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Abstract— Various plates and plate like structures are often 
subjected to moving loads, such as aerodynamic automobiles. 
In this paper automobile highway was modelled as an elastic 
orthotropic rectangular plate. The effects of damping and 
drag force were put into consideration. The fourth order 
differential equation governing such plates resting on 
Pasternak foundation was expressed as first order differential 
equation. The equation was changed to its algebraic form 
using finite difference algorithm, then solved with the aid of 
MATLAB in conjunction with a computer program. Simple 
supported conditions were used. The effects of damping drag 
force, foundation and other physical phenomena were 
investigated and the results obtained are consistent with the 
ones existing in literature.  
Index Terms— aerodynamics, automobile, inclined damped 
highway, Pasternak foundation, free vibration, orthotropic. 

I INTRODUCTION 

HERE has been great concern recently about the safety 
of the structures on which loads move. This is, partly, 
because of advances in all branches of transportation 

characterized by increasing weight and high speed of these 
moving loads.[2,8,9] Modern structure, like automobile 
highways and bridges, are therefore been subjected to 
vibration and dynamic stress more than ever before.[1,2,8] 
The importance of moving load problem is manifested in 
numerous applications in the field of Engineering, applied 
Mathematics, applied Physics and transportation.[4,9] 
Most recent developments and results can be found in 
some researchers works.[6,7] In this work  
we attempted to carry out a free vibration analysis of an 
aerodynamic highway, modeled as an orthotropic plate, on 
an elastic foundation under the influence of moving 
aerodynamic automobile. Aerodynamic drag is a force that 
restricts the forward velocity of an automobile. It also 
impacts the fuel economy of automobile.[10] In application 
some plates or plate like structures are not isotropic but 
orthotropic, which put into consideration the possibility of 
such  plates not being uniform in all  
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directions[3] Viscous damping was also considered, which 
usually causes reduction or decay of motion.[3,5] 
Deflection profile of plates depends on the size of damping 
coefficient[3,5]. This work focused on free vibration of 
orthotropic damped plate with effect of drag force                                 

II FORMULATION OF PROBLEM 

A. Assumptions  

      In developing the  governing partial differential 
equation the following assumptions were made: 
   - The small strain in the system is still governed by 
Hook’s law. 
    -The plate is resting on elastic foundation. 
    -The load is taken to be a distributed time load. 
    -There is no deformation in the middle of the plate, i.e 
the plate remains the same before and after bending 
    -The damping and drag coefficient values respectively 
are taken to be very small 
     - W(x,y,t) = W = deflection of the Mindlin plate  
     -Uniform gravitational field, g.  
      -m = constant mass moving on the plate 

B. Governing Equation  

The equation governing the vibration of damped simply 
supported orthotropic inclined plate resting on Pasternak 
foundation subject to a moving load can be written as 
follows[1,2,3]: 
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where, 
w = w(x,y,t) is the deflection of the plate.                               
t = time in seconds                                                                  
E = Young,s modulus                                                             
m = mass density per unit area 

H = thickness of plate 

r = length of the load 

g(cos ),  = acceleration due to gravity of the load on an 
inclined plane 

v = velocity 
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K, G1 = foundation stiffness 

  = viscous damping coefficient 

Cd = Drag coefficient value 

1
= flexural rigidity in the x direction 

 3
= flexural rigidity in the y direction 

 2  = effective torsional rigidity 

H(x) = Heaviside step function 

v = velocity 

(x) = dirac delta function 

 = angle of inclination of the plate to the horizontal 

For complete formulation of the problem, a simply 
supported rectangular plate is considered. The following 
initial and boundary conditions and have been considered 
as follows: 

(x, y,0) w (x, y,0) 0tw  
              

(0, y, t) w(a, y, t) w (0, y, t)

w (a, y, t) 0

w(x,0, t) w(x,b, t) w (x,0, t)

w (x,b, t) 0

xx

xx

yy

yy

w  
 

 

 

 

III PROBLEM SOLUTION 

    The  dynamic equilibrium equations which governs 
behaviour of damped orthotropic rectangular  plate 
supported by Pasternak foundation is gotten by neglecting 
the terms representing the applied force in equation (1). 
The right hand side of equation (1) represents the applied 
load,  P(x,y,t). For free vibration, P(x,y,t) =0. Therefore 
equation (1) becomes 
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Equation (2) can now be written as follows 
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A  Finite Difference Algorithm  

   Equations (4) is solved using a numerical method based 
on the finite difference algorithm. This equation is to be    
 transformed into its equivalent algebraic form. The finite 
difference definition of first order partial derivative of a   
function E(x,y,t) with respect to x,y and t respectively are 
as follows:[1,3] 
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where E is the function value of the centre of a grid, which 
is well approximated by the average of its values at 
the grid nodes [5] 
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The evaluation of the unknown variables in a particular  
time (t1) for the above equation (16) can be calculated 
using the data at both immediate previous t and y steps. 
The unknown variables in equation (16) then doubles in 
number. Applying the finite difference approximation of 
the boundary conditions[1,9]  yields the number of 
unknowns to be solved for. The resulting algebraic 
equation was therefore solved for the unknowns. With 
different values of the parameters the vibration behaviour 
of the plate was observed and reported in the next section. 

 

IV RESULTS AND DISCUSSION 

For this work the coupled differential equation (4) was 
solved using the central differential formula of finite 
Difference  method. The following values of the various 
parameters were used: 

 

1 2 30.297, 0.21, 0.69,  0,100,200. 

0,  0.554,  0.715
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
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respectively. Cd = 0.2, 0.65, 0.98 respectively. Clearly, for 
free vibration, the effect of the angle of inclination of the 
highway is not relevant. The aerodynamic drag’s Frictional 
force increases with automobile speed. The deflection 
profile depends largely on the value the damping 
coefficient. There is a positive correlation between the 
velocity of the aerodynamic  automobile and the deflection 
of the plate under  consideration. On the other hand, it was 
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observed that the foundation modulus K, is inversely 
proportional to the maximum amplitude. We recorded the 
maximum deflection    when damping is lowest. The paper 
set out to investigate free vibration of orthotropic damped 
rectangular, considering the effect of aerodynamic drag.  
Aerodynamic drag and damping are very significant in the 
free vibration of automobile highway.    Also the Pasternak 
foundation stabilised the deflection. It was observed that the 
maximum amplitude of the deflection of the plate resting on 
Pasternak foundation is lower than when it rests on non-
Pasternak foundation. 

V CONCLUSION 

The paper set out to investigate free vibration of           
orthotropic damped rectangular, considering the  effect of                 
aerodynamic drag.  Aerodynamic drag and  damping are 
very significant in the free vibration of  automobile 
highway. Also the  Pasternak foundation  stabilized the 
deflection. It was  observed that the maximum amplitude of 
the deflection of the  plat  resting on Pasternak foundation is 
lower than when it rests on non-Pasternak 
foundation.   

Appendix: Equations     
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