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ABSTRACT 
 
A three parameter probability model which serves 
as a generalization of the Exponential distribution 
was studied. The new model is named 
Exponentiated Generalized Exponential (EGE) 
distribution. The shape of the model could be 
increasing, decreasing or unimodal (depending 
on the value of the parameters). Explicit 
expressions are provided for the moments and 
generating functions, reliability function and 
failure rate. The method of maximum likelihood 
estimation (MLE) was proposed for the estimation 
of the parameters. An application to two real data 
sets was provided in order to assess the flexibility 
of the proposed model over some models in the 
literature. 

 
(Keywords: exponential distribution, exponentiated 
generalized exponential distribution, generalization, 

maximum likelihood estimation) 
 

 
INTRODUCTION 
 
Exponential distribution has been widely used for 
the analysis of Poisson processes and it has also 
received appreciable use for problems in 
reliability. It is the only continuous distribution that 
has a constant failure rate. It has a unique 
property of being memoryless and its discrete 
analogue is the Geometric distribution. 
 
Meanwhile, various generalizations of the 
Exponential distribution have been proposed in 
the literature and these models have been found 
to be better than the Exponential distribution 
when applied to data sets. The Beta-Exponential 
distribution; Nadarajah and Kotz (2006) and 
Weibull-Exponential distribution; Oguntunde et al. 
(2015) are examples of such. 

Several classes of generalized distributions exist 
in the literature: for instance, The Beta-
Generalized family of distributions; Eugene et al. 
(2002), The Kumaraswamy Generalized family of 
distributions; Cordeiro, et al. (2011); and the 
Exponentiated Generalized family of distributions; 
Cordeiro et al, (2013) (among many others) are 
examples; see Tahir et al (2014) for full details. 
All these classes were proposed to provide ways 
of increasing the flexibility of distributions. 
 
 We would like to note that Gupta and Kundu 
(1999) proposed and studied a generalization of 
the Exponential distribution called Generalized 
Exponential distribution by introducing a shape 
parameter to the Exponential distribution. The 
probability density function (pdf) of the 
Generalized Exponential (GE) distribution is given 
by: 

   
1

1x xf x e e


 


     (1) 

 

For 0, 0x     

where   is the shape parameter 

   is the scale parameter 

 
The corresponding cumulative density function 
(cdf) of the Generalized Exponential distribution is 
given by: 
 

   1 xF x e


     (2) 

 

For 0, 0x    

 
But, of interest to us in this research is the 
Exponentiated Generalized family of distributions 
introduced by Cordeiro et al., 2013. This article 
seeks to extend the work of Cordeiro et al., 2013 
in a view to defining and investigating a three 
parameter probability model named 
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Exponentiated Generalized Exponential 
distribution. 
 
The Exponentiated Generalized family of 
distributions is an extension of the Exponentiated 
type distribution which can be widely applied in 
many areas of biology and engineering; see 
Cordeiro et al (2013) for details. It has been used 
to define the Exponentiated Generalized Inverse 
Weibull distribution; Elbatal and Muhammed 
(2014), Exponentiated Generalized Inverse 
Exponential distribution; Oguntunde et al. (2014), 
and Exponentiated Generalized Gumbel 
distribution Andrade et al (2015) successfully. 
Given a non-negative continuous random variable 
X, the pdf of the Exponentiated generalized (EG) 
class of distributions is defined by; 
 

   
11

( ) ( ) 1 ( ) 1 1 ( )
ba af x abg x G x G x


    
   

     
(3) 

 

where , 0a b  are additional shape parameters 

The corresponding cdf is given by: 
 

  ( ) 1 1
b

a

F x G x   
  

  (4) 

 

where ( )G x  is the cdf of the baseline distribution 

and 
( )

( )
dG x

g x
dx

  

 
The model in Equation (4) is considered to be 
more tractable than the beta generalized family of 
distributions introduced by Eugene et al., 2002 
since Equation (4) does not involve any special 
function like the incomplete beta function. 
Equation (4) also has mild algebraic properties for 
simulation purposes because its quantile function 
takes a simple form; Cordeiro et al., 2013. 
 
The rest of this article introduces the 
Exponentiated Generalized Exponential (EGE) 
distribution; deals with some basic statistical 
properties of the proposed model coupled with 
the estimation of the parameters; discusses the 
application of the proposed model to real life data 
sets; and ends with a concluding remark. 
 
 
 
 

THE EXPONENTIATED GENERALIZED 
EXPONENTIAL (EGE) DISTRIBUTION 
 
The pdf of the Exponential distribution with 

parameter  is given by: 

 

  xg x e    ; 0, 0x    (5) 

 

where is the scale parameter 

 
The cdf is given by: 
 

  1 xG x e   ; 0, 0x    (6) 

 
Also, 
 

 
1

E X


     (7) 

 

  2

1
Var X


     (8) 

 
The Quantile function is given by: 
 

   1 log 1
G u

Q u     (9) 

 
Hence, the proposed Exponentiated Generalized 
Exponential (EGE) distribution is derived by 
substituting Equations (5) and (6) into Equation 
(3). Therefore, if a continuous non-negative 
random variable X is such that: 
 

 , ,X EGE a b  , its pdf is given by; 

     
1

1
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b

a a
x x xf x ab e e e  




        
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      (10) 
 
Equation (10) thus reduces to give: 
 

   
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b
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x xf x ab e e 


   
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 (11) 

For 0, 0, 0, 0x a b      

 

where a  and b  are shape parameters 

   is the scale parameter 
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The corresponding cdf is given by: 
 

  ( ) 1 1 1
b

a
xF x e     

  
  (12) 

 
Equation (12) reduces to give: 
 

 ( ) 1
b

a
xF x e   

  
   (13) 

0, 0, 0, 0x a b      

 
 
Expansions for the Cumulative Density 
Function 
 
Following Cordeiro et al., 2013, for any real non-

integer ' 'b , they considered a power series 

expansion: 
 

 
   

 
1

0

1
1

!

k

b k

k

b
z z

b k k






 
 

 
   (14) 

 
The expression in Equation (14) is valid for 

| | 1z  . Using the binomial expansion for a 

positive real power, the resulting cdf is given by: 
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The coefficients  ,j jw w a b  were given by: 
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With this understanding, the cdf of the proposed 
EGE distribution can therefore be written as: 
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      (16) 
 
Equation (16) is an infinite power series of the 
Exponential distribution. 
 
From the series expansion in Equation (14), 
Cordeiro et al., (2013) gave the pdf of the 

Exponentiated Generalized (EG) class of 

distributions (for ' 'a  real non-integer) as: 
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The coefficients  ,j jt t a b  were given as: 
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      (18) 
 
With this understanding, we re-write the pdf of the 
proposed EGE distribution as: 
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      (19) 
 
Special Cases 
 
We observe that some important models are sub-
models of the proposed EGE distribution. For 
instance: 
 

1. For 1a  , Equation (10) reduces to give the 

Generalized Exponential (GE) distribution. 

2. For 1b  , Equation (10) reduces to give the 

Exponentiated Exponential distribution. 

3. For 1a b  , Equation (10) reduces to give 

the Exponential distribution (which is the 
baseline distribution). 

 
The possible shapes for the pdf of the proposed 
model at different values of parameters are given 
in Figures 1 - 3 as follows: 
 

 
Figure 1: Plot for the pdf at 

0.1, 7, 0.5a b     
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We observe from Figure 1 that the curve 
increases as the value of ‘x’ increases. Hence, 
the shape of the proposed EGE distribution could 
be increasing. 
 

 
Figure 2: Plot for the pdf at 

0.1, 0.3, 0.6a b     

 
We observe from Figure 2 that the curve 
decreases as the value of ‘x’ increases. 
Therefore, the shape of the proposed EGE 
distribution could be decreasing. 
 

 
Figure 3: Plot for the pdf at varying values of 

, ,a b   

 
We observe from Figure 3 that the shape of the 
proposed EGE distribution could be unimodal. 
The plot for the cdf is shown in Figure 4 as: 
 

 
Figure 4: Plot for the cdf at 0.1, 5, 2a b     

SOME PROPERTIES OF THE 
EXPONENTIATED GENERALIZED 
EXPONENTIAL DISTRIBUTION 
 
In this section, we present some basic properties 
of the proposed model starting with the 
asymptotic properties. 
 
 
Asymptotic Behavior 
 
We seek to investigate the behavior of the 
proposed model as given in Equation (10) as 

0x  and as x . This involves considering 

0
lim ( )
x

f x


and lim ( )
x

f x


. 
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As x ; 
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
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0  

 
These results confirm further that the proposed 
model has a unique mode. 
 
 
Reliability Analysis 
 
The reliability (survival) function is given by; 

   1S x F x    

Hence, we present the reliability function of the 
Exponentiated Generalized Exponential 
distribution as: 
 

   1 1
b

a
xS x e    

  
  (20) 

 

where; 0, 0, 0, 0x a b      

 

The probability that a system having age ' 'x  

units of time will survive up to ' 'x t  units of time 

for 0, 0, 0, 0x a b      and 0t   is given 

by: 
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Hazard function (failure rate) is given by: 
 

 
 

 1
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F x



 

 
We thus present the hazard function of the 
proposed model as: 
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The plots for the failure rate of the proposed 
model at various parameter values are given in 
Figures 5 - 7 as: 
 

 
Figure 5: Failure rate for the EGE distribution at 

0.1, 7, 0.5a b     

 
Figure 5 shows that the failure rate increases as 
the value of ‘x’ increases. This shows that the 
model can be used for modeling problems where 
the risk is low at the initial stage but increases 
with time. 

 
Figure 6: Failure rate for the EGE distribution at 

0.1, 0.3, 0.6a b     

 
Figure 6 shows that the failure rate decreases as 
the value of ‘x’ increases. This shows that the 
model can be used for modeling problems where 
the risk is high at the initial stage but decreases 
with time. 
 
 

 
Figure 7: Failure rate for the EGE distribution at 

0.07, 10, 8a b     

 
Figure 7 shows that the failure rate increases as 
the value of ‘x’ increases but later remains 
constant at a point. This shows that the model 
can be used for modeling problems where the risk 
is low at the initial stage; increases with time but 
later remain constant. 
 
 
Moments 
 
The moments of any Exponential Generalized 
(EG) distribution can be expressed as an infinite 
weighted sum of the probability weighted sum of 
the parent distribution; (Cordeiro et al., 2013). 
Therefore, the rth moment for the EG distribution 
is given by: 
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Following Cordeiro et al., 2013, 
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     (24) 
 
Therefore, if a continuous random variable X is 

such that;  , ,X EGE a b  , we substitute 

Equations (18) and (24) into Equation (23). Then, 
the rth moment is presented as: 
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The mean and the other higher-order r

th 
moments 

can be derived from Equation (25). 
 
 
Generating Functions 
 

Cordeiro et al., 2013 gave three formulae for the 
moment generating function (mgf) for the EG 
distribution. In this article, we shall present the 
mgf of the EGE distribution using the third 
formula: 
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Hence, the mgf for the EGE distribution is given 
by: 
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      (28) 
 
 

Order Statistics 
 

The pdf of the ith order statistic for 1,2,....,i n
 

for iid random variables 1 2, ,..., nX X X  is given 

by: 
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Here, we take  f x  and  F x  in Equation (29) 

to be the pdf and cdf of the EGE distribution 
respectively. Now: 
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In particular, the pdf of the minimum and 
maximum order statistics of the EGE distribution 
are respectively given by: 
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      (30) 
and: 
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      (31) 
 
Estimation of Parameters 
 
We estimate the parameters of the proposed 
model using the method of maximum likelihood 
estimation (MLE) as follows; Let 

1 2, ,..., nX X X be a random sample of size n from 

the  , ,EGE a b   distribution. The likelihood 

function is given by: 
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Therefore, the log-likelihood function is given by 
Equation (32): 
 

   
1 1

log log log 1 log 1 i

n n
x

i

i i

l n a n b n a x a b e
  

 

          

      (32) 
 
Differentiating Equation (32) with respect to each 
of the model parameters and solving the resulting 
non-linear system of equations give the maximum 
likelihood estimate of the parameters. 
 
 
REAL LIFE APPLICATION & RESULTS 
 
In this section, the robustness of the EGE 
distribution is assessed using two real life data 
set. We provide an application of the EGE 
distribution in comparison to its sub-models: 
Generalized Exponential distribution and 
Exponential distribution. 
 
 

First Data Set: The data set given by Lee and 
Wang (2003) which represent remission times (in 
months) of a random sample of 128 bladder 
cancer patients shall be used in this research. 
The data are as follows: 
 
0.08, 2.09, 3.48,4.87, 6.94 , 8.66, 13.11, 23.63, 
0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 
2.26, 3.57,5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 
2.46 , 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 
2.54,3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 
2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 
2.64,3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 
2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 
1.05,2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 
1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 
1.26,2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 
1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 
3.02,4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 
5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 
6.25,8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 
12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 
2.07,3.36, 6.93, 8.65, 12.63, 22.69. 

 
 

 

Table 1: Descriptive Statistics on Remission Times. 

 
Min. Q1 Q2 Mean Q3 Max. Var. Skewness Kurtosis 

0.080 3.348 6.395 9.366 11.840 79.050 110.425 3.286569 18.48308 

 
 

Table 2: Performance Ratings of Some Distributions. 

 
 

Model 
 

Estimates 
Statistics 

Log-likelihood AIC 
Exponential ˆ 0.1067734   

-414.3419 830.6838 

 Generalized 
Exponential b̂ 1.217953

ˆ 0.121167




 

-413.0776 830.1552 

Exponentiated 
Exponential 7.338231

0.014550

a











 

-414.3419 832.6838 

Exponentiated  
Generalized 
Exponential 

ˆ 0.00760888

ˆ 0.30351482

ˆ 1.62037332

a

b








 

-273.5548 553.1095 
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Second Data Set: The data presented here 
represents the Death times (in weeks) of patients 
with cancer of tongue with aneuploid DNA profile. 
The data has been used by Sickle-Santanello et 
al. (1988), Klein & Moeschberger (2003) and by 
Jain et al (2014). The data is as follows: 
 
 

1, 3, 3, 4, 10, 13, 13, 16, 16, 24, 26, 27, 28, 30, 
30, 32, 41, 51, 61, 65, 67, 70, 72, 73, 74, 77, 79, 
80, 81, 87, 87, 88, 89, 91, 93, 93, 96, 97, 100, 
101, 104, 104, 108, 109, 120, 131, 150, 157, 167, 
231, 240, 400 
 
NOTE: The data written in bold represents 
censored observations. 

 
 
 

Table 3: Descriptive Statistics on Death Times. 
 

Min Q1 Q2 Mean Q3 Max Var. Skewness Kurtosis 

1.00 30.00 78.00 81.76 100.20 400.00 4774.898 2.193221 10.35995 

 
 
 

Table 4: Performance Ratings of Some Distributions. 
 
 

 
Model 

 
Estimates 

Statistics 

Log-likelihood AIC 

Exponential 

0.012232


  

-280.9938 563.9876 

Generalized 
Exponential 1.264407

0.014129

b











 

-280.236 564.4719 

Exponentiated 
Exponential 3.050 04

4.011 01

a e

e





 

 

 

-280.9938 565.9876 

Exponentiated  
Generalized 
Exponential 

2.858 04

1.986 01

1.701 00

a e

b e

e







 

 

 

 

-184.2438 374.4876 

 
 
NOTE: The model with the lowest Akaike Information Criteria (AIC) is ranked the best. 
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CONCLUSION 
 
This paper explores the probability density 
function of the Exponentiated Generalized-
Exponential distribution and its application. The 
essence is to induce skewness into the baseline 
distribution to withstand strong asymmetry in the 
data that are heavily skewed. Statistical properties 
of the new distribution have been properly 
investigated. Exponentiated Generalized-
Exponential distribution provides the best fit for 
the data under review as it poses the smallest AIC 
among the distributions considered. 
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