


ABSTRACT

A computational framework for evaluating outcomes in infant craniosynostosis

reconstruction

by

Binhang Yuan

Historically, surgical outcomes in craniosynostosis have been evaluated by qualita-

tive analysis, direct and indirect anthropometry, cephalometrics, and CT craniometric

analysis.

Three-dimensional meshes constructed from 3dMD images acquired on patients

with synostosis at multiple times across the course of surgical treatment provide ideal

raw data for a novel approach to 3D geometric shape analysis of surgical results.

We design a automatic computational framework for evaluating and visualizing the

results of infant cranial surgeries based on 3dMD images. The goal of this framework

is to assist surgeons in evaluating the e�cacy of their surgical techniques. Feedback

from surgeons in Texas Children’s Hospital confirms that this framework is a robust

computational system within which surgical outcomes in synostosis can be accurately

and meaningfully evaluated.

We also propose an algorithm to generate normative infant cranial models from

the input of 3D meshes, which are extracted from CT scans of normal infant skulls.

Comparing of the head shape of an a↵ected subject with a normal control will more

clearly illustrate in what aspect the subject’s head deviates from the norm. Compar-

ing of a post-treatment subject’s head shape and an age-matched control would allow
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assessing of a specific treatment approach or surgical technique.
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Chapter 1

Introduction

Cranial vault remodeling operations are performed on infants born with craniosynos-

tosis and head shape dysmorphosis. The basic procedure is to reposition the cranio-

facial skeleton in order to improve both function and aesthetics. Surgical outcomes in

craniosynostosis surgery have been limited historically by subjective qualitative evalu-

ation from the treating physician and are confounded by high inter- and intra-observer

error and lack of concordance. Objective, quantitative evaluation frameworks that

focus on three-dimensional aspects of normal and abnormal morphology (anatomy)

are required to assess surgical outcomes accurately. In this chapter, we will briefly

introduce two main methods we propose to aid in assessing surgical outcomes.

1.1 Objective Comparison Framework

Multiple medical centers have reported on the reliability of stereophotogrammetry as

a useful substitute for 3D CT imaging, with the additional advantage of complete

soft tissue imaging and a lack of exposure to ionizing radiation [1, 2, 3, 4]. 3dMD, a

widely used medical image system, can provide 3D triangle meshes to represent the

shape of a subject’s head as input for further analysis [5].

However, at this point, there are no e↵ective objective frameworks that produce

clinically meaningful craniometric outcome indices.

Based on this scenario, we propose a framework that can comprehensively provide
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regional and global cranial three-dimensional geometric features with corresponding

visualizations to aid the treating surgeon in evaluating the severity of the presenting

deformity (as it compares to normative cranial forms) and the changes that had

occurred with the surgical intervention.

Our technique eliminates the need for selecting surface landmarks and registers

mesh pairs automatically. This approach avoids the potential for inter- and intra-

observer error. Additionally, the technique relies on stereophotogrammetry, which

does not emit the harmful ionizing radiation that is delivered by CT scans. This is

particularly beneficial in the pediatric patient population undergoing surgical correc-

tion for craniosynostosis as the lifetime risk of developing a malignancy after radiation

exposure is higher the earlier in life a CT scan is performed [6]. This radiation free

approach will allow for the capture of multiple images over time to provide longitu-

dinal quantitative data on outcomes, information previously unavailable to surgeons.

Compared to CT scans, three-dimensional surface imaging is also more capable of

capturing the facial contours and the aesthetics of soft tissue. Finally, the 3dMD

system has a capture speed of 1.5ms at highest resolution, eliminating the need for

sedation which is often necessary to obtain a CT scan of a pediatric patient [7].

Our framework consists of the following four parts: (i) mesh decimation to simplify

the input; (ii) registration to find a correspondence for mesh pairs; (iii) comparison

of local surface features between mesh pairs to evaluate the quality of the surgery;

(iv) visualization to illustrate this comparison. More details of this framework will

be covered in Chapter 3.
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1.2 Normative Model Generation

In addition to the comparison framework applied between the pre-surgery mesh and

the post-surgery mesh to illustrate the head shape change following the operation,

surgeons still prefer to check how the pre-surgery mesh and the post-surgery mesh

diverge from a normal infant’s cranial shape. For this purpose, we would like to

generate a robust series of normal cranial shapes from which age-, gender-, and race-

matched controls may be extracted. This comparison will provide more accurate

information for evaluating treatments.

Since 3DMD systems have been in use only for a short time, it is di�cult to

collect enough 3D meshes of normal infants’ head shapes. On the other hand, multiple

medical centers have accumulated plenty of medical CT images, which would provides

good alternative input for generating normative models.

Our algorithm for generating a normative model consists of three parts: (i) ex-

tracting the 3D mesh representing the head shape with complete soft tissue from the

CT scans; (ii) applying a registration algorithm to find a correspondence map be-

tween pairs of meshes; (iii) averaging the related mesh points to generate a normative

model.

Our algorithm makes two main contributions. Our algorithm generates a norma-

tive model targeting the infants’ head shape with complete soft tissue starting from

CT scan data. The advantage of the model with soft tissue is that the comparison

method in Chapter 3 can be extended to a comparison between abnormal and normal

head shape, so the extended framework naturally inherits the merits of the original

framework. Additionally, our framework scales well. Given a new sample of a nor-

mal head shape, the normative model can be updated with low overhead. We will

introduce our method for generating a normative model in Chapter 4.
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Chapter 2

Related Work

The measure of cranial morphology has evolved from linear anthropometrics, to CT

craniometric vector analysis, to three-dimensional vector analysis, and finally to three-

dimensional shape analysis on stereophotogrammetric images without manual land-

mark registration. In this chapter, we will survey related work in two areas: objective

evaluation measurement and normative head shape modeling.

2.1 Objective Evaluation Measurements

Initial attempts to evaluate surgical outcomes involved categorizing the need for surgi-

cal revision using the Whitaker classification [8]. This and other qualitative methods

are limited by inter- and intra-observer variability.

Direct linear anthropometry uses anatomical landmarks to make cranial measure-

ments. However, performing these measurements on infants and children is logistically

impractical and time-consuming [9, 1, 2, 10].

CT-based vector analysis provides a more sophisticated means of assessing cranial

form, where measurements are taken from a central fixed point within the skull to an

anatomical or pre-defined point on the outer surface of the skull [11, 12]. This tech-

nique is limited to analysis in two dimensions based only on a combination of linear

or angular indices and performs poorly in characterizing overall, three-dimensional

cranial form. Three dimensional vector analysis allows for better three-dimensional
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quantification of cranial morphology; however, the algorithm requires user-selected

manual input for selecting landmarks [1, 13, 14].

With the recent advances of 3D imaging, several researchers have tried to use

mathematical metrics to evaluate the surgical outcome in Plastic Surgery. [15] con-

siders curvature for quantitative assessment of head shape. Curvature is an important

local feature for shape analysis. The limitation of [15] is that the authors consider

only curvature of two-dimensional curves generated by some specific axial plane cut.

Three-dimensional surface curvature would give better local information about the

shape of the head as we will describe in Chapter 3.

[16] uses normal vectors for head shape analysis based on stereophotogrammetry.

The basic idea of considering normal vectors is appropriate, but their further mathe-

matical analysis of normal vectors is somewhat rudimentary. The authors group the

surface normal vectors into several bins determined by azimuth angles and elevation

angles, and simply generate histograms by the number of surface normal vectors in

each bin. In contrast, we consider the magnitude of each vertex normal vector, where

the magnitude is computed from the mean curvature at the vertex, as the weight to

construct the histogram.

[17] tries to develop a quantitative computer-based method for measuring cleft lip

severity. However, this solution is based on some machine learning algorithms, which

take the doctors’ subjective opinions as the ground truth for the training data set. As

a result, the accuracy of their computational assessment will be determined by the

doctors’ subjective evaluation of cleft lip severity. In comparison, our approach is to

provide some objective metrics based on mathematical modeling to help the surgeons

evaluate the severity of the disease and the quality of their surgery.
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2.2 Normative Head Shape Modeling

Accurately modeling the shape of the normal human skull plays an important role in

aiding diagnosis, surgical treatment, and postoperative analysis. Various researchers

have constructed such models based on di↵erent data sets.

By introducing the concept of virtual healing, Brief et al [18] first propose creating

a 3D norm, which allows comparison between the current head shape of a subject

and a typical normal shape considering factors such as age and sex. The limitation

of this method is that it needs manual landmarking for the averaging algorithm.

Marcus et al [19] describe a method to generate a three-dimensional surface point

cloud representing a subject’s head shape. For comparison, the study focuses on

computing the average of a group of three dimensional vector analysis measurements.

Similarly, Marcus et al [14] apply three dimensional vector analysis (3DVA) software

to generate a set of point clouds and use the average and standard deviations for the

age and gender bins of point clouds to create a normative 3D model. The risk of

such approaches is that the vector analysis measurement is subject to error sources

common in traditional anthropometric measurement, such as soft-tissue compression,

poor patient compliance, and inaccurate landmark identification.

Subramanyan and Dean [20] propose a procedure to average 3D anatomical struc-

tures by encoding the entire surface as a series of B-spline space curves, and then

applying average landmark configuration, average space curve generation, and aver-

aging internal tile curves to generate the final model. The method is intricate and

still requires manual landmarks.

Recent research has illustrated that the use of computer-assisted design and

computer-assisted manufacturing (e.g. 3D printing) to create a prefabricated tem-

plate will help to achieve standardized, objective and precise correction of craniosyn-
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ostosis [21, 22, 23, 24]. Burge et al [23] generate a fronto-orbital bandeau template

from the CT scans of multiple children with normal skulls and uses this template to

optimize surgical outcomes. Khechoyen et al [22] reveal that using such bandeau tem-

plates leads to better conformity between the reconstructed supra-orbital bar and the

ideal normal bandeau shape and reduces the duration of operations. These templates

focus on modeling the skull shape to aid surgeries. On the other hand, we gener-

ate models representing head shape with complete soft tissue to help to objectively

evaluate the quality of the surgery by comparing the normative model with 3dMD

meshes of the subjects’ head.

McComb [25] introduces a framework similar to our approach. However, there are

two main di↵erences: (i) he aims at modeling the skull while we are targeting the head

shape with complete soft tissue covering the skull; (ii) the registration algorithms and

averaging methods are fundamentally di↵erent.
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Chapter 3

Comparison Framework

In this chapter, we will introduce our mathematically sophisticated automatic objec-

tive computational framework to evaluate and visualize the results of infant cranial

surgery. The framework consists of the following four parts: (i) mesh decimation

to simplify the input; (ii) registration to find a correspondence for mesh pairs; (iii)

comparison of local surface features between mesh pairs to evaluate the quality of the

surgery; (iv) visualization to illustrate this comparison.

The 3D triangle mesh captured by the 3dMD camera consists of a large number

of vertices and faces, which includes a lot of redundancy and makes it very time-

consuming for further manipulation and analysis. To solve these problems, we use a

mesh simplification algorithm to preprocess the data.

To compare local surface features, we need to find a correspondence between mesh

pairs.

Di↵erential geometry provides several local features that can be used to describe

the shape of the head. These features include normal vectors, surface areas, maximal

and minimal principal curvatures, and mean and Gaussian curvatures.

Additionally, we also show how to visualize these features and describe some

experimental results generated by our framework.
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3.1 Framework Overview

The outline of our evaluation and visualization system for infant cranial surgeries is

summarized in Figure 3.1.

Figure 3.1 : Outline of the evaluation and visualization framework.

The input for this system is the 3D triangle mesh captured by the 3dMD medical

image system. Each 3D mesh contains about 105 vertices and about 2 ⇥ 106 faces.

This large number of vertices and faces would make registration and computation

extremely time-consuming. So we apply a mesh simplification algorithm as part of

our framework. The mesh simplification algorithm removes redundancy in the input.

We will discuss the mesh simplification algorithm in Section 3.2.
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After simplifying the mesh, we need to register mesh pairs. Our evaluation system

is capable of comparing local information for three types of the mesh pairs: (i) the

pre-surgery 3D mesh and the post-surgery 3D mesh of the same subject, (ii) the pre-

surgery 3D mesh and the normative head model, (iii) the post-surgery 3D mesh and

the normative head model. For any of these comparisons, we need a correspondence

map, so that for any vertex in the source mesh, we know the corresponding vertex in

the target mesh. For this purpose, we need a registration process, and this procedure

will be covered in Section 3.3.

Using the correspondence map, we can compare local features for 3D mesh pairs.

The local features include normal vectors, surface areas, and three-dimensional cur-

vatures. We will elaborate these features in Section 3.4.

We will discuss how to combine these local features to evaluate and visualize

the surgery in Section 3.5. This section includes methods for visualizing curvature,

computing normal vector distribution and calculating relative changed surface area.

Finally, we will describe some experimental results generated by our framework

in Section 3.6. Surgeons in Texas Children’s Hospital suggests that the outcome of

our objective framework can clearly quantify and display changes in cranial form to

inform surgical decisions and postoperative care.

3.2 Mesh Simplification

[26] describes a way of decimating a mesh while maintaining the overall appearance

of the object. They call their method quadric error metric decimation because the

decimating cost is approximated in a quadratic term � (v) = v

T

Qv, where v are the

homogeneous coordinates for any vertex and Q is a symmetric matrix characterizing

the geometric error. We use this method in our framework to simplify input.
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The fundamental operation of quadric based mesh decimation is edge collapse,

which merges two vertices into one, removes the edges connecting to these two vertices

and adds new edges connecting to the new vertex. An edge collapse can only occur

on a valid pair (v1, v2), which means either (v1, v2) is an edge or kv1 � v2k is less

than a threshold parameter. The simplification algorithm can be summarized by the

following steps:

1. Compute the Q matrices characterizing the geometric error for all the initial

vertices.

2. For all valid pairs (v1, v2), compute the optimal contraction target v̄ for (v1, v2).

Take the error v̄

T (Q1 +Q2) v̄ of this target vertex as the cost of contracting

that pair.

3. Place all the pairs in a heap keyed on cost with the minimum cost pair at the

top.

4. Iteratively remove the pair (v1, v2) of least cost from the heap, contract this pair,

and update the costs of all valid pairs involving v1 and v2, until the number of

vertices is less than a user-defined maximum number of vertices.

This algorithm is quite e�cient. Given a mesh with roughly 105 vertices, deci-

mating 90% of the vertices takes only about 2 seconds in our system environment,

which will be described in Section 4.1. So this algorithm is a good choice for our

computational framework.
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3.3 Registration

In our computational framework, we use the coherent point drift method described

in [27] to implement registration.

The input to this method is two point sets. The registration assigns correspon-

dences between two sets of points and recovers the transformation that maps one

point set to the other.

In [27], the alignment of two point sets is considered as a probability density

estimation problem, where the first point set (source) represents the Gaussian mix-

ture model cluster centroids and the second point set (target) represents the data

points. The correspondence probability between two point sets is defined as the

posterior probability of the Gaussian mixture model cluster centroid given the data

points. The method uses the EM (Expectation-Maximization) algorithm to estimate

the parameters (including the representation of the transformation) of this Gaussian

mixture model.

The computational complexity of this method can be reduced to linear with the

help of a fast Gauss transform. The coherent point drift registration code used for

this part of our framework is the implementation in MATLAB by Andriy Myronenko

([27]).

The output of this registration process includes a transformation on the target

and the correspondence map between the source and the target. The transformation

relocates the target to the same position and resizes the target to the same scale as

the source to prepare the way for the correspondence map. Given the source point

set X
N⇥3 =

✓
x1, ..., x

N

◆
T

, and the target point set Y
M⇥3 =

✓
y1, ..., y

M

◆
T

,
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the transformation can be represented as:

T (y
j

;R, t, s) = sRy

j

+ t (3.1)

where R is a 3 ⇥ 3 rotation matrix, t is a 3 ⇥ 1 translation vector, s is a scaling

parameter and y

j

is any point of the target point set.

The correspondence map can be represented as a function:

y

j

= f (x
i

) (3.2)

where x

i

is any point in the source, and y

j

is the corresponding point in the target.

With this function, for any vertex in the source, we know the corresponding vertex

in the target, and this correspondence is still valid for the mesh underling this point

set.

3.4 Local Features

In this section, we introduce the local surface features in our evaluation system.

3.4.1 Curvature

Intuitively, curvature is the amount by which a geometric object deviates from being

flat. The curvature of a smooth curve at each point can be defined as the radius

of curvature (i.e. the reciprocal of the radius) of the osculating circle. Figure 3.2

illustrates the geometric meaning of two-dimensional curvature.

Given a plane parametric curve represented as:

8
><

>:

x = x (t)

y = y (t)
(3.3)
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Figure 3.2 : Geometric illustration of two-dimensional curvature.

the formula for the curvature K is given by:

K =

���dx
dt

· d

2
y

dt

2 � dy

dt

· d

2
x

dt

2

���
⇣�

dx

dt

�2
+
�
dy

dt

�2⌘ 3
2

(3.4)

For surfaces embedded in three dimensions, the definition of curvature is more

complicated. Suppose S is a surface in three-dimensional space and P is a point on

S. For every unit direction e

✓

in the tangent plane of P , we can use the normal

vector n
p

and the tangent vector e
✓

to determine a plane containing P . Cutting S by

this plane generates a curve in this plane. Then we can use Formula (4) to compute

the curvature for this curve; this curvature is called the normal curvature. Among

all normal curvatures, the maximal value is called the maximal principal curvature,

denoted by K1, and the minimal value is called the minimal principal curvature,

denoted by K2.

Furthermore, there are two additional important notions of curvature. The Gaus-

sian curvature K

G

is the product of the two principal curvatures and the mean curva-

ture K

M

is the average of the two principal curvatures, see Formula (5) and Formula

(6).
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K

G

= K1 ·K2 (3.5)

K

M

=
K1 +K2

2
(3.6)

[28] gives an algorithm to compute curvatures for 3D triangle meshes. Many other

researchers have improved the accuracy and e�ciency for this algorithm. See [29] and

[30].

We use the popular computer graphics API, the Point Cloud Library (PCL) [31],

to implement our system for curvature computation.

3.4.2 Normal vectors and the Gauss Map

Given a 3D triangle mesh, we can compute face normal vectors for triangle faces and

vertex normal vectors for vertices.

Face normal vectors can be computed by the cross product of two nonparallel

vectors on that face. Given a triangle with vertices ABC, the unit face normal vector

N�ABC

can be computed by the following formula:

N�ABC

=
(A� C)⇥ (B � C)

|(A� C)⇥ (B � C)| (3.7)

There are a great number of di↵erent ways to compute unit vertex normal vectors.

Since each vertex may belong to many faces, one solution is to take the normalized

vector sum of the unit face normal vectors, where the sum is over all faces containing

the vertex. Mathematically, this unit vertex normal vector can be represented by the

following formula:

n

A

=

P
�k

N�k

����
P
�k

N�k

����
(3.8)
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where �k represents any triangle face that contains vertex A, N�k

represents the

unit normal vector of face �k and n

a

represents the unit normal vector of vertex

A. By this method, we can get the direction of the normal vector for this vertex.

Additionally, it is known that the magnitude of a vertex normal vector is the discrete

mean curvature of the surface at this vertex.

In di↵erential geometry, the Gauss map maps a surface in Euclidean space R

3

to the unit sphere S

2. Specifically, for each point p of the surface S, the result

of the Gauss map is the unit normal vector N(p) 2 S

2. The Gauss map can be

used to analyze the overall geometric character of the surface. [16] uses a discrete

representation of the Gauss map by using a discrete representation for the sphere.

3.4.3 Surface Area

Given a 3D triangle mesh, to compute a surface area of a selected region can be

simply implemented by summing the area of each triangle in the region.

Additionally, the area around a vertex can be defined by the following formula:

S

around

(x
i

) =
1

3

X

j

S�
j

(3.9)

where �
j

is any triangle that contains the vertex x

i

, S� is the area of triangle �
j

and

S

around

(x
i

) is the surface area around vertex x

i

. We choose the constant 1
3 because

if all three vertices in a triangle are selected there will not be any redundancy or

missing area in the area sum.

3.5 Visualizing local features

In order to illustrate our local feature comparison and visualization techniques, we

first need to introduce our false color function. Then we discuss our methods for
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visualizing curvature, computing normal vector distribution and calculating relative

changed surface area in this section.

3.5.1 False Color Function

To visualize the local features, especially curvature, on a 3D triangle mesh, one ap-

propriate method is using false color to represent the magnitude of the local features.

With sophisticated preprocessing, the local features can be mapped into the range

[0,1] by a reasonable method that we will introduce in Section 3.5.2. Then for each

value c in the range [0,1], our false color function maps c to a false color represented

by an RGB value. The false color is defined by the following function:

8
>>>><

>>>>:

R = 0

G = 2c

B = 1� 2c

if 0  c < 0.5

8
>>>><

>>>>:

R = 2c� 1

G = 2� 2c

B = 0

if 0.5 < c  1

(3.10)

where R, G, B represent the color dimensions of red, green and blue.

This function will map 0 to blue, 0.5 to green and 1 to red. Values between 0 and

0.5 will be mapped by a linear combination of blue and green, while values between

0.5 and 1 will be mapped by a linear combination of green and red.

With the help of this color function, we are able to visualize each local feature.
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3.5.2 Curvature Visualization

Curvature visualization can be divided into two parts: (i) visualizing curvature on the

source mesh and the target mesh separately and (ii) visualizing curvature comparisons

based on the correspondence map.

To visualize the result of the curvature computation, we first need to normalize

the value of curvature to the range [0,1] in order to use our false color function. We

use the following formula to accomplish this goal:

c (K) = 1� e

�↵·K (3.11)

where K can be maximal principal curvature, minimal principle curvature, mean

curvature or Gaussian curvature, and ↵ is a constant set by experiment. Note ↵

should be set to make the distribution of c (K) well-proportioned in the range [0,1].

The second part is to visualize the di↵erence in the curvature between the source

mesh and the target mesh. With the correspondence map described in Section 3.3,

we can compare local features between the source mesh and the target mesh. For the

curvature, we can compare the di↵erence DC (x
i

) between corresponding vertices in

the source mesh and in the target mesh by the following formula:

DC (x
i

) = 1� e

��

�����
K(x

i

)�K(y
j

)
K(x

i

)+K(y
j

)

�����
(3.12)

where K (x
i

) is the curvature at vertex x

i

in the source mesh, and K (y
j

) is the

curvature at the corresponding vertex y

j

in the target mesh; � is a constant set by

experiment. The purpose of this function is to map the di↵erence for the vertex pair

into the range of [0,1] in order to prepare the way for visualization using false color.

Note that the curvature here can be any of the four types of curvature: maximal

principal curvature, minimal principal curvature, mean curvature or Gaussian curva-
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ture, and � should be set to make the distribution of DC (x
i

) well-proportioned in

the range [0,1].

3.5.3 Normal Vector Distribution

Similar to [16], we compute the azimuth angle ✓ and the elevation angle � for each

unit vertex normal vector n(x
n

, y

n

, z

n

) by the following formulas:

✓ =

8
>><

>>:

arccos( x

np
x

2
n

+z

2
n

) if z

n

� 0

� arccos( x

np
x

2
n

+z

2
n

) if z

n

< 0

� = arctan

✓
y

np
x

2
n

+z

2
n

◆
(3.13)

where ✓ is in the range [�⇡, ⇡] and � is in the range [�⇡

2 ,
⇡

2 ]. Then we group the

computed angles ✓ and � of the vertex normal vectors into 12⇥ 12 bins (12 parts for

elevation and 12 parts for azimuth). Instead of counting each vertex as 1 or 0, we use

the normalized mean curvature given by Formula (11) as the weight for each vertex.

By summing these weights, we generate a histogram to represent the distribution of

the weighted normal vectors. We use normalized mean curvature as the weight for

two reasons: (i) mean curvature is typically considered to represent the magnitude of

the normal vector; (ii) normalized mean curvature will be in the range [0,1], this will

prevent some extremely large mean curvatures from influencing the distribution.

Di↵erent from [16], we focus on the anterior head shape instead of posterior head

shape. With the revised histogram, we define the left anterior flatness score (LAFS),

right anterior flatness score (RAFS) and asymmetry score (AS) in our own way. LAFS

is the sum of the histogram bins that correspond to combinations of azimuth angles

ranging from 30� to 90� and elevation angles ranging from �15� to �45�, while RPFS

is the sum of the histogram bins that correspond to combinations of azimuth angles
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ranging from 90� to 150� and elevation angles ranging from �15� to �45�. The AS

is defined by the following formula:

AS =
LAFS �RAFS

LAFS +RAFS

(3.14)

Note negative AS indicates that the left side is flatter while positive AS indicates

that the right side is flatter.

3.5.4 Relative Changed Surface Area

We want to compute the local surface area at locations on the head where there are

obvious di↵erences in curvature for the mesh pairs. For this purpose, we need to filter

the di↵erence function DC (x
i

) (see Formula (12)) by the following formula to select

such areas:

D

⇤ (x
i

) =

8
><

>:

0 DC (x
i

) < t

1 DC (x
i

) � t

(3.15)

where t is a threshold parameter to filter the curvature di↵erence. Using this function,

we can select the vertices with a particular level of curvature variation.

Based on the function D

⇤, we can compute the relative changed surface area at

locations on the head where there are relatively large changes in curvature by the

following formula:

DS =

MP
i=1

D

⇤ (x
i

) · S
around

(x
i

)
P
k

S

k

(3.16)

where the term
P
k

S

k

means the area sum of all the triangles in the source mesh,

D

⇤(x
i

) is defined by Formula (15) and S

around

(x
i

) is defined by Formula (9). Divided

by the total surface area of the source mesh, the value of the relative change in area

DS will also lie in the range of [0,1] and it will be reasonable to compare the di↵erence

in this feature between di↵erent mesh pairs.
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3.6 Application of Computational Framework

The 3D triangle meshes of each pilot subject’s head were extracted from the 3dMD

image files. A typical patient with diagnosis of craniosynostosis would routinely have

3dMD scans performed at multiple time points (e.g., pre-operative, and short-term

and long-term post-operative time points). As part of the pilot application of the

computational framework, anonymized meshes from five subjects with varied head

shape deformity were utilized for analysis. Each subject had a complete set of 3dMD

images at two time points. Informed consent was acquired from each subject for use

of the anonymized 3dMD mesh in this pilot analysis.

In the following subsection, we will introduce the experimental implementation of

each step in our evaluation and visualization system.

3.6.1 Simplification Results

The quadric mesh simplification method [26] has been implemented by using the open

source software MeshLab [32].

This algorithm is quite time-e�cient. We run our dataset in a 64-bit Windows

operating system workstation with the Intel Core i5-4590 processor and 8 GB RAM.

For an input mesh containing 82782 vertices and 164842 faces, decimating this mesh

to a simplified mesh with 8033 vertices and 16000 faces takes only about 2 seconds.

Figure 3.3 illustrates this decimation process: the left figure is a mesh with 82782

vertices and 164842 faces, while the right figure is the simplified mesh with 8033

vertices and 16000 faces.

From Figure 3.3, we can see that the mesh simplification maintains the overall

shape of the subject’s head. No significant features are lost by decimation.
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Figure 3.3 : Mesh simplification, left: input mesh, right: simplified mesh

3.6.2 Registration Results

We use the coherent point drift [27] method to register mesh pairs. Specifically, we

use the rigid mode of this algorithm and set the maximal number of iterations to 200

and take the tolerance of the error as e�8.

We select 5 mesh pairs in Figure 3.4 to visualize the registration results. The

orange meshes on the left represent the source meshes and the blue meshes on the

right represent the target meshes. We randomly select some vertices on the source

mesh and use the correspondence map to get their related vertices on the target mesh.

Then we draw lines to connect these vertex pairs to illustrate the result of registration.

The mesh simplification method reduces the time of registration dramatically. We

run the code of [27] in MATLAB R2013a with the same system environment. The

running time for the registration is summarized in Table 3.1.

3.6.3 Local Features: Comparison and Visualization

In this part of our experiments, we implement the methods described in Section 3.5

to compare and visualize the local features. The comparison and visualization results

were considered helpful to the treating physicians in assessing the outcomes of infant
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Suject ID
Non Simplified

Source Vertices Target Vertices Time

Subject 1 82782 87602 13:18’41”

Subject 2 60661 41150 3:52’57”

Subject 3 40317 57868 2:56’45”

Subject 4 36877 47863 1:44’55”

Subject 5 38365 35984 1:15:46

Subject ID
Simplified

Source Vertices Target Vertices Time

Subject 1 8274 8745 6’21”

Subject 2 8057 8146 4’22”

Subject 3 8048 7969 4’10”

Subject 4 8221 8070 4’10”

Subject 5 8038 8171 5’50”

Table 3.1 : Registration time
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Figure 3.4 : Registration. The orange meshes on the left represent the source meshes
and the blue meshes on the right represent the target meshes.

cranial surgery.

Curvature Visualization

Using the method described in Section 3.5.2, we generate Figure 3.5 to visualize

curvature and Figure 3.6 to display curvature comparisons. Based on our observation

experiments, we find that the mean curvature and the maximal principal curvature

give more relevant information to assist in evaluating the shape of the subject’s head.
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To get the best visual e↵ect when visualizing curvature, for the first three types

of curvature, we set ↵ in Formula (11) to 40, while for the Gaussian curvature, we

set ↵ in Formula (11) to 2000. From Figure 3.5, we can see that the flat part of the

head shows low values of curvature represented in blue, while the curved part such

as the ears and the tip of the nose, shows high values of curvature represented in red.

These colors are consistent with the geometric meaning of curvature.

Figure 3.5 : Curvature visualization. From top to bottom: Gaussian curvature,
maximal principal curvature, mean curvature and minimal principle curvature. Blue
represents low curvature, while red represents high curvature.

When visualizing curvature comparisons, we set � in Formula (12) to 2.5 to get the

best visual e↵ect. A visualization result can be viewed in Figure 3.6. Note that this

subject has a head shape deformity characterized by a tower-like and narrow (from

front to back) appearance (i.e., turribrachycephaly). The two comparison meshes are
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shown at distinct treatment time points. The changes in head shape are localized to

the anterior 2/3rds of the cranial vault. At the second time point, the forehead has

a more normal curved appearance which correlates to the three-dimension false color

in Figure 3.6.

Figure 3.6 : Curvature comparison. From top to bottom: Gaussian curvature, max-
imal principal curvature, mean curvature, minimal principal curvature. Blue repre-
sents low DC (x

i

), while red represents high DC (x
i

).

Normal Vector Distribution

According to the method in Section 3.5.3, we compute the vertex normal vector

distributions and calculate LAFS, RAFS and AS among our data set.
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Figure 3.7 illustrates a pair of the vertex normal vector distributions. The figures

are the normalized mean curvature weighted distributions at two treatment time

points of test subject 1.

We also compute LAFS, RAFS, and AS for two distinct treatment time points

within our pilot test subject data set.

The results are summarized in Table 3.2.

Note the absolute value of AS quantified the degree of asymmetry. High AS im-

plies a more asymmetric head shape. The results in Table 3.2 are consistent with

specific head shape deformity of each subject. This measurement allows for more ac-

curate quantification of severity of head shape deformity, which may, in turn, improve

diagnosis and clinical care.

Relative Changed Surface Area

Table 3.3, Table 3.4 and Table 3.5 show the relative changed surface area filtered by

four di↵erent kinds of curvature. The computational method is given by Formula (15)

and Formula (16) in Section 3.5.3. The value of � in Formula (12) is set to the same

value as in the previous Curvature Visualization section and t is set to 0.25, 0.5 and

0.75 respectively.

This relative changed surface area information is very helpful to the clinician in

evaluating the regional changes that occur with surgery. It also allows for more

meaningful subject counseling.
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Subject ID
Pre-surgery Post-surgery

LAFS RAFS AS LAFS RAFS AS

Subject 1 49.0923 52.4496 -0.03306 57.3033 54.2026 0.02781

Subject 2 43.0490 38.6312 0.05409 67.6544 60.4020 0.05663

Subject 3 31.7818 39.6151 -0.10971 60.9226 54.5493 0.05519

Subject 4 33.1238 26.0269 0.11998 51.4286 42.5658 0.09429

Subject 5 29.9552 22.2420 0.14777 35.9186 40.1260 0.05530

Subject 6 48.2420 53.3174 0.04997 56.9955 51.9252 0.04655

Subject 7 48.3503 44.1282 0.04565 53.2970 46.2095 0.07123

Subject 8 42.4052 55.9537 0.13775 52.3954 57.9485 0.05033

Subject 9 66.0616 65.3683 0.00528 64.6218 67.9659 0.02522

Subject 10 54.2664 47.7836 0.06356 51.0006 39.3414 0.12906

Subject 11 41.0100 57.7453 0.16946 53.3046 45.7331 0.07645

Subject 12 20.1010 23.5369 0.07874 34.4817 30.6050 0.05956

Subject 13 29.3217 18.4092 0.22863 29.2531 40.0900 0.15628

Subject 14 22.4992 29.6454 0.13705 28.8485 39.9900 0.16185

Subject 15 17.2269 15.9391 0.03883 38.0420 44.3377 0.07642

Subject 16 19.4698 18.2094 0.03345 43.1527 50.7385 0.08079

Subject 17 37.2002 44.1074 0.08495 48.3973 44.2544 0.04471

Subject 18 24.2604 27.2204 0.05750 28.9321 24.8459 0.07598

Subject 19 21.6221 41.2580 0.31228 28.4197 23.9606 0.08513

Table 3.2 : LAFS, RPFS and AS
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Threshold t = 0.25

Subject ID Max Min Mean Gaussian

Subject 1 0.5952 0.6596 0.5910 0.7307

Subject 2 0.5548 0.6130 0.5505 0.7067

Subject 3 0.6134 0.6641 0.6095 0.7521

Subject 4 0.5448 0.5997 0.5377 0.7007

Subject 5 0.6022 0.6330 0.5948 0.7319

Subject 6 0.6917 0.6981 0.6883 0.7586

Subject 7 0.6084 0.6571 0.6036 0.7394

Subject 8 0.6641 0.7037 0.6617 0.7859

Subject 9 0.6665 0.6733 0.6597 0.7343

Subject 10 0.7448 0.7528 0.7431 0.8327

Subject 11 0.7024 0.7145 0.6979 0.7701

Subject 12 0.6833 0.6564 0.6786 0.7109

Subject 13 0.5696 0.5874 0.5650 0.6470

Subject 14 0.6645 0.7029 0.6599 0.7519

Subject 15 0.7439 0.7761 0.7390 0.8165

Subject 16 0.6908 0.7279 0.6864 0.7850

Subject 17 0.7305 0.7663 0.7264 0.8114

Subject 18 0.6316 0.6803 0.6234 0.7466

Subject 19 0.6502 0.6957 0.6429 0.7601

Table 3.3 : Relative changed surface area, threshold t = 0.25
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Threshold t = 0.5

Subject ID Max Min Mean Gaussian

Subject 1 0.5264 0.6063 0.5204 0.6077

Subject 2 0.4746 0.5486 0.4638 0.6624

Subject 3 0.5507 0.6123 0.5461 0.7205

Subject 4 0.4661 0.5299 0.4564 0.6577

Subject 5 0.5350 0.5757 0.5248 0.6976

Subject 6 0.6484 0.6653 0.6426 0.7400

Subject 7 0.5422 0.6075 0.5339 0.7036

Subject 8 0.6109 0.6629 0.6101 0.7582

Subject 9 0.6159 0.6354 0.6084 0.7120

Subject 10 0.7152 0.7217 0.7141 0.8171

Subject 11 0.6600 0.6835 0.6541 0.7513

Subject 12 0.6452 0.6286 0.6405 0.6945

Subject 13 0.5206 0.5540 0.5152 0.6264

Subject 14 0.6142 0.6701 0.6068 0.7280

Subject 15 0.7115 0.7529 0.7063 0.7996

Subject 16 0.6463 0.6960 0.6411 0.7624

Subject 17 0.6965 0.7382 0.6905 0.7929

Subject 18 0.5722 0.6384 0.5579 0.7181

Subject 19 0.5950 0.6517 0.5861 0.7342

Table 3.4 : Relative changed surface area, threshold t = 0.50
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Threshold t = 0.75

Subject ID Max Min Mean Gaussian

Subject 1 0.3745 0.4693 0.3674 0.5923

Subject 2 0.2885 0.3852 0.2770 0.5378

Subject 3 0.3744 0.4670 0.3740 0.6194

Subject 4 0.2921 0.3531 0.2830 0.5242

Subject 5 0.3518 0.4032 0.3425 0.5867

Subject 6 0.5339 0.5739 0.5339 0.6826

Subject 7 0.3949 0.4635 0.3846 0.6039

Subject 8 0.4731 0.5293 0.4628 0.6769

Subject 9 0.4981 0.5290 0.4873 0.6438

Subject 10 0.6043 0.6162 0.6056 0.7660

Subject 11 0.5555 0.5873 0.5448 0.6900

Subject 12 0.5364 0.5460 0.5301 0.6417

Subject 13 0.3898 0.4535 0.3796 0.5594

Subject 14 0.4772 0.5616 0.4713 0.6595

Subject 15 0.6101 0.6807 0.5993 0.7491

Subject 16 0.5257 0.5918 0.5188 0.6958

Subject 17 0.5961 0.6599 0.5837 0.7412

Subject 18 0.4286 0.5125 0.4217 0.6258

Subject 19 0.4437 0.5273 0.4366 0.6482

Table 3.5 : Relative changed surface area, threshold t = 0.75
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Figure 3.7 : Weighted vertex normal vector distributions. The first figure is the nor-
malized mean curvature weighted distribution for the head shape of subject 1 at time
point 1. The second figure is the normalized mean curvature weighted distribution
for the same subject at time point 2.
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Chapter 4

Normative Model Generation

In this chapter, we will describe our method for generating a normative model. Our

system contains the following three parts: (i) mesh extraction to abstract the mesh

representing the head shape with the complete soft tissue from CT scans; (ii) mesh

registration to find correspondences between mesh pairs; (iii) an averaging algorithm

to compute the normative head shape.

The advantage of stereophotography has been discussed in Chapter 1 and Chapter

2. However, because 3dMD image system was applied for a short period, it is di�cult

to collect enough 3D meshes of normal infants’ head shapes. On the other hand,

historically Texas Children’s Hospital has accumulated plenty of CT skull images,

which provide a good alternative data. A CT scan allows doctors to see inside the

organ without surgery. Since we want to extract the surfaces of subjects’ head with

the complete soft tissue, we will apply some tools for this purpose.

The automatic registration algorithm provides correspondence between mesh pairs,

which eliminates the requirement for manual landmarking and is necessary for the

averaging computation.

The averaging algorithm is the core procedure for generating normative models.

Our averaging computation is a scalable stream algorithm. Whenever new data is

acquired, the data can be used to update the normative model with low overhead.

Finally, we show some pilot experimental results generated by our normative

model.
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4.1 Algorithm Overview

The framework of our normative model for normal infant cranial shape is summarized

in Figure 4.1.

Figure 4.1 : Framework of the normative model.

The first module in our framework extracts from CT scans the surface of the

subjects’ head shapes with the complete soft tissue covering the skull. The purpose

of this step is to make it possible to compare the normative model we generate and the

3D images from stereophotography of the subject’s head for diagnosis and objective

evaluation. To accomplish this goal, we use the tools of DeVIDE [33] and MeshLab

[32]. The details of this part will be covered in Section 4.2.
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The registration module plays an important role in this system. Registration pro-

vides the correspondence between pairs of 3D meshes. We apply the same registration

discussed in Chapter 3. We will give a brief review of this method in Section 4.3.

The averaging computation module is the core of our system. Our algorithm

takes advantage of scalability and good spacial coherence. The detailed method will

be introduced in Section 4.4.

Finally, the pilot experimental results of the normative model will be discussed in

Section 4.5.

4.2 3D Surface Extraction

In this section, we will introduce how we extract the three dimensional surface of the

subject’s head shape. To accomplish this goal, we first use DeVIDE [33] to extract

a rough surface mesh with noisy fragments and then use MeshLab [32] to refine the

mesh for further analysis.

4.2.1 DeVIDE Operating Pipeline

DeVIDE [33], short for Delft Visualization and Image processing Development Envi-

ronment, is a Python-based data flow application builder that enables rapid proto-

typing of medical visualization and image processing applications via visual program-

ming. By visually connecting functional blocks, the platform allows users to create

a pipeline for di↵erent purpose. Figure 4.2 illustrates our pipeline. The function of

each component is summarized below:

• DICOMReader module loads the DICOM series from the disk.

• DoubleThreshold module filters the CT scan series by the density threshold. To
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maintain the complete soft tissue of the head, we set the lower threshold to 1.0

and upper threshold to 2500.0.

• Closing module performs a greyscale morphological closing on the input image.

To clean the input data, the closing module first runs a dilation algorithm by

replacing a pixel with the maximal greyscale value over an ellipsoidal neighbor-

hood, then an erosion algorithm by replacing a pixel with the minimal greyscale

value over an ellipsoidal neighborhood.

• Contour module extracts iso-surfaces from volume data, and is the crucial part

in this pipeline.

• WsMeshSmooth module smoothes the input mesh.

• VtkQuadricDecimation module reduces the number of triangles in the mesh.

• Slice3dVWR module displays the output of the pipeline. The left part of Figure

4.3 shows the extracted result of a subject’s head shape.

• StlWRT module writes the mesh in STL format back to the disk.

4.2.2 Refinement by MeshLab

After we extract the mesh in STL format from the DICOM data by the DeVIDE

pipeline, there are still two issues: (i) some noisy fragments are in the mesh; (ii) the

shell of the head is constructed by a few close connected layers, whereas we want a

single layer surface for further analysis.

To solve the first issue, we use the tool of “Select Connected Components in a

region” in MeshLab to select the main part of the mesh and eliminate the noisy

fragments.
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Figure 4.2 : Pipeline of the DeVIDE software.

To overcome the second challenge, we compute the ambient occlusion value for

each triangular face of the mesh. The ambient occlusion value computation generates

a number of well distributed view directions and computes how many times this face

is visible from these directions, The result is mapped to a grayscale. We select the

outside layer of our extracted mesh by filtering the triangular faces with low grayscale.

The right part of Figure 4.3 illustrates the refined result of a subject’s head shape.

4.3 Point Set Registration

For this module, we still use the coherent point drift method described in [27] for

registration. We will briefly review the input and output of this algorithm in this

section.

The input to this method is two point sets. The registration assigns correspon-
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Figure 4.3 : Surface extraction. Left: a surface we extracted after applying DeVIDE.
Right: a surface we extracted after applying MeshLab.

dences between two sets of points and recovers the transformation that maps one

point set to the other. The output of this registration process includes a transforma-

tion on the target and the correspondence map between the source and the target.

The transformation relocates the target to the same position and resizes the target

to the same scale as the source to prepare the way for the correspondence map.

Formally, given the source point set X
N⇥3 =

✓
x1, ..., x

N

◆
T

, and the target

point set Y
M⇥3 =

✓
y1, ..., y

M

◆
T

, the transformation can be represented as:

T (y
j

;R, t, s) = sRy

j

+ t (4.1)

where R is a 3 ⇥ 3 rotation matrix, t is a 3 ⇥ 1 translation vector, s is a scaling

parameter and y

j

is any point of the target point set.

The correspondence map can be represented as a function:

y

j

= f (x
i

) (4.2)

where x

i

is any point in the source, and y

j

is the corresponding point in the target.
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4.4 Averaging Algorithm

In this section, we will introduce our averaging algorithm. We design the averaging

computation as a stream algorithm, which has good scalability.

We first select one mesh from the input mesh set as the temporary average result,

and then merge one mesh at a time from the input set by a two-step computation:

i. Update the current vertices. After applying the registration algorithm

between the temporary average R (as source) and the incoming input mesh M

i

(as

target), each vertex on R has a corresponding vertex on M

i

and a transformation

is performed on the coordinates of all vertices in M

i

. For each vertex on R, the

current coordinates of this vertex, represented by (x̄
i�1, ȳi�1, z̄i�1), will be updated to

(x̄
i

, ȳ

i

, z̄

i

) by the following formula:
8
>>>><

>>>>:

x̄

i

= (1� ✓) x̄
i�1 + ✓x

i

ȳ

i

= (1� ✓) ȳ
i�1 + ✓y

i

z̄

i

= (1� ✓) z̄
i�1 + ✓z

i

(4.3)

where (x
i

, y

i

, z

i

) are the coordinates of the vertex inM

i

that is mapped to (x̄
i�1, ȳi�1, z̄i�1),

and ✓ is the weight determined by:

✓ =
1

i

· 1

e

↵d

(4.4)

where i counts the number of meshes that have been averaged, ↵ is a constant de-

termined by experiments, d =
q
(x̄

i�1 � x

i

)2 + (ȳ
i�1 � y

i

)2 + (z̄
i�1 � z

i

)2 is the Eu-

clidean distance between the previous averaged vertex and the new incoming vertex.

By Formula 4.4, the weight of the new incoming vertex decreases with the number

of meshes in the average model and with the Euclidean distance to the current co-

ordinates. The general ideas behind this approach are that: (i) each mesh should

carry the same weight in our stream computation; (ii) the Euclidean distance to the
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current coordinates can be used to estimate the confidence of the registration result,

we penalize a vertex with large Euclidean distance by decreasing the weight of this

vertex.

ii. Laplacian smoothing. Laplacian smoothing [34, 35] is a widely used algo-

rithm to smooth a polygonal mesh. For each vertex in a mesh, a new coordinate is

updated based on local information (in our approach, the coordinates of its nearest

neighbors). Initially after updating the current vertices, the resulting mesh appears

bumpy. So we use the Laplacian smoothing algorithm to improve the spacial coher-

ence of the results. Formally, the smoothing operation can be described as:

8
>>>>>><

>>>>>>:

x

i

= 1
n

nP
j=1

x

j

y

i

= 1
n

nP
j=1

y

j

z

i

= 1
n

nP
j=1

z

j

(4.5)

where n is the number of adjacent vertices to node i, (x
j

, y

j

, z

j

) is the position of the

jth adjacent vertex and (x
i

, y

i

, z

i

) is the new position for node i.

In short, the overall process of the averaging computation is summarized in Algo-

rithm 1.

4.5 Pilot Experimental Results

In this section, we will describe our pilot experimental results. We collected 8 series

of CT scans from Texas Children’s Hospital. We set the ↵ in Formula 4.4 to 0.1,

because this parameter value leads to good experimental results. We applied the

above pipeline to generate a normative model. Our pilot experiments includes two

parts. The first part demonstrates the good spacial coherence based on Laplacian

smoothing. The second part discusses the convergence of our model.
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Algorithm 1 Average Mesh Set
Select one mesh M0 as base from the input mesh set S

Delete M0 from S

R M0

i 1

for all M
i

2 S do

Register M
i

(as source) to R (as target) by [27]

Merge M

i

into R by Formula 4.3

Apply Laplacian smoothing on R

i i+ 1

end for

return R

4.5.1 Spacial Coherence

The Laplacian smoothing method [6] has been implemented by using the open source

software MeshLab[32] . This algorithm is quite time-e�cient. We perform our exper-

iments in a 64-bit Windows operating system workstation with the Intel Core i5-4590

processor and 8 GB RAM. For an input triangle mesh containing 10830 vertices and

20000 faces, Laplacian smoothing takes less than 1 second. Figure 4.4 illustrates the

e↵ect of Laplacian smoothing. From Figure 4.4, we observe that Laplacian smoothing

leads to good spacial coherence in our model.

4.5.2 Model Convergence

To investigate the convergence of our model, we compare the di↵erence of some ge-

ometric features for the averaging models between each iteration. The results are
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(a) Average Result of 2 subjects

without Laplacian smoothing.

(b) Average Result of 2 subjects

with Laplacian smoothing.

(c) Average Result of 3 subjects

without Laplacian smoothing.

(d) Average Result of 3 subjects

with Laplacian smoothing.

Figure 4.4 : Laplacian smoothing. Laplacian smoothing leads to good spacial coher-
ence.

listed in Table 4.1. The computation of each measurement is introduced below:

Coordinate di↵erence is the average of the Euclidean distance between each related

vertex pair:

D

coordinate

=
1

N

NX

k=1

r⇣
x

(i)
k

� x

(i�1)
k

⌘2

+
⇣
y

(i)
k

� y

(i�1)
k

⌘2

+
⇣
z

(i)
k

� z

(i�1)
k

⌘2

(4.6)

where
⇣
x

(i)
k

, y

(i)
k

, z

(i)
k

⌘
are the coordinates of a vertex in the average model (iteration

i),
⇣
x

(i�1)
k

, y

(i�1)
k

, z

(i�1)
k

⌘
are the coordinates of a vertex in the average model (iteration

i-1), and N is the number of vertices in the model.
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Normal vector di↵erence is the average of the di↵erence in radian between each

related unit normal vector pair:

D

normal

=
1

N

NX

k=1

arccos

0

@ v

(i)
k

· v(i�1)
k���v(i)

k

���
���v(i�1)

k

���

1

A (4.7)

where v

(i)
k

is the normal vector of a vertex in the average model (iteration i), v(i�1)
k

is the normal vector of a vertex in the average model (iteration i-1), and N is the

number of vertices in the model.

Mean curvature and Gaussian curvature di↵erences are the average of the di↵er-

ence of mean curvature and Gaussian curvature between each vertex pair:

D

mean

=
1

N

NX

k=1

���K
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(i)
k

�K

M

(i�1)
k

��� (4.8)

D

Gaussian

=
1

N

NX

k=1

���K
G

(i)
k

�K
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(i�1)
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where K

M

(i)
k

(K
G

(i)
k

) is the mean (Gaussian) curvature of a vertex in average model

(iteration i),K
M

(i�1)
k

(K
G

(i�1)
k

) is the mean (Gaussian) curvature of a vertex in average

model (iteration i-1), and N is the number of vertices in the model.

From Table 4.1, it appears that our averaging algorithm converges slowly as the

number of iterations increases. We plan to perform further experiments and analysis

when more CT series are provided by Texas Children’s Hospital.
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Iteration
Changed Features

Coordinate Normal Vector Mean Curvature Gaussian Curvature

1 0.67550 0.15387 2.7404⇥ 10�3 1.5183⇥ 10�4

2 0.37089 0.14542 1.9535⇥ 10�3 9.6765⇥ 10�5

3 0.27989 0.12629 1.4463⇥ 10�3 7.4839⇥ 10�5

4 0.19795 0.13806 1.0457⇥ 10�3 5.1666⇥ 10�5

5 0.17924 0.13366 9.1896⇥ 10�4 5.0025⇥ 10�5

6 0.17322 0.12825 9.7602⇥ 10�4 6.3305⇥ 10�5

7 0.12775 0.15102 7.0388⇥ 10�4 4.9135⇥ 10�5

Table 4.1 : Geometric feature di↵erences for the averaging models between each
iteration.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis describes the e↵ort we make to help surgeons objectively assess and guide

their infant cranial surgical operations. Our work mainly focuses on two parts:

We first describe an objective automatic visualization framework, using local sur-

face features from di↵erential geometry to represent particular characteristics of the

shape of a subject’s head before and after surgery. We have verified that these vi-

sualization methods help the physician to assess the quality of their techniques for

infant cranial surgery.

We also propose an algorithm to generate normative infant cranial models from

CT scans of normal infant skulls. The algorithm has good scalability and produces

good results including the information of all input subjects’ head shapes with good

spacial coherence.

5.2 Future Work

Based on these two components of our work, we recommend exploring two projects

in the future:
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5.2.1 Geometric Features

In our comparison framework, we employ 3D curvatures, normal vectors and surface

areas as the local geometric features. However, there are still plenty of other geometric

features, such as curvature flow, lines of curvature, and geodesics worth exploring.

It would be beneficial if we can test the potential e↵ectiveness of these geometric

features.

5.2.2 Implicit Normative Model

In this thesis, we generate an explicit 3D surface to represent the normative infant

head shape by methods adapted from geometric modeling and computer graphics. It

would also be interesting to try a statistic machine learning approach for this task.

Instead of constructing an explicit 3D surface based on some geometric features, we

could try to build a classification model to discriminate if a subject’s head is normal

or abnormal and a regression model to reveal the severity of the di↵erence between

a subject’s head shape and the normal head shape. However, it will be necessary

to accumulate more data to develop such a machine learning approach for building

reliable statistical models.
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