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ABSTRACT

Nonnormality in Lyapunov Equations

by

Jonathan Baker

The singular values of the solution to a Lyapunov equation determine the po-

tential accuracy of the low-rank approximations constructed by iterative methods.

Low-rank solutions are more accurate if most of the singular values are small, so

a-priori bounds that describe coe�cient matrix properties that correspond to rapid

singular value decay are valuable. Previous bounds take similar forms, all of which

weaken (quadratically) as the coe�cient matrix departs from normality. Such bounds

suggest that the farther from normal the coe�cient matrix is, the slower the singular

values of the solution will decay. This predicted slowing of decay is manifest in the

ADI algorithm for solving Lyapunov equations, which converges more slowly when the

coe�cient is far from normal. However, simple examples typically exhibit an eventual

acceleration of decay if the coe�cient departs su�ciently from normality. This thesis

shows that the decay acceleration principle is universal: decay always improves as

departure from normality increases beyond a given threshold, specifically, as the nu-

merical range of the coe�cient matrix extends farther into the right half-plane. The

concluding chapter gives examples showing that similar behavior can occur for general

Sylvester equations, though the right-hand side plays a more important role.
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Chapter 1

Introduction

Many physical phenomena can be modelled by linear time-invariant (LTI) control

systems, which can be expressed in the state space control form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t).
(1.1)

Here x(t) 2 Rn is the system state, u(t) 2 Rp is the control input vector, and y(t) 2 Rq

is the output at time t. Single input, single output (SISO) systems can be represented

in this form with p = q = 1, u and y scalar-valued functions, and B and C column and

row vectors. Controlling the system (1.1) consists of choosing u so that the solution

x and input u satisfy some condition, such as driving x to a desired end state with

minimal energy input kuk
L2 .

The system (1.1) is said to be (BIBO) stable if y(t) is bounded for all choices of

bounded u (bounded input, bounded output). The system is BIBO stable if A is

stable, i.e., the eigenvalues of A have strictly negative real parts, �(A) ⇢ C�. The

system (1.1) or the pair (A,B) is said to be (state) controllable if for every pair of

states (x
0

, x
1

) and time interval [0, T ] there is a choice of control function u such

that x(T ) = x
1

when control u is applied starting at x(0) = x
0

. This condition is

equivalent to the controllability matrix [B AB A2B · · · An�1B] having full

row rank [1, Section 4.2.1].

Simulation (solving the system to determine x for a given u) and controller design

(choosing u to satisfy the conditions of interest) are computationally expensive for
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large systems, such as those that come from spatially discretized di↵erential equations.

Model reduction methods construct systems with the same form as (1.1) such that

the output of the reduced system approximates the output of the original system

accurately, but with a much lower-dimensional state space.

“Balanced truncation” is an important family of methods of model reduction that

relies on computing a pair of matrices called the system Gramians. The (infinite

time) controllability (or reachability) Gramian is the matrix

P =

Z 1

0

eAtBB⇤eA
⇤
tdt, (1.2)

which also solves the continuous time Lyapunov equation

AP + PA⇤ = �BB⇤. (1.3)

Similarly, the observability Gramian of (1.1) is

Q =

Z 1

0

eA
⇤
tC⇤CeAtdt, (1.4)

which satisfies

QA+A⇤Q = �C⇤C. (1.5)

The Lyapunov equation in the form (1.3) is of primary interest for this work, but it

will be useful to lay out a few properties of the more general case,

AX+XA⇤ = G. (1.6)

In (1.6), if A is stable, then the solution X exists and is unique. By adding the

assumption that G is Hermitian and negative semidefinite, X is guaranteed to be

Hermitian and positive semidefinite. In the Gramian Lyapunov equation (1.3), if A

is stable, and (A,B) is controllable, then the solution is (strictly) positive definite.
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From here on, it is assumed that A is stable and (A,B) is controllable because of

these useful results and because this is the most important case in control theory

applications.

In their simplest form, balanced truncation methods need to compute n ⇥ n

Gramian matrices as a first step. However, P and Q are typically dense, even if

A, B, and C are sparse. For large n, computing or just storing such n⇥n dense ma-

trices may be impossible. Fortunately, Gramians can often be accurately represented

by a low rank factor (say P ⇡ ZZ⇤, where Z is n ⇥ k with k ⌧ n). When balanced

truncation is performed using an approximate factored Gramian (ZZ⇤ in place of P),

the result is “approximate balanced truncation.” The singular values of P and Q
determine how closely they may be approximated by such factorizations. Specifically,

min
Z2Cn⇥k

kZZ⇤ � Pk
2

kPk
2

= &
k+1

(P),

where &
k

(P) is the kth largest singular value of P . Thus, estimating the computa-

tional complexity of approximate balanced truncation requires a-priori estimates of

the singular values of the system Gramians.

A secondary interest in the singular values of Gramians arises from the fact that

some systems are more reducible than others. The “Hankel singular values” of (1.1)

measure the error between the original and reduced systems. To be more precise,

the Hankel singular values �
1

� · · · � �
n

of (1.1) are the singular values of the

input-output map or “Hankel operator”

y(t) = H(u)(t) :=

Z

0

�1
CeA(t�⌧)Bu(⌧)d⌧. (1.7)

The Hankel singular values reveal the best possible accuracy of low-rank approxima-

tions by

min
rank(

ˆH)k

kĤ�Hk
L2

kHk
L2

= �
k+1

,
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see also [1, Thm. 7.9]. It happens that the Hankel singular values are also the square

roots of the singular values of the product of the system Gramians, PQ. If the

singular values of P , Q, or both are small, then the Hankel singular values may be

small (depending on the alignment of the eigenspaces of P and Q), and the system

may be reducible. Even in the worst case, the Hankel singular values are bounded by

�
k

=
p

&
k

(PQ)  min
n

p

kPk
2

&
k

(Q),
p

kQk
2

&
k

(P)
o

.

Most of the rest of this work will not need any properties of the system Gramians

P , Q other than satisfying (1.3), so the generic solution variable X will be used.

A matrix G will denote a general right-hand side as in (1.6), while B will be used

when only the factored case (1.3) is being considered. The singular values of a matrix

M will be written as &
1

(M) � · · · � &
n

(M). If the eigenvalues of M are real (in

particular, if M is Hermitian), its eigenvalues will be written �
1

(M) � · · · � �
n

(M).

Because the singular values of X appear so often, they will be written s
k

:= &
k

(X).

The expressions “X exhibits fast singular value decay” and “the singular values

of X decay quickly” mean most of the singular values of X are small compared to

s
1

= kXk. Fast singular value decay is necessary for fast convergence of low-rank

algorithms, and bounds for singular values (or “decay bounds”) are estimates of the

best possible convergence rate. Section 1.2 describes several methods of obtaining

upper bounds on the singular values of X, but it will be shown that these bounds can

be very pessimistic, particularly whenA is far from normal. Developing an alternative

bound that exploits properties of nonnormal matrices is the main goal of this work.

A few authors have previously noted that singular value decay bounds tend to be

especially pessimistic when A is not normal, e.g. [20, Sec. 4.1]. Sabino is one of the

few authors to provide more than experimental results in this area [19], but Lyapunov

equations in general have received considerable attention. The rest of this chapter
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explains this work’s relationship to some of the most important ideas in the Lyapunov

equation literature. The first section of this chapter is an introduction to techniques

for solving (1.6), but it is not a complete summary of the field; the overviews of [19,

20] are more exhaustive. The second section discusses earlier theoretical bounds—

as functions of A and G—for the singular values of the solution X. This chapter

concludes with a summary of Sabino’s investigation of the role of nonnormality.

1.1 Solution Methods

For very small n, it may be reasonable to solve (1.6) via the equivalent Kronecker

product form

(I⌦A+A⌦ I)vec(X) = vec(G), (1.8)

where vec stacks the columns of a matrix into a single vector: vec([ y
1

y
2

· · · y
n

]) =

[ yT
1

yT
2

· · · yT
n

]T . However, (1.8) is a system of n2 equations. For large n, this is

much too di�cult to solve with general purpose linear solvers, notwithstanding the

system’s sparsity.

The Bartels–Stewart algorithm [3] transforms (1.6) by Schur factorization to a

basis in which A is triangular. It is a simple matter to back-solve the transformed

equation column-wise and then return the answer to the original basis. Unfortunately,

because columns of the transformed solution are found independently from each other,

this method cannot promise a numerically symmetric solution. The variant algorithm

derived by Hammarling [11] has the advantage of enforcing both the symmetry and

positive definiteness of X by constructing it from its Cholesky factorization. However,

this method still requires the Schur factorization of A, and even this step may be

prohibitively expensive for large problems. For large problems, even explicit storage

of the dense n ⇥ n solution (or its upper triangular Cholesky factor) is not feasible.
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These are problems common among direct methods, which have a fixed, size-based

cost.

Alternatively, iterative methods o↵er sequences of increasingly accurate solutions,

and the cost may be controlled based on required accuracy and the user’s resources.

The iterative method Smith provided in [21] is the basis for many other algorithms.

Given a scalar parameter q 2 C with Re(q) < 0, Smith’s method computes a portion

of an infinite series expression for X. Let

A
q

:= (A+ qI)�1(A� qI) (1.9a)

and G
q

:= 2Re(q)(A+ qI)�1G(A⇤ + qI)�1. (1.9b)

Then

X =
1
X

k=0

(A
q

)kG
q

((A
q

)k)⇤. (1.10)

Smith shows that (1.10) must converge, so truncating (1.10) provides a viable ap-

proximation to X. Successive approximate solutions can then be expressed with the

simple recurrence

X
k

= A
q

X
k�1

A⇤
q

+G
q

. (1.11)

(To speed up convergence, Smith also suggested an iterative matrix-squaring proce-

dure that is less important for this discussion.)

The more versatile alternating direction implicit (ADI) iteration, first applied

to (1.6) by Wachspress in [25], can be considered a generalization of Smith’s method

where a di↵erent parameter q
k

, Re (q
k

) < 0, may be chosen at each step. This

produces a modified recurrence

X
k

= A⇤
qk
X

k�1

A
qk
+G

qk
. (1.12)

In the forms just given, (1.11) and (1.12) are impractical because they are dense

updates. However, Penzl in [16] showed that the Smith and ADI methods can be
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modified to produce a sequence of approximate solutions of increasing rank,

X
k

= Z
k

Z⇤
k

, (1.13)

where Z
k

is a n ⇥ kp matrix (G = �BB⇤ has rank p) with the recursive formula

comparable to (1.12):

Z
1

=
p

�2Re (q
1

)(A+ q
1

I)�1B

Z
k

=



(A� q
k

I)(A+ q
k

I)Z
k�1

p�2Re (q
k

)(A+ q
k

I)�1B

�

.
(1.14)

This is an attractive method since it does not require storing and updating a large X

explicitly.

The accuracy of such low-rank approximations is related to the relative sizes of

the singular values of X. When most of the singular values of X are relatively small,

an accurate low-rank approximation exists. The Eckart-Young theorem shows that

min
rankYkp

kX�Yk
2

kXk
2

=
s
kp+1

s
1

. (1.15)

Specifically, if the singular value decomposition of X is

X = U⌃V⇤ =


u
1

· · · u
n

�

2

6

6

6

6

4

s
1

. . .

s
n

3

7

7

7

7

5



v
1

· · · v
n

�⇤
(1.16)

with U, V unitary, then the optimal Y in (1.15) is

Y =



u
1

· · · u
kp

�

2

6

6

6

6

4

s
1

. . .

s
kp

3

7

7

7

7

5



v
1

· · · v
kp

�⇤
. (1.17)

In the present context, X is symmetric, so U = V.

The goal of this work is finding a-priori bounds for the singular value decay (1.15).

Such bounds give insight into the best performance that is achieveable by any iterative

method that constructs low-rank approximations to X.
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1.2 Singular Value Decay Bounds

This section highlights the methods of other authors for bounding s
k

. Existing singu-

lar value decay bounds depend monotonically on the departure of A from normality,

allowing slower decay the farther A is from normal.

One of the most interesting results about decay bounds in general comes from

Penzl [17] and is derived di↵erently by Sabino [19]. They found that the spectra of

A and X are independent, in that any spectrum of A can correspond to any decay

of the singular values of X. Consequently no bound for the singular values of X can

simply be a function of the spectrum of A alone.

The bounds in this section and the new bound in Chapter 3 depend on the de-

parture of A from normality in various ways, but the latter has the advantage of not

depending directly on �(A), the spectrum of A. So to make a fair comparison, �(A)

must remain constant when comparing these bounds for varying A and X values.

1.2.1 A Diagonalization Bound

Most of the existing singular value decay bounds are derived from the low-rank ADI

method that constructs an approximate solution X
k

= Z
k

Z⇤
k

with rank at most kp.

These iterates satisfy

X�X
k

= �
k

(A)X�
k

(A⇤) (1.18)

where

�
k

(z) :=
k

Y

j=1

q
j

� z

q
j

+ z
, (1.19)
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and {q
k

} are the shift parameters from (1.12). For any particular choice of {q
k

},

s
kp+1

s
1

= min
rankYkp

kX�Yk
2

kXk
2

(1.20a)

 kX�X
k

k
2

kXk
2

(1.20b)

 k�
k

(A)kk�
k

(A⇤)k (1.20c)

= k�
k

(A)k2, (1.20d)

so bounding k�
k

(A)k is a useful way of bounding both ADI approximation error and

singular value decay.

For diagonalizable A = V⇤V�1, Sorensen and Zhou [22] first found that

s
kp+1

s
1

 kX�X
k

k
2

kXk
2

 k�
k

(A)k2  (V)2 max
z2�(A)

|�
k

(z)|2 (1.21)

where (V) = kVk
2

kV�1k
2

is the condition number of V. The bound (1.21) gener-

alizes Penzl’s result in [17], which applied only to the Hermitian case A = A⇤ (for

which (V) = 1).

Because (V) is a measurement of the departure of A from normality, the above

bound suggests monotonically slower singular value decay for X as A departs from

normality.

1.2.2 A Numerical Range Bound

Now consider another method of bounding k�
k

(A)k, which also bounds the singular

values of X and the convergence rate of ADI via (1.20). For some choices of {q
k

}, it
is possible to use Crouzeix’s bound for analytic functions [7] on the numerical range

of A (or field of values),

W (A) :=

⇢

x⇤Ax

x⇤x
: x 2 Cn

�

. (1.22)
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If the shifts {q
k

} lie outsideW (�A) (in particular, ifW (A) ⇢ C�), then �
k

is analytic

on W (A) and

k�
k

(A)k  � sup
z2W (A)

|�
k

(z)| (1.23)

where � is defined as the smallest constant such that (1.23) holds for all A and

appropriate {q
k

}. The exact value of � is unknown, but Crouzeix proved that

2  �  11.08.

In particular, no example has been found for which (1.23) does not hold with � = 2.

Departure from normality typically causes W (A) to expand, so (1.23) is another

bound that is weakened by nonnormality. In fact, if A is su�ciently far from normal,

W (A) may extend into the open right half-plane C
+

(even though �(A) ⇢ C�). This

problematic case W (A) * C� can also be characterized by !(A) � 0, where !(A) is

the numerical abscissa of A or the rightmost extend of W (A):

!(A) := maxRe (W (A)). (1.24)

Note that the numerical abscissa is also the largest eigenvalue of the Hermitian part

of A, H(A) := (A+A⇤)/2. That is,

!(A) = �
1

(H(A)). (1.25)

Remark 1.1. For any z 2 C
+

and q 2 C�, it follows that |q � z|/|q + z| > 1. Thus,

if !(A) > 0, then there exists a point z 2 W (A) \ C
+

that makes each term in

the product (1.19) greater than 1 for any choice of shifts, so sup
z2W (A)

|�
k

(z)| > 1.

Consequently, when !(A) > 0, (1.23) provides only the vacuous bound on the singular

values of X and the convergence of ADI

s
kp+1

s
1

 kX�X
k

k
2

kXk
2

 1 < k�
k

(A)k2 
 

� sup
z2W (A)

|�
k

(z)|
!

2

. (1.26)
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Because of the assumption �(A) ⇢ C�, the diagonalization bound (1.21) will not

become vacuous via the maximization term, although it can be greater than 1 for

su�ciently large (V).

1.2.3 A Pseudospectral Bound

Sabino [19] derived another bound for k�
k

(A)k based on the pseudospectra of A.

The "-pseudospectrum of A is defined as

�
"

(A) :=
�

z 2 C : z 2 �(A) or
�

�(A� zI)�1

�

� > 1/"
 

. (1.27)

If �
"

is the boundary of �
"

(A), then

�
k

(A) =
1

2⇡i

Z

�"

�
k

(z)(A� zI)�1dz (1.28)

and

k�
k

(A)k  |�
"

|
2⇡"

sup
z2�"(A)

|�
k

(z)|, (1.29)

where |�
"

| denotes the contour length of �
"

. Varying " > 0 in (1.29) produces a

continuum of bounds, and the infimum of (1.29) over all " is also a valid bound on

k�
k

(A)k. As A departs from normality, the set �
"

(A) typically grows, as does the

scalar |�
"

|/(2⇡") � 1 [23, Ch. 48], and (1.29) also allows slow singular value decay

when A is far from normal.

As observed in Remark 1.1, if A is so far from normal that �
"

(A) intersects

C
+

, then sup
z2�"(A)

|�
k

(z)| > 1, and (1.29) does not give a useful bound on ADI

convergence or the singular values of X. However, pseudospectra are more flexible

than the parameterless numerical range; for any fixed stable A, one can choose " > 0

small enough that �
"

(A) ⇢ C�.
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1.2.4 Choosing Shift Parameters

The bounds in the previous sections come from analyzing (1.12), and the strength of

such bounds depends heavily on the choice of shift parameters {q
k

}. Although the

iteration (1.12) will converge for any choice of shifts {q
k

} ⇢ C�, the convergence may

be very slow if the shifts are not chosen carefully.

The previous section explained that the convergence of ADI is bounded below by

the singular values of X and above by k�
k

(A)k,

s
kp+1

s
1

 kX�X
k

k
2

kXk
2

 k�
k

(A)k2, (1.30)

so if one can find a small number of shifts that make k�
k

(A)k small, then convergence

will be fast. Rather than attempting to minimize k�
k

(A)k itself, one may attempt

to minimize one of the bounds from the previous section: (1.21), (1.23), and (1.29),

which are collected here

k�
k

(A)k  (V) max
z2�(A)

|�
k

(z)| (1.31a)

k�
k

(A)k  � sup
z2W (A)

|�
k

(z)| (1.31b)

k�
k

(A)k  |�
"

|
2⇡"

sup
z2�"(A)

|�
k

(z)|. (1.31c)

These are several ways to bound k�
k

(A)k with the maximum value of |�
k

| over sets of
scalars, so one may find approximately optimal shifts by solving the “ADI minimax

problem,”

{q̂
k

} = argmin
q1,...,qk

max
z2⌦

k

Y

j=1

�

�

�

�

q
j

� z

q
j

+ z

�

�

�

�

, (1.32)

where ⌦ is �(A), W (A), or �
"

(A). In fact, one might reasonably expect to find good

shifts by solving (1.32) with ⌦ as any set containing the spectrum of A. The exact

solution to (1.32) is known when ⌦ is a sublevel set of certain rational functions [26],
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and in other cases, high quality shifts can be obtained heuristically [16]. However,

even after (at least approximately) solving (1.32) for {q̂
k

},combining (1.31) with (1.30)

only gives a meaningful bound on ADI convergence if max
z2⌦ |�

k

(z)| is small enough

that (1.31) can be used to show k�
k

(A)k < 1.

Rather than further exploring shift parameters and the upper bound on conver-

gence in (1.30), the rest of this work concentrates on the lower bound, i.e., the fastest

possible convergence rate as revealed by the singular values of X.

1.3 Nonnormality and Decay

Sorensen and Zhou [22] observed that the bounds in Section 1.2 are pessimistic,

particularly when A is far from normal. Because these bounds for the singular values

of X are based on specific low-rank approximations (the ADI iterates X
k

), pessimistic

bounds correspond to approximations that are far from optimal. In other words, when

A is far from normal, ADI may converge slowly compared to the optimal rate s
kp+1

/s
1

.

For the special case below, Sabino showed that increasing the departure form

normality of A slows the singular value decay of X up to a point, beyond which the

singular value decay starts to accelerate [19]. The core of this thesis in Chapter 3

shows that this eventual decay acceleration occurs generally. Part of these results

were published separately [2].
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The solution X can be found algebraically for Lyapunov equations of the form

A :=

2

6

4

�1 ↵

0 �1

3

7

5

(1.33a)

G = �BTB := �[t 1]T [t 1] =

2

6

4

�t2 �t

�t �1

3

7

5

(1.33b)

X =
1

4

2

6

4

2t2 + 2↵t+ ↵2 ↵ + 2t

↵ + 2t 2

3

7

5

. (1.33c)

Section 2.1 will introduce several measures of departure from nonnormality, and these

show that A is farther from normal as ↵ increases.

Rather than choosing a single B matrix for this problem, it will be illustrative

to use (for each ↵) the B that gives the slowest singular value decay. The singular

values of (1.33c) can be computed algebraically, and it is easy to show that singular

value decay is slowest for the right-hand side with t = �↵/2, which corresponds to

max
t

s
2

s
1

=

8

>

<

>

:

↵2/4, if 0  ↵  2;

4/↵2, if ↵ � 2.
(1.34)

In other words, for fixed ↵, the singular value decay of the solution (1.33c) is at

most (1.34) for any right-hand side. Because (1.34) uses the worst-case right-hand

side, this is the best possible bound for the singular value decay of X as a function

of ↵ (or A). This provides a standard with which to evaluate the bounds that are

not specific to this example. As bounds for s
2

/s
1

, (1.31b) and (1.31c) are tight to the

extent that they match (1.34).

As ↵ increases from 0, A departs from normality and the best bound (1.34)

increases until ↵ = 2 but then decreases. This non-monotone behavior of the ideal

bound could not have been predicted by examining the previous theoretical decay

bounds, which only grow as ↵ increases as shown in Figure 1.1.
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" = 10
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s2/s1

↵↵

Figure 1.1 : The Jordan block (1.33a) is not diagonalizable, so (1.31a) does not apply,
but (1.31b) and (1.31c) are not di�cult to calculate. Both W (A) and �

"

(A) are discs
centered at �1, and a single optimal ADI shift was chosen as in [26]. The numerical
range bound (1.31b) (left) assumes � = 2. Remark 1.1 showed that (1.31b) cannot
be helpful (i.e., less than 1) when W (A) intersects C

+

, which occurs for ↵ � 2. The
pseudospectral bound (1.31c) (right) is very descriptive of s

2

/s
1

for ↵  2, but it
fails to match the acceleration of decay that occurs for larger ↵, even though �

"

(A)
remains within the left half-plane for the range of ↵ shown.

Other than the recent paper [2], the literature does not appear to contain more

thorough investigations of the e↵ect of the nonnormality of A on singular value decay

of X.



16

Chapter 2

Motivating Observations

Although Lyapunov equations in general have been intensely researched, the partic-

ular issue of nonnormal coe�cients is largely unexplored. The example of Sabino

shown in Section 1.3 illustrates that the bounds in Section 1.2 can have misleading

qualitative behavior. This chapter corroborates this observation with further exam-

ples, which also provide some evidence that the numerical abscissa of the coe�cient

A could be used to predict the decay acceleration.

2.1 Measuring Nonnormality

Fundamentally, normality is a binary property: A is normal if it is unitarily di-

agonalizable (i.e., A = V⇤V⇤ for some unitary V and diagonal ⇤); otherwise, A

is nonnormal. But for a specific application, some nonnormal matrices will behave

more like normal matrices than others. In these cases, it may be useful to compare

the “level” of nonnormality of matrices. The property of normal matrices that is

important to an application may determine how nonnormality should be measured.

Trefethen and Embree discuss several possibly useful scalar measures of nonnormality

in [23, Ch. 48]. Seventy equivalent conditions for normality are listed in [10], many of

which can be said to be more closely satisfied for some matrices than others, thereby

providing many potential measures of nonnormality. A few such measures are listed

below. For matrices with the same eigenvalues, the measures in this section (and
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others) are shown to be essentially equivalent in [8]. Therefore it is not ambiguous to

speak of one matrix having greater “departure from normality” than another without

referring to a specific measure.

• Distance from normality: Perhaps the most obvious way to measure non-

normality is the minimum distance to a normal matrix:

inf
M normal

kA�Mk
F

. (2.1)

This unassuming quantity was first shown to be obtainable in [18] and is sur-

prisingly expensive to compute. While it has interesting theoretical qualities,

the distance to normality does not arise naturally in applications and will not

be used in this work.

• Distance from commutativity: Normality of A is equivalent to (and often

defined as) commutativity with A⇤, that is AA⇤ = A⇤A. The norm of the

di↵erence is therefore an obvious measure of nonnormality:

kA⇤A�AA⇤k. (2.2)

However, the commutativity of a normal matrix with its adjoint is not typically

the most important consequence of nonnormality. Rather, the relevant prop-

erties of a normal matrix are often seen by considering that it has a complete

set of eigenspaces that are orthogonal to each other. The next two measures of

nonnormality relate to this fact.

• Condition number of eigenvector matrix: A matrix is normal if and only

if it is unitarily diagonalizable (i.e., it is not defective and its eigenspaces are

orthogonal). Thus, in the case that A is diagonalizable, A = V⇤V�1, A is
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normal if and only if V can be taken to be a unitary matrix. So the degree

of nonnormality of A can be measured by the condition number (or departure

from orthogonality) of V

(V) := kVk
2

kV�1k
2

� 1, (2.3)

with (V) = 1 if and only if V is unitary and A is normal.

Although V is not unique, it seems reasonable to choose the eigenvector matrix

with the lowest condition number, which corresponds to choosing an orthogonal

basis for each eigenspace of A.

The scale of the columns of V is also arbitrary since VD is also an eigenvector

matrix for any nonsingular diagonal matrix D. It is not true that (V) is

always minimized when the columns of V have equal norm [24], but the ratio

is no more than
p
n. In other words

min
D diagonal

([v
1

· · · v
n

]D) � 1p
n


⇣

[v
1

· · · v
n

]D̃
⌘

(2.4)

with

D̃ =

2

6

6

6

6

4

kv
1

k
. . .

kv
n

k

3

7

7

7

7

5

�1

.

• Henrici’s ⌫-departure from normality: Henrici suggests another measure

of nonnormality based on the degree to which a matrix fails to have a full set

of orthogonal eigenspaces [12] . Specifically, take the norm of the o↵-diagonal
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portion of a unitary triangularization (Schur factorization)

�(A) := min{kTk :A = V(⇤+T)V⇤,

V unitary, ⇤ diagonal, (2.5)

T strictly upper triangular}.

If the Frobenius norm is used in (2.5), then �(A) is independent of the choice

of factorization, and

kAk2
F

= kV(⇤+T)V⇤k2
F

= k⇤k2
F

+ kTk2
F

(2.6)

�
F

(A)2 := kTk2
F

= kAk2
F

� k⇤k2
F

(2.7)

�
F

(A) =

v

u

u

tkAk2
F

�
n

X

k=1

|�
k

|2 (2.8)

=

v

u

u

t

n

X

k=1

(&2
k

(A)� |�
k

|2). (2.9)

Since the scale of a matrix does not a↵ect its eigenspaces, one could also consider

the scale-invariant measure of departure from normality �
F

(A)/kAk for any

convenient norm.

Henrici also gave a bound for the numerical range that grows with nonnormality

as measured by �
F

W (A) ✓ Co(�(A)) + B

 

�
F

(A)

r

1� 1/n

2

!

(2.10)

where Co(·) denotes the convex hull of a set and B(r) := {z 2 C : |z|  r}. In
particular, the numerical abscissa satisfies

!(A)  maxRe(�(A)) +�
F

(A)

r

1� 1/n

2
. (2.11)

After dividing both sides by kAk, (2.11) gives one way of considering how the

growth of !(A)/kAk requires increasing departure from normality.
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• Real eigenvalue displacement: Let the eigenvalues of the Hermitian part

H(A) := (A+A⇤)/2

be !
1

� · · · � !
n

and let the eigenvalues of A be �
1

, . . . ,�
n

in any order. Define

⌦(A) := min
p permutes {1,...,n}

v

u

u

t

n

X

j=1

(Re(�
j

)� !
p(j)

)2. (2.12)

It is shown in [10] that A is normal if and only if ⌦(A) = 0. Equivalently, one

could use the scale-invariant version ⌦(A)/kAk. Notice that greater departure

from normality is indicated—not only by the growth of !
1

/kAk as discussed in

Section 1.2.2—but by the growth of !
k

/kAk for any k.

2.2 Lack of Singular Value Decay

To reveal the properties of A that determine the level of singular value decay of X,

consider the extreme case where X has no singular value decay at all, i.e., s
k

= ⇠ for

all k. The fact that X is Hermitian requires X = ⇠I, and (1.3) becomes

A+A⇤ = �1

⇠
BB⇤. (2.13)

Thus the Hermitian part (A+A⇤)/2 is negative semidefinite and !(A)  0. (Conse-

quently, for any other A such that !(A) > 0, X must exhibit at least some singular

value decay.) Furthermore, if p < n as in most control applications, then BB⇤ is

singular, so in the special case of (2.13),

0 2 �(�BB⇤) = �(H(A))

and !(A) = 0. So, when H(A) is a scalar multiple of BB⇤, the slowest singular value

decay occurs exactly when !(A) = 0.
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This result seems to recommend investigating the role of !(A), but it does not

directly apply to any of the examples that follow since H(A) will not be required to

be an exact multiple of BB⇤. Even so, it will be seen that in every case, decay is

slowest at a point when !(A) � 0. It is not known whether singular value decay can

accelerate while !(A) < 0.

2.3 Numerical Demonstrations

To isolate the e↵ect of nonnormality on the decay of s
k

, experiments need families of

related matrices that di↵er in normality but are otherwise similar. Throughout this

work, the chosen pencils of coe�cients A
↵

will have constant spectra because this is a

condition of the equivalence of measures of nonnormality explained at the beginning

of Section 2.1. The parameter ↵ will be suppressed when there is no confusion.

For a synthetic example, consider the Jordan block A = ↵S � I, where S is the

shift matrix

S =

2

6

6

6

6

6

6

6

4

0 1

0
. . .

. . . 1

0

3

7

7

7

7

7

7

7

5

. (2.14)

This is the same as the example in Section 1.3 but for general n. As ↵ increases, the

shift operator ↵S dominates and A departs from normality: �
F

(A) = (n� 1)↵.

Figure 2.1 shows the singular values of X for a range of ↵ values. As ↵ increases

(and A departs from normality), the singular values of X increase at first but then

decrease. The dashed line marks the point at which !(A) = 0 and the numerical range

W (A) first intersects the right half-plane. To the right of the dashed line, !(A) > 0

and the singular value decay of X accelerates. The coincidence of decay acceleration
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Figure 2.1 : For this example, A 2 R12⇥12 is a Jordan block and B 2 R12⇥1 is a
fixed vector with random entries i.i.d. ⇠ N(0, 1). The nonnormality of A has a
non-monotone relationship with the singular values of X. Specifically, the normalized
singular values of X begin to decrease after the numerical range of A crosses the
imaginary axis. The dashed line marks this threshold.

and the crossing of the numerical range into C
+

suggests that the sign-change of !(A)

might be used to predict decay acceleration.

In order to do the above study with matrices from an application, a method is

needed to generate a family or pencil of matrices based on the matrix of interest.

Henrici’s ⌫-departure (2.5) suggests such a method. Start with a Schur factorization

and rescale the o↵-diagonal portion of the triangular factor, as in

A = URU⇤ (2.15a)

R = ⇤+T (2.15b)

R
↵

= ⇤+ ↵T (2.15c)

where ⇤ and T are diagonal and strictly upper triangular. The parameter ↵ directly

controls the nonnormality of R
↵

as measured by (2.5). The original basis could be
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restored by forming A
↵

= UR
↵

U⇤, but since this orthogonal transformation does

not a↵ect the departure from normality or the spectrum of the Lyapunov solution X,

it is su�cient to use the family of Lyapunov equations

R
↵

X
↵

+X
↵

R⇤
↵

= �U⇤BB⇤U. (2.16)

Figure 2.2 was created by using the method (2.15) on data related to control of the

International Space Station available from SLICOT⇤. The system feedback matrix A

from the dataset was factored, and (2.16) was solved for various ↵. The singular value

decay of the solutions X
↵

did not accelerate significantly when using the right-hand

side �BB from the dataset. However, with a random B, the behavior of the singular

values of X
↵

is similar to that of the previous example shown in Figure 2.1, except

that the numerical range’s threshold does not so closely coincide with the accelerating

singular value decay. In this and other experiments drawn from applications, W (A)

crossed into the right half-plane at or below the level of nonnormality than was

required to speed up the singular value decay of X.

2.4 Symbolic Demonstration

This section develops a companion example to the one in Section 1.3, which confirms

that singular value decay acceleration occurs for a family of diagonalizable A. Using

diagonalizable A allows a comparison of actual decay to the bound (1.31a). The

right-hand side �BB will again be chosen to make decay as slow as possible. The

nonnormality of A, the sign of !(A), and the decay of singular values of X will then

be compared

⇤
Subroutine Library in Systems and Control Theory benchmark download page:

http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
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Figure 2.2 : For the original ISS problem (left), scaling up the o↵-diagonal part of
the Schur factor as in (2.15) does not cause definite singular value decay acceleration.
However, this is a highly structured, possibly exceptional equation. To remove any
e↵ect of the structure of the right-hand side of the problem, the same coe�cient
A 2 R270⇥270 may be paired with a random B 2 R270⇥3 with entries distributed i.i.d.
⇠ N(0, 1). For this setup (right), decay accelerates when �

F

(A) grows large. This
occurs after A departs from normality beyond the threshold !(A) > 0, although the
coincidence is not as striking as in Figure 2.1.

For fixed real r and M and parameters ↵ and t, consider

A =

2

6

4

r +M ↵M

�2M/↵ r �M

3

7

5

(2.17a)

B = [ t 1 ]T . (2.17b)

The eigenvalues ofA are �(A) = {r±iM}, soA is stable for any r < 0. By symmetry,

attention can be limited to the case ↵ > 0. For simplicity, the calculations below also

assume |r| > M � 0.

The solution to (1.3) is

X =

2

6

4

X
11

X
12

X
21

X
22

3

7

5

, (2.18)
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where

X
11

=
�2M2 + 2(M2 �Mr)↵t� (M2 �Mr + r2)↵2t2

2↵2r (M2 + r2)
(2.19a)

X
12

= X
21

=
�2M2 � 2Mr + 2(M2 � r2)↵t� (M2 �Mr)↵2t2

4↵r (M2 + r2)
(2.19b)

X
22

=
�2M2 � 2Mr � 2r2 + 2(M2 +Mr)↵t�M2↵2t2

4r (M2 + r2)
. (2.19c)

The singular value ratio of X is

s
2

s
1

=
tr (X)�p

tr (X)2 � 4 det(X)

tr (X) +
p

tr (X)2 � 4 det(X)
. (2.20)

Choosing a single B matrix for this problem would be arbitrary and provide limited

information. The behavior of this equation is better understood by choosing the B

that gives the slowest singular value decay. It can be verified that s
2

/s
1

achieves a

maximum value of

max
t

s
2

s
1

=
1

2

⇣

� �
p

�2 � 4
⌘

(2.21)

with

� :=
1

↵2M2

h

r(4 + 2↵2)
p

(4 + ↵4)(M2 + r2)

+ (4 + 2↵2 + ↵4)(M2 + 2r2)
i

when

t =
2M + ↵2M � 2r + ↵2r �p

(4 + ↵4)(M2 + r2)

↵3M � 2↵r
. (2.22)

So for fixed ↵, the singular value decay of X is no faster than (2.21) for any right-

hand side. Because (2.21) uses the worst-case right-hand side, this is the best possible

bound for the singular value decay of X as a function of ↵ (or A). So, (1.31a) is tight

as a bound for s
2

/s
1

to the extent that it matches (2.21).

Earlier examples suggested that the sign of the numerical abscissa ofAmay control

the rate of singular value decay of X. To illustrate that hypothesis for this example,
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it is useful to find the A that corresponds to the slowest decay. Basic calculus shows

that (2.21) is maximized when

↵ =

p
2

|M |
q

r2 ±
p
r4 �M4. (2.23)

Also, observe that the numerical abscissa of A is

!(A) = �
1

�

1

2

(A+A⇤)
�

= r + |M |
p

1/↵2 + ↵2/4, (2.24)

and substituting (2.24) into (2.23) gives !(A) = 0. In other words, the slowest

singular value decay precisely coincides with the numerical range crossing into the

right half-plane. This is exactly what occurred for the non-diagonalizable Jordan

block examples in Sections 1.3 and 2.3.

In order to calculate the diagonalization bound (1.31a), the nonnormality (V)

as in (2.3) can also be found in closed form. The eigenvalues of A are r ±Mi, and

choosing equally scaled eigenvectors gives

V =

2

6

4

1� i 1 + i

↵ ↵

3

7

5

(2.25)

(V) =
1

2↵

⇣

2 + ↵2 +
p
4 + ↵4

⌘

. (2.26)

As a function of ↵, (V) is convex and minimized at ↵ =
p
2, so A departs from

normality as ↵ departs from
p
2. The slowest singular value decay occurs at the

critical values (2.23), which lie on either side of
p
2. Therefore, moving A away

from normality (whether by increasing or decreasing ↵ away from
p
2) causes first

a slowing and then acceleration of worst-case decay. Figure 2.3 illustrates this by

plotting worst-case dacay (2.21) against a range of ↵ values. The figure also shows

how the bound (1.31a) (using �(A) as shifts) grows monotonically as ↵ departs from
p
2, which qualitatively describes the behavior of s

2

/s
1

only while !(A) < 0.
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Also note that, for smaller
�

�

r

M

�

�, the diagonalization bound (1.31a) becomes even

less tight. Using �(A) as shifts (q
1

= r + iM and q
2

= r � iM) gives

s
2

s
1

 (V)2 sup
z2�(A)

|�
2

(z)| = (V)2
�

�

�

�

1

(r/M)2 + 1

�

�

�

�

. (2.27)

From (2.26), the bound (2.27) is greater than 1—and therefore uninformative—for

all ↵ if
�

�

r

M

�

� <
p

2 + 2
p
2.

10
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Bound (1.31a)

!(A) > 0!(A) < 0!(A) > 0

p
2 ↵

Figure 2.3 : The matrix A in (2.17) demonstrates a weakness of the bound (1.31a)
(plot uses r = �5, M = 1). Decay is locally fastest at ↵ =

p
2 for which A is closest

to normal. Near this point, the bound (1.31a) matches the actual behavior of the
decay well. At first, decay slows as A departs from normality, i.e., as ↵ departs fromp
2, but when ↵ reaches the critical values in (2.23) such that !(A) = 0, decay begins

to accelerate. Instead of matching this behavior, (1.31a) continues to increase with
departure from normality because (V) grows without bound. The other bounds in
Section 1.2 also have factors that grow large for nonnormal A, as shown in Figure 1.1.
Contrast this with the bound (3.13) illustrated in Figure 3.1, which decreases as !(A)
grows.
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Chapter 3

Singular Value Decay and Hermitian Part
Eigenvalues

The numerical abscissa, !(A), was defined in (1.24). It is both the rightmost extent

of the numerical range in the complex plane and the rightmost eigenvalue of the

Hermitian part H(A) := (A+A⇤)/2. For small t, the numerical abscissa bounds the

transient growth of the linear system ẋ(t) = Ax(t) with x(0) = x
0

max
x02Cn

kx0k=1

d

dt
kx(t)k

�

�

�

t=0

= !(A),

see, for example, [23, Thm. 17.4]. Thus !(A) > 0 is a necessary condition for

solutions of ẋ(t) = Ax(t) to exhibit transient growth—an important consequence

of nonnormality in dynamical systems.

The subordinate eigenvalues of the Hermitian part reveal more information about

the departure of A from normality. If A is close to normal, then the Hermitian

part eigenvalues must be close to the spectrum of A as measured by ⌦(A) in (2.12).

Additionally, eigenvalues of the Hermitian part have recently been used to bound

the number of Ritz values of A that can fall in subregions of W (A) [6, Thm. 1.2].

Like !(A), interior eigenvalues of (A+A⇤)/2 can be positive even when A is stable.

This chapter uses these eigenvalues to provide a new bound on the singular values of

X that is fundamentally di↵erent from those in Section 1.2. The description of this

bound uses and expands on the results from [2].
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3.1 Hermitian Part Decay Bound

The following theorem bounds the eigenvalues of (A+A⇤)/2 in terms of the singular

values of X. The result can be read from two di↵erent perspectives:

• given the singular values of X, it bounds the level of nonnormality of those A

that can support such solutions (Theorem 3.1 and Corollary 3.4);

• given A, it bounds the decay of singular values of X and requires faster decay

as the departure of A from normality increases (Corollary 3.3).

Theorem 3.1. Let X 2 Cn⇥n solve the Lyapunov equation (1.3) with (A,B) control-

lable. Then for all 1  j  k  n

s
k+j�1

s
j

� 1� kBk2
2s

j

kAk <
!
k

kAk  1� s
n�k+j

s
j

, (3.1)

where !
k

denotes the kth rightmost eigenvalue of (A+A⇤)/2 and s
k

denotes the kth

singular value of X.

The right inequality of Theorem 3.1 can be interpreted as a statement about the

rate of singular value decay across limited ranges of singular values. From the right

inequality, each !
k

cannot be too far right if there is “stagnation,” or little decay,

across any n � k + 1 consecutive singular values of X, i.e., s
n�k+j

⇡ s
j

for some j.

Thus, the trailing eigenvalues of H(A) are controlled from the right by stagnation

across just a few singular values of X, while the dominant eigenvalues of H(A) are

limited on the right only when many singular values stagnate.

Proof. Write the solution as X = ⇠(I � E) for some ⇠ > 0 (to be chosen later) and

Hermitian E. Then since X solves the Lyapunov equation (1.3),

A+A⇤

2
= � 1

2⇠
BB⇤ +

AE+ EA⇤

2
. (3.2)
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Weyl’s inequalities for the eigenvalues of sums of Hermitian matrices (see, e.g.,

[14, Thm. 4.3.1]) imply

�
n

⇣

� 1

2⇠
BB⇤

⌘

+ �
k

⇣AE+ EA⇤

2

⌘

 �
k

⇣

� 1

2⇠
BB⇤ +

AE+ EA⇤

2

⌘

and

�
k

⇣

� 1

2⇠
BB⇤ +

AE+ EA⇤

2

⌘

 �
1

⇣

� 1

2⇠
BB⇤

⌘

+ �
k

⇣AE+ EA⇤

2

⌘

.

Since �BB⇤/(2⇠) is Hermitian negative semidefinite,

�
n

⇣

� 1

2⇠
BB⇤

⌘

= �kBk2
2⇠

, �
1

⇣

� 1

2⇠
BB⇤

⌘

 0.

Now by equation (3.2),

�
k

⇣

� 1

2⇠
BB⇤ +

AE+ EA⇤

2

⌘

= �
k

⇣A+A⇤

2

⌘

=: !
k

.

Together, these pieces imply

�kBk2
2⇠

+ �
k

⇣AE+ EA⇤

2

⌘

 !
k

 �
k

⇣AE+ EA⇤

2

⌘

. (3.3)

Note that (AE+EA⇤)/2 is the Hermitian part of AE, and the kth singular value of

a matrix bounds the kth eigenvalue of its Hermitian part [13, Cor. 3.1.5]. Applying

this bound to both AE and �AE gives

�&
n�k+1

(AE)  �
k

⇣AE+ EA⇤

2

⌘

 &
k

(AE).

(Remember that &
k

(·) is the kth largest singular value.) Using the singular value

inequality [13, Thm. 3.3.16(d)],

!
k

 �
k

⇣AE+ EA⇤

2

⌘

 &
k

(AE)  &
1

(A)&
k

(E) = kAk&
k

(E).

Applying the same results to the left-hand side of (3.3) gives

�kBk2
2⇠

�kAk&
n�k+1

(E)  �kBk2
2⇠

�&
n�k+1

(AE)  �kBk2
2⇠

+�
k

✓

AE+ EA⇤

2

◆

 !
k

,



31

which implies

� kBk2
2⇠kAk � &

n�k+1

(E)  !
k

kAk  &
k

(E). (3.4)

Because E⇤E = E2 = (I�X/⇠)2 is a polynomial in X, the eigenvalues of E2 are

that polynomial in the eigenvalues of X:

�((I�X/⇠)2) = {(1� s
j

/⇠)2 : j = 1, . . . , n}, (3.5)

and the singular values of E are |1� s
j

/⇠| = |�
j

(E)| for j = 1, . . . , n.

Notice that some eigenvalues of E may be negative. Specifically if ⇠ lies between

s
r

and s
r�1

s
n

 · · ·  s
r

 ⇠  s
r�1

 · · ·  s
1

,

then

�
n

 · · ·  �
r

 0  �
r�1

 · · ·  �
1

.

Consequently, the orders of the eigenvalues and singular values of E may not match

after taking the absolute value, i.e., &
k

(E) 6= |�
k

(E)| for some k. The new order

is determined by the distance from the eigenvalues to ⇠ because |1 � x/⇠| varies

monotonically with |x� ⇠|.
Now ⇠ should be chosen to make each side of (3.4) as sharp as possible. For any

1  j  k, consider the choice

⇠ =
s
j

+ s
n�k+j

2
. (3.6)

Singular values of X between s
n�k+j

and s
j

are closest to ⇠, so they correspond to
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the smallest singular values of E. Specifically

�

�

�

�

1� s
r

⇠

�

�

�

�


�

�

�

�

1� s
j

⇠

�

�

�

�

if s
j

 s
r

 s
n�k+j

, (3.7a)

�

�

�

�

1� s
r

⇠

�

�

�

�

=

�

�

�

�

1� s
j

⇠

�

�

�

�

if s
r

= s
j

or s
r

= s
n�k+j

, (3.7b)

and

�

�

�

�

1� s
r

⇠

�

�

�

�

�
�

�

�

�

1� s
j

⇠

�

�

�

�

if s
r

 s
n�k+j

or s
r

� s
j

. (3.7c)

There are at least n�k+1 values of r satisfying (3.7a) and k+1 values satisfying (3.7c),

where any r such that s
r

= s
j

or s
r

= s
n�k+j

satisfies both with equality. Now (3.7)

completely determines the position of |�
j

(E)| = |�
n�k+j

(E)| among the singular values

of E:

&
k

(E) = &
k+1

(E) = |�
j

(E)| = |�
n�k+j

(E)|. (3.8)

Next, it will be shown that, for some j, the right inequality of (3.4) is made

as tight as possible by the choice (3.6). For ⇠ in a small neighborhood of (3.6),

&
k

(E) is the larger of |1� s
j

/⇠| and |1� (s
n�k+j

)/⇠|, so (3.6) locally minimizes &
k

(E).

The only other critical points of &
k

(E) as a function of ⇠ are local maxima where

&
k

(E) = &
k�1

(E), specifically at ⇠ = (s
j

+ s
n�k+j+1

)/2 for j = 1, . . . , k � 1. It is

not optimal to choose ⇠ beyond the extreme critical points (i.e., ⇠ < (s
k

+ s
n

)/2 or

⇠ > (s
1

+ s
n�k+1

)/2) because these are local minima.

Now use (3.6) to find

&
k

(E) = |1� s
j

/⇠| = 1� (s
n�k+j

)/s
j

1 + (s
n�k+j

)/s
j

 1� s
n�k+j

s
j

(3.9)

which, combined with (3.4), proves the right inequality of (3.1).

Optimizing the left inequality of (3.4) proceeds similarly; for any 1  j  n� k,

choose ⇠ = (s
j

+ s
j+k�1

)/2 so that &
n�k+1

(E) = &
n�k+2

(E) and &
n�k+1

(E) is locally

minimized. This choice of ⇠ also locally maximizes the left expression of (3.4) and
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gives

&
n�k+1

(E) = |1� s
j

/⇠|

= |1� s
j+k�1

/⇠|

=
s
j

� s
j+k�1

s
j

+ s
j+k�1

.

(3.10)

Substituting this into the left-hand side of (3.4),

kBk2
2⇠kAk + &

n�k+1

(E) =
kBk2

(s
j

+ s
j+k�1

)kAk +
s
j

� s
j+k�1

s
j

+ s
j+k�1

=
1� (s

j+k�1

)/s
j

+ kBk2/(s
j

kAk)
1 + (s

j+k�1

)/s
j

< 1� s
j+k�1

s
j

+
kBk2
s
j

kAk .

(3.11)

With (3.4), this proves the left inequality of (3.1).

Notice that because of the simplifying relaxation in (3.9), the right inequality

of (3.1) must also be strict unless s
n�k+j

= s
j

. The left inequality is strict only

because of (3.11).

Choosing j = 1 in (3.1) gives a bound involving the decay of the dominant singular

values, which are the most important in evaluating low-rank approximations of X.

This result was included in [2].

Corollary 3.2. For controllable (A,B), the singular values of the solution X 2 Cn⇥n

to the Lyapunov equation (1.3) satisfy

s
k

s
1

� 1� kBk2
2s

1

kAk <
!
k

kAk  1� s
n�k+1

s
1

, k = 1, . . . , n. (3.12)

Rearranging the right bound in Corollary 3.2 gives an upper bound on the decay of

the trailing singular values of X that is distinguished from the bounds of Section 1.2

by being independent of the rank of B and the choice of ADI shifts.
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Corollary 3.3. For controllable (A,B), the singular values of the solution X 2 Cn⇥n

to the Lyapunov equation (1.3) satisfy

s
n�k+1

s
1

 1� !
k

kAk , k = 1, . . . , n. (3.13)

The importance of !(A) = !
1

calls for a separately stated result. Choosing k = 1

in Corollary 3.2 gives bounds on the rightmost extent of any numerical range that

can support a solution X with extreme singular values s
1

and s
n

.

Corollary 3.4. For controllable (A,B), the numerical abscissa !(A) is bounded by

the extreme singular values of the solution X 2 Cn⇥n to the Lyapunov equation (1.3):

� kBk2
2kAks

1

<
!(A)

kAk  1� s
n

s
1

. (3.14)

3.2 Analysis of Corollary 3.3

Corollary 3.3 provides a decay bound in the case that A is su�ciently far from

normal that some eigenvalues of H(A) are nonnegative even though A is stable. As

Figures 3.1 and 3.2 illustrate, (3.13) can be very pessimistic but still be better than

previous bounds when !(A) > 0. Corollary 3.3 has several advantages over the

bounds surveyed in Section 1.2.

• The bound (3.13) requires faster decay with greater nonnormality rather than

allowing slower decay.

• The bound (3.13) is parameterless, while the other bounds depend on the choice

of ADI shifts. This advantage is o↵set by the fact that (3.13) only promises the

existence of a low-rank factorization of X with a certain accuracy. It does not

suggest an algorithm to produce such a factorization, whereas if ADI shifts can
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be found that make the bounds of Section 1.2 small, these same shifts may be

used for ADI iteration with fast convergence.

• The rank of B does not feature in (3.13), whereas the other bounds allows

slower decay as the rank of B increases. In particular, (1.30) is meaningless

when B is full rank (p = n), which prevents the inequalities (1.31) from giving

any information about the singular values of X.
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/s
1

(2.21)

Bound (1.31a)

!(A) > 0!(A) < 0!(A) > 0

p
2 ↵

Bound (3.13)

Figure 3.1 : Example (2.17) is revisited, which was previously illustrated in Figure 2.3.
This example demonstrates the main advantage of the bound (3.13) over the bounds
in Section 1.2, such as (1.31a), which increase with departure of A from normality.
Beyond the !(A) = 0 threshold, decay accelerates. This is better described by (3.13),
which decreases for extreme departure from normality. Both (1.31a) and (3.13) fail
to remain below the trivial bound s

2

/s
1

 1 for some values of ↵: (1.31a) is greater
than 1 for highly nonnormal A because (V) ! 1 as ↵ ! 0 or ↵ ! 1, and (3.13)
is greater than 1 when !(A) < 0 (the gray strip).
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If A exhibits moderate departure from normality, Corollary 3.3 can hold with

equality, as in the case of no decay (s
1

= s
n

) considered in Section 2.2. Remember

that, when rank(B) < n, this case implies that !
1

= 0 = 1� s
n

/s
1

, so Corollary 3.3

with k = 1 is sharp. If A is far from normal, i.e., 0 < !
k

⇡ kAk, Corollary 3.3

requires that the kth lowest singular value of X be small.

Corollary 3.3 is not useful when kAk is instead controlled by eigenvalues far in the

left half-plane. If kAk ⇡ |!
n

| is much larger than !
k

, the right-hand side of (3.13)

may be almost 1 while s
n�k+1

/s
1

may be much smaller. In particular, when !
k

< 0

(as must occur for all k when A is stable and normal), the bound in (3.13) is vacuous.

Even if A is far from normal, the rate of decay could be even faster than indicated

by Corollary 3.3. For the 2⇥ 2 Jordan block considered in Section 1.3,

!
1

= ↵/2� 1, kAk =
q

1 + ↵2/2 + ↵
p

↵2/4 + 1,

so Corollary 3.3 gives the bound

s
2

s
1

 1� !
1

kAk ! 1/2, ↵ ! 1,

whereas Section 1.3 showed that s
2

/s
1

! 0 as ↵ ! 1 for this example.

Additionally, Proposition 3.5 shows there is a trade-o↵ between the strength of

Corollary 3.3 and the number of k values for which it is meaningful.

Proposition 3.5. For any stable A, let M+ be the number of positive eigenvalues

of H(A), that is, the number of j such that !
j

> 0. Then for any k  M+, the

right-hand side of (3.13) satisfies the bound

1� !
k

kAk > 1� n�M+

k
(3.15a)

and 1� !
k

kAk > 2� n

k
. (3.15b)

For k > M+, the bound is trivial since 1� !
k

/kAk � 1.
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Stated another way, if only a few eigenvalues of H(A) are positive, M+ is small

and (3.15a) permits 1� !
k

/kAk to be small (i.e., a good bound on (s
n�k+1

)/s
1

), but

only for those few k less than M+. Alternatively, if M+ is large (M+ ⇡ n), then

there is a non-vacuous bound (s
n�k+1

)/s
1

 1 � !
k

/kAk < 1 for most values of k,

but the bound is weak because 1� !
k

/kAk > 1� (n�M+)/k ⇡ 1.

Proof. Consider that

n

X

j=1

!
j

= tr (A+A⇤)/2 = Re (trA) =
X

�2�(A)

Re� < 0 (3.16)

because A is stable. So the negative eigenvalues of H(A) have a greater absolute

sum than the positive eigenvalues

X

!j>0

!
j

< �
X

!j<0

!
j

=
X

!j<0

|!
j

|. (3.17)

Because kAk � |!
j

| for all j,

k!
k


X

!j>0

!
j

<
X

!j<0

|!
j

|  kAk(n�M+) (3.18)

and when k  M+, (3.18) implies

1� !
k

kAk > 1� n�M+

k
� 1� n� k

k
= 2� n

k
(3.19)

as promised.

In summary, Corollary 3.3 is considerably better than previous results in some

highly nonnormal cases, but singular values may decay much more quickly than even

this improved bound. With so much room for progress, this topic is open to additional

study.
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Figure 3.2 : Figure 1.1 (top) is reproduced, showing bounds (1.31b) and (1.31c)
applied to the Jordan block example (1.33). As in the diagonalizable example shown
in Figure 3.1, the new bound (3.13) (bottom) decreases for increasingly nonnormal
Jordan blocks whereas the other bounds increase.
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Chapter 4

Concluding Observations

Chapter 2 provided examples of parameterized Lyapunov equations suggesting that

as the coe�cient A departs from normality, the singular values of the solution X must

decay more quickly. Chapter 3 makes this idea precise by proving the bound (3.13)

which requires faster decay when A is far from normal. Like Chapter 2, Section 4.1

gives examples of Sylvester equations with solutions exhibiting accelerating singular

value decay. This acceleration is not known to occur in general, but the examples

suggest that a result similar to Theorem 3.1 may exist for Sylvester equations. This

chapter ends with a concluding summary.

4.1 Sylvester Equations

The continuous time Lyapunov equation (1.6) is a specific case of the continuous time

Sylvester equation

A
1

X+XA
2

= G. (4.1)

Assume that A
1

and �A
2

have no eigenvalues in common, which is more general

than assuming that A is stable in (1.6). This condition is necessary and su�cient for

the existence and uniqueness of the solution X; however, unlike the Lyapunov case,

X may not be positive definite, Hermitian, or even square.

The solution of the particular Sylvester equation

AX+XA = �BC⇤ (4.2)
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is called the “cross Gramian” of the control system (1.1) introduced in [9]. The

cross Gramian is of interest in model order reduction since it may be used—instead

of the controllability and observability Gramians together—to compute a balanced

reduction of (1.1) [1, Sec. 12.3]. Additionally—for a system that is stable, controllable,

observable, and symmetric (i.e., A =  A⇤, B =  C⇤ for some  )—the absolute

values of the eigenvalues of the cross Gramian happen to be the singular values of the

Hankel operator (1.7) [1, Prop. 5.9], which are known to measure the compressibility

of the system [1, Thm. 7.9].

As with the Lyapunov equation, one can reasonably solve the Sylvester equation

with direct methods only for small n. The Bartels–Stewart algorithm is suitable for

this [3]. For large problems, limited storage and processing power require iterative

methods that do not involve constructing the large dense solution matrix. Such

algorithms can take a variety of forms [4, 5, 15], but they all construct factors of a

low-rank approximation of X. The singular values s
k

of X in (4.1) have the same

importance as in the Lyapunov case: they give the optimal convergence rate for any

low-rank solution method.

For Lyapunov equations, Theorem 3.1 gives a bound on s
k

that tightens as A

departs from the normality beyond a threshold. But an example similar to that of

Section 1.3 demonstrates that the nonnormality of coe�cients does not have such

a direct relationship with singular value decay for solutions of Sylvester equations.

Using the same Jordan block A and rank-1 G matrix of (1.33), consider

2

6

4

�1 ↵

0 �1

3

7

5

X+X

2

6

4

�1 ↵

0 �1

3

7

5

=

2

6

4

�t2 �t

�t �1

3

7

5

(4.3)



41

which has the solution

X =
1

4

2

6

4

↵t+ 2t2 ↵ + 2t+ ↵2t+ ↵t2

2t 2 + ↵t

3

7

5

. (4.4)

As in Sections 1.3 and 2.4, it is illuminating to consider the right-hand side (t value)

which makes decay slowest. When ↵ < 2, then !(A) < 0 and the choice t = �1

results in the slowest decay. But when ↵ > 2, then !(A) > 0 and no decay occurs

(s
2

= s
1

) with the choice

t = �1

2

⇣

↵ +
p
↵2 � 4

⌘

.

The decay for these pessimal t values is

max
t

s
2

s
1

=

8

>

>

>

>

<

>

>

>

>

:

↵

2

2

� 2↵ + 5 + 1

2↵

2

�

16� 16↵ + (↵� 2)(↵2 � 2↵ + 4)
p
4 + ↵2

�

if 0  ↵  2;

1 if ↵ � 2.

(4.5)

In other words, for every ↵ � 2, there is a rank-1 G such that the singular values of

X do not decay at all.

Thus, the worst-case singular value decay need not accelerate with departure from

normality for Sylvester equations in general. This is di↵erent from the Lyapunov

case where max
t

s
2

/s
1

reached 1 when !(A) = 0 (for a certain G) but necessarily

decreased for greater ↵. However, for each fixed t, greater nonnormality does in fact

cause singular value decay to accelerate. Figure 4.1 illustrates this with plots of decay

for several fixed values of t, as well as the slowest possible decay for any t.

An experiment with randommatrices suggests that this phenomenon is widespread.

For a Sylvester equation with random coe�cient entries, Figure 4.2 shows singular

value decay that accelerates as A
1

, A
2

, or both depart from normality. So far, there

is no concrete explanation for this behavior.
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Figure 4.1 : Singular value decay of the solution X of the Sylvester equation (4.1)
with A as the 2⇥ 2 Jordan block (1.33a). For every ↵ � 2, there is a right-hand side
that gives no decay. However, for each fixed right-hand side, increasing nonnormality
beyond some threshold causes decay to accelerate sharply. This behavior is similar to
the decay observed for solutions of the Lyapunov equation illustrated in Figure 1.1.
So although (4.5) is the optimal bound across all rank-one G, it appears that a much
better bound that is similar to (3.13) but depends on G could be developed.

4.2 Conclusion

It was observed that previously existing bounds on the convergence rate of ADI for

Lyapunov equations are not qualitatively descriptive of the fastest possible conver-

gence rate, i.e., the decay rate of the singular values of the solution. The singular

values of X typically decay very quickly when the coe�cient matrix is far from nor-

mal, but none of the bounds in Section 1.2 predict this. When the coe�cient matrix

is far from normal, the new bound of Theorem 3.1 matches the actual singular value
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Figure 4.2 : The singular value decay of X eventually accelerates as one or both
coe�cient matrices depart from normality. For this figure, n = 12; p = 3; A

1

, A
2

,
andB have normally distributed independently random entries; andG = �BB⇤. The
Schur factorization method of (2.15) was applied to each coe�cient matrix to create
families of Sylvester equations. The o↵-diagonal scaling parameter is proportional
to Henrici’s measure of nonnormality (2.5), so the horizontal axes are labelled with
�

F

(A
1

) and �
F

(A
2

). If A
1

departs from normality while A
2

remain fixed (left) or if
both coe�cients are adjusted together (right), the trailing singular values of X shrink
rapidly in the long run.

decay of the solution better, as illustrated by the examples of Section 3.2.

Several unsolved challenges remain. First, nonnormality typically causes ADI

to converge slowly but causes singular values to decay quickly. It remains to find

an algorithm to compute nearly optimal low-rank solutions in these cases. Second,

it may be possible to improve Theorem 3.1, which can only be highly informative

for a few singular values, and was not tight even in an asymptotic sense for the

given examples. Furthermore, this bound is derived quite abstractly and does not

fully clarify the mechanisms of accelerating singular value decay. Finally, Sylvester

equations exhibits similar decay, but Theorem 3.1 has no obvious extension to this

case. Further investigation into the subtle e↵ects of coe�cient nonnormality may

illuminate these issues.
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