
 

 

 

 

Abstract—In this article, the dynamic behavior of inclined 

damped rectangular Mindlin plate under the influence of 

moving load along the mid-plate on the plate surface is 

considered. A numerical method is used to solve the non-

dimensional form of the resulting coupled partial differential 

equations. The desired solutions are obtained with the aid of 

computer program developed in conjunction with MATLAB. It 

is observed that the response amplitude of the plate is affected 

significantly by the foundation moduli. Also, the effects of the 

shear deformation, rotatory inertia, damping and angle of 

inclination of the plate, to the horizontal, are noticeable. 

 
Index Terms—Pasternak foundation, Damped Inclined 

Mindlin plate, Moving Load, Dynamic response.  

 

I. INTRODUCTION 

N  inclined rectangular Mindlin plate is a plate set at an 

angle, not perpendicular to a horizontal plane. 

However, the work done is the same: Work = Force × 

Distance, and the distance is increased, whereas the force is 

decreased [3,9]. In Elementary Physics, an object placed on 

a tilted surface (inclined plane) will often slide down the 

surface. The greater the tilt of the surface (i.e. the angle of 

inclination), the faster the rate at which the object will slide 

down it [10,11].  According to Newton’s laws of motion, a 

moving load on an inclined plane will continue to slide down 

the plane if there is no applied force to balance the forces 

acting on it, especially if the surface is frictionless or with 

minimal friction. There are always, at least, two forces 

namely: the force of gravity and the normal force, acting 

upon the moving load positioned on an inclined plate [1,10].        
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The force of gravity acts in a downward direction, while the 

normal force acts in a direction perpendicular to the surface 

[3,8]. An inclined plane problem is in every way like any 

other net force problem with the sole exception that the 

surface has been tilted. An inclined plane therefore can be 

transformed into the form with which we are more 

comfortable, as illustrated in figure 2. After this 

transformation, we can ignore the force of gravity since it 

has been replaced by its two components [11].  We can now 

solve for the net force and the acceleration. For a load 

moving up the inclined plate, the applied force must be 

greater than the component of its weight moving down the 

inclined plate, to avoid sliding down [10,11]. Gbadeyan and 

Dada extended their works recently by considering the 

dynamic response of a Mindlin elastic rectangular plate 

subjected to distributed moving load, but neglected the 

effect of damping [6,7]. Also most author did not consider 

the possibility of the plate being inclined or resting on any 

elastic foundation.[1,2,3,6] The present paper consider the 

dynamic response of damped Mindlin elastic type of plates  

resting on a Pasternak foundation under the influence of a 

partially uniform distributed moving load [4,5,8,11,12,13]. 

Finite difference technique is used to solve the transformed 

non-dimensional form of the coupled differential equations 

governing the motion of such plates [13].  

II. GOVERNING EQUATIONS  

    The set of dynamic equilibrium equations which governs 

the behavior of damped inclined Mindlin plate supported by 

Pasternak foundation, and traversed by a partially distributed 

moving load can be written as follows [6,12,13]: 
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       Fig. 1. Diagram of moving load on an inclined plane 

 

 

 

 

 

 

 

Fig 2.Diagram of a transformed inclined plane to a flat plane 
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where Equations. (4 – 8) are the equations for bending 

moments, twisting moments and shear force, x  and 
y  are 

local rotations in the x   and y   directions respectively.  

h  and 1h  are the thickness of the plate and load 

respectively,   is the viscous damping coefficient,   is the 

angle of inclination of the plate with the horizontal,   and 

L  are the densities of the plate and the load per unit 

volume respectively. ( , , )W x y t  is the traverse displacement 

of the plate at time t , g  is the acceleration due to gravity, 

  is the angle of inclination of the plate, u  is the velocity of 

the load ( LM ) of rectangular dimension   by   with one 

of its lines of symmetry moving along 1Y Y , the plate is xI  

by 
yI  in dimensions and  

2
ut


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( )H x is called Heaviside function. 

G  is the modulus of rigidity of the plate, D  is the 

flexural rigidity of the plate defined by 
3

3 2 11
(1 )

12 6(1 )

Gh
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

 for isotropic plate, 2  is the 

shear correction factor and   is the Poisson’s ration of the 

plate. 

Since the inertia effect of the load is considered, the 

uniform partially distributed applied load takes on the form 

[6]: 
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A. Initial Conditions  
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B. Boundary Conditions  
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III. . PROBLEM SOLUTION  

    The set of partial differential Equations. (1) - (11), are the 

partial differential equations to be solved for the following 

eleven dependent variables xM , yM , xyM , xQ , yQ , 

,xt yt  , W , t , x  and y .          

 A numerical procedure, finite difference method, can be 

used to solve the system of Equations. (1) - (11). 

Rearranging them in matrix form results in 
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      1,  2,  3  1;         1,  2,  3  1i N j M       

 

Where N and M are the number of the nodal points along x 

and y axes respectively. Zk is a matrix representing the right 

hand side of the transformed Equations. (1) – (11) defined 

by 
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       Effect Of Angle Of Inclination On Deflection Of The 

Inclined Plate 

 

For the purpose of this paper let 0,B   which implies 

0xB   and 
2xL t  . Also, fM h M  (mass); 

and 0
2

  . For 1  , equation (3) becomes: 
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From Equation. (15), if 0B  , the applied load becomes 
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When 90  ,  
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Now for 1  , equation 24 becomes 
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From equation (37); as the angle of inclination of the 

plate, ,increases and 1  , the magnitude of deflection, 

W, increases.   

Each term in Equations. (21) and (22) is an 11 x 11 
matrix. 

IV. RESULT DISCUSSION 

    The numerical calculations were carried out for a simply 

supported rectangular inclined plate resting on a Pasternak 

foundation and subject to a moving load. Damping effect 

was considered. The values of the damping ratios are taken 

to be 0, 1, 100 and 150 respectively. In Fig.3 the deflection 

of Mindlin, non-Mindlin,, at different values of time and 

foundation modulus, were shown. It is obvious that the 

maximum amplitude of Mindlin plate is higher than that of 

non-Mindlin plate. We notice, also, from figure 4 that the 

higher the damping ratio, the lower the deflection amplitude, 

at a particular time. We can deduce from equation (31) - 

(34) that for 1  , we need to apply more force to be able 

to pull the load uphill as   increases.  Also, for 1  , we 

can deduce, from equations (27) – (29), that the magnitude 

of the deflection (W) increases as the angle of inclination   

increases. This shows that damping affects both the applied 

force and the deflection of the inclined plate. From equation 

(37), it can be seen that, for a particular value of k, the 

magnitude of W increases as the angle of inclination   

increases. In Fig. 6, the deflection of the plate for different 

values of the foundation modulus (G) is presented. It is 

observed that the foundation stiffness have effect on the 

deflection of the plate. The highest value of the foundation 

modulus, produces the maximum response amplitude.  Fig. 5 

shows the effect of the velocity on the deflection of the 

inclined plate. From the figure it can be seen that the higher 

the velocity the higher the response amplitude 

 

 

 

 
 

Figure 3: Deflection of Mindlin and non-Mindlin plates  

for different values of time 

 

 

 

 
 

Fig.4. Effect of damping on deflection of the plate 
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Fig.5. Deflection of plate at different velocities (u) and 

time(T) 

 

 

 

 

 
 

Fig. 6. Deflection of plate at various foundation modulus  

and different times 

 

V. CONCLUSION 

    The dynamic response of a damped inclined Mindlin 

plate, carrying a uniform partially distributed moving load , 

supported by a Pasternak foundation, has been analysed. The 

non-dimensional equations of motion were transformed into 

equivalent finite difference ones, and then solved. Results 

have been presented not only for the deflection but also for 

the effect of velocity on the deflection of the inclined plate. 

Also the effects of both the damping and angle of inclination 

of the plate was examined. Hence most of the components 

composing the dynamic response of the system have been 

obtained. A numerical example of simply supported 

rectangular plate is presented. It is shown that the elastic 

subgrade, on which the damped inclined Mindlin plate rests 

has a significant effect on the dynamic response of the plate 

to a partially distributed load. The effects of the angle of 

inclination and the damping coefficient were very evident. 

For Mindlin plate, both the effect of rotatory inertia and 

shear deformation, on the dynamic response of the damped 

inclined Mindlin plate, to the moving load are considered. 

This gives a more realistic result for practical application, 

especially when such plate is considered to rest on a 

foundation.  
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