCV RNA-replicating Li23-derived cells cultured for 2 years after the 4  

cells had been established as cell lines, and we performed quantitative RT-PCR analyses 5  

using these cells and additional cells cultured for a period of up to 3.5 years. 6  

Consequently, we identified 5 genes (WISP3, TBC1D4, ANGPT1, SEL1L3, and 7  

CDKN2C) showing irreversible upregulated expression, and 4 genes (BASP1, CPB2, 8  

ANXA1, and SLC1A3) showing irreversible downregulated expression with the 9  

persistent 3.5-year replication of HCV RNA. 10  

   Two possibilities can be considered as plausible biological explanations for the 11  

irreversible changes in expression levels of these identified genes. First, it is possible 12  

that these genes play roles in the optimization of the environment in HCV RNA 13  

replication. However, in the present study, we did not observe any drastic enhancement 14  

of HCV RNA replication levels during a period of at least two years of culture (Fig. 1). 15  

Furthermore, the expression levels of these genes did not differ between HCV 16  
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RNA-replicating cells and the corresponding cured cells at the time at which the cells 1  

were first established (Figs. 5 and 6), suggesting that these genes are not host factors 2  

determinative of HCV RNA levels. Therefore, it is unlikely that these genes are related 3  

to environmental factors required for HCV RNA replication. Indeed, to date, no studies 4  

reported in the literature have demonstrated that these genes are required for HCV RNA 5  

replication or that the level of HCV RNA replication is regulated by these genes. A 6  

second possible explanation for the observed irreversible changes would be that these 7  

genes play roles in the progression of HCV-associated hepatic diseases. We focused on 8  

this possibility, due to the number of reports in the literature regarding these genes. 9  

   Among the upregulated genes identified in this study, WISP3 is most interesting. 10  

WISP3 is a Wnt1-inducible cysteine-rich protein (CCN6) that belongs to the CCN 11  

family. Previous studies have linked the overexpression of WISP3/CCN6 to colon 12  

cancer (Pennica et al., 1998; Thorstensen et al., 2001), suggesting that overexpression of 13  

this protein is associated with the development of this type of cancer. However, recent 14  

studies revealed that WISP3 exerts both tumor-growth and invasion-inhibitory functions 15  

in inflammatory breast cancer and aggressive non-inflammatory breast cancer (Huang et 16  
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al., 2008, 2010). Although the role of WISP3 in the development of symptomatic cancer 1  

is controversial and unproven, enhancement of WISP3 expression in liver tissue may be 2  

involved in the progression of hepatic cancer. On the other hand, it was recently 3  

reported that WISP3 increased the migration and the expression of intercellular 4  

adhesion molecule-1 (ICAM-1) in human chondrosarcoma cells (Fong et al., 2012). 5  

Since ICAM-1 may facilitate the movement of cells through the extracellular matrix, 6  

ICAM-1 is expected to play an important role in cancer cell invasion and metastasis 7  

(Huang et al., 2004). Therefore, irreversible enhancement of WISP3 by long-term HCV 8  

RNA replication, as shown in this study, may be involved in tumor invasion or 9  

metastasis, i.e., the transition to the aggressive phenotype of human cancers. However, 10  

we could not confirm an enhancement of ICAM-1 expression in our microarray analysis. 11  

Therefore, further experiments will be necessary to clarify the biological significance of 12  

enhanced WISP3 expression by HCV. 13  

  TBC1D4 is also of interest as an enhanced gene during the long-term replication of 14  

HCV RNA. TBC1D4 was discovered as a substrate phosphorylated by insulin-activated 15  

serine-threonine kinase Akt (Kane et al., 2002). This protein, which was initially 16  
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designated as AS160 (Akt substrate of 160 kDa), has a GTPase-activating protein 1  

(GAP) and shows GAP activity with Rab 2A, 8A, 10, and 14, which participate in the 2  

translocation of the GLUT4 glucose transporter from intracellular storage vesicles to the 3  

plasma membrane (Mîinea et al., 2005). Therefore, TBC1D4 functions as a Rab 4  

inhibitor in insulin-regulated GLUT4 trafficking (Rowland et al., 2011). Since we 5  

observed the enhancement of TBC1D4 expression in this study, we simply inferred that 6  

insulin-dependent glucose uptake might be suppressed in long-term cultured cells 7  

replicating HCV RNA. However, we found very low levels of expression of GLUT4 in 8  

the Li23-derived cells used in this study, suggesting that an enhancement of TBC1D4 9  

may be involved in the trafficking of molecule(s) other than the GLUT4 transporter.  10  

  Among the downregulated genes identified in this study, three genes of interest 11  

showing altered expression levels were clearly identified by quantitative RT-PCR. The 12  

first of the three is BASP1, which was originally isolated as a membrane-bound 13  

phosphoprotein abundant in nerve terminals (Mosevitsky et al., 1997). Although the 14  

function of BASP1 in the nervous system is still unclear, it has been reported to be a 15  

transcriptional co- umor suppressor protein WT1 (Carpenter et al., 16  



27  

2004). In addition, it has also been found that BASP1 can inhibit cellular transformation 1  

by the v-Myc oncogene, and can block the regulation of Myc target genes (Hartl et al., 2  

2009). These studies suggest that BASP1 probably acts as a tumor suppressor. 3  

Furthermore, it has been reported that BASP1 is suppressed by the methylation of the 4  

BASP1 gene in a significant proportion of HCCs, and the suppression of this gene has 5  

been identified as a useful biomarker for the early diagnosis of HCC (Moribe et al., 6  

2008; Tsunedomi et al., 2010).  In this context, the suppression of BASP1 expression 7  

observed in this study may be due to the methylation of the BASP1 gene. If so, this type 8  

of methylation would likely be induced during the long-term replication of HCV RNA, 9  

as the long-term culture of cured cells did not induce a suppression of BASP1 10  

expression. To obtain additional information, we compared the mRNA levels of BASP1 11  

among HuH-7-derived HCV RNA-replicating O cells, those cells cultured for 2 years, 12  

and the corresponding cured cells. The preliminary results revealed that the mRNA 13  

levels of BASP1 in these cells were remarkably lower than those in the Li23-derived 14  

cells, and no significant differences were observed among the HuH-7-derived cells (data 15  

not shown). These results are consistent with the results in a previous report (Tsunedomi 16  
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et al., 2010) describing hypermethylation of the BASP1 gene in HuH-7 cells. However, 1  

we observed that the mRNA levels of BASP1 in Li23-derived cells (e.g., OL8, OL11) 2  

were similar to those in the immortalized hepatocyte PH5CH8 and NKNT3 cell lines 3  

(Ikeda et al., 1998; Naka et al., 2006), suggesting that the methylation status of the 4  

BASP1 gene in these cell lines is lower than that of HuH-7 cells. The results, taken 5  

together, led us to speculate that persistent HCV replication may induce the methylation 6  

of the BASP1 gene, although no association of BASP1 suppression with the aggressive 7  

phenotype of HCC has been reported to date. To clarify this point, further analysis will 8  

be needed. 9  

  A second intriguing gene is CPB2, which is produced mainly by the liver and 10  

circulates in plasma as a plasminogen-bound zymogen. Thus far, it is known that CPB2 11  

potently attenuates fibrinolysis by removing the fibrin C-terminal residues that are 12  

needed for the binding and activation of plasminogen (Redlitz et al., 1995). On the other 13  

hand, several proinflammatory mediators (e.g., C5a, osteopontin, and bradykinin) have 14  

been identified as substrates of CPB2 in vitro (Myles et al., 2003; Sharif et al., 2009). 15  

Therefore, it has been considered that CPB2 may serve an anti-inflammatory function. 16  
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Indeed, a recent study demonstrated that CPB2 plays a central role in down-regulating 1  

C5a-mediated inflammatory responses in autoimmune arthritis in mice and humans 2  

(Song et al., 2011). These findings led to the hypothesis that the suppression of CPB2 in 3  

HCV-infected hepatocytes leads to the proinflammatory status in vivo. The specific 4  

suppression of CPB2 obtained as an HCV-induced irreversible change in host cells 5  

supports the above hypothesis. Furthermore, since it has been reported that C5 is a 6  

quantitative trait gene that modifies liver fibrogenesis in mice and humans, and that it 7  

plays a causative role in human liver fibrosis (Hillebrandt et al., 2005), the suppression 8  

of CPB2 during the long-term replication of HCV RNA may be involved in liver 9  

fibrogenesis. 10  

  The third gene of interest in this context is ANXA1, a member of the superfamily of 11  

annexin proteins that bind acidic phospholipids with high affinity in the presence of 12  

Ca2+. ANXA1 is found in many differentiated cells, particularly those of the myeloid 13  

lineage, and is known to be a downstream mediator of glucocorticoids (Yazid et al., 14  

2010). Recent reports have shown that glucocorticoids can differentially affect the 15  

ANXA1 pathway in cells of the innate and adaptive immune system, and that ANXA1 16  
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is an important mediator of the anti-inflammatory effects of glucocorticoids (Perretti 1  

and . Furthermore, it was reported recently that ANXA1 is an 2  

endogenous inhibitor of NF- B which can be induced in human cancer cells and mice 3  

by anti-inflammatory glucocorticoids and modified nonsteroidal anti-inflammatory 4  

drugs (Zhang et al., 2010). The suppression of NF- B activity by the binding of 5  

ANXA1 to the p65 subunit of NF- B was accompanied by enhanced apoptosis and 6  

inhibition of cell growth. In this context, the irreversible suppression of ANXA1 7  

observed in the present study may weaken the anti-inflammatory effects of 8  

glucocorticoids. However, in our microarray analysis, no expression of the ANXA1 9  

receptor (ALXR; formyl peptide receptor 2 known as ALXR in humans) was observed. 10  

Therefore, it is unlikely that Li23-derived cells respond to glucocorticoids in an 11  

autocrine manner leading to the anti-inflammatory state, although secreted ANXA1 may 12  

interact with its target cells in a paracrine manner. On the other hand, ANXA1 has been 13  

shown to be strongly suppressed in prostate cancer (Xin et al., 2003), head and neck 14  

cancer (Garcia Pedrero et al., 2004), and esophageal cancer (Huet al., 2004). Moreover, 15  

a recent study showed that ANXA1 regulates the proliferative functions of estrogens in 16  
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MCF-7 breast cancer cells (Ang et al., 2009). In that study, it was revealed that high 1  

physiologic pregnancy levels (up to 100 nM) of estrogen enhanced ANXA1 expression 2  

and induced a growth arrest of MCF-7 cells, whereas physiologic levels of estrogen (1 3  

nM) induced the proliferation of these cells. Furthermore, silencing of ANXA1 4  

expression using ANXA1 siRNA reversed this estrogen-dependent proliferation as well 5  

as growth arrest [51]. These results suggest that ANXA1 may act as a tumor suppressor 6  

gene and modulate the proliferation function of estrogens. In this context, suppression 7  

of ANXA1 expression by long-term HCV RNA replication may modulate cell 8  

proliferation. Therefore, it is of interest whether ANXA1 acts as an anti-proliferative 9  

mediator on the Li23-derived hepatoma cell lines used in this study. To clarify this point, 10  

further experiments involving ANXA1 overexpression or silencing will be needed. 11  

  This study revealed irreversible changes in host gene expression due to the long-term 12  

replication of HCV RNA in cell culture, but not with simple long-term cell culture in the 13  

absence of HCV. Although we have not yet clarified how these irreversible changes in 14  

the expression of identified genes modify cellular function, we may speculate about the 15  

nature of the functional changes in several of these genes, as described above. 16  
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Additional studies using primary hepatocytes or immortalized noncancerous 1  

hepatocytes will be needed to clarify the biological significance of expressional changes 2  

of the identified genes. Such studies would lead to a better understanding of the 3  

mechanisms underlying the long-term persistent replication of HCV RNA that account 4  

for how such long-term replication modifies gene function in host cells.  5  
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 1  

F ig. 1. Characterization of genome-length HCV RNA-replicating cells in long-term cell 2  

culture. The upper panel shows the results of a quantitative RT-PCR analysis of 3  

intracellular genome-length HCV RNA. Total RNAs from OL(0Y), OL8(0Y), 4  

OL11(0Y), and OL14(0Y) cells after 2 years [OL(2Y), OL8(2Y), OL11(2Y), and 5  

OL14(2Y)] in culture, as well as total RNAs from the parental OL(0Y), OL8(0Y), 6  

OL11(0Y), and OL14(0Y) cells were used for the analysis. Total RNA from Li23 cells 7  

was used as a negative control. The lower panel shows the results of the Western blot 8  

analysis. Cellular lysates from cells used for quantitative RT-PCR were also used for 9  

comparison. HCV Core, E1, NS3, and NS5B were detected by Western blot analysis. 10  

-actin was used as a control for the amount of protein loaded per lane. A single asterisk 11  

indicates that the anti-Core polyclonal antibody was used for detection. A double 12  

asterisk indicates that a mixture of three kinds (CP9, CP11, and CP14) of anti-Core 13  

monoclonal antibodies was used for detection.  14  

 15  

F ig. 2. Outline of selection process performed in this study. To obtain the objective 16  
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genes, cDNA microarray analyses I and II were performed, and then RT-PCR analyses I 1  

and II were also performed.  2  

 3  

F ig. 3. Identification of genes irreversibly upregulated during 2-year replication of HCV 4  

RNA. (A) Upregulated genes obtained by microarray analysis I shown in Figure 2. 5  

Genes whose expression levels were upregulated at ratios of more than 2 in the case of 6  

OL(0Y) versus OL(2Y) cells, OL8(0Y) versus OL8(2Y) cells, or OL11(0Y) versus 7  

OL11(2Y) cells were selected, and 51 genes upregulated in at least two of three 8  

comparisons were obtained. (B) Further selection by microarray analysis II, shown in 9  

Figure 2. Genes whose expression levels were upregulated during 2-year culture 10  

(OL8c(2Y) or OL11c(2Y) cells) of the cured OL8c(0Y) or OL11c(0Y) cells were 11  

eliminated. (C) Expression profiles of upregulated genes. RT-PCR analyses I and II 12  

shown in Figure 2 were performed as described in Materials and Methods. PCR 13  

products were detected by staining with ethidium bromide after separation by 14  

electrophoresis on 3% agarose gels. 15  

  16  

Fig.  4.   Identification of genes irreversibly downregulated during 2-year replication of 17  
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HCV RNA. (A) Downregulated genes obtained by microarray analysis I shown in 1  

Figure 2. Genes were selected whose expression levels were downregulated at ratios of 2  

less than 0.5 in the case of OL(0Y) versus OL(2Y) cells, OL8(0Y) versus OL8(2Y) 3  

cells, and OL11(0Y) versus OL11(2Y) cells. A total of 236 genes were obtained that 4  

were downregulated in at least two of three comparisons. (B) Further selection by 5  

microarray analysis II shown in Figure 2. Genes whose expression levels were 6  

downregulated during 2-year culture (OL8c(2Y) or OL11c(2Y)) of the cured OL8c(0Y) 7  

or OL11c(0Y) cells were eliminated. (C) Expression profiles of downregulated genes. 8  

RT-PCR analyses I and II, shown in Figure 2, were performed as described in Figure 9  

3C. 10  

  11  

Fig.  5.  Expression  levels  of  genes  selected  as  upregulated  genes  in  3.5-­year  cell  culture.  12  

Quantitative  RT-­PCR  analysis  using  the  total  RNAs  derived  from  OL8(0Y),  OL8(2Y),  13  

OL8(3.5Y),   OL8c(0Y),   OL8c(2Y),   OL8c(3.5Y),   OL11(0Y),   OL11(2Y),   OL11(3.5Y),  14  

OL11c(0Y),   OL11c(2Y),   and   OL11c(3.5Y)   cells   was   performed   as   described   in  15  

Materials  and  Methods.  Experiments  were  done  in  triplicate.  The  vertical  lines  indicate  16  
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the  expression  levels,  with  the  fold  in  the  scale  of  log2,  when  the  level  in  OL8(0Y)  or  1  

OL11(0Y)  cells  was  assigned  to  be  1.  Asterisks  indicate  significant  differences  between  2  

mRNA  levels  of  HCV  RNA-­replicating  cells  and  their  cured  counterparts.  *  P  <  0.05;;  3  

**  P  <  0.01.  4  

5  

Fig.   6.   Expression   levels   of   genes   selected   as   downregulated   genes   in   3.5-­year   cell  6  

culture.  Quantitative   RT-­PCR   analysis   was   performed   as   shown   in   Figure   5,   and   the  7  

obtained  results  are  also  presented  as  shown  in  Figure  5.  8  

9  

10  
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