
 

  
 
Abstract—   Variational Iterative Method (VIM) has been 

reported in literature as a powerful semi-analytical method for 
solving linear and nonlinear differential equations; however, it 
has also been shown to have some weaknesses such as 
calculation of unneeded terms, and time-consumption regarding 
repeated calculations for series solution. In this work, a 
modified VIM is applied for approximate-analytical solution of 
homogeneous advection model. The result attest to the 
robustness and efficiency of the proposed method (MVIM). 

 
Index Terms— Exact solutions; modified VIM; HPM; 

advection model.  

I. INTRODUCTION 
n pure and applied sciences, Nonlinear Partial Differential 
Equations (PDEs) stand out for modelling real life 

problems. An example of such nonlinear model is the 
advection model of the form: 
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The importance of providing solutions (numerical or exact) 
to linear and nonlinear differential equations cannot be 
overemphasized. This has led to various methods of solution 
[1-10]. 
Ji-Huan He [11] proposed the popular variational iteration 
method (VIM) for a nonlinear differential equation. VIM has 
been widely applied [12-16]. However, some of the 
weaknesses of the VIM are remarked. This include: repeated 
computations and computations of unneeded terms, and so 
on. Hence, the VIM modification [17]. 
In this work, the modified VIM is applied to advection 
model for approximate-analytical solutions. 
 

II. VIM AND THE MODIFIED VIM [17]  
  Considering the general nonlinear PDE of the form: 
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where L
t

∂
=

∂
,  R  is a linear operator whose partial 

derivatives are w.r.t. x , ( ),Nu x t  is a nonlinear term 

associated to (2.1) and ( ),f x t  is a source term (which may 
be homogeneous or inhomogeneous), thus by the classical 
VIM, the solution of (2.1) is expressed as: 
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where λ is a Lagrange multiplier [11, 12] to be identified 
optimally via variational theory, and the terms:  

 and n nRu Nu  are being considered as restricted 

variations such that 0nRuδ =   and 0nNuδ = . Hence, 

by calculating the variations w.r.t. nu  using the stationary 
conditions: 
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The Lagrange multiplier is identified as 1λ = −  . Therefore, 
(2.2) becomes: 
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Remark: Using (2.4) for the solution of special kind of 
nonlinear differential equations involve the calculation of 
unrequired terms, repeated calculations, and time-
consumption, hence, the need for meaningful modification of 
the VIM. The modified VIM as proposed by [17] gives the 
iterative formula as follows: 
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where   
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III. ILLUSTRATIVE APPLICATION 
In this subsection, the modified VIM is applied to 
homogeneous advection model as follows. 
 
Application:  Consider the following homogeneous 
advection model: 
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Procedure:  
By applying the modified VIM, it is therefore obvious that 

tLu u= , 0Ru = and xNu uu= . Therefore, we have: 
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Hence, for 0n = , we have: 

( )0 0 0 xG u u x= = , 
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t
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When 1n = , we have: 

( ) ( )( )1 1 1 1xG u u x xt t= = − − − − , 

showing that 2
1 0 2G G xt xt− = + ,    as such: 
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From (3.5), the solution is therefore deduced as: 

( ) 2 3,u x t x xt xt xt= − − − − +  
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           (3.6) 

Eq. (3.6) is thus, the exact solution of the solved problem. 

IV. CONCLUDING REMARKS 
This paper demonstrated the robustness and efficiency of the 
modified VIM. For illustration, the MVIM is applied for 
approximate-analytical solution of homogeneous advection 

model. Applying this method does not require perturbation, 
or linearization. 
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