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Abstract-A total of 131 current meter records of between 6 and 24 month duration are
analysed to describe the deep flow field of the eastern North Atlantic from 19° to 54°N and
from the Continental Slope to the Mid Atlantic Ridge. Mean flows are weak and may be statis-
tically indeterminate in some records and locations, but appear to indicate cyclonic circulations
around the Iberia and Porcupine abyssal plains with a generally southward flow along the Mid
Atlantic ridge and a deep northward slope current (where measurements exist) along the eastern
boundary. The deepest inflow to the north-eastern basin that has been identified to date takes
place through the Discovery Gap of > 4,700 m sill-depth at 37°25'N 15°45'W in the Azores-
Portugal ridge. South of that ridge, observations are sparse and no systematic circulation is yet
evident. These observations are discussed in relation to recent geostrophic estimates of the deep
circulation.

1. INTRODUCTION

PRIOR to 1976 the deep flow field of the eastern North Atlantic was virtually undescribed,
and the very few direct current measurements available were severely restricted both in dis-
tribution and duration. Since then, new initiatives in support of a wide range of scientific
interests have contributed a total data-set of some 200 meter-years of Eulerian current meter
records (all depths). Many of the records are of recent origin and have yet to be fully analysed.

The key initiative was that of the North East Atlantic Dynamics Study (NEADS) subgroup
of SCOR Working Group 34 which, from November 1976, maintained a large-scale incoherent
array of full-depth moorings in the eastern basin. These were specifically designed to provide
records of 2 yr duration from widely-spaced sites remote from the influence of major topo-
graphic features (e.g. islands, continental slopes). The NEADS plan and participants are des-
cribed in ANON, 1976. Though the geographic spread of measurements has extended to most
areas of the basin since the main period of the NEADS programme, the NEADS records still
stand out by virtue of their unusually long duration and full-depth coverage.

The longest records are of particular importance to the present paper. The vast majority
of eastern basin measurements, including those of the NEADS programme, were designed
primarily to provide information on the eddy field, (particularly the large-scale spatial vari-
ability of eddy kinetic energy, the dominant time-scales of eddy motions and their vertical
structure), and the kinematics and statistics of the eddy field have already been partly des-
cribed (DICKSON, 1983; GOULD, 1983; DICKSON, GOULD, GURBUTT and KILLWORTH,
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108 R. R. DICKSON et al.

1982). The provision of reliable estimates of the mean circulation was of secondary importance
in the planning of these moorings and arrays. As will be shown below, though the typical record
lengths of 9 months to 1 yr are mostly adequate to describe the variances of the flow field, they
provide a less reliable estimate of the means.

This paper will discuss estimates of the mean circulation for the 131 records from the deep
layer (> 2,000 m) of the eastern Atlantic, and will attempt to assess their statistical reliability.
The paper’s main aim is not to identify the cause or causes of the abyssal circulation in the
eastern basin, but is to evaluate whether, and where, a reliable mean circulation can be said to
exist.

The full data set, its sources and the derived statistics referred to in the text are listed in
Table 1. All data are from moorings with subsurface buoyancy; thus records are not contami-
nated by wave action and data are comparable regardless of current meter type (SWALLOW,
1975).

2. STANDARD ERROR ESTIMATES

The two statistics commonly computed from low-passed current meter records are (a) the
mean values of east (#) and north (v) components and (b) the kinetic energy per unit mass of
the fluctuating component [Kg =4 (var. u + var. v)].

Errors in our estimates of both means and variances are a function of record length and of
the dominant periodicity of the record. For a simple sinusoid for example it can be shown that
the errors in variance estimates decay partly as 1/T, and partly as 1/T2, where T is the record
length. They thus converge much more rapidly than the error in the mean, which decays
like 1/T and has the same periodicity (7) as the original signal. This general characteristic is
compounded in the north-east Atlantic by the shortness of available records (9 months to
1 yr on average) and the smallness of the means compared with the fluctuating component.
(DICKSON, 1983 e.g. his Fig. 3n). Figure 1 indicates that 67-69% of mean u and v components
in the available records and 45% of their resultant vectors are less than 1 cms™. In this section,
these means are compared with their corresponding standard error estimates for 85 of the deep
eastern basin records.

The standard error in a mean is a function of the variance divided by the number of indepen-
dent time periods in the record. In a data series of n terms, sampling interval At and dominant
periodicity 7, DAVIS (1976) shows that the number of degrees of freedom a # nAt/7, but
o = nAt/1;, where 1; is defined as an integral time scale. LUYTEN (1982) follows the argument
of FLIERL and MCWILLIAMS (1977) to derive his equation for an integral time scale:

N
7 = 3, C(iAt) At,

i=o
where NAt is the lag for which the autocorrelation C(iA?) is at its first zero crossing. The stand-
ard error in the mean (v/€) is then calculated from the expression
_ 270t
nAt

, where ¢? is the variance.

In the present paper, Luyten’s method is accepted as valid, though it remains far from clear
whether this method yet represents the optimal approach. Summation of the autocorrelation
function to first zero crossing poses problems for records with very long time-scales where the
autocorrelation function may not become negative within the available number of lags. On
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the other hand, a full summation to include all lags of the autocorrelation function may be
equally problematic in the case of records with a well defined periodicity, since in these cdses,
the estimates of integral time scale r; will be dependent on the number of lags. A compromise
solution might involve the summation of all terms of the autocorrelation function but applying
a linear taper, thus making use of the full record while reducing the influence of terms at large
lags. (See HENDRY, 1982.)

In fact the method of Luyten was adopted here for two reasons: first, to preserve com-
parability with the error estimates published for the west Atlantic and second, because this
method is likely to overestimate the standard error and thus provide a conservative estimate
of significance. The reader is referred to FLIERL and MCWILLIAMS (1977) for a fuller dis-
cussion of the inadequacies and assumptions of error estimation via this technique.

The standard error estimates for mean u and v components are listed for the majority of
records in Table 1. Figure 2 describes the amplitude of mean u and v estimates as a percentage
of their standard errors in each 0.5 cms™ band of mean speed for 85 of these records. Only
in the lowest mean speed category (0-0.5cms™) is the mean consistently lower than the
standard error, though it should be remembered that some 38 to 40% of available records fall
in this band. [Fig. 1].

3. GEOGRAPHICAL VARIATION OF DOMINANT TIME SCALE

The two general characteristics of eastern basin records thus far identified are that (a) deep
mean flows are relatively weak (Fig. 1) and nowhere approach the highest mean speeds attained
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FIG. 2. Mean |} and mean {v| expressed as percentage of their respective standard errors in
each 0.5cms™ band of mean speed. Bars indicate total range of values. Standard errors exceed
the means for points below the dashed line.

in the western basin (DICKSON, 1983; HOGG, 1983), (b) the weakest category of these mean
flows tend to be smaller than their standard error estimates (Fig. 2).

However, apart from these generalisations, reliable means can still be expected to occur in
areas where mean flows are at their strongest and where records are dominated by high fre-
quency motions rather than by long time-scales.

Figure 1 has provided information on the first of these characteristics in showing that mean
speeds greater than 1cms™ have been encountered predominantly north of 45°N (unshaded
in Fig. 1).

The geographical distribution of dominant time scales shows a tendency for the longest time
scales to prevail in the southern interior sites, and for them to become progressively shorter
going northwards to the head of the Porcupine Abyssal Plain.

This point may be illustrated by spectra from mooring sites which cover the full breadth
and latitudinal extent of the north-eastern basin. For 27 such records the fluctuation kinetic
energy K; was calculated for four period-ranges similar to those employed by SCHMITZ and
HOGG (1978):

K, period range 512-46.5 days
K, period range 46.5-14.6 days
K3 period range 14.6-7.0 days
K, period range 7.0-2.0 days.

The results are listed in Table 2, categorised (column 2) into 3 ranges of height above the
bottom [>1,500m, 0 (1,000m) and <500m]. As is the case for total eddy kinetic energy,
Kg, (DICKSON, 1983) the energy content in individual frequency bands appears lower in the
north-eastern Atlantic than in the north-western (cf. SCHMITZ, 1978, SCHMITZ and HOGG,
1978); [note that K # Zi., K; since the latter is based on a restricted record length (Table 2,
column 10) and a restricted band of frequencies.]
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FIG. 3. Transects of moorings for which spectra are described in Fig. 4.

Even before these results are normalised for differences in band-width, some general trends
in the regional- and depth-distribution of dominant time-scales are apparent in Table 2. K, is
unimportant everywhere and over all depths considered; the energy content in sub-mesoscale
bands K, + K tends to increase with increasing depth (the values of R in Table 2, column 9
are of order 1 or larger); and the relative importance of K; to the total energy content in the



Mean circulation in the deep layer of the eastern N. Atlantic 113

5Z
R
Fo

pd

4704m

T O

/
ol
\
e B

50

5
g
=]
3

<
)
[83]

N-3
4050m

N-4
I 3BO0m ———
0 0

2z
%5
I~

N-1
3050m 81-18

0 3480m 4461m
o 2 2 2 10
Ntll
5 81-14 86
’:; 4862m 4246m
§0-1 2 15 0 0 0 0
< 0100
o cpd

FIG. 4. Decadel kinetic energy frequency spectra, energy preserving by area, for 14 mooring
sites in the deep eastern basin.

record (Zi.,K;) tends to increase southward and decrease marginally with depth. K, is of
course the band which most severely influences uncertainties in the estimates of the means.

The important spatial changes in dominant time scale are more clearly seen however in
Fig. 3 and 4 which display decadal kinetic energy frequency spectra, energy-preserving by area,
(SCHMITZ and HOGG, 1978) for a representative subset of 15 of the 27 records listed in Table
2. As the location chart shows (Fig. 3), these records form a meridional transect along the
deep axis of the basin from NEADS-6 in the north to mooring 81-16 in the Madeira Abyssal
Plain, together with three shorter zonal sections running from the Mid-Atlantic Ridge towards
the eastern margins of the basin at nominal latitudes of 46°, 41° and 30-32°N.

Here, no attempt is made to distinguish any detailed changes with depth or with distance
from the seabed but simply to describe the first-order changes in spectral shape with latitude
and longitude. For this purpose the spectra shown may be regarded as representative of any of
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Elapsed days since June 1 each year are indicated.

the deep records from a given mooring with the exception of mooring 81-18 for which two
spectra are illustrated.

In the north the NEADS-6 record from the Continental Rise at the mouth of the Rockall
Trough is dominated by the shortest time scales, of ~ 10-15 day period. Their cause is attri-
buted more to the characteristics of the site (bottom slope) than to its latitude, and the vari-
ations observed are thought analogous to those at site D where topographic Rossby waves are
trapped to a similar bottom slope (THOMPSON, 1971, 1977). The spectrum from 4,074 m
is nevertheless representative of a considerable depth layer in the lower water column. Figure 5
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shows that a ~ 10 day periodicity has dominated the v component at ~ 3050 m over a record
length approaching 6 yr.

Moving south, the spectra on the meridional transect to NEADS-5 and on the zonal transect
at ~ 46°N show a lower-frequency dominance in bands 2 or 3, and this is again representative
of records at least 1,000m shallower than those shown. GOULD (1983) and DICKSON,
GOULD, GURBUTT and KILLWORTH (1982) demonstrate that in the case of NEADS-5
the spectrum is made up of two seasonally-varying components — long period dominance in the
summer and shorter period dominance due to atmospheric forcing during winter. Despite the
good agreement in spectral shape in the examples and depth range shown, we can expect that
this may not hold closer to the basin margins. Apart from topographic effects of the continental
rise and slope already mentioned, both SCHMITZ and HOGG (1978) and DICKSON, GUR-
BUTT and MEDLER (1980) describe markedly depth-dependent spectra (shifting to higher
frequency dominance with increasing depth) in records from the northern and southern trenches
of the Charlie Gibbs Fracture Zone of the Mid Atlantic Ridge, and Table 2 also includes one
record from high on the flanks of the Ridge (mooring 265, 2,520 m) whose long-period domi-
nance is inconsistent with the deeper records to its east.

Continuing south along the main meridional transect the NEADS-2.5 mooring in the Iberia
Abyssal Plain ~ the least energetic deep site yet encountered in the eastern basin (DICKSON,
1983) - continues to show sub-mesoscale dominance at depth, but almost everywhere to the
south of this site, and at the NEADS-3 and 4 moorings to its east and west, spectra become
dominated by the longest accessible time scales; the few exceptions to this general rule are
thought to be due to local topographic control, e,g. the near-bottom record at mooring 81-18
on the slopes of the Madeira Rise [Fig. 4].

Thus although the present data-coverage remains insufficient to distinguish fully or with any
certainty between regional and local (e.g. topographic) effects on dominant time-scale, the
available data set does at least suggest a consistent pattern of variation in the deepest layers of
the northeastern basin, There, the tendency appears to be for time-scales to shorten with
latitude from scales of hundreds of days in the south of the region to tens of days in the north.

4. CUMULATIVE AVERAGES OF u,v AND Kg

The preceding discussion has underlined two general (and at present poorly-based) ten-
dencies in the available data; first, a progressive decrease in the dominant time-scale of variation
northwards through the eastern basin from the ultra-long (“‘secular” in SCHMITZ, 1978) time-
scales at the southern interior sites, to mesoscale or higher frequency dominance at the head of
the Porcupine Abyssal Plain, Second, some tendency for the higher mean speeds to occur
towards the north of the region,

If valid, these twin tendencies imply a more rapid establishment of statistically reliable
means in the north than in the southern interior sites. To test the validity of this assumption,
cumulative averages of u and v were calculated at 30 day increments for six of the longest deep
records which cover the length and breadth of the eastern basin; NEADS-1 in the Madeira
abyssal plain, NEADS-2 and 3 in the Iberia abyssal plain, NEADS-7 in the Biscay abyssal plain,
mooring 265 of the Institut fur Meereskunde, University of Kiel (J MEINKE, pers. comm.) on
the eastern flanks of the Mid Atlantic Ridge, and NEADS-6 from the continental rise at the
southern entrance to the Rockall Trough (Fig. 6). These records, ranging in depth from 2,500
to 4,050m, were selected for their exceptionally long duration. NEADS-6, is now in its 7th yr
of deployment while two-year data sets are available from the remainder.
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FIG. 6. Location of 6 moorings of exceptionally fong duration (> 2 years) used in the com-
putation of cumulative—average flow statistics in Figs 7-9.

The cumulative averages of u and v, each stepping by 30 day increments of data are illus-
trated in Figs 7 and 8, and where major gaps in the time-series were encountered, these are
indicated.

Though, arguably, the statistics seldom achieve true stationarity, the length of record required
to achieve reasonably reliable statistics does appear to vary geographically in the expected
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sense. In the case of the northern NEADS-6 record which is characterised by the highest (10-15
days) dominant frequency of variation, a consistent estimate of the speed and direction of the
mean flow is rather quickly achieved: the flow is westward throughout with a variable but
minor north component of flow. At the other extreme the southern NEADS-1 record varies
continuously in the amplitude of both the zonal and meridional components of flow, and it is
unclear even at the full record length of 2 yr whether the “‘sense’ of the mean circulation at
this site has yet been adequately estimated. At intervening latitudes the indications are that
reasonably reliable estimates of both the speed and direction of the mean flow require a mini-
mum record length of some 9-14 months. [Mooring 265, with an anomalously long dominant
time-scale for its latitude (Section 3), is the slowest of this intermediate group of records to

reach a stable mean.]
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These results are tempered, inevitably, by the small number of ultra-long records on which
they are based, by their often “gappy” nature and by the fact that they include (and to a vari-
able degree) the effects of local topographic constraints on the flow field, not merely the effects
of basin-wide variations in dominant time-scale. They do however provide some reassurance
that the search for reliable means from ~ 1 yr records is not a pointless exercise in the deep
eastern basin, even though, quite commonly, these means may be of little better than marginal
statistical reliability unless aided by relatively strong flows, short time-scales of variation and
some degree of topographic constraint. Since the mooring-durations were primarily designed to
comment on the variances rather than the means, this point is of some importance. [Figure 9
confirms that as theoretically expected, the variances converge much more rapidly than the means
towards reasonably steady average values; even at NEADS-1, this occurs within 6-9 months.]
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5. REGIONAL CIRCULATION PATTERNS

5.1. The Porcupine Abyssal Plain

Here, of the three regions to be considered, the mean flow vectors are the strongest, the data
density is greatest, and the circulation pattern itself appears the most systematic (Fig. 10). We
may even assume a degree of confidence in the reliability of certain elements of this pattern.
For example, since its existence was first postulated (SWALLOW, GOULD and SAUNDERS,
1977; ELLETT, DOOLEY and HILL, 1979), the presence of a north-going residual slope
current along the European continental margin has been confirmed wherever direct measure-
ments have been made and at whatever depth on the slope; the very recent results of the UK.
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FIG. 10. Mean flow vectors for all available records > 2,000m depth from the Porcupine
Abyssal Plain and its surroundings.
[Note that Table 1 also lists 10 records from the Charlie-Gibbs Fracture Zone, to the west
of this chart.]

Continental Slope Experiment (CONSLEX) have reinforced this conclusion. In the past, most
records have been from the upper part of the slope, and are therefore not considered here, but
the four vectors shown at depths of 2,000-2,500m between the Celtic Sea slope and the slope
west of Porcupine Bank are thought to provide a reliable indication that the northgoing flow
blanketing the slope extends to these depths also.

In the deep water to the west of the slope, residual current vectors from a range of years
suggest a fairly systematic circulation which flows in a cyclonic sense, northward at 1-2cms™
up the central part of the abyssal plain, to turn westward and southwestward as the basin shoals
in the north and thence southward or westward along the eastern flanks of the Mid Atlantic
Ridge. A gap in coverage from 47°-50°N at ~ 20°W prevents us from establishing the con-
tinuity or otherwise of this apparently cyclonic basin circulation, but it appears likely that at
least a part of the flow leaves the basin as an offshoot to the west or northwest to enter the
South Icelandic Basin as a thin but steady and relatively strong near-bottom current. Mooring
82-11 at 50°50'N 20°31'W occupied the deepest part of the gap between the Mid Atlantic
Ridge and the tail of Rockall Bank and showed a steady bottom-intensified flow of ~ 5cms™
along the axis of the trench over a deployment of 1 yr duration. This mooring was laid in
response to preliminary data from the SO°N TTO section which suggested that a near-bottom
flow might occur persistently within the narrow Maury Channel leading WNW to the Icelandic
Basin. (CLAES ROOTH, U. Miami, pers. comm.). The results of mooring 82-11 from the
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alternative deep channel close by to the north confirm Rooth’s interpretation of the TTO data
as evidence of a near-bottom flow through this gap from a source further east.

Needless to say there remain exceptions to the oversimplified picture of the circulation just
described, though these are not necessarily unexpected. The apparently anomalous northeast-
ward flow at 53°25'N 19°02'W on the south slope of Rockall Bank stems from a full-depth 6-
mooring array across this slope. Records above ~ 2,000m depth (not shown here) were directed
northeastward into the Rockall Trough while those below 2,500m showed west or southwest
flows. The record in question, from 2,450m depth, is evidently part of the former group.

5.2. The Iberia Abyssal Plain

The Porcupine Abyssal Plain is partially closed-off to the south by the topographic barrier
of the Azores-Biscay Rise. South of this Rise and north of the zonal Azores-Portugal ridge
(~ 37°N), the deep flows circulating around the Iberia Abyssal Plain and flanks of the Mid
Atlantic Ridge to its west are, arguably, not without “‘system’’ (Fig. 11) though the sparseness
of the present coverage and the general weakness of the residual flows would argue against
describing this circulation as of anything other than marginal reliability.

The deepest inflow to the northeastern basin that has been identified to date takes place
through the Discovery Gap of > 4700m sill depth at 37°25'N 15°45'W in the Azores~Portugal
ridge. Table 1 lists only one record from this gap (mooring 310) where a northeastward residual
of 3.8cms™ was observed close to the bottom over a record length of 340 days. Very recently
a 6-mooring array has been recovered from the gap (P. M. Saunders, I0S Wommley, pers.
comm.), which should provide an estimate of the transport of this important connecting flow
between the basins.

No records are yet available from sites close to the Iberian Slope but further offshore, the
NEADS 3 and 2.5 sites on the Iberia Abyssal Plain give some indication that the deep mean
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FIG. 11. Mean flow vectors for all available records > 2,000 m depth from the Iberia Abyssal
Plain and its surroundings.
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flow tends to run weakly westward with the basin topography towards the Mid Atlantic
Ridge. There, the indications are of a predominantly southward flow along the flanks of
the Ridge at depths ranging from 2,300-4,100m, and at mean speeds of ~ 0.5-2.5cms™".
Of the exceptions shown, the anomalous eastward vector at mooring 80-16 (41°39'N
21°09'W) can be discounted; it lies on an east-west-trending slope at the northern margin
of a seamount and thus could hardly contribute to the general southward pattern of flow in
this area.

Finally along the northern slopes of the Azores-Portugal ridge, three records from the
NEADS-2 mooring at 37°59'N 16°54'W provide at least some indication of an eastward or
northeastward return flow along the southern margin of the Iberia plain. Mean speeds are
0.4-13cms™ intensifying towards the bottom over a depth range of 3,168-5,079m (2382~
471 m above the bed).

The apparent simplicity of this deep circulation pattern may of course be attributable to the
sparseness of observations; nevertheless the deep cyclonic gyre indicated here is justified at
present as being the simplest pattern which can be fitted to the existing data. One particular
deficiency of the data set is the complete lack of information on connecting flows between the
Iberia and Porcupine/Biscay Abyssal Plains; in July 1983 however eight moorings were laid by
MAFF across the three deepest gaps in the northern Azores-Biscay Rise (including the Theta
Gap) and their results are awaited with interest.

5.3. The Madeira Abyssal Plain

Figure 12 describes mean flow vectors for all records recovered to date from the latitude of
the Great Meteor Seamount (G.M.S.) to that of the Azores-Portugal ridge. (Note that the
Polymode IIIB results and those from the French CV1 and CV2 sites, far to the south and west
are listed in Table 1, but are not included here).

The sparseness of results in a region of such complex topography rules out any meaningful
discussion of a deep mean circulation pattern, and questions of the reliability or otherwise of
these measurements must be restricted to individual records which are of long duration and
indicate relatively stable flows. The ‘stability factor” statistics listed in Table 1 are the ratios
of mean vector to mean scalar speeds in each record, expressed as a percentage, and provide
this measure of directional stability.

Only three of the records from this region fall in this category, and both of the moorings
involved suggest increasingly stable flow-directions towards the bottom.

At the NEADS-11 site at 34°50'N 23°00'W, stability factors increase from 56% at 3,030 m
to 92% at 4,720m (435 m above the bed) over a record-length of 214 days. At mooring 81-16
(30°20'N 23°22'W) in the Madeira Abyssal Plain the corresponding increase is from 57% at
3195m to 73% at 4246 m and 75% at 5246 m (50m above the bottom). These three direc-
tionally stable records are also among the most vigorous encountered in this region of the
eastern basin, ranging from a northeastward residual of 3.2cms™ in the deep NEADS-11
record, to values of 1.8 and 1.9cms™ (also north-eastward) in the deep records from 81-16.
Both the speed of the mean flow and its increasing directional stability with depth suggest
that these deep records owe their abnormal “realiability” (for this area) to some degree of local
topographic constraint. Detailed bathymetric control is not yet available for the NEADS-11
site but precise bathymetric survey of the area immediately to the north of 81-16 (DUIN
and KUIJPERS, 1983) indicates the presence of a scarp trending NNE from the position of
the mooring.
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FIG. 12. Mean flow vectors for all available records > 2,000 m depth from the Madeira Abyssal
Plain and its surroundings.
[Note that Table 1 lists a further 8 records from POLYMODE IIIB, CV1 and CV2 to the south
and west of this chart.

6. COMPARISON WITH INDIRECT ESTIMATES OF THE FLOW FIELD

Of the numerous recent studies which have attempted to describe the deep circulation of the
North Atlantic or its eastern basin from a variety of indirect evidence, some compare well with
the results of deep current meter records. For example, both the deep southward western
boundary current in the Atlantic and the broad interior poleward flows required by the thermo-
haline circulation schemes of STOMMEL (1958), STOMMEL and ARONS (1960 a, b) and
VERONIS (1978) appear to be confirmed in recent direct measurements from the west Atlantic
(e.g. JENKINS and RHINES, 1980; HOGG, 1983) and northeastern Pacific (WARREN and
OWENS, this volume).

However, a range of other circulation schemes based on the dynamic method and its assump-
tions (e.g. IVERS, 1975; WUNSCH and GRANT, 1982; SAUNDERS, 1982) remain not only
untested against direct observations, but are arguably untestable. To quote Wunsch and Grant
(p1): “... neither these model circulations nor any other circulation pattern based upon the
existing data can be regarded as actually representing the true time average ocean circulation
because the data are aliased in time; the frequency/wavenumber spectrum of the ocean is
inadequately known to determine the resulting errors™ and later (pp. 55-56): “Our results
share a major shortcoming with every one of the previous attempts at deducing the general
circulation of the North Atlantic from the dynamic method. They are essentially untestable.
Any detail of the circulation inferred from any given data set which differs from someone
else’s scheme may have represented properly the ocean at that time . . . An attempt to ‘‘check”
one of them by new direct observations is doomed to failure because there will be real observed
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differences and it will be impossible to tell whether either the new or old data sets represent a
transient state or the very long-term average flow.”

Whether due to deficiencies in either data set or to the effect of aliasing in time, the deep
circulation scheme proposed by Wunsch and Grant for the deep eastern basin (e.g. their Fig.
16 a-c) appears to bear as little resemblance to the circulation which we describe as their
western basin scheme bears to the direct measurements described by HOGG (1983). It is idle
to speculate which version is ‘‘better”’; current measurements of ~ 1 yr duration are not free
from aliasing as this paper has been at some pains to show.

A more profitable question is whether the results of deep direct current measurements from
the eastern basin can narrow-down the choice of assumptions involved in using the dynamic
method in this region. One general characteristic of these records, which may be of value to the
choice of a reference level, is the fact that residual currents show some tendency towards
bottom intensification. Table 1 lists 43 moorings which have pairs of instruments in the deep
layer and where the deeper instrument lies within a few hundred metres of the bottom [NEADS-
2.5 and 3 are ignored]. The percentage change in mean residual current speed normalised per
1,000 m increase in depth for these records is shown as a histogram in Fig. 13. Thirty-four out
of 43 of these record-pairs show an increase in current speed with depth, the mean change being
+ 67%.

The point here is not to suggest that bottom intensification is a reliable tendency in the
present data set, but to suggest that it would be unwise to assume the reverse — that current
speeds decrease towards a level of no motion in the near bottom layer.
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SAUNDERS (1982) shows that the section-average vertical structure of relative geostrophic
current velocity takes the form of “remarkably similar reverse-S shape profiles” on zonal sec-
tions of the eastern basin from 32° to 53°N. If so then clearly, as a basin-wide average, assump-
tions of a deep level of no net meridional motion can still be justified if we also assume a
virtually closed circulation in the deep layer; but the growing conclusion that the deep eastern
basin is ventilated from the south (e.g. BROEKER and PENG, 1982; MANTYLA and REID,
1983) leaves open the possibility that in the basin-wide average also there may be a net near-
bottom intensification of flow and hence a net northward drift. The validiation of this point
by means of direct measurements however must await a considerable future expansion of the
present Eulerian data-set.

7. SUMMARY AND CONCLUSIONS

The accumulated data set of 131 long-term current meter records has been used to provide
estimates of the mean circulation and their corresponding standard errors for the deep (>
2,000m) layer of the eastern North Atlantic. The two questions to be addressed were first,
whether a mean flow exists and second whether it can be reliably demonstrated in our relatively
short records which were primarily designed to assess the variances rather than the means. This
analysis suggests the following tentative conclusions regarding the flow field in this depth-
layer of the eastern basin:

(a) Mean speeds are weak relative to the published results for the western basin. 45% of all

record-mean vectors are weaker than 1cms™.

(b) At their weakest (< 0.5 cms™!) mean speeds tend to be smaller than their corresponding
standard error estimates.

(c) Most mean speeds > 1cms™' have been observed in the north of the basin, north of
45°N.

(d) There appears to be a progressive decrease in the dominant variability time scales north-
ward through the deep eastern basin, from scales of hundreds of days at the southern
interior sites to mesoscale or higher frequency (a few tens of days) dominance at the
head of the Porcupine Abyssal Plain. This latitudinal pattern may be disrupted locally
by topographic effects, especially at the basin margins.

(e) A majority of near-bottom records show some degree of bottom-intensification.

(f) Mean flow estimates are suggested to be most reliable in the north of the region where
the strongest mean flows tend to coincide with the shortest time scales of variability.

(g) The most dependable element of the observed circulation is suggested to be the north-
ward slope current along the continental margin of the Biscay and Porcupine Abyssal
Plains. Steady northward mean flows of 1.4-3.4cms™ are observed to at least 2500m
depth in this region (e.g. moorings 81-07, R, “Meriadzek Terr.” and BIOGAS).

(h) Though major gaps in coverage remain, the deep circulation around the Porcupine
Abyssal Plain appears to be both systematic and (relatively) vigorous. Flows are north-
westward at 1-2cms™ up the centre of the Plain but turn to the west and southwest
as the basin shoals in the north to continue either southwards along the flanks of the
Mid Atlantic Ridge or to pass westward as a near-bottom current towards the South
Icelandic Basin. The latter flow was anticipated in interpretations of TTO section-data.

(i) A deep cyclonic gyre also appears to be the simplest flow pattern which fits the avail-
able data in that part of the basin between the Azores-Biscay Rise and the Azores-
Portugal ridge, west of the Iberian Peninsula. The weak flows and sparse coverage
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however suggest that this cannot yet be described as a reliable result. More certain is the
deep current which enters the Iberia Abyssal Plain from the south via the Discovery
Gap, though the total transport through this gap has yet to be determined.

(i) South of the Azores-Portugal ridge observations are sparse and no systematic cir-
culation is yet evident. The only “‘reliable” elements of the flow field in this region are
the very few individual records where topographic constraints impose a degree of
directional stability and perhaps also support some local intensification of the flow.
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