
 

 
Abstract— In this paper, the free vibration characteristics of 

an elastically connected non-prismatic double-beam system 
based on Euler-Bernoulli beam theory are determined using 
differential transform method. The double-beam system is 
composed of two parallel non-uniform cantilever beams which 
are attached to each other by a Pasternak elastic medium. 
Numerical results of the method used are validated by 
comparing with the ones available in the published literature. 
The effect of the taper ratio on the natural frequency of the 
double-beam system is also studied. 
 

Index Terms— double-beam system, non-prismatic beam, 
Pasternak elastic layer, taper ratio, cantilever beam 
 

I. INTRODUCTION 

REE and forced vibrations of single beams with uniform 
and non-uniform cross-section have been studied by 

several researchers because of their useful applications in 
many fields of engineering. These are reported in [1]-[14]. 

An important extension of the concept of the single beam 
is that of the multiple or compound beam system, for 
instance, double-beam system, triple-beam system and so 
on. The vibration problem of beam-type structures such as 
elastically connected double-beam system is still a subject 
of great interest to investigators. The physical model of a 
double-beam system is usually composed of two parallel 
beams, prismatic (or non-prismatic) coupled together by 
innumerable coupling springs ([14],[16]). 

The vibration problem of two beams which are elastically 
connected is of great interest to practitioners in many fields 
of engineering. To this end, different cases of the vibration 
of elastically connected double-beam systems have been 
attempted by several scholars. Seelig and Hoppmann II [17] 
presented the frequencies and associated mode shapes of a 
system of n elastically connected parallel beams having 
different support conditions. They used the result obtained 
for the general n-system to give detail analysis of the 
particular case of a two-beam system. As reported in [17],  
 

 
Manuscript received February 19, 2017; revised March 13, 2017. This 

work was supported fully by Covenant University, Ota, Nigeria.  
O. O. Agboola is with the Department of Mathematics, Covenant 

University, Ota, Nigeria (+2348032502412; e-mail: ola.agboola@ 
covenantuniversity.edu.ng).  

J. A. Gbadeyan is with the Department of Mathematics, University of 
Ilorin, Ilorin, Nigeria. (e-mail: j.agbadeyan@yahoo.com). 

S. A. Iyase is also with the Department of Mathematics, Covenant 
University, Ota, Nigeria (e-mail: samuel.iyase@covenantuniversity.edu.ng). 

 
application of beam theory to the vibration of double-beam 
systems which are elastically coupled has been earlier 
studied by Dublin and Friedrich (1956) and Osborne (1962). 
Oniszczuk [18] developed the free transverse theory of an 
elastically connected simply supported double-beam system 
continuously joined by a Winkler elastic layer. The motion 
of the system was solved using the Bernoulli-Fourier 
method. Gbadeyan and Agboola [19] investigated dynamic 
behaviour of visco-elastically connected uniform double-
beam system carrying uniform partially distributed moving 
load based on Euler-Bernoulli theory. Abu-Hilal [14] 
investigated the dynamic response of a simply supported 
double-beam system subjected to a constant moving load. 

Mao [20] employed Adomian decomposition method to 
study the free vibrations of elastically connected beams 
under general conditions. The system considered is 
composed of uniform Euler-Bernoulli beams which are 
continuously joined by a Winkler-type elastic layer. Huang 
and Liu [21] investigated the free and forced vibration 
analyses of two parallel prismatic beams connected to each 
other by uniformly distributed vertical springs. The inner 
springs are also stimulated Winkler model. Using finite 
element method for the analysis, it is found that the inner 
spring with large coefficient has significant effect on the 
natural frequencies of out-of-phase vibration. Li, Hu and 
Sun [22] used a semi-analytical method to obtain the natural 
frequencies and corresponding mode shapes of a double-
beam system interconnected by a viscoelastic layer of the 
Winkler type. They further studied the effects of 
viscoelastic layer damping and Winkler layer on the 
vibration characteristics of the double-beam system. 

Virtually, all the above research works assumed that the 
two beams that make up the double-beam system are 
prismatic having uniform cross-section. It has also been 
observed from the above literature that no research work has 
been done to investigate the free vibration analysis of a 
system of two non-prismatic beams coupled by a Pasternak 
elastic layer. Thus, in this article, the differential transform 
method is further developed to analyse the free vibration of 
a non-prismatic double-beam system connected by a 
Pasternak elastic layer under clamped-free boundary 
conditions and based on Euler-Bernoulli beam theory.   

  

II. GOVERNING EQUATIONS OF MOTION 

The equations of motion governing the free vibration of a 
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non-prismatic double-beam system elastically connected by 
a Pasternak layer are given by: 
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where  ,jw x t  is the transverse displacement of the jth 

beam at any distance x  along the length of the beam at time 
t . The subscript j is associated with the upper beam (j = 1) 

and lower beam (j =2).  jA x  and  jI x  are the area of 

cross-section and cross-sectional moment of inertia of jth at 
distance x  from the left end of the jth beam respectively. 

jE  and j  are the Young’s modulus of elasticity and mass 

density of the jth beam material respectively.  k x  is the 

variable Winkler modulus of the elastic layer (springs) that 

joins the two beams and  G x is the variable shear modulus 

that accounts for the shear interaction among the springs.  
The boundary conditions considered at the ends of the 

each of the beams (being cantilever), as shown in Fig. 1, can 
be expressed as 
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at the fixed end, and 
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at the free end. 
For Eqs. (1) and (2), we assume a solution of the form: 
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j jw x t Y x e j                                              (5) 

 

where  jY x  is the mode shape of the jth beam and   the 

angular frequency of the system.  
By using Eq. (5) in Eqs. (1) and (2), the equations of 

motion reduce to 
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Fig. 1.  The structural model of a system of two non-prismatic beams 
elastically connected with a Pasternak elastic layer 
 

 
and 
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Similarly, Eqs. (3) and (4) imply that 
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For simplicity, the following non-dimensional parameters 

are introduced: 
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Thus, Eqs. (6) and (7) can be written as 
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Also, the boundary conditions in Eqs. (8) and (9) can be 
written in the following non-dimensional form:  
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at 0  , and 
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at 1  . 

 
 

III. DTM ALGORITHM AND SOLUTION PROCEDURES 

A. DTM Algorithm 

The differential transform method (DTM) is briefly 
described herein for completeness consideration. In DTM, 
the function ( )y   and its rth order derivative with respect 

to   are approximated via a differential transform as: 
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The inverse differential transformation of convolution 

( )Y r is defined as 
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 Combining equations Eqs. (16) and (17), we have 
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The basic operations of the dimensional transform 

which are useful in the transformation of the governing 
equations and the boundary conditions are summarized as 
follows: [23],[25],[29] 
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B. Solution by DTM 

By applying the DTM operations appropriately, the 
differential transform of Eqs. (11) and (12) are obtained 
as 
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The following transformed boundary conditions are also 
obtained: 
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We then solve Eqs. (19) and (20) subject to Eqs. (21) and 
(22) for the natural frequency,  by re-arranging the set of 
algebraic equations to obtain an eigenvalue problem.  

The values of 1(2)Y , 1(3)Y , 2 (2)Y  and 2 (3)Y are 
unknown. So, they are set as unknowns such as, 
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of four equations in  corresponding to the Mth term. The 
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It should be noted that Eqs. (24) has a non-trivial solution 
provided the determinant of the coefficient matrix is zero. 
That is, 
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Solving the characteristic Eq. (25) yields the natural 
frequency of the double-beam system. One obtains 

( ) , 1, 2,M
n n     as the Mth estimated natural 

frequency corresponding to nth mode of vibration. The 
value of M is decided by the convergence of natural 
frequency expressed by the inequality: 

( ) ( 1) ,M M
m m    where   is the error tolerance parameter 

taken as 0.0001   in this paper. 

IV. NUMERICAL EXAMPLE 

To illustrate the theory presented, the vibration 
characteristics of a beam pair with constant width and 
linearly varying height are studied in this section. To this 
end, the area of cross-section and the moment of inertia of 
the jth beam vary per the following relations: 
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where j (0)A  and j (0)I  are the area of the cross-section and 

moment of inertia at the left end of the jth beam, j  is the 

taper ratio for jth beam which satisfies 0 1j  . 

Writing Eqs. (26) and (27) in non-dimensional form one 
gets 

j j( ) 1 , 1, 2A j     ,                                                  (28) 

 
and 
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 For validation, the values of the parameters which 
describe the material and geometrical properties of the 
uniform Euler-Bernoulli double-beam system from the work 
of Mao [20] is used in our analysis. In this case, the length 
of each beam is L = 10 m, while the material and geometric 
properties of the upper beam are:  
 

10
1 1 10E   2Nm ,  

 
2

1 1(0) 5 10A A     m2,  

 
4

1 1(0) 4 10I I     m4, 3
1 2 10    kgm-3.  

 
For the lower beam, the flexural stiffness and the mass per 
unit length are: 2 2 1 12E I E I   and 2 2 1 12A A    

respectively. The Winkler modulus of the inner springs used 
for the computation is  51 10k   Nm-2. By using these 
values, the natural frequencies are calculated and the results 
are shown in Table I. The results reported by Mao [20] 
using Adomian Modified Decomposition method (AMDM) 
are based on a uniform double-beam system elastically 
connected by a Winkler layer are compared with the ones 
obtained using DTM by neglecting the Shear modulus 
parameter (   0G x  ).  

 
TABLE I 

COMPARISON OF THE FIRST SIX NATRURAL FREQUENCIES BY 
METHODS FOR CANTILEVER PRISMATIC EULER-BERNOULLI 
(EB) DOUBLE BEAM SYSTEM COMPOSED OF NON-IDENTICAL 

BEAMS AND JOINED BY WINKLER ELASTIC LAYER 
Frequency AMDM, Mao [20] Present  

1  7.0320 7.0320 

2  39.3630 39.3629 

3  44.0690 44.0690 

4  58.6692 58.6709 

5  123.3944 123.3944 

6  129.3297 129.3324 

   
The results in Table I show that there is a close agreement 
between DTM and AMDM, hence validating the present 
study 

The effects of taper ratio on the first four natural 
frequencies of a double-beam system composed of two non-
identical Euler-Bernoulli (EB) beams connected by a 
Pasternak elastic medium are displayed in Table 2 for 
clamped-free boundary conditions. The physical properties 
of the beams used for the calculations are: 
 

10
1 1 10E   2Nm , 2

1 1(0) 5 10A A     m2,  
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4
1 1(0) 4 10I I     m4,  3

1 2 10    kgm-3.  

 
The flexural stiffness and the mass per unit length of the 
lower beam are: 2 2 1 12E I E I   and 2 2 1 12A A    

respectively. The values of the moduli of Winkler layer and 
shear layer used are 52 10k   Nm-2 and 100G  Nm-2, 
respectively. Constant moduli of the layer are assumed.  
 
 

TABLE II 
THE FIRST FIVE NATURAL FREQUENCIES OF NON-PRISMATIC 

CANTILEVER DOUBLE-BEAM SYSTEM ELASTICALLY 
CONNECTED BY A PASTERNAK LAYER FOR DIFFERENT VALUES 

OF TAPER RATIO (NON-IDENTICAL CASE) 
Frequency 0   0.25   0.50     

1  7.0320 7.2725 7.6476   

2  44.0690 40.5078 36.6345   

3  55.2217 61.6178 69.3677   

4  70.3013 72.2055 78.3339   

5  123.3944 109.5368 94.5297   

6  135.0069 124.4988 115.4559   

      
 
We observed that increasing the taper ratio resulted in 
increase in the natural frequency of the double-beam system 
under consideration for the first four modes of vibration. 
Contrarily, we noticed that there was a decrease in the 
fourth and fifth natural frequencies of the system due to 
increase in the taper ratio. 
 

V. CONCLUSION 

In this paper, the free vibrations of a system of two non-
prismatic cantilever beams elastically attached by a 
Pasternak layer and based on Euler-Bernoulli beam theory 
are considered. The results obtained using a semi-analytical 
approach known as differential transform method (DTM) 
were validated against those earlier reported in the literature. 
Also, the effects of the taper ratio on the natural frequencies 
of the double-beam system were discussed.  
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