


ABSTRACT

Scheduling Optical Circuits in Data Center Networks

by

Xin Huang

Data center driven by optical circuit switching network, or optical data center,

is emerging as an alternative to traditional data center where the electrical packet

switching network is already overwhelmed by bulk data transfer. Optical data center

promises high bandwidth capability, but it is set against circuit reconfiguration de-

lays, which makes circuit scheduling non-trivial. The optical circuit scheduler must

manage traffic over both hybrid and pure optical network architectures, sparse and

dense traffic patterns, and scale to large network sizes. In this thesis, we show that

the proposed algorithms for circuit scheduling in optical data center fail to meet

these goals. To address their deficiencies, we introduce a scheduling algorithm called

Decomp. We show that regardless of hybrid or pure architectures, sparse or dense

traffic, Decomp simultaneously eliminates the long-tailed flow waiting times that ex-

isting algorithms suffer from, achieves high network utilization, and maintains a low

computational delay as network size scales up.
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Chapter 1

Introduction

The rising tide of big data driven cluster computation is imposing heavy traffic in

data center network. In face of high traffic demand, conventional data centers built

with layers of electrical packet switches is fundamentally challenged. Copper cables

can no longer support high bit rate at a distance more than a few meters. Besides,

large bisection bandwidth requires a highly layered topology with a vast number

of switches which leads to more complicated management. Instead, people in both

academia [1, 2, 3, 4, 5, 6] and industry [7, 8] are turning to optical fabrics and switches

for next generation data center solutions.

However, upgrading to an optical data center is non-trivial. The circuit switching

delay of commercially available optical switches (e.g. WSS and 3D-MEMS) are 2 to

5 orders of magnitude slower than what’s needed to switch at the packet granularity.

Therefore, the switching decisions greatly impact network performance and sophis-

ticated management of optical circuits plays a critical role in optical data centers.

As a basic requirement, the circuit scheduler has to achieve low flow waiting times

and high network utilization. In addition, the leading proposals for optical data cen-

ters [1, 2, 3, 4, 5, 6] and the traffic patterns of data intensive applications [9] point to

three requirements that a circuit scheduler has to address:

Handle Hybrid and Pure Architectures Several network architectures have

been proposed for optical data centers. One line of work [1, 2, 3, 6] is in hybrid

architecture, which combines electrical packet switching with optical circuit switching.
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The top-of-rack switches are connected to a conventional electrical packet switched

network and an optical circuit switched network. These networks operate side-by-

side and heavy traffic flows are off-loaded to the optical circuit switched network.

Another line of work [4, 5] is in pure architecture, where the top-of-rack switches are

connected solely to an optical circuit switched network. Here, the fastest available

optical switches must be employed to minimize the negative performance impact of

circuit switching delays. It is also worth noting that the hybrid architecture behaves

similarly to the pure architecture if it possesses only a small amount of electrical

bandwidth. In data centers where the bisection bandwidth might change vastly due

to congestion or link failure, the circuit scheduler must function well regardless of

whether the network behaves like a hybrid or a pure optical network.

Robustness under Different Traffic Patterns Data intensive applications

generate traffic that has a wide range of traffic density [9]. A data center can carry

an arbitrary set of applications that vary, resulting in vastly different traffic density

over time. At one time, jobs can trigger multiple one-to-all and all-to-one flow groups,

resulting in a uniform dense traffic pattern. At another, there might be only a few

large flows among several select machine racks, resulting in a skewed sparse traffic

pattern. The circuit scheduler must be robust to different traffic patterns.

Scalability Data intensive applications’ storage and computation demands are

driving data centers to expand. Particularly in this era of cloud computing, the num-

ber of servers in a data center is growing continuously to meet operational require-

ments. In an optical data center, the circuit scheduler can become a critical bottleneck

for network scalability. Therefore, the circuit scheduler must be sufficiently scalable.

It turns out that meeting these requirements cannot be taken for granted. In

Figure 1.1, we illustrate a three-dimensional design space of circuit scheduling algo-
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Edmond
TMS

Skewed/Sparse

Figure 1.1 : Design space of circuit scheduling algorithms. The feasible zone of Ed-
mond is outlined with the solid line and TMS with the dashed line. These algorithms
fail to perform well in all three dimensions.

rithms. Each point in the design space represents a situation that a circuit scheduler

might encounter. For stable network performance, a circuit scheduler should function

well under various data center sizes, from small to large, different architectures, from

pure to hybrid, and unpredictable traffic patterns, from uniform to skewed, dense to

sparse.

Unfortunately, in this thesis, we show that the optical data center circuit sched-

ulers proposed in previous works [1, 2, 4, 5] fail to perform well in all three dimensions

(scheduling algorithms are shown in Chapter 3). Specifically, the Edmond’s algorithm,

which we refer to as Edmond hereafter, is used in [1, 2] to maximize the traffic volume

over the optical network. In this setting, however, the small flows will starve in the
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pure optical network or in the hybrid architecture with little electrical bandwidth.

Further, Edmond’s computation time is very high for a large network with dense traf-

fic. The Traffic Matrix Scheduling (TMS) algorithm proposed in [4, 5] mitigates the

starvation problem, but it is not scalable computationally. Its computation time for

sparse traffic even under a small network size is prohibitive; moreover, it also sched-

ules wasted circuits due to a distortion of traffic demand in one of its computation

steps. Circuits are valid if they have non-zero traffice demand, and therefore valid

circuits will effectively clear traffic. However, wasted circuits are idle circuits that

have no demand to serve. The wasted circuits are costly not only because they cause

expensive switch reconfigurations, but they may also prohibit valid circuits, further

degrading network performance. The feasible zones of Edmond and TMS are outlined

by the solid line and the dashed line in Figure 1.1.

To address the multi-dimensional challenges of optical data centers, we propose a

circuit scheduling algorithm called Decomp. Decomp can be seen as a framework. Un-

like other algorithms, Decomp structures the circuit schedule computation into stages

and can be customized with different circuit selection policies. Decomp also employs

three key approaches that are not found in previous proposals, namely partitioning,

randomization, and parallelization (details are presented in Chapter 5).

We choose simulation as the methodology for evaluating different scheduling al-

gorithms since it allows us to precisely characterize and compare the performance of

the scheduling algorithms, and allows us to stress these algorithms at large network

sizes.

The results show that regardless of hybrid or pure architectures, sparse or dense

traffic, Decomp simultaneously eliminates the long-tailed flow waiting times that ex-

isting algorithms suffer from, achieves high network utilization, and maintains a low
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computational delay as network size scales up. We observe cases where Decomp clears

up to 55% more traffic flows than Edmond, or 13% more than TMS within the same

length of time; Decomp takes 28000× less time to compute a schedule among 600

racks than TMS, or 170× less than Edmond.

The rest of this thesis is organized as follows. In Chapter 2, we provide the

background for the optical circuit scheduling. In Chapter 3, we discuss on a range

of related work on circuit scheduling, which should be helpful to readers who are not

familiar with this area. We uses examples in Chapter 4 to illustrate the inefficiency

behind the algorithms of Edmond and TMS, which are two representative optical

circuit scheduling algorithms in the context of data center network. In Chapter 5, we

present the design of the Decomp algorithm and further compare the performance of

Edmond, TMS, and Decomp in Chapter 6. Finally, we summarize our contributions

and conclude in Chapter 7.
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Chapter 2

Background

2.1 Network Model

As shown in Figure 2.1, we model the core network of the data center as a hybrid

network consisting of an electrical packet switch with bisection bandwidth Be, and

an optical circuit switch with bisection bandwidth Bo (Bo >> Be).

The sources and destinations behind the input and output ports of the switches

can vary in practice (e.g. rack-to-rack, pod-to-pod); without loss of generality, we

assume a rack-to-rack granularity in the discussions that follow.

In Figure 2.1, each top-of-rack (ToR) switch is both a sender and receiver. A ToR

switch will aggregate the traffic from the servers within its domain and route traffic

inbound and outbound traffic accordingly. Each ToR is assigned an input port and an

output port to each of the electrical and optical switch. However, traffic between two

ToR switches can only go through either the electrical switch or the optical switch. By

default, traffic will go through the optical switch when a circuit in the corresponding

direction is set up, while all other traffic is left to the electrical switch. Note that

although traffic from ToRi to ToRj will travel through the optical switch if circuit

from ToRi to ToRj is set up, however, traffic in the reverse direction (from ToRj to

ToRi) is unaffected and depends on circuit from ToRj to ToRi to decide which one

of the two switches to travel through.

Note that when the electrical bandwidth Be → 0, the network becomes a pure
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Be
Bo

...
Figure 2.1 : Network model with a electrical packet switch and an optical circuit
switch. Each ToR is both a sender and receiver.

optical network, in which all traffic can only travel through the optical switch.

2.2 Optical Circuit Constraints

The optical switch has circuit constraints: only one circuit can be set up between

an input port and an output port. Let p denote a circuit assignment of the optical

switch at any time. Then p is an N × N binary matrix, and p(i, j) = 1 indicates

setting up a circuit from input port i to output port j. Thus p is a permutation

matrix corresponding to a one-to-one matching between the input ports and output

ports of the optical switch.

The circuit scheduler is to schedule a list of circuit assignments {p1, ..., pm, ..., pM}

over time, where M is the total number of circuit assignments deployed. Each circuit

assignment is coupled with its duration in time {t1, ..., tm, ..., tM}, so that assignment

pm is active for tm (m = {1, 2, ...,M}).

Applying a circuit assignment will incur a reconfiguration delay of δ.
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2.3 Traffic Demand Requirement

The scheduling should meet the traffic demand requirement. The traffic demand can

be represented as a N ×N matrix D, where N is the number of racks. Each element

D(i, j) indicates the byte volume of traffic demand from ToRi to ToRj .

2.4 Traffic Scheduling Assumptions

In this study, we focus on the impact of circuit scheduling on network performance.

Therefore, we assume the circuit scheduler can only control the circuit assignments

{p1, ..., pM} and the corresponding durations {t1, ..., tM}. Traffic is redirected auto-

matically to the optical switch if the corresponding circuits are set up. The traffic

shares the bandwidth with max-min fairness.
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Chapter 3

Related Work

3.1 Overview

In the context of data center networks, existing optical circuit schedulers generally

apply centralized management and schedule circuits at the beginning of recurring

scheduling cycle [1, 2, 4, 5]. A scheduling cycle has a length of time T , which is

typically fixed and on the order of hundreds of millisecond. Each scheduling cycle

can be further divided into slots, so that each slot corresponds to a unique circuit

assignment.

At the beginning of each scheduling cycle, the scheduler collects the traffic demand,

represented as a matrix D. Based on D, the circuit scheduling algorithm computes

one or more slot configurations in a list C = {c1, c2, ..., cMk
}, where Mk is the number

of slots produced in the k-th scheduling cycle (Figure 3.1). Each slot cm has a circuit

assignment cm.p and a coefficient cm.t. The coefficient cm.t indicates the ratio of

length in time between the slot cm and the scheduling cycle, i.e. the time share of

cm in a cycle. In other words, a slot with time share cm.t has a length of cm.t× T in

time (tm = cm.t × T in Figure 3.1), during which circuits in cm.p are set up for the

optical switch. Note that the sum of slot length within a scheduling cycle is equal to

T , i.e.
Mk
∑

m=1
cm.t = 1. Each slot corresponds to a circuit assignment with duration of

cm.t× T in Section 2.2 of Chapter 2.

Figure 3.1 illustrates this cycle based work flow adopted by existing schedulers. In
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Figure 3.1 : An illustration of existing scheduler’s work flow for a 4-port optical
switch.

Figure 3.1, for both the traffic demand matrix and the circuit assignment matrices,

each row represents an input port and each column represents an output port. The

ones in the circuit assignment matrices indicate setting up optical circuits between

the corresponding input and output ports.

3.2 Scheduling One Assignment per Cycle

3.2.1 Edmond

In the context of optical circuit scheduling for data center networks, schedulers pro-

posed in [1, 2] use the maximum weighted matching algorithm, or Edmond, as the

core scheduling algorithm. Edmond will schedule only one slot per scheduling cycle,

i.e. |C| = 1, and the slot is configured as

c1.p← a matching s.t. max ⟨p,D⟩

c1.t← 1
(3.1)

where D is the traffic demand matrix. In order words, for each scheduling cycle of

length T , Edmond chooses the circuit assignment that maximizes the sum of traffic
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demand on circuits set up, based on the traffic demand at the beginning of each cycle.

The computation complexity of Edmond is O(N3) where N is dimension of the

demand matrix D, which is the port counts of the optical switch, and thus the rack

count inside the data center network.

3.2.2 Other Scheduling Algorithms for Packet Switches

The Edmond algorithm can be traced back to the classic circuit scheduling problem

for packet switches, where one circuit assignment is produced for each scheduling

cycle to transmit one round of packets. There is a plethora of works that focus on

switch scheduling for input queuing packet switches by finding the maximum bipartite

matching (MBM) among input and output ports. Edmond[10], PIM [11], SLIP [12],

APSARA [13], LAURA [13] and SERENA [13] are some of the matching algorithms

that serve this purpose. However, circuit scheduling in optical data centers is different

from input queuing switch scheduling. There are two important reasons outlined as

follows.

First, in input queuing packet switches, switch scheduling happens at packet gran-

ularity, i.e. one MBM is used per scheduling cycle to transmit one round of packets.

This is possible because the traffic demand is instantly available to the scheduling al-

gorithm by counting local buffers. However, in optical data centers, the traffic sources

are distributed. The core optical switch is bufferless and the traffic is either buffered

at packet switches or at hosts. Before scheduling computation, the traffic demand

needs to be measured distributedly and communicated to the circuit manager, which

incurs a significant and often unpredictable delay. This delay is further compounded

by communication overhead, making it impossible to collect traffic demand at packet

granularity in optical data centers. Instead, such information is to be collected at



12

coarser granularity with larger update interval on traffic demand.

Second, in input queuing switches, only one MBM is used per scheduling cycle to

transmit one round of packets. However, in optical data centers, multiple matchings

are generally needed per scheduling cycle.

Consider a slow 3D-MEMS optical switch, which takes tens of milliseconds for cir-

cuit reconfiguration. Given such circuit reconfiguration delay and the communication

overhead of collecting traffic demand, previous works [1, 2] propose to collect traffic

demand and schedule one circuit assignment at O(100 ms) intervals. In a typical

data center with 10 Gbps bisection bandwidth, a scheduling interval at O(100 ms)

transmits O(80,000) packets, and the communication overhead is an acceptable cost

to transmit such amount of data. However, as faster optical switching technologies,

such as wavelength-selective switch (WSS), are being proposed, the optical circuit

reconfiguration delay drops from tens of milliseconds to tens of microseconds, and

can drop even further with silicon photonic switches. On one hand, scheduling at

O(100 µs) interval is no longer possible because it causes an unacceptably high com-

munication overhead of collecting distributed traffic demand information. On the

other hand, keeping the scheduling interval at the slower O(100 ms) is not desirable

because it does not take advantage of the faster switching enabled by these tech-

nologies. Such advantages of faster switching include more fine-grained sharing of

bandwidth resources among large and small flows, which can significantly increase

network throughput and reduce flow starvation problems.

To bridge the gap between coarse update on traffic demand and fast switching of

optical circuits, one can schedule multiple circuit assignments for one cycle.
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3.3 Scheduling Multiple Assignments per Cycle

3.3.1 TMS

TMS is proposed in [4, 5] as the scheduling algorithm for optical circuits in data center

networks. It schedules multiple circuit assignments per scheduling cycle. The TMS

algorithm relies on the Birkhoff-von Neumann algorithm[14, 15], which we refer to

as BvN hereafter, to decompose a demand matrix into multiple circuit assignments.

BvN assumes its input matrix to have an identical sum for each row and each column.

Therefore, the TMS algorithm applies a pre-processing step that uses the Sinkhorn

algorithm, referred to as Sinkhorn hereafter, and transforms an arbitrary demand

matrix to meet the input requirements of BvN. Hence the TMS algorithm consists of

two steps, as described in Algorithm 1.

Algorithm 1 TMS scheduling algorithm
Input: traffic demand matrix D, error tolerance for Sinkhorn τ

Output: a list of slot configurations C

1: Doubly Stochastic Matrix D′ ← Sinkhorn(D, τ)

2: C ← BvN(D′)

In the first step, TMS uses the Sinkhorn algorithm, to transform the traffic demand

matrix D to a Doubly Stochastic Matrix (DSM) D′. A DSM is a matrix whose row

sums and column sums are 1, i.e.

∑

j

D′(i, j) = 1, ∀i

∑

i

D′(i, j) = 1, ∀j

(3.2)

As shown in Algorithm 2, Sinkhorn obtains an DSM by iteratively normalizing

the rows and columns of a matrix with positive (greater than 0) entries (line 3 - 9).
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Algorithm 2 Subroutine: The Sinkhorn Normalization
1: procedure Sinkhorn(traffic demand D, error tolerance τ)

2: D′ ← Fill zero entries in D with σ > 0 ◃ Fill zero entries

3: repeat

4: Dtmp ← 0

5: ∀ row i in D′ : Dtmp(i, j)← D′(i,j)
N∑

j=1
D′(i,j)

◃ Normalize over rows

6: ∀ column j in ∈ D′ : Dtmp(i, j)← D′(i,j)
N∑

i=1
D′(i,j)

◃ Normalize over columns

7: D′ ← Dtmp

8: error ϵ← max

(

|
N
∑

i=1
D′(i, j)− 1|, |

N
∑

j=1
D′(i, j)− 1|

)

9: until error ϵ < tolerance τ

10: return Doubly Stochastic Matrix (DSM) D′

11: end procedure

Therefore, the zero entries in D will be replaced by a small value σ > 0, before the

iterative normalization (line 2). The output of Sinkhorn is an approximated DSM,

whose row sums and column sums may not be exactly 1, and Sinkhorn repeats the

normalizations until the sums are sufficiently close to 1, as specified by the error

tolerance (line 9). Sinkhorn’s normalization may distort the input demand matrix D,

and results in distorted demand, which corresponds to entries with zero value in D

but non-zero value in the resulting DSM D′, i.e. D(i, j) = 0, but D′(i, j) > 0.

In the second step, TMS generates multiple circuit assignments by decomposing

the DSM D′ with BvN. As shown in Algorithm 3, BvN is an iterative algorithm

for matrix decomposition. In each iteration, BvN produces an assignment and the

corresponding coefficient, i.e. time share in the circuit schedule (line 4 - 5), and

updates the matrix for the next iteration (line 8). BvN will schedule the circuits
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Algorithm 3 Subroutine: The BvN Decomposition
1: procedure BvN(DSM D′)

2: a list of slot configurations C ← ∅

3: while D′ ̸= ∅ do

4: p← perfect matching over D′

5: t← min{D′

i,j : (i, j) ∈ p}

6: slot configuration c.p← p, c.t← t

7: append c to C

8: D′ ← D′ − tp

9: end while

10: return C

11: end procedure

to serve the exact demand specified with the input DSM D′. In other words, the

slot configurations produced by BvN satisfy
Mk
∑

m=1
cm.p × cm.t = D′ and

Mk
∑

m=1
cm.t = 1.

Since the BvN input D′ may be distorted by the previous Sinkhorn step, BvN may

be misguided, so that the scheduled circuits may poorly serve the original demand

matrix D. Besides, BvN comes with an expensive cost of circuit configurations. It

may produce up to O(N2) circuit assignments per scheduling cycle, where N is the

port count of the optical switch.

Both Sinkhorn and BvN are iterative algorithms, and thus are hard to be par-

allelized. The run time of Sinkhorn depends on both the input demand matrix D

and the error tolerance τ . The computation complexity of BvN is O(N4.5) for an

optical switch with N ports. Therefore, the computation complexity of TMS is at

least O(N4.5).
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3.3.2 Other Scheduling Algorithms for Crossbar Switches

A number of algorithms can generate multiple matchings from one demand matrix

(e.g. [16, 17, 18]), and the TMS algorithm that we already mentioned [4, 5] is a repre-

sentative example. These algorithms can be traced back to the classic crossbar switch

scheduling problem, or the so-called Time Slot Assignment (TSA) problem[16]. The

solution algorithms usually rely on the techniques of matrix decomposition, which is

similar to BvN in the sense that they would need to iteratively update and decompose

a matrix into multiple assignments, with a weighted coefficient for each assignment.

However, these algorithms all suffer from high computational complexity. Further-

more, they are hard to be parallelized because they rely on iteratively updating the

matrix to produce one assignment after another. In contrast, we propose a circuit

scheduling algorithm that can run in parallel to handle large scale circuit scheduling

problem with reasonable computation time.
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Chapter 4

Motivating Example

In this chapter, we will illustrate the inefficiency behind the two existing circuit

scheduling algorithms with an example. Particularly, we apply the algorithms over

the same traffic demand and the scheduling results are shown in Figure 4.1 and

Figure 4.2.

4.1 Inefficiency behind Edmond

For each scheduling cycle, Edmond only schedules one set of circuits with one assign-

ment. Traffic on unscheduled circuits can not take advantage of the optical bandwidth

and thus are starved in a pure optical network, as shown with the shaded demand in

Figure 4.1. Particularly, Edmond schedules circuits based on the maximum weighted

matching of the traffic demand, because Edmond considers the corresponding links

to be hot spots and thus Edmond caters the circuit schedule for the heaviest demand.

As heavy demand also takes longer time to serve, consequently, traffic on circuits

with smaller demand may be delayed for long time before they are allocated with

optical circuits and benefit from the optical bandwidth. For example in Figure 4.1,

D(1, 4) and D(3, 2) are competing with D(1, 2) for the same input port or output

port. Edmond would prioritize the circuit for D(1, 2), and the circuits for D(3, 2) and

D(1, 4) would need to wait until D(1, 2) is served with considerable amount of time

to allow circuits for D(3, 2) and D(1, 4), based on the maximum weighted matching
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Figure 4.1 : Scheduling result of Edmond. Grape shaded cells indicate demanding
circuits NOT covered in the scheduling.

of the traffic demand. In a pure optical network, or a hybrid network with small

electrical bandwidth, traffic on circuits with small demand (e.g. D(3, 2) and D(1, 4))

ends up with long delay because they can hardly receive any optical bandwidth when

some large demand (e.g. D(1, 2)) dominates the optical circuits scheduling.

The problem of delaying small traffic is mitigated in the studies on the Edmond

scheduling [1, 2], which are based on a hybrid network with sufficiently large electrical

bandwidth, so that the traffic on circuits with small demand may take advantage of

the abundant electrical bandwidth and avoid starvation, even if they are not allocated

with optical circuits.

4.2 Inefficiency behind TMS

TMS schedules multiple circuit assignments to cover more traffic demand in each

scheduling cycle. However, TMS’s both steps, i.e. Sinkhorn and BvN, would result in

significant inefficiency due to wasted circuit resource and heavy switching overhead.

For one thing, Sinkhorn’s normalization may heavily distort the original demand

and produce a misleading DSM for BvN. Particularly for demand matrix with zero

entries, Sinkhorn can bring in distorted demand, by modifying the demand of a circuit
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Figure 4.2 : Scheduling result of TMS. All numbers are rounded up to the second
decimal. Red shaded cells indicate distorted demand and wasted circuits.

in D′ to arbitrary value even even if the circuit has no traffic demand in the original

demand matrix D, i.e. D(i, j) = 0, but D′(i, j) > 0. For example in Figure 4.2,

the shaded non-zero demand in the DSM D′ corresponds to zero demand in the

original demand matrix. As the scheduling produced by BvN exactly reflects the

input DSM, BvN would schedule wasted circuits based on the misleading DSM. As

shown in Figure 4.2, multiple wasted circuits are shaded in the assignments produced

by BvN. These wasted circuits do not effectively serve any traffic demand. Besides,

setting up these wasted circuits largely harms performance because they not only

cause switching overhead, but they may also take up the ports required by other

circuits with non-zero demand in the original demand matrix. For example in p3 of

Figure 4.2, rather than setting up the two wasted circuits, circuit from input port 1

to output port 2 could be set up to serve traffic demand. In summary, Sinkhorn may

distort the original demand matrix heavily so that the resulting circuits scheduled

would poorly serve the original demand.

Besides, BvN schedules circuit switching aggressively, producing up to O(N2)
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assignments per cycle, which may incur excessive circuit reconfiguration overhead as

the optical switch port count N grows. The computation overhead of TMS (O(N4.5))

also grows rapidly with N , which makes TMS less capable to schedule circuits for an

optical switch with large port count.

Unfortunately, the Sinkhorn distortion problem and the limited scalability are

ignored in the studies of the TMS algorithm [4, 5], which are based on uniform dense

traffic demand on a small scale optical switch with 6 ports. For one thing, compared

with a skewed and sparse matrix, Sinkhorn’s iterative normalization would apply less

distortion on a matrix full of uniform non-zero entries. For another, a 6-port switch

in the studies is too small to unveil the inefficiency of the overhead due to switching

and computation, both of which increasingly grow heavier with larger switch port

count.
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Chapter 5

Efficient Optical Circuit Scheduling with Decomp

5.1 Algorithm Overview

Decomp can be seen as a framework. Unlike other algorithms, Decomp structures

the circuit schedule computation into three stages, namely partition, schedule,

and merge, so that 1) the traffic demand matrix is first partitioned into multiple

regions, 2) the schedule stage makes circuit selection decisions on different regions,

and 3) the merge stage coordinates selected circuits on different regions. Particularly,

Decomp employs three key techniques that are not found in previous proposals, i.e.

1) partitioning the demand matrix, 2) randomization before partitioning, and 3)

parallelization for scalability, discussed as follows.

5.1.1 Key Techniques

Partitioning the Demand Matrix Existing algorithms such as Edmond or TMS

that schedule all circuits over the entire traffic demand matrix allow large traffic de-

mand to easily dominate the use of the optical circuits, which starves small demand in

the optical network. To solve this problem, Decomp first partitions the traffic demand

matrix into multiple regions and schedules circuits for different regions in isolation

(the randomization technique described next further improves the algorithm’s robust-

ness against small demand starvation). In this way, Decomp distributes the optical

bandwidth among small and large demand because the large demand can now only
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dominate a single region rather than the entire network. Then, Decomp merges par-

tial scheduling results into a global scheduling decision for all circuits, and enforces

high utilization of the optical network in merging.

Randomization before Partitioning A partition of traffic demand for parallel

computation might still result in scheduling decisions biasing some circuits over the

other. For example, circuits in sparse regions are more likely to be set up than

those in dense regions with intensive competition for optical bandwidth. To maintain

robust and stable performance over various traffic patterns, Decomp randomizes the

labeling of racks before partitioning demand regions, so that one region may represent

demand for different subset of optical circuits in each computation iteration. In this

way, Decomp removes the chance of persistent bias for certain circuits.

Parallelization for Scalability Decomp’s computations can be parallelized inK

ways whereK is a power of 4 (to maintain the square shape of each sub-matrix). To do

so, inter-rack traffic demand matrix is first partitioned into regions, each representing

traffic demand for a portion of links between source and destination racks. Next, each

parallel process takes in one region and computes partial circuit assignments for links

included in the region. In other words, each process controls a subset of all optical

circuits and schedules them in the scope of the partitioned region. Finally the partial

circuit assignments are merged to obtain the schedule for all circuits.

5.1.2 Decomp Techniques and the Design Space

These key techniques help Decomp to cover the design space of the circuit scheduling

algorithm (Chapter 1).

Scalability Decomp can run in parallel to handle scheduling computation for

an optical switch with large port count. To avoid high computational overhead, a
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lightweight heuristic can be applied in the schedule stage. Moreover, the schedule

stage can be customized with different circuit selection policies that aim for a variety

of performance objectives. Particularly, it can also be explicitly designed to mitigate

excessive switching overhead as the switch port count grows.

Handling Hybrid and Pure Architectures As we discussed in Section 5.1.1,

compared with the existing algorithms such as Edmond or TMS that schedule all

circuits over the entire traffic demand matrix, Decomp schedules circuits based on

each partitioned demand regions and distributes the optical bandwidth among small

and large traffic demand. The randomization technique also helps to mitigate the

large demand dominance problem.

Robustness under Different Traffic Patterns. In contrast with TMS that

may apply arbitrary distortion to the traffic demand and misguide the resulting cir-

cuit schedule, Decomp may use a heuristic in the schedule stage so that circuits are

scheduled based on the original traffic demand. Moreover, the merge stage of De-

comp is also designed to respect the scheduling results on different regions, so that

the ultimate circuit scheduling may better matches the demand originally requested.

5.2 The Decomp Algorithm

As described in Algorithm 4, Decomp has three major stages, i.e. partition, sched-

ule and merge. As a pre-processing step, the order of racks is randomized with a

random permutation function f r (line 1). The randomization is repaired by map-

ping the sources and destinations of circuits in the output configurations back to the

corresponding racks using the reverse function of f r (line 17).
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Algorithm 4 Decomp scheduling algorithm

Input: traffic demand matrix D, parallel in 4L-way

Output: a list of slot configurations C

1: f r ← random permutation of {1, ..., N} ◃ Randomization

2: construct randomized demand Dr s.t. Dr(i, j) = D(f r(i), f r(j))

3: divide Dr into 4L regional SDMs {Ds
1, ...,D

s
4L} ◃ Partition

4: for all SDM Ds ∈ {Ds
1, ...,D

s
4L} do ◃ Parallel Schedule

5: regional configurations Cs ← Schedule(Ds)

6: end for

7: for merge level l = 1 to L do

8: divide Dr into 4(L−l) SDMs

9: for all major-region covered by Ds ∈ {Ds
1, ...,D

s
4(L−l)} do ◃ Parallel merge

10: (C0, C1, C2, C3)← configurations of 4 minor-regions within major-region

11: major-region configurations Cs ← Merge(C0, C1, C2, C3,Ds)

12: end for

13: end for

14: C ← configurations of the one major-region on the L-th merge level

15: f−r ← repairing permutation s.t. f−r(f r(i)) = i

16: for all c ∈ C do

17: construct p−r s.t. p−r(i, j) = c.p(f−r(i), f−r(j)) ◃ Repair from randomization

18: c.p← p−r

19: end for
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Schedule

Figure 5.1 : An example illustrating 4-way Decomp for 6 racks.

5.2.1 Stage I: Partition

The schedule stage of Decomp can be parallelized in 4L ways (L ∈ {1, 2, ...}). In 4L-

way Decomp over N racks, the inter-rack traffic demand is a N × N traffic demand

matrix (TDM) D and then divided into 4L regions, each in the size of N
2L ×

N
2L (line 3).

A regional demand matrix is called sub-demand matrix (SDM). For example, in 4-

way Decomp over 6 racks, the 6 × 6 TDM for racks in random order is partitioned
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into four 3× 3 SDM, as shown in the Partition step in Figure 5.1.

5.2.2 Stage II: Schedule

During the schedule stage, a list of slot configurations are computed for each region

based on the regional demand SDM. Different from Edmond and TMS, each slot

configuration in Decomp has an extra parameter, weight, which indicates the demand

covered by the slot. Time duration for each slot is assigned proportionally to weight

and the slot weights are further used in the merge stage of Decomp.

Parallel Schedule. Each SDM is fed into a subroutine to compute a list of slot

configurations for the circuits covered by the SDM. Computation on each SDM can

be run in parallel in different processes since there is no dependency among SDMs

(line 4 in Algorithm 4). For example, in the Schedule stage of Figure 5.1, the SDMs

are fed into four parallel processes.

Greedy Matrix Decomposition. The Schedule subroutine is described in Al-

gorithm 5. We choose a light-weighted greedy algorithm as the schedule function,

which iteratively decomposes SDM into multiple circuit assignments. In each itera-

tion, we scan through the descending list of sorted entries in SDM (line 3), and add

circuits for demand whenever the new circuit does not conflict with circuits already

assigned in the same iteration (line 7 to line 12). The weight for each slot is set to

the maximum demand covered by a slot’s circuit assignment during the iterations

of the greedy decomposition (line 6). We remove the demand entries with circuits

assigned (line 10) and keep producing new circuit assignments until demand entries

are drained (line 4).

We choose this greedy decomposition algorithm for several reasons. Firstly, un-

like Edmond which uses the maximum weighted matching algorithm and generates
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Algorithm 5 Subroutine: Schedule (Greedy Matrix Decomposition)
1: procedure Schedule(demand matrix D)

2: a list of slot configurations C ← ∅

3: DL ← list of descending-sorted non-zero entries in D

4: while DL not empty do ◃ Greedy matrix decomposition

5: circuit assignment p← ∅

6: weight w ← largest entry in DL

7: for demand entry d ∈ DL do

8: if the circuit from d.src to d.dst does not conflict with p then

9: p← p+ the circuit from d.src to d.dst

10: DL ← DL − d

11: end if

12: end for

13: add non-conflicting circuits with non-zero demand in D to p ◃ Back Filling

14: slot assigned circuits c.p← p, weight c.w ← w

15: append c to C

16: end while

17: cutoff ← max
p∈C.p

|p|

18: remove c ∈ C if |c.p| < cutoff ◃ Dynamic Pruning

19: time share for c ∈ C : c.t← c.w/
∑

c∈C

c.w

20: return C

21: end procedure
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only one circuit assignment per cycle, the greedy decomposition algorithm produces

multiple circuit assignments based on demand, so that more valid circuits may be

covered in each cycle. Secondly, the greedy decomposition algorithm has much lower

computation overhead. For N
2L ×

N
2L SDM, the running time of the greedy algorithm

is O(n3) with n = N
2L [19]. To produce multiple circuit assignments per cycle, one

can also replace the greedy scanning (line 7 to line 12) with the maximum weighted

matching algorithm, so that in each iteration, the maximum weighted matching al-

gorithm produces a set of circuits based on the SDM. Then the SDM is updated by

removing the the demand entries covered by the circuits in the maximum weighted

matching, before the updated SDM is fed into the next iteration. However, using

the maximum weighted matching algorithm instead of greedy scanning would incurs

computation in O(n4). TMS also produces multiple circuit assignments per cycle,

however, its computation complexity is even higher in O(n4.5). The Schedule sub-

routine is a heavily used function so we pick a light-weighted greedy algorithm to

avoid excessive delay in computing control logics. Thirdly, the greedy decomposi-

tion algorithm incurs less circuit reconfiguration overhead compared with TMS. For

N
2L ×

N
2L SDM, the number of assignments generated per cycle by the greedy algo-

rithm is in O(n)[19], compared with O(n2) under TMS. It is also worth mentioning

that replacing the greedy scanning (line 7 to line 12) with the maximum weighted

matching algorithm will not help to reduce the number of assignments generated per

cycle from O(n)[19]. Fourthly, this greedy algorithm is efficient by grouping circuits

with demand close to one another into the same assignment, which effectively reduce

circuit idleness incurred when relatively small demand is drained in one assignment.

The upper half of Figure 5.2 shows the results of the Greedy matrix decomposition

algorithm on the example demand not partitioned.
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GMD

Back Filling

Figure 5.2 : Greedy matrix decomposition (GMD) algorithm on the example demand.
Demand is not partitioned. Back filling circuits are marked red.

Back Filling Circuits. In the greedy matrix decomposition algorithm, demand

entries are removed iteratively (line 10). Hence assignments produced in those later

iterations might fail to cover some non-conflicting circuits that have non-zero demand.

For example, in Figure 5.2, the circuit from input port 1 to output port 2 is not

covered in the last circuit assignment produced. In an online system, letting resource

idle may hurt performance. As a result, we propose to perform circuit back filling on

all circuit assignments generated, by adding circuits that have non-zero demand in

SDM as long as the circuits are not conflicting with circuits already included in the

assignment (line 13). For example in Figure 5.2, we add an extra circuit from input

port 1 to output port 2 to the last circuit assignment.

Dynamic Slot Pruning. We can dynamically prune out undesired slots to

maintain high circuit utilization. Particularly, we choose to keep slots with maximum

number of concurrent circuits and prune out the rest in order to with maximize circuit
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utilization(line 18). For example in Figure 5.2, the last slot is pruned because it has

only 2 concurrent circuits, which is less than other slots with 3 circuits. Note that

other pruning policy may also apply to satisfy different scheduling purposes. Finally,

depending on slot weights, we scale the time share for the remaining slots to fill the

whole scheduling cycle, so that slots covering larger demand are allocated more time

share (line 19). For example in Figure 5.2, after pruning out the last slot, we may

assign the first two slots with duration of 100/123 and 23/123 respectively.

5.2.3 Stage III: Merge

Taking Advantage of Non-conflicting Regions. After the schedule stage, we ob-

tain regional circuit scheduling, a list of slot configurations for each region. However,

we cannot apply these slots directly because the scheduled circuits in different slots

might be conflicting with each other. Particularly, the ports covered by two conflict-

ing regions are overlapped, and thus the circuits to be scheduled in these two regions

might be conflicting if they required the same port. For example, in Figure 5.1, region

0 and region 1 are conflicting regions because they cover the same set of input ports.

Nevertheless, non-conflicting regions (e.g. region 0 and region 3 in Figure 5.1) cover

different subset of ports and thus slots in two non-conflicting regions can be scheduled

at the same time.

The main task of merge is to compute a globally feasible circuit scheduling from

the regional scheduling, while respecting the scheduling results on different regions.

Instead of serializing all regional scheduling, we propose an efficient merge algorithm

which takes advantage of the diagonal non-conflicting regions by first 1) merging

scheduling on non-conflicting regions and then 2) serializing merged scheduling on

conflicting regions. Particularly, we make use of major regions and minor regions
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so that a major region contains 4 minor regions in 2-by-2 layout. We obtain circuit

scheduling for the major regions by merging slots from the diagonal non-conflicting

minor regions. We merge recursively until the circuit scheduling that covers all circuit

is obtained.

A 4L-way Decomp with 4L regions in the schedule stage has L merge levels (line 7

in Algorithm 4). The major regions and minor regions are recursively defined in

different merge level. A minor region on one level is defined as the major region on

the last lower level, with each of the 4L regions in the schedule stage defined as the

minor regions on the 1st merge level. A major region on level l is defined as the

links covered by one of the 4(L−l) SDMs, each in size of N
2L−l ×

N
2L−l , divided from the

randomized demand matrix Dr (line 9 in Algorithm 4). For example, in the Merge

step of Figure 5.1, each of the 3 × 3 blocks is a minor region on the 1st merge level

and the 6 × 6 block is a major region on the 1st merge level and a minor region on

the 2nd merge level.

Computation of merging on different major regions can run in parallel (line 9 in

Algorithm 4). Further more, merging configurations from minor regions on different

diagonal can also run in parallel (details to be discussed in Section5.3.1). Note that

on the L-th merge level, there is only one major region, and the configurations for

this one major region cover all circuits (line 14 in Algorithm 4).

Merging Slots from Non-conflicting Regions. Merging slots from two non-

conflicting regions is non-trivial: we must avoid excessive switching overhead but also

need to make the most of regional scheduling results. On one hand, a cross product of

the slots from both regions may result in excessive circuit switching overhead because

the number of the resulting assignments would be a multiplication of the number of

slots in both regions. On the other, merging slots from each region one by one would
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constraint the number of resulting circuit assignments. However, it is less desirable

because the number of slots and their weights may differ vastly on different regions,

and a slot from the region with more slots may fail to find a matched slot in another

region. Besides, it is more favorable to merge two slots with similar weights so as to

group circuits with similar demand into one assignment.

We propose an efficient way to merge slots from the non-conflicting regions, so

that the merge stage may respect and make the most of regional scheduling decisions,

as well as avoiding excessive scheduling overhead. Particularly, we allocate virtual

time for each slots based on slot weights and combine two slots employed at the same

virtual time on the non-conflicting minor regions into one slot on the major region

(line 7 to line 15), with the weight for the combined slot set to the maximum weight

among the two original slots (line 14). For example in Figure 5.3, the schedule stage

generates two slots C0(0) and C0(1) for region 0 (blue) with virtual time share 0.8

and 0.2 respectively, and another two assignments C3(0) and C3(1) for region 3 (red)

with virtual time shares of 0.5 and 0.5, then merging region 0 and 3 yields three

configurations. The first one has a circuit assignment of C(0).p = C0(0).p ∪ C3(0).p,

the second C(1).p = C0(1).p ∪ C3(0).p, and the third C(2).p = C0(1).p ∪ C3(1).p.

The slots should be sorted descending on weight before merge (line 4). By sorting,

we try to group circuits with similar weight into one slot and assign to the new slot

a new weight that is close to the original ones, such that the new weight may better

represent the demand covered by the new assignment.

Note that each combined slot may utilize one slot from both regions and only

O(n) new slots is produced on the resulting 2n-by-2n major region given O(n) slots

from the original n-by-n minor regions.

Serializing Slots from Conflicting Regions. The merged slots from conflict-
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Figure 5.3 : Decomp merges slots from non-conflicting regions. Generate a new slot
by combining two slots employed at the same virtual time in different regions.

ing regions, e.g. the merged slots from region 0 and 3, and the merged slots from

region 1 and 2, might contain conflicting circuits, and therefore these slots are serial-

ized to be the slots for the major region (line 23).

Optimizing with Back Filling and Dynamic Slot Pruning. Similar to

schedule stage, the circuit assignments in the merged slots should be filled with non-

conflicting valid circuits (line 16). Since the two circuit assignments to be merged

has been filled in the schedule stage (or previous merges), extra circuits are less likely

in the two merging regions. However, if the two merging assignments does not take

up all input and output ports, more valid circuits might be added in the rest two

regions not involved in the merge, by using the idle ports left after the two merging

assignments. For example in Figure 5.4, in the first 3 merged circuit assignments

from region 0 (blue) and 3 (red), extra circuits might exist in region 1 (cyan) and 2

(yellow). Besides, we can also further optimize the scheduling decisions by pruning out

undesired slots to enforce high circuit utilization(line 22). For example in Figure 5.4,
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Figure 5.4 : Back filling extra non-conflicting valid circuits in the merge stage. Back
filling circuits are marked red.

we can prune out the third slots since it only has 5 concurrent circuits, which is less

than the rest slots which all have 6 circuits.

5.3 Decomp Algorithm Analysis

5.3.1 Process Usage

The schedule stage of 4L-way Decomp takes 4L processes for each minor-region in

the first level. The merge stage in the l-th level uses 2× 4(L−l) processes for merging

minor-regions on two diagonals in each of the 4(L−l) major regions. For example, in

Figure 5.1, one process is used to merge region 0 and 3 and another one is used to

merge region 1 and 2 in parallel.

5.3.2 Computation Complexity

In 4L-way Decomp for N racks, each schedule process takes O(( N
2L )

2 log N
2L ) to sort

the ( N
2L )

2 entries in each SDM. The number of loops for picking up non-conflicting

entries from the sorted list (line 4 of Algorithm 5) is O( N
2L ). In each iteration, the
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Algorithm 6 Subroutine: Merge
1: procedure Merge(four minor-regions configurations C0, C1, C2, C3, major-region de-

mand D)

2: major region configurations C ← ∅

3: for all minor-regions (i1, i2) on one diagonal ((0, 3) or (1, 2)) do

4: Apply descending sort on slots from both regions according to weight

5: index of configurations in Ci1 , Ci2 : j1, j2 ← 0

6: while j1 <
∣

∣P k
i1

∣

∣ or j2 <
∣

∣P k
i2

∣

∣ do

7: if Ci1(j1) ends before Ci2(j2) then

8: j1 ← j1 + 1

9: else if Ci1(j1) ends after Ci2(j2) then

10: j2 ← j2 + 1

11: else if Ci1(j1), Ci2(j2) end simultaneously then

12: j1 ← j1 + 1, j2 ← j2 + 1

13: end if

14: weight w = max(Ci1(j1).w,Ci2(j2).w)

15: assignment p← Ci1(j1).p ∪ Ci2(j2).p

16: add non-conflicting circuits with non-zero demand in D to p ◃ Back Filling

17: slot assigned circuit c.p← p, weight c.w ← w

18: append c to C

19: end while

20: end for

21: cutoff ← max
p∈C.p

|p|

22: remove c ∈ C if |c.p| < cutoff ◃ Dynamic Pruning

23: time share for c ∈ C : c.t← c.w/
∑

c∈C

c.w

24: return C

25: end procedure
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sorted list is scanned and its size decreases. Thus, the loop takes O(( N
2L )

3), resulting

O(( N
2L )

3) for the schedule stage.

In the l-th level of merge, the maximum number of loops (line 6 in Algorithm 6)

is the total number of assignments in two diagonal minor-regions, or O( N
2L−l+1 ). Thus

merges take O((N2 ) − ( N
2(L+1) )) in total. This is a loose estimation and merge has a

much lower complexity in practice. We observe that the the computation time on the

merge stage is a very small compared with that on the schedule stage. The bottle

neck of Decomp is thus its schedule stage in O(( N
2L )

3).

5.3.3 Circuit Configurations

The number of circuit configurations for each scheduling cycle is subject to the al-

gorithm used in the schedule stage to decompose each SDM. The greedy matrix

decomposition algorithm used by Decomp is shown [20] to produce at most 2 N
2L − 1

circuit assignments for N
2L ×

N
2L SDM. In the 1st merge level, each minor region has no

more than 2 N
2L −1 circuit assignments. Thus merging four minor regions produces no

more than 4× (2 N
2L − 1) circuit assignments, with 2× (2 N

2L − 1) from merging minor

regions on each of the two diagonals. Thus each minor region on 2nd merge level

has no more than 2 N
2(L−2) circuit assignments. In the l-th level of merge, assume each

minor region has no more than 2 N
2(L−2l+2) circuit assignments. Thus on the (l + 1)-th

merge level, each minor has no more than 2 N
2(L−2(l+1)+2) circuit assignments. By induc-

tion, we know that on the final merge level, the total number of circuit assignments

is less than 2(L+1)N with L as a constant. Thus the number of circuit configurations

for Decomp is in O(N) for N racks.
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Computation Complexity Slots/Cycle

4L-way Decomp O(( N
2L )

3) +O((N2 )− ( N
2(L+1) )) O(N)

Edmond O(N3) 1

TMS O(N4.5) O(N2)

Table 5.1 : Comparison of scheduling algorithms on N racks. (Decomp is the only
algorithm that is parallelizable)

5.3.4 Comparison with Existing Algorithms

Table 5.3.4 shows a comparison of 4L-way Decomp, Edmond and TMS on N racks.

Although Decomp is a polynomial-time algorithm like Edmond and TMS, Decomp is

the only algorithm among the three that is parallelizable. As we will show in Section

6.2.2, Decomp is much faster than Edmond and TMS.

Besides, Decomp applies a modest amount of circuit switchings per scheduling

cycle. On one hand, unlike Edmond which rejects all circuits outside the maximum

weighted matching set, Decomp schedules multiple circuit assignments per cycle, so as

to cover traffic demand in each cycle and mitigate starvation problem as in Edmond.

On the other hand, Decomp maintains network utilization by bounding the number

of circuit configurations per cycle to O(N), instead of O(N2) in TMS, to allow for

better scalability.
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Chapter 6

Evaluation

6.1 Methodology

We study the performance of different scheduling algorithms under the same settings,

i.e. topology, bandwidth allocation, circuit switching delay, etc.

6.1.1 Network Topology and Link Bandwidth

We simulate a network consisting of 16 racks, with 20 servers per rack. In the hy-

brid architecture, each top of rack (TOR) switch both connects to a 16 × 16 optical

switch and an electrical Ethernet packet switch. In the pure architecture, each TOR

switch only connects to the optical switch. In the hybrid architecture, the electrical

bandwidth Be varies from 10 Mbps to 1 Gbps in the experiments. The bandwidth

of optical links in both architectures is 10 Gbps. The links between TOR and server

are 10 Gbps. Thus each server can saturate either the optical or electrical links in

the core network with its own traffic.

6.1.2 Metrics

We use three metrics, i.e. traffic finish time, flow waiting time and algorithm com-

putation time to evaluate the scheduling algorithms. These metrics describes the

network resource utilization and traffic delay under a scheduling algorithm, as well

as how responsive a scheduling algorithm can be in case of traffic change.
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• Traffic Finish Time TF

Consider a set of flows F in a certain traffic pattern. A flow f ∈ F arrives

at s(f) and finishes at e(f). The traffic finish time is the time when all flows

finish, i.e.

TF = max
f∈F

e(f). (6.1)

The traffic finish time reveals the network utilization when all flows arrive at

time 0 and wait to be serviced. To clear the same set of flows, the shorter the

traffic finish time is, the higher the utilization.

• Flow Waiting Time tW (f) and TW

The waiting time of a flow f ∈ F is defined as the length of time from its

arriving time to its finishing time, i.e.

tW (f) = e(f)− s(f). (6.2)

Summing the waiting time of all flows gives the total waiting time TW for flow

set F .

TW =
∑

f∈F

tW (f) (6.3)

tW (f) measures the responsiveness experienced by individual flow, exposing the

impact on short and long flows, while TW measures overall responsiveness. The

waiting time reflects how long a flow has to wait before it goes through the

network. For applications blocked to wait for data from another end host, the

waiting time determines how fast they are able to respond. Long total waiting

time implies overall slow response of applications running on the data center.

• Computation Time
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The computation time affects how a scheduling algorithm can be adaptive to

network changes, and therefore it should be computational efficient. The com-

putation time of the scheduling algorithm is a function of network size and

traffic pattern.

6.1.3 Simulation Settings

Algorithms are called at the beginning of a scheduling cycle. Edmond generates only

one circuit assignment for each cycle consisting of one slot. Decomp and TMS can

generate multiple circuit assignments corresponding to multiple slots within one cycle.

In our experiment, the circuit switching delay is 10 µs, which is typical for optical

wavelength-selective switches (WSS). The scheduling cycle is 0.1 second to allow for a

fair trade-off between optical circuit utilization and fast adaptivity to traffic change.

6.1.4 Traffic Workloads

In data centers, traffic demand fluctuates over time, resulting in various traffic pat-

terns, uniform or skewed, dense or sparse. At one time, traffic might be distributed

uniformly across racks but at another, hotspots show up if a few racks have signifi-

cantly larger demand. Besides, the traffic is said to be dense when most racks have

traffic demands for each other, while the traffic is sparse when only some racks have

traffic demands for each other. We study the performance of scheduling algorithms

under these four combinations of patterns.

• Urand (uniform-dense): Each server sends a flow of 125 MB to another N

randomly chosen servers, where N is the number of racks. In a data center with

N racks and M servers per rack, this implies that each rack has NM inward and
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NM outward flows on average. Urand is a standard pattern used in existing

work [3, 4, 5] to simulate intensive communications in data centers.

• Stride (uniform-sparse): The servers are indexed from 0 to 320. Server i sends

a flow of 125 MB to each of 8 other servers in 8 different neighbor racks, which

are server (i+ 20 ∗ j + 1) mod 20, with j ∈ {1, ..., 8}. In Stride, each rack has

traffic to half of all TORs. Stride is another standard pattern used in existing

work [3].

• Hotspots (skewed-dense): Hotspot is a mixture of heavy flows, each in size of

10 GB between 10 pairs of randomly chosen servers, and small flows of uni-

form random dense traffic of 100 KB each. We include it because an extensive

measurement study of data center traffic [21] reports that hotspots are common.

• Isolated (skewed-sparse): Three non-conflicting isolated flows, each in size of

100 MB, coexist in a 16× 16 traffic matrix. In this traffic pattern, all flows can

be routed by the optical switch at the same time. The reason we include it is

to demonstrate certain deficiency of the TMS algorithm on sparse and skewed

traffic in Section 6.2.4.

6.2 Numerical Results

6.2.1 Decomp achieves low flow waiting time while preserving network

utilization

In this experiment, we zero out the algorithm computation time and circuit switching

time in order to remove the influence from these two factors on performance. In other

words, we want to show how each algorithm assigns circuits for the same set of flows.
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In practice, the performance would also be impacted by algorithm computation time

and circuit reconfiguration delay.

Figure 6.1 shows the distribution of Hotspot’s flow waiting time under a 10 Gbps

pure optical architecture. We make the following observations. Firstly, flows tend to

experience long waiting time under Edmond in the pure optical architecture. More

than 50% of the flows are still alive after 5 seconds under Edmond, while with the

same time, both TMS and Decomp have already cleared more than 89% of the flows.

With an objective of maximizing the total traffic served by each circuit assignment,

Edmond is more likely to prioritize large flows into optical paths, leaving small ones

waiting until their sizes are comparable with what is remained of the large flows.

Without assistance of electrical network which allows small flows to pass quickly, the

small flows suffer under Edmond.

Secondly, flow waiting time is significantly improved with Decomp. Both Decomp

and TMS allow bandwidth sharing among flows with several different circuit assign-

ments in each scheduling cycle. Thus even small flows can take advantage of optical

circuits assigned in short slots. Furthermore, Decomp has even better flow waiting

time than TMS. Decomp partitions traffic demand and schedules each partition sep-

arately, so that the large flows can only dominate a single partition rather than the

entire network. In TMS, heavy demand can dominate the use of optical network more

easily given that TMS schedules all circuits over the entire traffic demand matrix. Ex-

periments show that by 0.13 second, Decomp has cleared more than 97% of the flows,

while the number for TMS and Edmond is merely 84% and 42% respectively. We also

observe that Decomp reduces the average per flow waiting time by more than 0.14

second for Stride pattern and 0.78 second for Urand pattern compared with TMS and

Edmond under the same network settings.
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Figure 6.1 : CDF of flow waiting time for the Hotspot pattern under the 10 Gbps
pure optical network architecture. Decomp is suitable for the pure optical network
architecture and eliminates the long-tailed flow waiting times that Edmond and TMS
suffer from.

Furthermore, we present the traffic finish time for Hotspot, Urand and Stride

under the pure architecture in Figure 6.2. Decomp achieves similar network utilization

as Edmond and TMS in that Decomp clears traffic with roughly the same traffic finish

time as the other two algorithms. But with comparable network utilization, Decomp

is much better at allocating bandwidth among flows to reduce flow waiting time.

Next, we extend our study to the hybrid network. Figure 6.3 shows the total flow

waiting time for the Hotspot pattern under the hybrid architecture with different

ratios of electrical and optical bandwidth. Decomp has short waiting time over all

hybrid network settings. In contrast, flows still suffer from long waiting time in

Edmond when there is insufficient electrical bandwidth. Like Edmond, TMS also
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Figure 6.2 : Traffic finish time under the 10 Gbps pure optical architecture. Decomp
is as good as other algorithms in terms of network utilization regardless of traffic
density, while simultaneously eliminating long-tailed flow waiting times.

suffers from not having enough electrical bandwidth, though it is more tolerant. In the

hybrid network with as much as 100 Mbps electrical bandwidth, the total flow waiting

time for Decomp is less than 44% of TMS and only 4.6% of Edmond. When the

electrical bandwidth drops further down to 10 Mbps, the total flow waiting time for

Decomp is only 9.3% of TMS and 1.2% of Edmond. The starvation problem of small

flows under TMS and Edmond is mitigated only after we add a considerable amount

of electrical bandwidth for the small flows to go through easily without significant

delay.

6.2.2 Decomp requires far less computation time than Edmond and TMS

We measure the execution time of the scheduling algorithms on a 3.10 GHz Intel

dual Core i3 processor with 3.7 GB memory. The computation time is not memory

bounded in that the maximum memory consumption is only 1521 MB for 16-way
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Figure 6.3 : Total flow waiting time for Hotspot under the hybrid network architecture
(Total bandwidth is the sum of 10 Gbps constant optical bandwidth and variable
electrical bandwidth). Decomp is suitable for the hybrid network architecture and
achieves the lowest flow waiting times regardless of the amount of electrical network
bandwidth available.

Decomp over 600 racks. All algorithms are implemented in the C language for best

performance. We have ensured that Edmond and TMS are well optimized. The com-

putation time of Decomp is measured as the total time spent on schedule and merge.

The time spent on the schedule phase is the maximum time spent on calculating each

SDM. The time spent on merges in different levels is the maximum time spent on

each major-region, and the time for the whole merge phase is the total time spent on

merges in each level.

Figure 6.4 shows the computation time for Urand traffic matrices in size of up to

600×600. We observe that Decomp takes much less computation time than Edmond

and TMS. 16-way Decomp is 28000× faster than TMS and 170× faster than Edmond
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Figure 6.4 : Computation time for the dense Urand pattern under different algorithms.
Note that the y-axes have very different scales, and Decomp is orders of magnitude
more computationally efficient. Parallelization allows Decomp to scale well to large
network sizes. While not shown in this figure, Decomp is also much more efficient for
sparse traffic (see Section 6.2.2).

when the topology scales to 600 racks. Under the sparse Stride pattern (graphs

omitted due to space constraint), the computation time of Decomp and TMS drops

significantly because a sparse matrix can be easily decomposed into a small number of

assignments, reducing the computation complexity of the Birkhoff decomposition [15]

step in TMS and the schedule/merge in Decomp. However, Decomp is still much

faster. Under Stride on average across the different network sizes, 4-way and 16-way

Decomp speeds up computation by 9× and 42× respectively compared with TMS,

while 4-way and 16-way Decomp are 92× and 426× faster than Edmond respectively.

A valid algorithm should adapt quickly to different traffic. For dense traffic, it will
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take thousands of seconds for TMS to respond in a data center with 600 racks, which

is unacceptable. In other words, if the traffic in data centers experiences dramatic

change in a short time and the scheduling algorithm is required to respond and adapt

within, say 0.05 second, then the topological size could not go beyond 48 racks with

TMS, or 132 racks with Edmond. In contrast, Decomp can leverage modern multi-core

processors. Under the same responsiveness requirement, 4-way Decomp can support

up to 312 racks and 16-way Decomp can support up to 552 racks.

6.2.3 Decomp generates far fewer slots than TMS

Unlike Edmond which generates only one circuit assignment at a time, Decomp and

TMS schedule multiple circuit assignments or slots after each run. Having a larger

number of slots per scheduling cycle leads to lower efficiency because more time is

wasted on reconfiguration circuits. Figure 6.5 shows the number of slots, or circuit

assignments, generated by Decomp and TMS for Urand traffic matrices in size of

up to 600 × 600. We find that the number of slots generated by Decomp is O(N)

for N racks, much less than O(N2) of TMS. Under Stride, the number of slot drops

compared with Urand both for Decomp and TMS because sparse matrix can be easily

decomposed into less assignments, but still Decomp generates at least 35% fewer slots

than TMS on average across the different network sizes. While pruning out small slots

might seem a plausible approach to improve utilization for TMS, however, doing so

many inadvertently harm small flows.
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Figure 6.5 : Number of slots for the Urand pattern under Decomp and TMS. Decomp
generates two orders of magnitude fewer scheduling slots, leading to much lower
circuit switching overhead. Recall that switching an optical circuit takes up to tens
of milliseconds.

6.2.4 TMS makes inefficient scheduling decisions for Isolated under com-

bined effect of computation and reconfiguration overhead

TMS is studied only with dense traffic in previous works [6, 4, 5]. Instead we subject

TMS to sparse and skewed matrices in the Isolated pattern. The Sinkhorn algo-

rithm [22], a building block of TMS, takes in matrices with strictly positive elements.

TMS does not work when it is given a matrix with zero entries. A work-around so-

lution is to substitute all zeros with a small quantity σ before feeding the matrix to

Sinkhorn. In this way, the σ entries can be scaled to fit into a doubly stochastic ma-

trix. Otherwise, the zeros persist all the way through the iterative scaling of columns

and rows in Sinkhorn, preventing the algorithm from converging.

However, the substitutions will also bring in distortion of the traffic demand and

long computation time for TMS. Let’s consider a simple example such as the Isolated
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pattern. Ideally Sinkhorn will converge into a permutation matrix for Isolated, with

entries of one covering the original traffic demand. But convergence to a strictly dou-

bly stochastic matrix is time consuming and a more common practice is to terminate

Sinkhorn when the error is considered tolerable. Nevertheless, it still takes a long

time to scale rows and columns of substituted σ to below the error tolerance. Be-

sides, by allowing error tolerance, Sinkorn leaves a lot of small entries in the resulting

doubly stochastic matrix, but most of the links corresponding to the small entries

have no traffic demand at all. When given this doubly stochastic matrix with error,

the Birkhoff decomposition step in TMS generates a lot of circuit assignments cor-

responding to the non-existing demand. Although the distorted assignments tend to

have small time slot durations, setting up these unnecessary circuits is a large waste

given that unnecessary optical circuit reconfigurations waste network resources. Be-

sides, Birkhoff takes long time to generate these assignments.

The authors in [4] suggest pruning out circuit assignments with small time share

after Birkhoff by scheduling only a few longest slots. This approach will introduce a

predefined threshold to decide which slots are to be taken away. But short slots are

not necessarily a waste, but they might just represent traffic with small demand. A

predefined threshold does not distinguish slots generated due to distortion or small

demand.

The long execution time under Isolated implies that TMS cannot respond to traffic

change quickly. One can try to enforce a short scheduling cycle with the risk that

the last slot in current cycle ends before computation for next cycle finishes. To

accommodate long computation in short cycle, one can (fix 1) extend the last slot

until computation finishes. But the last slot might be a wasteful one generated due

to distortion. Instead, one can (fix 2) always schedule the last slot as the one with
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Figure 6.6 : Finish time of the Isolated traffic pattern under the 10 Gbps pure optical
architecture. TMS’s inefficiencies are rooted in its high computation and circuit
reconfiguration overhead.

the longest time share because it is more likely to represent valid demand. In this

case, the longest slot is extended disproportionally. There could be a lot of bandwidth

wasted if the traffic is cleared before computation ends, while traffic represented in

other slots is left unserved. To avoid this problem, one can also try to (fix 3) repeat

the assignments in the current cycle during computation.

In Figure 6.6, we show the traffic finishing time of different algorithms under the

Isolated pattern. In this experiment, two Isolated traffic patterns (I1 and I2) are

used. Every 8 ms, a new set of traffic that alternates between I1 and I2 is injected.

This aims to test how the algorithms adapt to traffic changes. Besides, computation

time and circuit switching time are accounted for in this experiment. As shown in

Figure 6.6, the traffic finishing time of TMS with fix 2 and 3 is 1.5× longer than

Decomp and Edmond. This is because whenever a new set of traffic arrives at time

t, TMS takes tens of milliseconds to compute a new set of circuit assignments and
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during this time, traffic is being served by inefficient assignments computed based

on the traffic volumes prior to time t. In addition to this slow adaptation problem,

TMS with fix 1 is even worse because it extends wasteful slots during computation,

resulting in 2.5× longer traffic finishing time than Decomp and Edmond.
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Chapter 7

Conclusion

We make two contributions in this thesis. First, we explore the challenges of circuit

scheduling for next-generation optical data centers in three dimensions, i.e. handle

hybrid and pure architectures, robustness under sparse and dense traffic patterns,

and scalability. As a result, the weaknesses of the existing optical data center circuit

scheduling algorithms are exposed. Secondly, we propose Decomp, which provides a

framework that can be customized with different circuit selection policies and incorpo-

rates partitioning, randomization, and parallelization approaches that are not found

in existing algorithms, and we show that it significantly outperforms the existing

algorithms along all three dimensions.
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