
 

 
Abstract— The aim of this work is to examine the influence 

of some structural parameters, namely, the mass per unit 
length and flexural rigidity of the upper beam on the natural 
frequencies of a symmetric non-prismatic double-beam system 
elastically connected by a Pasternak-type layer. A semi-
analytical technique known as differential transform method 
was used to carry out the analysis of the vibration problem in 
this paper. The results of the analysis revealed that there is 
tendency to lower the vibration frequency of the double-beam 
system by increasing the mass of the upper beam. It was also 
found that the natural frequencies of the double-system 
generally increase with an increase in the flexural rigidity of 
the upper beam of the double-beam system. It can be 
concluded that both the mass per unit length and the flexural 
rigidity of the upper beam generally have influence on the 
natural frequencies of a non-prismatic double-beam system 
elastically coupled by a Pasternak-type elastic medium. 
 

Index Terms—double-beam system, non-prismatic beam, 
Pasternak layer, structural parameters 
 

I. INTRODUCTION 

HERE has been much research into the vibration analysis 
of prismatic double-beam system continuously joined 

by an elastic layer. In particular, the natural frequencies and 
modes shapes of prismatic double-beam system elastically 
attached together by Winkler-type elastic layer have been 
examined by different authors [1]-[6]. Investigation into this 
class of problems is, however, still of great interest to 
researchers because of its applications in many engineering 
fields [7]-[8]. It has been noted that these previous studies 
on this class of vibration problems have been confined to 
modelling the layer connecting the two beams that made up 
the system by Winkler foundation as against Pasternak 
which has been found more efficient than the former [9]. 
Also, most of these previous researches are concerned with 
prismatic double-beam systems. Abd et al. [10] studied the 
effect of structural effects, namely, rigidity ratio, mass ratio 
and damping among others on the dynamic response of a 
beam structure attached with a beam vibration absorber by a 
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viscoelastic layer. 
In this present study, we make a principal contribution to 

filling this gap in the literature. We examine the effects of 
structural parameters, namely, the mass per unit length and 
flexural rigidity of the upper beam on the natural 
frequencies of an elastically connected non-prismatic 
double-beam system attached together by a Pasternak-type 
layer. The solution of the vibration problem is obtained via 
differential transform method (DTM). 

The paper is structured as follows. The governing 
differential equations and the associated boundary 
conditions are presented in Section II. The solution 
procedure via differential transform method is given in 
Section III. Section IV contains the results and relevant 
discussions. Section V ends the paper with conclusions.  

  

II. MATERIALS AND METHODS 

A. Formulation of the Problem 

Consider a system of two non-prismatic Euler-Bernoulli 
beams of length L , continuously attached together by 
elastic Pasternak-type elastic layer as shown in Fig. I. 
Winkler modulus, ( )k x  and shear modulus,  ( )G x  

characterize the elastic layer.  The coupled differential 
equations of motion for the double-beam system based on 
the Euler-Bernoulli beam theory can be written as follows: 
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where jE  and j  are the Young’s modulus of elasticity and 

mass density of the jth beam material respectively. ( )jA x  

and ( )jI x  are the area of cross section and cross-sectional 
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moment of inertia at distance x  from the left end of the jth 
beam respectively. The transverse displacement of the jth 
beam at any distance x  along the length of the beam at time 
t , is denoted by ( , )jw x t . The subscript 1j  and 2 refer to 

upper beam and lower beam, respectively. Also,  k x  is the 

variable Winkler modulus of the elastic layer (springs) that 
connects the two beams together and  G x  is the variable 

shear modulus that accounts for the shear interaction among 
the springs. 

The boundary conditions corresponding to simply 
supported double-beam system are: 
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Let us assume a harmonic motion of the form: 
 

( , ) ( ) , 1, 2i t
j jw x t Y x e j  .                                              (5) 

 
where is ( )jY x  the mode shape function of the jth beam,  

i te   is a harmonic function of time t    with  as the 
circular natural frequency of the double-system structure. 

Substituting Eq. (5) into Eqs. (1) and (2) yields 
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and 
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The boundary conditions for the modal functions are also 

obtained as:  
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The following dimensionless parameters are introduced 

for simplicity: 
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Substituting Eqs. (5) into Eqs. (6) and (7), the following 
non-dimensional governing equations of motion can be 
obtained: 
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The dimensionless boundary conditions are also obtained 

as: 
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B. DTM Solution of the Problem 

The differential transformation of the rth derivative of the 

function  y   is defined as follows: 
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The inverse differential transformation of ( )Y r  is defined 

as follows: 
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Combining equations Eqs. (16) and (17) yields 
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TABLE I 
DTM OPERATIONS USED FOR EQUATIONS OF MOTION 

Original function Transformed function 
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TABLE II 
DTM OPERATIONS USED FOR BOUNDARY CONDITIONS (BCS) AT 0   
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TABLE III 
DTM OPERATIONS USED FOR BOUNDARY CONDITIONS (BCS) AT 1   

Original BC Transformed BC 
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which is the Taylor series of  y   at 0  . Eq. (18) 

implies that the concept of differential transformation is 
derived from the Taylor series expansion. However, it is 
important to remark that differential transformation method 
(DTM) does not evaluate the derivatives symbolically. In 
practice, Eq. (17) can be written as the finite series: 
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Eq. (19) implies that is negligibly small. In this study, the 

convergence of the natural frequencies determines the value 
of M . The fundamental operations of the dimensional 
transform which are useful in the transformation of the 
governing equations and the boundary conditions are 
summarized in Tables 1 - 3. ([11]-[14]) 
 

Using the DTM operations stated in Table I 
appropriately, the differential transform of Eqs. (11) and 
(12), are obtained as: 
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where j ( )I r , j ( )A r , and ( )jY r  are the transformed 

functions of j ( )I  , ( )jA  , and ( )jY   respectively.  

By applying DTM operations in Tables II and III 
appropriately to the boundary conditions presented in Eqs. 
(14) and (15), we have 
 

(0) 0, (2) 0j jY Y  ,                                                       (22) 
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The values of 1(1)Y , 2 (1)Y , 1(3)Y , and 2 (3)Y  are 

unknown. So, they are set as unknowns such as, 
 

1 2 1 2(1) , (1) , (3) , (3)Y a Y b Y c Y d    .                        (24) 

 

The values of 1(4)Y , and 2 (4)Y  can be obtained by using 

Eqs. (22) and (24) appropriately in Eqs. (20) and (21). 
Following an identical recursive procedure, the values of 

1( )Y r , and 1( )Y r  for 5,6, ,r M  , (where M is to be 
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decided by the convergence of natural frequency) can be 
determined in terms of constants a , b , c ,  and d .   

Substituting 1( )Y r , and 2 ( )Y r  for 0,1, 2, ,r M  into 

Eq. (23) yields the following system of equations: 
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and ( )
j4 ( )Mf   are polynomial functions of  corresponding to 

M. The system of Eqs. in (25) can be expressed in the 
following matrix form: 
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The frequency equation of the double-beam system is 

obtained be setting the determinant of the coefficient matrix 
of Eq. (26) to zero. The non-trivial solution of the frequency 
equation can be written as 

                                                                                           
( ) , 1, 2,M
n n                                                          (27) 

 
( )M
m  is the Mth estimated eigenvalue (natural frequency) 

corresponding to nth mode of vibration. The value of M is 
decided by the convergence of natural frequency expressed 
by the following inequality: 
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m m                                                               (28) 

 

where ( )M
m  is Mth estimated natural frequency 

corresponding to M and   is the error tolerance parameter 
(allowable error). In this paper, the error tolerance 
parameter is taken as 0.0001. 

 

III. RESULTS AND DISCUSSION 

We restrict our attention to a beam pair with constant 
width and linearly varying depth in this paper. Thus, the 
cross-sectional area and the second moment of area of the 
jth beam can be written as: 
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where j  is the taper ratio for jth beam, which satisfies 

0 1j  . 

The cross-sectional area and moment of inertia of the jth 

beam, in dimensionless form, can now be written as: 
 

( ) 1 , 1, 2j jA j                                                        (31) 

 
and 
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In this investigation, the mass per unit length and flexural 

rigidity of the upper beam are varied with the view of 
observing their effects on the natural frequencies of the 
double-beam system. 

 
Effect of Mass per Unit Length of Upper Beam on Vibration 
Frequencies  

To start with, the influence of the mass per unit length of 
the upper beam on the natural frequencies of a non-
prismatic double-Euler-Bernoulli beam system elastically 
coupled by a Pasternak elastic layer is first examined. It is 
remarked that the moduli of the Winkler and Shear layers 
are assumed to be constant in our calculations for simplicity. 
Four cases of variation are considered as follows: 

 
Case 1: 1 1(0) 0.1 (0);A A    

 
Case 2:  1 1(0) 0.5 (0);A A    

 
Case 3:  1 1(0) (0);A A   

 
Case 4:  1 1(0) 2 (0);A A    

 
where   

101 10E   Nm-2,   4(0) 4 10I   m4,   32 10   kgm-3,   
2(0) 5 10A   m2, 1 1 2 2(0) (0) (0);E I E I EI   

2 2 (0) (0)A A  ; 52 10k   Nm-2,   

100G  Nm-2,  1 2 10L L L   m, 1 2 0.5     . 

 
The result of the analysis to study the effect of the mass 

of the upper beam on the vibration frequencies of the simply 
supported Euler-Bernoulli double-beam system is presented 
in Table IV. 

  
The data in Table IV evidently indicate that all the four 

natural frequencies of the non-prismatic double-beam 
system are very sensitive to the mass of the upper beam. 
Specifically, there is tendency to lower the vibration 
frequency of the whole double-beam system by increasing 
the mass of the upper beam.  

 
Effect of Flexural Rigidity of Upper Beam on Vibration 
Frequencies 

An investigation on the effect of the flexural rigidity of 
the upper beam on the natural frequencies of non-prismatic 
Euler-Bernoulli double-beam system elastically connected 
by a Pasternak elastic layer is discussed here. The cases of 
variation considered are as follows: 
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Case 1: 1 1(0) 0.1 (0)E I EI  ; 

 
Case 2:  1 1(0) 0.5 (0)E I EI  ; 

 
Case 3:  1 1(0) (0)E I EI ; 

 
Case 4:  1 1(0) 2 (0)E I EI   

 
TABLE IV 

VARIATION OF THE FIRST FOUR VIBRATION FREQUENCIES OF NON-
PRISMATIC SIMPLY SUPPORTED DOUBLE-BEAM SYSTEM WITH MASS PER UNIT 

LENGTH OF THE UPPER BEAM 

 cases 
Natural 

frequencies 

1  

Case 1 18.9741 

Case 2 16.4124 

Case 3 14.2431 

Case 4 11.6053 

2  

Case 1 69.0134 

Case 2 64.8811 

Case 3 57.9037 

Case 4 45.8779 

3  

Case 1 138.7188 

Case 2 91.4104 

Case 3 74.3212 

Case 4 64.6369 

4  

Case 1 177.3322 

Case 2 120.0124 

Case 3 95.3683 

Case 4 84.8614 

   
where 
 

101 10E    Nm-2,  4(0) 4 10I   m4,    

 
32 10   kgm-3,  2(0) 5 10A   m2,  

 

2 2 (0) (0)E I EI , 1 1 2 2(0) (0) (0)A A A    ,  

    
52 10k   Nm-2,  100G  N m-2,  1 2 10L I L   m,  

 

1 2 0.5     . 

 
The results of the study of the effects of the flexural 

rigidity of the upper beam on the first four natural 

frequencies of the non-prismatic simply supported EB 
double-beam system coupled by Pasternak elastic layer are 
shown in Table V.  

It is evident from Table V that natural frequencies of the 
double-system generally increase with an increase in the 
flexural rigidity of the upper beam of the double-beam 
system considered. 

 
 

TABLE V 
EFFECT OF FLEXURAL RIGIDITY OF UPPER BEAM ON VIBRATION 

FREQUENCIES OF NON-PRISMATIC SIMPLY SUPPORTED EB DOUBLE-BEAM 

SYSTEM ELASTICALLY CONNECTED BY PASTERNAK ELASTIC LAYER 

 cases 
Natural 

frequencies 

1  

Case 1 10.4893 

Case 2 12.3155 

Case 3 14.2431 

Case 4 17.3895 

2  

Case 1 38.1351 

Case 2 48.8783 

Case 3 57.9037 

Case 4 67.3792 

3  

Case 1 62.8207 

Case 2 73.8182 

Case 3 74.3212 

Case 4 75.5563 

4  

Case 1 73.5035 

Case 2 91.3999 

Case 3 95.3683 

Case 4 105.7530 

   
 

IV. CONCLUSIONS 

The free vibration analysis of non-prismatic double-beam 
system based on both Euler-Bernoulli and Rayleigh beam 
theories has been presented in this paper. The main purpose 
of this research work has been to investigate the effects of 
some structural parameters, namely the mass per unit length 
and flexural rigidity of the upper beam of the double-beam 
system on its natural frequencies. 
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