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Abstract— This paper considers approximate-analytical 

solutions of the generalized Newell-Whitehead-Segel model by 

means of He’s polynomials solution method. The method is 

technically presented and applied to both linear and nonlinear 

forms of the Newell-Whitehead-Segel model. The results 

guarantee the efficiency and reliability of the proposed method. 
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I. INTRODUCTION 

n real life settings, modelling involves partial differential 

equations (PDEs), which may appear in linear or nonlinear 

forms. However, providing solutions to these models has 

become a great task before researchers. Hence, the 

development of numerical schemes, semi-analytical 

methods, and even modified semi-analytical methods [1-8]. 

In this work, emphasis will be on one of the vital models 

known as Newell-Whitehead-Segel Model (NWSM) whose 

general form is: 

       
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  (1.1) 

where ,a b , and ,k j  . 

The NWSM is a vital in fluid mechanics, engineering, and 

other aspects of pure and applied sciences. Recently, many 

researchers have considered, and adopted good number of 

solution techniques in a bid to solving (1.1) [9-11]. The 

purpose of this work is to consider in a general form, the 

solution of the NWSM by means of He‟s polynomial method 

whose basic merit is hinged on easy handling on nonlinear 

terms [12-16]. 
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II.   ANALYSIS OF THE METHOD [12, 13] 

Let   be an integral or a differential operator on the 

equation of the form: 

  0   .                    (2.1) 

Let  ,H p  be a convex homotopy defined by: 

       , 1H p p p G       ,       (2.2) 

where  G  is a functional operator with 0  as a known 

solution. Thus, we have: 

   ,0H G    and    ,1H     ,      (2.3) 

whenever  , 0H p   is satisfied, and  0,1p  is an 

embedded parameter. In Homotopy Perturbation Method  

(HPM), p  is used as an expanding parameter to obtain: 
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From (2.4) the solution is obtained as 1p  . The method 

considers  N   (the nonlinear term) as: 
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where 'kH s  are the so-called He‟s polynomials, which can 

be computed using: 
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where    0 1 2 3, , , , ,i iH H       .  

III. THE HE‟S POLYNOMIALS ON THE GENERALIZED NWSM  

Here, the He‟s Polynomials method is applied to the 

generalized NWSM as follows. 

In integral form, with  0

tI   denoting an integral operator, 

we write (1.1) as: 
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      (3.1) 
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Note: In HPM, the series solution is expressed as: 

 
0

, n

n

n

w x t p w




 ,                  (3.2) 

which is evaluated as 1p  . Thus, by applying convex 

homotopy method to (3.1), we have: 
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where nH  ,  0n   represent He‟s polynomials 

associated with the nonlinear term,  ,jw x t . 

So, by comparing the powers of the 'p s  in (3.3), we have: 

   0

0:p w g x  
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1 0 ,0 0 0: t
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   3
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   0 , 1 1 1: , 1
i t

i xx i i ip w I kw aw bH i      . 

Hence, the solution:  
0 0
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n n

n n

w x t p w w
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    as 

1p  . 

IV. ILLUSTRATIVE EXAMPLES 

 

Problem 1:  Consider the following linear NWSM [10, 11]: 
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                  (4.1) 

whose exact solution is: 

  2, x tw x t e  .                     (4.2) 

 

Procedure w.r.t Problem 1:   

Comparing (4.1) with (1.1) gives: 1,k  3,a   0b  , 

and   2xg x e . Therefore, using the detail in section 3 

gives the recursive relation: 
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such that: 
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Problem 2:  Consider the following nonlinear NWSM [9-

11]: 
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whose exact solution is: 
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Procedure w.r.t Problem 2:   

Comparing (4.5) with (1.1) gives: 5,k   2,a   1b   , 

2j   and  g x  . Therefore, using the detail in 

section 3 gives the recursive relation: 
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where 
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Fig. 1a: Approximate solution of problem 1 

 

 

 
Fig. 1b: Exact solution of problem 1 

 

 
Fig.  2: Exact and He‟s polynomial solutions of problem 2 

 

V. CONCLUDING REMARKS 

In this paper, approximate-analytical solutions of the 

generalized Newell-Whitehead-Segel model by means of 

He‟s polynomials solution method were considered. Based 

on the solved illustrative problems: linear and nonlinear 

forms of the NWSM with efficiency and reliability of the 

proposed method being guaranteed by the results. We 

therefore, recommend the method for applications regarding 

problems arising from other areas of pure and applied 

sciences. 
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