


ABSTRACT

Performance Analysis and Optimization of a Hybrid Distributed Reverse Time

Migration Application

by

Sri Raj Paul

Applications to analyze seismic data employ scalable parallel systems to produce

timely results. This thesis describes our experiences of applying performance tools

to gain insight into an MPI+OpenMP code that performs Reverse Time Migration

(RTM) to analyze seismic data and also assess the capabilities of available tools for

analyzing the performance of a sophisticated application that employ both message-

passing and threaded parallelism. The tools provided us with insights into the effec-

tiveness of the domain decomposition strategy, the use of threaded parallelism, and

functional unit utilization in individual cores. By applying insights obtained from

Rice University’s HPCToolkit and hardware performance counters, we were able to

improve the performance of a distributed-memory RTM code by roughly 30 percent.
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Chapter 1

Introduction

Seismic imaging helps to identify subsurface structures and thus gain insight into

different geological characteristics such as the type of rocks and their distribution [2].

Seismic waves reflected by subsurface structures are used to get information regarding

subsurface layers. The changes in the properties of the subsurface layers, such as

variations in types of rock type, cause reflections.

Reverse Time Migration (RTM) [3] creates an image of the subsurface layers by

simulating the propagation of an acoustic wave through them [4]. During simulation,

first the medium is excited by introducing a wavelet. Next, forward wave propagation

is mathematically simulated using an acoustic wave equation. Then, RTM repeats

the same in the backward direction; it starts from the data recorded by the receivers

and propagates the wave field back in time (backward propagation). Finally, a cross-

correlation between both fields (forward and backward) is performed to generate an

output image.

The acoustic wave propagation equation is a Partial Differential Equation (PDE) [5]

which is solved using Finite Difference (FD) [6] or Finite Element (FE) [7] methods.

RTM gives more accurate results than previous methods such as Wave Equation Mi-

gration (WEM) [8] but is also computationally more expensive (at least one order

of magnitude higher than WEM). Since RTM is computationally expensive, a single

compute node might take very long time to compute a result. One way to resolve

this issue is to accelerate RTM by distributing work among multiple compute nodes.
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1.1 Distributed Reverse Time Migration

Distributed Reverse Time Migration is an approach for performing reverse time mi-

gration on a distributed memory computer system. Such systems use message pass-

ing to share data between compute nodes using MPI [9] and threaded parallelism

to maximize utilization of functional units within a node. Within a node, threaded

parallelism can be expressed using different programming models such as CUDA [10],

OpenACC [11], OpenCL [12] or OpenMP [13]. One way to enable different node

level programming models is to use an abstraction layer that enables one to plug in

different models by implementing a predefined set of APIs.

In this thesis, we work with an implementation of Distributed Reverse Time

Migration developed at Shell International Exploration & Production Inc., which we

abbreviate as DRTM. DRTM is an iterative code that applies a high-order stencil

on a 3D block of data. Figure 1.1 shows a representation of the 3D data. As it

can be seen in Figure 1.1, DRTM uses a multiblock algorithm in which the number

of data points in a block vary at different depths. As depth increases, the speed of

the acoustic wave increases and, therefore, fewer data points are collected at greater

depths compared to shallow ones. Thus, the number of data points in each X-Y plane

is less than or equal to the one above. Instead of decreasing the number of points

in each X-Y plane, an approximation is made by creating slabs/blocks containing

multiple X-Y planes as shown in Figure 1.1. The resolution of X-Y planes within a

single slab is uniform. The resolution of planes decreases as slab depth increases. The

introduction of slabs improves computational efficiency with an acceptable reduction

in accuracy.

Repeated application of stencils over large 3D slabs of data is costly. Hence, the

computation needs to be partitioned among multiple compute nodes to get timely
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Figure 1.1 : A representation 3D seismic data with multiple slabs. Slabs at shallow
depths have more data points compared to deep ones.

results. A common way of distributing data among nodes for seismic calculations is

to divide the X-Y plane. It is simpler to partition the calculation along the X and Y

dimensions, along which the number of data points is uniform, rather than along the

Z-axis, along which the number of data points decreases with depth. For example,

partitioning data across four processes is shown in Figure 1.2. Each color represents

an MPI process.

Data is partitioned across processes so that each process can perform computation

on data that is local to the compute node on which the process resides. Each MPI

process requires a narrow slab of boundary data points from each of its neighbors

during stencil computation. This boundary data slab exchanged with each neighbor

is called halo region. During execution, each MPI process sends/receives halo re-

gions to/from corresponding neighbors. Exchange of halo regions between neighbor

processes is overlapped with the stencil computation of non-halo regions (internal
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Figure 1.2 : A domain decomposition of 3D seismic data among four processes by
dividing X-Y plane. The size of the slabs decreases with depth because the number
of data points at deeper depth is fewer compared to shallow ones.

regions). This helps to overlap communication with computation. The number of

data points are different at slab boundaries as we move along Z-axis. For a smooth

transition at the slab boundary, interpolation is performed. Thus, a single time step

in DRTM consists of five phases as shown in Figure 1.3.

Each time step starts with the application of the stencil computation on data in

the halo regions so that they can be sent to neighbors. DRTM then initiates non-

blocking MPI calls for point-to-point communication with the aim of overlapping

communication of halo regions with the computation of stencil for internal regions.

Next, the code performs the stencil computation for non-halo regions while commu-

nications are pending for data in the halo regions. After the stencil computation

finishes, each MPI process waits for the arrival of halo data sent prior to the stencil
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Figure 1.3 : Different phases in a time step

computation. Finally, the code receives data from the halo exchanges and performs

interpolation where necessary.

In MPI+OpenMP applications such as DRTM, distribution of data and compu-

tation among different compute nodes can run into several problems such as load

imbalance or inefficient communication. In a sequential program, there is no need

to worry about such problems. The additional complexities make it difficult to an-

alyze the execution of distributed hybrid parallel applications. Therefore, we need

performance analysis tools to gain insight into the runtime characteristics of such

applications.

1.2 Performance Analysis Tools

Profiling is a type of program analysis that measures runtime characteristics of the

program such as memory usage and the number of function invocations. Performance

analysis tools used for profiling an application should have the capability to collect

performance data during execution of the application. There are mainly two ways to

collect performance data - instrumentation and sampling.



6

Instrumentation is the introduction of performance monitoring instructions at

points of interest to measure some particular characteristics of the program. These

additional instructions are introduced into the program in two ways - source instru-

mentation and binary instrumentation. In source instrumentation, the programmer

adds extra instructions explicitly to the source code whereas, in binary instrumenta-

tion additional instructions are injected to the binary using an external tool. Source

instrumentation requires recompilation of instrumented program or usage of instru-

mented library. Source instrumentation is difficult when non-instrumented libraries

are used (since we do not have the source code for the library). For instance, Intel

ITAC [14] uses a source instrumented MPI library to collect runtime characteristics

of communication. On the other hand, for binary instrumentation extra instructions

are added to the program either statically before execution or dynamically during

execution using an external tool such as Intel Pin [15]. Binary instrumentation has

the advantage that recompilation of the source is not needed and also can be used in

legacy systems whose source code is not available.

Sampling, on the other hand, does not involve modification of code or binary.

Sampling collects performance data at regular intervals based on an event that causes

an interrupt or a register to overflow. For example, a tool might sample the program

counter every millisecond. Sampling is light weight compared to instrumentation,

and, therefore, it maintains runtime characteristics that closely resemble the original

execution without profiling. Since sampling is faithful to the original execution, it

can detect issues that appear during execution that might get hidden or distorted as

a side-effect of instrumentation. The number of samples collected does not depend

on program characteristics (e.g. many small functions or few large functions), but

only on the sampling frequency. Therefore, the amount of data collected can be easily
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changed by adjusting the sampling rate. Rice University’s HPCToolkit [16] and Intel

VTune [17] are examples of sampling based performance analysis tools.

1.3 Thesis Statement

Efficiently mapping complex scientific applications to modern clusters using the MPI+

OpenMP programming model is difficult. Without guidance from performance tools,

often many opportunities for improving performance go unnoticed.

Modern clusters include parallelism at multiple levels. They include distributed

parallelism across nodes, threaded parallelism within a node and instruction level

parallelism within a core. To make the matter more complex, they come with a deep

memory hierarchy too. To exploit this parallelism, applications needs to distribute

data across nodes. To fully utilize the parallelism within a node they need to employ

threading. Typically such systems use MPI+X programming model where X is a

shared memory programming model such as OpenMP. Performance analysis tools are

required to get insight into such complex hybrid applications. Such insights are very

helpful to improve the performance of those applications.

1.4 Contributions

In the first part of the thesis, we evaluate the functionality of various performance

analysis tools for analyzing a hybrid MPI+OpenMP application. We use DRTM as a

representative hybrid application for this evaluation purpose. We mainly concentrate

our study on performance analysis tools that use sampling to collect performance

profile (with the exception of ITAC, which uses instrumentation). We define metrics

that are important for the performance analysis of hybrid applications and summarize

our findings on tool comparison based on a that metrics.
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In the second part of the thesis, we use Rice University’s HPCToolkit for detailed

analysis of DRTM. Insights gained from HPCToolkit helped us to improve the perfor-

mance of DRTM by roughly 30% and also provide insight into further optimization

opportunities.
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Chapter 2

Functionality Evaluation of Performance Analysis

Tools

In this chapter, we describe our experiences using different performance analysis tools

to obtain insight into the performance of DRTM. We evaluate the capabilities of

various tools for analyzing the performance of a sophisticated application that employs

both message-passing and threaded parallelism.

The hybrid MPI+OpenMP programming model helps to exploit both inter- and

intra-node parallelism and, therefore, is a good fit for large applications running on

emerging multi-core architectures. However, programming and analyzing such hybrid

applications is harder than stand-alone MPI or OpenMP applications. For hybrid

applications, identifying performance bottlenecks and opportunities for improvements

is more difficult, and hence assistance from performance analysis tools is therefore

necessary. In hybrid programming models, analyzing MPI and OpenMP together

is more effective than looking at MPI or OpenMP individually, and therefore tools

that provide a unified view of MPI and OpenMP are necessary. Understanding such

hybrid applications requires analysis at multiple levels:

• domain decomposition and interprocess communication for a distributed-memory

parallelization,

• threaded parallelism on a node, and

• functional unit and cache utilization within a core.
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We evaluated several performance analysis tools with this criterion for hybrid

MPI+OpenMP applications using DRTM as a representative hybrid application. We

principally consider tools that use sampling to collect performance data rather than

instrumentation with the exception of ITAC.

Tools used in this study are:

1. HPCToolkit from Rice University [16]

2. ITAC from Intel [14]

3. MAP from Allinea [18]

4. PCM from Intel [19]

5. PerfExpert from TACC [20]

6. VTune from Intel [17]

2.1 Experimental Setup

This section describes hardware, software, and configuration aspects of platforms used

in our experiments.

2.1.1 Hardware

The experiments are run on a cluster with multiple compute nodes. Figure 2.1 shows

the topology of a compute node with two sockets. Each socket has a 2.6GHz Intel

Xeon E5-2670 processor. Each processor has eight cores with one thread per core (two

threads per core if simultaneous multithreading, known as hyper-threading for Intel

processors is enabled). Each compute node contains 128GB RAM. Compute nodes



11

Figure 2.1 : Single node with two Xeon processors [1]

are connected with a fat-tree topology [21] using an InfiniBand interconnect [22] with

a uni-directional bandwidth of 56Gb/s between nodes.

Some of the new features available in the E5-26xx [1] family processors compared

to the previous generation are,

1. 32 nm process technology

2. Intel Advanced Vector Extensions (Intel AVX)

3. Intel Turbo Boost Technology 2.0

4. High Bandwidth Last Level Cache

5. High Bandwidth/Low Latency modular on-die Ring Interconnect

6. Integrated Memory Controller with 4 channel DDR3

7. CPU and PCI Express integrated on single chip

Each node in the cluster has two Xeon processors connected using QuickPath [23]

interconnect.
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2.1.2 Software

The cluster uses the Linux operating system with kernel version 2.6.32. Intel com-

piler suite 2014 (includes icc/icpc version 14 and MPI version 4.1) is used to build the

programs. A prototype of the OMPT [24] performance tools interface for OpenMP is

used to collect performance measurements for threads in an execution using OpenMP.

To use the latest Intel performance analysis tools, DRTM is also built using Intel com-

piler suite 2015 (includes icc/icpc version 15 and MPI version 5). The performance

of DRTM is better on Intel compiler suite 2014, and, therefore, we use version 14 to

compile executables for our analysis and optimization work. Table 2.1 shows the list

of performance analysis tools used in the exercise.

Table 2.1 : Performance analysis tools used for the analysis of DRTM

Tool Version

ITAC 9.0 Update 3

MAP 5.0.1

PCM 2.6

PerfExpert 4.1.1

HPCToolkit 5.3.2 (revision 4692)

hpcviewer 5.3.2 (revision 1760)

hpctraceviewer 5.3.2 (revision 1833)

VTune Amplifier XE 2015 Update 2

2.1.3 Configuration

We ran our experiments on a small (2.7GB) and a large (17GB) input data set. The

small data set experiment uses 4 MPI processes; the large data set experiment uses
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16 MPI processes. Each node in the cluster executes two MPI processes, and each

process contains eight OpenMP threads.

We launch the large data set experiment on the cluster as follows,

mpirun -np 16 -ppn 2 -env OMP NUM THREADS 8 –hostfile Host file

drtm mpi -c acceptance test.sim

drtm mpi is the name of the DRTM executable and acceptance test.sim is the

input configuration file. The input configuration file specifies various parameters

including domain decomposition, slab sizes and stencil parameters to be used. High-

level specifications indicate how to partition work among the processors. For example,

partitions-xy 4x4, specifies a two-dimensional partitioning of the input data in the

X-Y plane into 16 tiles arranged in a 4x4 grid. Submission of jobs to the cluster is

managed using Load Sharing Facility (LSF).

2.2 HPCToolkit

HPCToolkit [16] helps to measure and analyze the performance of applications ex-

ecuting on single-core, multi-core and distributed-memory systems. It uses periodic

sampling based on timers or hardware performance counters to trigger collection of

call stack profiles and call stack traces. It associates measured metrics with the full

calling context in which costs are incurred. The overhead introduced during exe-

cution is low and, therefore, maintains the runtime characteristics close to original

execution. It does not collect enormous amount of data and, therefore, scales well

for large parallel systems. It can analyze fully optimized applications and associate

performance data with source code.
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HPCToolkit consists of five main components as listed below,

• hpcrun - collects statistical call path profiles of events of interest.

• hpcstruct - analyzes executables and recovers program structure.

• hpcprof - correlates information about the application’s structure (from hpcstruct)

with call path profiles (from hpcrun) and creates a performance database

• hpcviewer - presents performance data in a code-centric fashion with top-down,

bottom-up, and flat views.

• hpctraceviewer - presents performance data in a time-centric view at multiple

levels of abstraction.

HPCToolkit lets the user specify events used for sampling triggers during execu-

tion. Sampling multiple events is possible in a single run although the number of

events that can be monitored simultaneously is limited. HPCToolkit allows usage of

native hardware counter, PAPI [25] or timer events.

Figure 2.2 shows a hpcviewer visualization of performance data collected using

an event named REALTIME. Many other events such as CPU cycles, cache misses

can be used to understand how different functional units are being utilized.

The bottom left pane of Figure 2.2, is a navigation pane displaying a calling con-

text view. This view represents a top-down decomposition of execution represented

as a calling context tree rooted at main, with call paths descending from main rep-

resenting the structure of the computation. Callers view (bottom up view), and

flat view (based on static source code view from files) are also available. Clicking

on any function in these views shows the source code of the function in the upper
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Figure 2.2 : hpcviewer : A top-down view of calling contexts. The bottom pane
associates times with each level of a dynamic call chain, including procedures, loops,
and source lines. The top pane shows source code associated with the highlighted
item in the call path.

source code viewer. hpcviewer helps users understand where execution time is spent.

hpctraceviewer provides insight into how a program’s execution unfolds over time.

A timeline view using hpctraceviewer is shown in Figure 2.3. In hpctraceviewer,

the X-axis represents time flowing from left to right and groups of threads along the

Y-axis represent processes.

Together, the output of hpcviewer and hpctraceviewer give a unified view of the

interaction between processes, threads within a process and functional units within a

core.
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Figure 2.3 : hpctraceviewer : This screenshot of HPCToolkit’s hpctraceviewer

user interface shows a detail of an execution trace of DRTM. Each row in the display
represents an OpenMP worker thread or MPI rank. In this case, rows 2nd from the
top and bottom represent MPI ranks; the rest represent OpenMP worker threads.
Time flows left to right.

2.3 ITAC

Intel’s ITAC [14] is a performance analysis tool that is used to analyze MPI appli-

cations. It gives detailed statistics of MPI invocations. It provides an event timeline

which shows MPI communication over time. It includes a message profile that in-

dicates the number of messages exchanged between process pairs. Unlike sampling

based tools that collect data regularly due to interrupts caused by counter overflows

or interval timers, ITAC collects data whenever an MPI library function is invoked.

ITAC achieves this using an instrumented MPI library, and details it gives about MPI

usage are quite informative. To get more insight into the application, ITAC provides
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Figure 2.4 : ITAC : This screenshot of ITAC’s summary page shows the distribution
of time spent in user code and MPI code. It also shows the distribution of various
MPI calls.

an option to instrument either the code or binary. Binary instrumentation is done

using a utility called itcpin. Code instrumentation requires recompilation of the

application and binary instrumentation has more overhead than sampling.

ITAC’s initial view shows a summary of the distribution of time spent in MPI

and user code as shown in Figure 2.4. The summary also includes a distribution of

different MPI calls.

Figure 2.5 shows ITAC’s event timeline view which is used to analyze how the

MPI invocations are distributed over time. Here X-axis represents time flowing from

left to right and MPI processes are shown along Y-axis. ITAC’s Event timeline only

distinguishes between user code and MPI code. Red rectangles represent processing

associated with MPI communications. Blue rectangles represent execution of user

code. Black lines represent messages between the MPI ranks. ITAC does not support

fine-grain analysis of user code. The call stack while making an MPI call is not shown



18

Figure 2.5 : ITAC : This screenshot of ITAC’s event timeline view shows a detail of
a DRTM execution. Each row in the view represents an MPI rank. Red rectangles
represent processing associated with MPI communications. Blue rectangles represent
execution of user code. Black lines represent messages between the MPI ranks.

by default. Call-stack collection during execution time can be enabled at the expense

of increased execution overhead.

At the bottom of Figure 2.5 is the Function Profile which provides a summary of

the distribution of user and MPI code. The MPI summary group can be expanded to

see the load imbalance in communication between processes as shown in Figure 2.6.

Similarly expanding Group Application helps to investigate load imbalance in the user

code.

Another useful view is the Message Profile that helps to analyze the pattern of

interactions between processes as shown in Figure 2.7. The intensity of messaging is

color coded from red to blue where red denotes a large number of messages and blue

denotes a small number of messages. From Figure 2.7, we can see that each process

interacts with only a few other processes (many boxes are white, denoting no message

exchange between corresponding processes). Each box can be expanded further to

see the exact amount of time spend on messaging with the respective partner.



19

Figure 2.6 : ITAC : This screenshot of ITAC’s Function Profile shows load imbalance
in communication among processes.

ITAC’s Function Profile (at the bottom of Figure 2.5) can be expanded to show

distribution of various MPI calls. Figure 2.8 gives a distribution of different MPI calls

based on various parameters such as time, the number of calls.



20

Figure 2.7 : ITAC : This screenshot of ITAC’s Message Profile shows interaction
between different processes. The intensity of messaging is color coded from red to
blue where red denotes a large number of messages and blue denotes a small number
of messages.

Figure 2.8 : ITAC : This screenshot of ITAC’s Function Profile shows distribution of
different MPI calls.
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2.4 MAP

Allinea MAP [18] is a profiling tool that uses sampling rather than instrumentation

to keep the overhead low. It produces high-level visualizations of Memory usage,

CPU usage, and MPI usage. MAP provides a flat view displaying functions that

can be sorted based on various metrics and a top-down view. MAP does not offer a

bottom up view of execution. It associates performance data with source code and

displays measurements in a source code viewer along with the percent of execution

time (and some OpenMP and MPI statistics). The top-down view starts from main

and enables one to navigate down the call-chain to callees. MAP’s top-down view

shows the percent of execution time along OpenMP and MPI statistics associated

with each function. MAP presents a timeline-based view of various metrics such as

branch instructions, floating point instructions, memory usage, MPI calls duration,

MPI bytes sent. These metrics are grouped as CPU instructions, CPU time, Memory,

IO, and MPI.

MAP only displays predefined profiles. For example, users cannot see the number

of cache misses since it is not defined in any profile. Also timeline visualizations

cannot be zoomed-in for closer inspection.

Performance data of DRTM viewed using MAP is shown in Figure 2.9. The

top pane is the metric view (timeline) which can be expanded to see a variety of

performance metrics (e.g. memory usage, MPI calls duration). The middle displays

the source code view that displays source code along with associated percentage of

execution time. The bottom pane contains top-down and flat views. This view is

used to associate performance data with different functions.
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Figure 2.9 : MAP : This screenshot of MAP shows metric (top), source (middle) and
top-down (bottom) view.

2.5 PCM

Intel PCM [19] is mainly used a monitoring tool for online introspection. It dis-

plays various metrics that can be viewed online while the application is running or

aggregated over the execution of an application. PCM includes a memory module

that monitors memory bandwidth and a PCIe module that monitors PCIe band-

width. There is also a module to monitor transactional synchronization. In addition

to visualizing performance data, PCM displays power utilization information as well.

PCM provides a set of high-level interfaces that can be invoked from a C++ ap-

plication to provide real-time CPU performance metrics. PCM uses the Performance

Monitoring Units (PMU) [26] in Intel processors to monitor both core and uncore

metrics, including instructions retired, elapsed clock cycles, data traffic in Quickpath

interconnect among many others.
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In addition to APIs for online introspection PCM provides a command line utility

and several graphical utilities based on those APIs. We use the command line utility

provided by PCM for profiling DRTM. PCM monitors and reports performance met-

rics for individual nodes and cannot be used for multiple node MPI applications. We

evaluated PCM using the smaller data test case (not the bigger data test case used

with other tools which takes very long time to run on a single node) on a single node.

Figure 2.10 : PCM : processor usage statistics for a one MPI process, 16 thread
configuration on our small data set input.

PCM shows various statistics down to the granularity of each core. For example in

Figure 2.10, core-0 has 1.14 instructions per cycle (IPC) and 6578 million L3 misses.

It also aggregates the result from each core and displays the total at the bottom. In

our experimental platform, each node contains two sockets and therefore results are

aggregated to SKT 0 and SKT 1. PCM records only a pre-configured set of metrics.

It does not provide an option to specify more events.
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2.6 PerfExpert

PerfExpert [20] is built on top of HPCToolkit. PerfExpert uses HPCToolkit to collect

performance data, analyzes the data and creates a summary. PerfExpert recognizes

loop nests that might cause a bottleneck and suggests recommendations to improve

performance. PerfExpert also supports automatic optimization.

PerfExpert runs HPCToolkit multiple times to collect data using different perfor-

mance counters. This is because HPCToolkit does not multiplex hardware counter

events. PerfExpert must run a program several times to collect a large set of events

since a processor’s performance monitoring unit can collect only a small number of

counters at once. Then PerfExpert analyzes the performance database created by

HPCToolkit and identify sections of code that might cause a bottleneck. PerfExpert

reports a summary performance assessment (as shown in Figure 2.11) along with a

set of recommendations to improve the performance of the application. PerfExpert

lacks a timeline view and hence cannot provide insight into how execution unfolds

over time.

PerfExpert allows the user to set a threshold. A threshold of five percent means

code fragments that run for more than 5% of the total execution time are considered

for analysis and optimization. Figure 2.11 is the result of an execution of DRTM

with threshold set to 5%. The PerfExpert report shown in Figure 2.11 indicates that

overall execution of the stencil is good (1.01 cycles per instruction) but data accesses

are taking too long since each data access takes an average of 3.84 cycles. PerfExpert

also provides suggestions about how to improve performance.
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Figure 2.11 : PerfExpert : overall performance overview of DRTM’s stencil compu-
tation

2.7 VTune

Intel’s VTune Amplifier [17] is a profiler with a collection of useful predefined profiles.

It includes some automatic analysis profiles such as hotspot analysis which reports

where CPUs are spending most of the time, lock and wait analysis which reports

program points where the application is spin waiting. There are few other profiles

that enable data collection from a set of related hardware performance counters.

Measurement data from hardware performance counters can be examined to find

performance bottlenecks. If the number of events selected for collection is more than

the number of performance counter registers, VTune multiplexes events to get counts
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Figure 2.12 : VTune : summary showing hotspots

for all requested metrics in a single execution. VTune also gives the option to use

multiple runs instead of multiplexing.

VTune is designed for collecting data about multi-threaded single process appli-

cations. VTune creates multiple output folders - one for each MPI process when

multi-process applications are profiled. There is no unified interface to view the

output of all processes. To use VTune for multi-process applications, first run the

application using ITAC to get an overall picture of the entire execution. Then use

VTune to collect performance data from few processes of interest.

Similar to ITAC, VTune starts with a summary page as shown in Figure 2.12 that
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Figure 2.13 : VTune : summary of CPU usage by different threads.

displays hotspots i.e. functions that consume most of the CPU time. The functions

are listed in sorted order with respect to execution time.

From Figure 2.12, it is clear that the stencil computation (fwd step vti du) and

idleness ( kmp fork barrier) take roughly equal amounts of time (2733s and 2470s

respectively). This is a bad scenario since idleness wastes a lot of computational

resources. For executions using other configurations, we found that the cost of idleness

was commensurate with the amount of effort spent performing stencil computations.

The summary page also includes two histograms of thread utilization as shown

in Figure 2.13. The first histogram shows the thread utilization of the entire execu-

tion whereas the second histogram shows the thread utilization of OpenMP regions.
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Figure 2.14 : VTune : bottom-up view of execution of DRTM

Figure 2.13 suggests that during overall execution seven threads (out of 8) are get-

ting utilized for a longer time compared to others. But threads remain idle (number

of threads running = 0) for a long time too which brings down the average thread

utilization count down to 5. It also provides a similar view of OpenMP usage that

shows seven threads are utilized most of the time.

VTune provides both bottom-up and top-down views of call-chains that enable de-

tailed analysis. The bottom-up view shows each function with its execution duration

and enables one to see the call chain that invoked it as shown in Figure 2.14 top-left

pane. VTune provides a timeline view below the bottom-up view. The timeline view

only indicates OpenMP or user code. User code cannot be further decomposed and

analyzed.



29

Figure 2.15 : VTune : top-down view of execution of DRTM.

Similar to the bottom-up view, there is a top-down view that starts from main

and enables one to down the call chain as shown in Figure 2.15

VTune collects enormous amounts of data compared to other tools. For example,

HPCToolkit collects around 2GB of data for the large data set test case when run

using 16 processes i.e 125MB per process whereas VTune’s hotspot analysis collects

around 900MB of data per process for the same test case.
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2.8 Summary of the Tool Evaluation

Based on our study, we decided what capabilities that would make a tool effective for

analysis of hybrid MPI+OpenMP applications. The capabilities that we need from a

performance analysis tool are:

• provide insight about the suitability of the decomposition of work across nodes

and interprocess communication - I (Interprocess)

• provide insight regarding how threads are utilized within a node - T (Threading)

• provide insight into how different functional units (e.g. cache) are getting uti-

lized within a core - F (Functional units)

• attribute performance data back to source code - A (Attribution)

• generate summary such as hotspots and also a detailed view for manual inspec-

tion - D (Diagnostics/Details)

A table showing capabilities of the tools we evaluated is given in Table 2.2. ITAC

is used for analyzing MPI communication and, therefore, its main deficiency is the

inability to look into threading and functional unit issues. MAP provides insight into

MPI usage and functional unit utilization but ignores threading issues. Also, it is

not possible to zoom-in to a particular region of interest for detailed analysis. PCM

is not suitable for analyzing MPI applications. PerfExpert does not provide insight

into MPI communication or threading issues but gives an overview of functional unit

utilization. It lacks a timeline view which makes it difficult to see how execution

unfolds over time. VTune lacks support for analyzing MPI communication but can

be used for detailed analysis of threading and functional unit utilization.
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Table 2.2 : Performance analysis tools capability matrix

Tool I T F A D ∗

HPCToolkit Yes Yes Yes Yes No/Yes

ITAC Yes No No No Yes/Yes

MAP Yes No Yes Yes No/No

PCM No Yes Yes No No/Yes

PerfExpert No No Yes No Yes/No

VTune No Yes Yes Yes Yes/Yes

HPCToolkit provides a unified view of interprocess interactions, threading and

functional unit utilization details. It also attributes measured metrics back to full

calling context and enables a detailed analysis using hpcviewer and hpctraceviewer.

Therefore, we decided to use HPCToolkit for in-depth analysis of DRTM. Insights we

gained using HPCToolkit helped us to improve DRTM’s performance.

∗Represents automatic diagnostics and detailed inspection. For example, No/Yes means auto-

matic diagnostics is not present but the tool allows detailed manual inspection.
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Chapter 3

Related Work

In this chapter we describe few different directions of prior work that relates to our

analysis and optimization of DRTM.

3.1 Parallelizing RTM

There have been several successful efforts to parallelize RTM computation onto mul-

ticore and distributed memory systems. Some efforts were to speed up RTM by

harnessing the computation power of GPUs. Abdelkhalek et al. [27] and Cabezas

et al. [28] used CUDA to leverage the computational power of GPUs. Qawasmeh et

al. [29] employed a hybrid model, using OpenACC to program GPUs and MPI to

distribute computation across nodes. Araya-Polo et al. [4] use OpenMP to parallelize

RTM across cores. Lu and Magerlein [30] also employed a hybrid model with MPI

to distribute work across nodes. Within a node, they use OpenMP in contrast with

Qawasmeh’s work which uses OpenACC.

3.2 Domain-specific Language Frameworks

Researchers have used domain-specific language frameworks to express stencil compu-

tations independent of the characteristics of the target machine. Some studies in this

direction include SDSL [31], PATUS [32, 33] and FAST [34]. SDSL - Stencil Domain

Specific Language can be embedded in C, C++ and MATLAB code. SDSL’s backend
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translates the stencil specification written using SDSL to C code that can be further

optimized using polyhedral frameworks such as PolyOpt/C [35] and PoCC [36]. The

SDSL framework also provides locality and SIMD optimizations. PATUS is an auto-

tuning framework for stencil computation targeted at multicore CPUs and GPUs.

During code generation of the stencil specification, PATUS allows one to a specify a

strategy: a description of the parallelization and optimization methods to be ap-

plied. Strategies are parameterized, and auto-tuning is used to select an optimal

parameter configuration with respect to the chosen stencil kernel and hardware plat-

form. FAST is an auto-tuning framework similar to PATUS but is faster. FAST

employs machine learning to predict a set of optimal solutions from the space of

possible optimization solutions, thereby improving tuning speed. Halide [37, 38] is

a domain specific language that allows the programmer to specify algorithm and

scheduling decisions separately. This enables evaluation of various scheduling strate-

gies which includes storage decisions, order of execution and optimizations without

changing the algorithmic code. The Pochoir [39] stencil compiler allows the program-

mer to write the stencil specification in a domain specific language embedded in C++.

The Pochoir compiler translates the stencil specification to a high-performing parallel

CilkPlus [40] code.

3.3 Overlapping Communication with Computation

Achieving efficient and effective communication while using hybrid programming

models (in general MPI+X where X is a shared memory programming model) is

difficult. Most MPI implementations advance communication inside MPI library

calls. The semantics of non-blocking communication does not require asynchronous

progress and therefore MPI implementations might not support real communication-



34

computation overlap. Bamboo [41] is a source-to-source translator that translates

an MPI C program into a data-driven form that overlaps communication with com-

putation. Bamboo requires the programmer to annotate the original program with

additional directives to aid the tool to infer matching sends and receives. Buet-

tner et al. [42] tried to address the issue of communication-computation overlap by

extending the OpenMP runtime to include communication tasks. These tasks are

executed when a given condition becomes true, such as receiving an MPI message.

HCMPI (Habanero-C MPI) [43], integrates Habanero-C dynamic task-parallel pro-

gramming model with the MPI message-passing interface. In this model, all MPI

calls are treated as asynchronous tasks which are handled by a dedicated communi-

cation worker thread. Vaidyanathan et al. [44] tried to address the issue of overlap

with an MPI offload infrastructure using a dedicated communication thread. In this

approach, MPI calls get enqueued as communication tasks which gets processed by

the dedicated communication thread. This approach uses the Linux LD PRELOAD

feature to dynamically inject their special MPI library between the application and a

traditional MPI. This enables them to change the program’s communication library

without any modification of the application code.
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Chapter 4

Analysis and Tuning of DRTM using HPCToolkit

In this chapter we describe details about our analysis of DRTM using HPCToolkit

and how insights from HPCToolkit helped us to improve DRTM’s performance. We

describe a series of code optimization opportunities identified using HPCToolkit and

the steps we took to improve performance based on the findings. We present the

performance improvement associated with each optimization performed. We conclude

the chapter with an assessment of the optimized version of DRTM.

4.1 Initial Assessment

Figure 4.1 shows a screenshot of HPCToolkit’s hpcviewer code-centric user interface

for the execution of DRTM. The view is sorted based on the total time used by

each function. Figure 4.1 shows the top five time-consuming functions. hpcviewer

shows that only 37.8% of total execution time is spent on the stencil computation

(fwd step vti du). Idleness in the OpenMP runtime (omp idle) consumes 32.7% of

the execution time. Another observation is that memcpy takes 7.4% of execution time.

Ideally the stencil computation should fill the execution time and idleness should be

minimal. We need to investigate why memcpy is taking so much of execution time.

Our initial analysis with hpcviewer suggests three issues to investigate.

1. Why is around 7% of the execution time is used by memcpy

2. Why is around 33% of the execution time is wasted in wait-sleep
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Figure 4.1 : hpcviewer visualization of execution of the unoptimized version of
DRTM.

3. Why is only around 38% of execution time is used by stencil computation

Figure 4.2 shows a screenshot of HPCToolkit’s hpctraceviewer time-centric user

interface for the execution of DRTM’s forward solve computation. hpctraceviewer

visualizations help provide a deeper understanding of the behavior of DRTM’s behav-

ior. At this granularity it is not possible to make any conclusions. Hence, we zoom-in

around the crosshair to get a detailed view as shown in Figure 4.3.

In Figure 4.3, the pink color represents the stencil computation and light brown

represent idleness. In the figure, idleness and stencil computation occupy an almost

equal amount of space (36.5% and 31.5%) implying that they consume almost equal

amounts of execution time. This division of execution time is in alignment with the

results reported by hpcviewer. Idleness is not distributed equally across processes

(each horizontal bar represents an execution trace of a process over time) that imply

load imbalance in domain decomposition. The next section discusses the structure of

a single time step in detail.

4.1.1 Structure of the Application

As mentioned in Section 1.1, DRTM applies a higher order stencil on a 3-dimensional

data to solve a PDE. We use HPCToolkit’s hpctraceviewer to examine a time-
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Figure 4.2 : hpctraceviewer visualization of the entire execution - rose represents
idleness (32%) and green repesents the stencil computation (32.5 %).

centric view of a computation. Figure 4.4 ∗ shows a view of execution on a single

MPI rank of a representative time step from the forward-solve phase of DRTM when

using OpenMP with OMP NUM THREADS=8.

The first step performs a stencil computation on data in the halo regions (stencil-

halo). Then data points in halo regions are packed into messages (pack) and later

exchanged between neighbors (send). DRTM uses nonblocking MPI calls for point-to-

point communication with the aim of overlapping communication with computation.

Next, the code performs stencil computation for non-halo regions (stencil-internal)

while halo regions are being exchanged. After the stencil computation finishes, each

MPI process waits for the arrival of halo data (wait, receive) that was initiated prior

∗Execution includes other activities such as reading data from input files and hence given values

does not add to 100%.
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Figure 4.3 : hpctraceviewer visualization of a sequence of few timesteps - ma-
genta represents the stencil computation (36.5%) and light brown repesents idleness
(32.5%).

to the stencil computation. Finally, the code unpacks data from the halo exchanges

(unpack) and performs interpolation where necessary. The same cycle of operations is

repeated for each time step. The different phases observed using HPCToolkit (shown

in Figure 4.4) matches with the design described in Figure 1.3.

4.2 Performance Analysis and Code Optimization

In this section, we describe the iterative tuning process used for optimizing DRTM.

In each subsection, we identify a potential improvement opportunity and describe

actions taken to exploit the opportunity along with performance gain achieved.
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Figure 4.4 : hpctraceviewer showing the division of a single time step for two
processes each containing eight threads.

4.2.1 Reduce Overhead due to Abstractions

We first investigate the reason for the 7% overhead due to memory copies as identified

in Section 4.1. DRTM employs an abstraction layer to support parallelization using

different programming models including OpenMP and CUDA. To accommodate ac-

celerator programming models, which currently require copying data into a different

memory space, the abstraction layer copied data even when using OpenMP 3.1, which

does not require a copy because it executes in the same memory space. Hence, the

copying of data from the accelerator to host and vice-versa can be removed in case

of OpenMP 3.1. While removing unnecessary copying of data is important, it is also

important to keep the abstraction layer intact. That means after removing the addi-

tional memory copies, all other node-level programming models employed in DRTM

should continue to work.
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Listing 4.1: memcpy interfaces

2 // existing inteface

3 void memcpy(float *dst , float *src ,...);

5 //new interface

6 void memcpy(float * & dst , float *src ,..., CopyType ctype);

One way to address this issue is to copy the pointers instead of data which we refer

as SHALLOW copy. Doing a SHALLOW copy changes the location to where the destination

points. Essentially both source and destination point to the same location after the

invocation of SHALLOW copy. Any change made to destination buffer now affects the

source buffer which is not the case with a DEEP copy. This side-effect does not affect

correctness if the source buffer is not used after SHALLOW copy is invoked. In case of

DRTM, once the copying is finished, subsequent statements use only the destination

buffer. Therefore using SHALLOW copy does not affect the correctness of DRTM.

The abstraction layer in DRTM provides an interface named memcpy to handle

data copying. All shared memory programming models that are plugged into DRTM

should provide an implementation of this interface. As shown in Listing 4.1, we added

a new interface with the same name but containing an additional parameter. The

extra parameter specifies whether data needs to be copied or can be used in place.

This new parameter of type CopyType takes two values: DEEP, and SHALLOW.

• DEEP: Data is copied from source to target. By default, this mode is used.

• SHALLOW: Pointer to data is copied from source to target.
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Listing 4.2: memcpy implementation for OpenMP

2 // memcpy implementation with shallow and deep copy

3 void memcpy(float * & dst , float *src ,..., CopyType ctype) {

4 if (ctype == SHALLOW)

5 dst = src;

6 else

7 // existing memcpy implementation without CopyType parameter

8 memcpy(dst , src ,...);

9 }

The new interface passes a destination array by reference to reflect changes made

inside function call back to its caller. The existing memcpy (without CopyType param-

eter) is retained for backward compatibility. Retaining the existing memcpy interface

reduces the number of modifications required since only those invocations where a

shallow copy is possible for some node-level programming models need to be changed.

DEEP copy is same as the existing implementation and invokes the existing API. When

a SHALLOW copy is specified only the pointer to data gets copied. By doing the pointer

copy, rest of the code where the data is used does not need any modification. The

OpenMP implementation of new memcpy interface is shown in Listing 4.2

Other programming model implementations also need to implement the new inter-

face but might implement different handling for the SHALLOW parameter. For example,

a CUDA implementation should ignore the SHALLOW parameter as shown in Listing 4.3

since today’s GPUs work in a different memory space.

Replacing unnecessary DEEP with SHALLOW memory copies reduced the execution

time by roughly 12% (from 870s to 760s) for the large data set test case. Although
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Listing 4.3: memcpy implementation for CUDA

2 // memcpy implementation employs DEEP copy regardless of CopyType

3 void memcpy(float * & dst , float *src ,..., CopyType ctype) {

4 memcpy(dst , src ,...);

5 }

Figure 4.5 : hpcviewer output after the introduction of SHALLOW copy. memcpy has
disappeared from the list of top time consuming functions compared to Figure 4.1

HPCToolkit reported that memcpy took just 7% of the total execution time, the

performance improvement is 12%. DRTM implements multithreaded memcpys using

OpenMP parallel construct. This involves overhead for forking and joining worker

threads. The additional 5% improvement comes through the reduction of overheads

caused by the OpenMP runtime associated with the invocation of multithreaded

memcpys. The resulting hpcviewer output after the introduction of SHALLOW copy is

given in Figure 4.5.

Compared to Figure 4.1, memcpy has disappeared from the list of functions that

occupy top spots on the list. The entry for memcpy further down the list shows

that after replacing DEEP copies of the halo region data to the OpenMP device with

SHALLOW copies, the cost of memcpy is now less than one percent of DRTM’s
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Figure 4.6 : A screenshot of hpctraceviewer showing idleness occurring during sten-
cil computation for an MPI process with eight threads

4.2.2 Reduce Thread Level Load Imbalance

As shown in Figure 4.6, hpctraceviewer’s visualization of the stencil computation by

one process for an iteration of the forward solve phase of DRTM reveals unnecessary

idleness. In Figure 4.6, blue portion represents stencil computation and light brown

idleness. This view implies that some threads are idle during stencil calculation

indicating an imbalance in the work assigned to threads.

DRTM’s stencil computation loop is tiled to improve cache reuse and a pair of

loops over the Y and Z dimensions are collapsed into a single loop using an OpenMP

collapse clause. Iterations of the loop over the tiles are executed in parallel using

a static schedule. In our investigation of the imbalance, we determined that the

decomposition of work into tiles is as illustrated in Figure 4.7.
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Figure 4.7 : Smaller tiles at the high end of each dimension cause imbalance when
OpenMP static scheduling is used for a collapsed 2D loop nest over the tiles.

An OpenMP runtime partitions iterations in the collapsed loop with no knowledge

of tile sizes. When static scheduling is used, each block is considered as a point by

OpenMP runtime, and there is no distinction between smaller and larger tiles. Using

static scheduling assigns an equal number of points (tiles) to each thread. The

difference in tile sizes causes threads assigned a collection of small tiles to finish early

and remain idle until other threads complete their stencil computation. Changing the

OpenMP scheduling strategy for the stencil computation loop to dynamic reduced the

imbalance. hpctraceviewer output after changing to dynamic scheduling is shown in

Figure 4.8. Compared to Figure 4.6, the entire execution is almost filled with stencil

computation (green) and idleness has nearly disappeared. Removal of waits reduces

the execution time by roughly 5% (from 760s to 725s) for the large data set test case.

4.2.3 Overlap Communication with Computation

A hpctraceviewer visualization after reducing the load imbalance among threads

is shown in Figure 4.9. In the figure, pink represents idleness and green stencil

computation. There is a considerable amount of waiting after the stencil computation.

Even though MPI communication is performed with non-blocking sends initiated

before and completed after the stencil computation, processes stall after the sten-

cil computation waiting for messages from neighbors to arrive. This wait caused
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Figure 4.8 : Idleness within stencil computation removed using dynamic scheduling

us to question whether the communication was making progress during the stencil

computation. To ensure true overlap we first tried using the asynchronous progress

engine provided by Intel’s MPI library. Since this approach gave no performance im-

provement, we dedicated one OpenMP thread to handle MPI communication. In the

following subsections, we describe the reasons for performance degradation caused by

the asynchronous mode in MPI library followed by a description of how we dedicated

a thread to managing communication.

Problems with the Asynchronous Progress Mode

Intel MPI version 5 introduced asynchronous progress mode which dedicates a sep-

arate thread for communication. The asynchronous progress thread is enabled by
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Figure 4.9 : A screenshot of hpctraceviewer shows considerable waiting (pink)
occurs after stencil computation (green) implying lack of communication-computation
overlap

setting the MPICH ASYNC PROGRESS environment variable to 1. The experiment using

asynchronous progress mode was performed with two different configurations:

• Create OpenMP threads equal to number of cores

• Create one less OpenMP thread than the number of cores so that a dedicated

core is available for the MPI progress thread.

Using the Intel MPI library’s asynchronous progress thread in either of these

configurations increased execution time by 25-30%. When asynchronous mode is

enabled the thread safe MPI library is used which introduces additional overhead.

Figure 4.10 gives an hpctraceviewer visualization of a DRTM execution using one
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Figure 4.10 : Idleness (red) occurs during the stencil computation phase (performed
seperately for each halo region and each slab along the Z axis) and other operations
after introducing asynchronous progress thread.

less OpenMP thread with asynchronous progress mode enabled. From Figure 4.10,

it can be seen that using asynchronous progress mode introduces additional idleness

within the series of stencil computations and other operations. The additional idleness

introduced by the OpenMP runtime increases the total execution time.

Enable Overlap Using a Communication Thread

Using the asynchronous progress engine provided by Intel’s MPI library did not im-

prove performance. Another method to ensure overlap is to dedicate an OpenMP

thread explicitly for communication i.e., introduce a communication thread [41, 42].

Listing 4.4 shows a part of the DRTM code organization intended to overlap com-

munication with computation using non-blocking MPI communication primitives. In

this code, sends and recvs are posted asynchronously before the stencil computation
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Listing 4.4: Origninal code intented to overlap communication with computation

using non-blocking MPI prmitives

2 MPI_Irecv (); //post recv requests

3 MPI_Isend (); //post send requests

4 stencil_computation (); //post stencil computation

5 wait_all (); //wait for sends and revcs to complete

6 unpack ();

and awaited for completion after the computation.

In an attempt to improve communication/computation overlap, we dedicated one

thread (thread 0) to perform communication using OpenMP parallel construct as

shown Listing 4.5. The other thread (thread 1) starts with the stencil computation

and later forks into multiple threads using nested threading. In the listing, the com-

munication thread executes wait all (line 8) and the computation thread proceeds

with the stencil computation (line 6). This is similar to the “communication worker”

model in HCMPI [43] and MPI offload thread used by Vaidyanathan et al. [44].

Since one thread is allocated for communication, stencil computation is performed

with once less thread, i.e., number of threads used for stencil computation = number

of cores - 1. Thus, the communication thread gets a core for itself, which enables

better overlap of computation and communication.

Figure 4.11 shows a hpctraceviewer visualization of several iterations in DRTM’s

execution after dedicating an OpenMP thread to progress communication. Green bars

represent waiting after the stencil computation for data from the halo exchange to

arrive from neighbors. Compared with Figure 4.9, processes in the middle section
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Listing 4.5: Modified code that overlaps computation and communication using

a explicit communicaition thread

1 MPI_Irecv (); //post recv requests

2 MPI_Isend (); //post send requests

3 #pragma omp parallel num_threads (2)

4 {

5 if(thread_id == 1)

6 stencil_computation (); // stencil computation using nested parallelism

7 else if(thread_id == 0)

8 wait_all (); //wait for sends and revcs to complete

9 }

10 unpack ();

(along Y-axis) do not incur waiting. The difference in idleness between the edge

and internal processes is an indication of load imbalance in domain decomposition.

Another conclusion from the analysis of Figure 4.11 is that there is enough bandwidth

for data exchange since nodes processing middle partitions (partitions with more

neighbors) do not incur any waiting after the stencil computation. To further reduce

idleness we need to improve load balance between nodes. Introducing a dedicated

OpenMP communication thread reduces execution time by roughly 7.5% (from 725s

to 670s) for the large data set test case.

4.2.4 Improving Data Reuse in Cache

After adjusting the domain decomposition and threaded parallelization strategies, we

next checked how functional units are being utilized. We used hardware performance

counters to assess functional unit utilization. We added code to measure various

characteristics of the stencil code’s execution using calls to routines in the PAPI
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Figure 4.11 : Waiting (green) after the stencil computation is reduced by the intro-
ducing a separate communication thread.

library [25]. PAPI provides a set of consistent interfaces that can be used across

different architectures to use hardware performance counters to measure program

execution characteristics. A few of the counter values that we used to analyze the

performance of the stencil computation in DRTM is shown in Table 4.1.

L1 cache miss rate = L1 data cache miss
Load instrucions + store instrutions

= 3.37E11
2.62E12+7.64E10

= .125

L2 cache miss rate = L2 data cache miss
L2 data cache access

= 1.17E11
3.37E11

= .35

The percent of L1 and L2 cache miss is roughly 12.5% and 35% respectively. This

implies one third of accesses to L2 cache are a miss, which indicates a potential opti-

mization opportunity to reduce cache misses. We analyzed the loop nesting structure

of the stencil computation to get insight into its cache performance. The stencil com-

putation loop is tiled to improve cache reuse. Each tile iterates over the 3D data in

Y-Z-X order, where X is the innermost loop. The stencil computation for one point
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Table 4.1 : Hardware performance counter values for the stencil computation loop

Counter name Value

Total cycles 4.58E+12

Floating point operations 2.64E+11

Load instructions 2.62E+12

Store instructions 7.64E+10

L1 data cache miss 3.37E+11

L2 data cache access 3.37E+11

L2 data cache miss 1.17E+11

uses 49 points (12 along each +X, -X, +Y and -Y axis) in the X-Y plane but only 41

points (12 along each +X, -X and 8 along +Z, -Z) in the X-Z plane. Assume there are

100 points along X axis. For a complete iteration of the inner most loop along X axis,

roughly 100*(24+16) † points need to be loaded from memory. In case, at the next

outer loop level if Z axis is used, then roughly we need to load an additional 100*24

points to compete iteration through X axis. But if Y axis is selected as next outer

loop instead of Z axis, roughly 100*16 new points needs to be loaded which implies

fewer new points are loaded and therefore more points are reused. Our expectation

was that interchanging Y and Z loops to access data in Z-Y-X order would increase

data reuse in cache. The number of cache misses before and after loop interchange

is given in Table 4.2. Interchanging the Y and Z loops reduced the cache misses by

increasing reuse and improved the performance by roughly 5% (670s to 640s) for the

large data set test case.

†Boundary points not taken into consideration for these calculations.
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Table 4.2 : Reduction in number of cache accesses after loop interchange

Counter name Old value (miss rate %) New value (miss rate %) Reduction

L1 data cache miss 3.367E+11 (12.5%) 3.194E+11 (11.8%) 5%

L2 data cache miss 1.171E+11 (35%) 6.671E+10 (21%) 43%

4.2.5 Reduce Process Level Load Imbalance

Figure 4.12 shows a screenshot of hpctraceviewer visualization of the trace after

performing all the above described code optimizations. In Figure 4.13, MPI ranks

0,3,12,15 are the corner processes, 1,2,4,7,8,11,13,14 are the edge process and 5,6,9,10

are the middle processes. It is clear that corner and edge processes have more idle

time waiting for data to arrive from neighbors than middle nodes. The reason for the

difference in idleness is the imbalance in work caused by the difference in the number

of neighbors for each MPI process. As described in Figure 4.13, the middle nodes

have more neighbors, and, therefore, each middle node does more work because it

needs to perform halo calculation, pack, unpack and interpolate for all the neighbors.

Due to the reduced amount of work, corner and edge nodes finishes early and stay

idle.

DRTM already had a provision to change the size of the partitions. We realized

that by changing the size of the partitions, the effect of difference in the number of

neighbors can be reduced. Reducing the size of the partition for the interior nodes

compensates for the higher number of neighbors as shown in Figure 4.14. Variable

size partitioning improved performance by roughly 2.5% (640s to 625s) for the large

data set test case with 4x4 configuration.
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Figure 4.12 : Idleness (green) after the stencil computation is more for processes at
the top and bottom. MPI ranks are marked on the left side.

Figure 4.13 : 4x4 configuration (4 in X and 4 in Y direction) with each process marked
with its MPI rank showing the difference in the number of neighbors for each block in
the 2D partition of the domain across MPI ranks. For example, top-left process (rank
12) has 2 neighbors whereas the middle four processes (5,6,9,10) have 4 neighbors.
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Figure 4.14 : 4x4 configuration (4 in X and 4 in Y direction) with each process marked
with its MPI rank showing partitions with reduced sizes for MPI ranks managing the
domain interior to reduce load imbalance.

4.2.6 Eager Operations on Received Data

DRTM uses wait all to wait for communication to finish so that data can be un-

packed. However, unpacking can be initiated as soon as data is received; there is

no need to wait for data from all neighbors to arrive. Using wait any instead of

wait all enables eager processing of data as soon as it is received. To use wait any,

additional bookkeeping is needed to correlate neighbors and the positions of their

messages within a wait any message array.

Figure 4.15 shows a screenshot of hpctraceviewer visualization after the intro-

duction of eager unpacking. Green bars represents waiting after the stencil compu-

tation for data to arrive from neighbors. Cuts in the green bars represent unpacking

of data that are received early. It can be seen that even though eager processing of

received data is enabled, few data exchanges finish early. Therefore, waits happen for

processes towards the edges similar to the one without eager unpacking (Figure 4.11).

Hence, no noticeable performance improvement is achieved by the introduction of ea-

ger processing of received data.
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Figure 4.15 : Processes towards edges wait (green) after stencil computation for halo
exchange data to arrive even after wait any is used.

4.2.7 Vectorizing Stencil Computation

The Intel Sandy Bridge family of processors supports Intel Advanced Vector Exten-

sions (AVX) [45]. AVX is a set of instructions for Single Instruction Multiple Data

(SIMD) operations. AVX registers are 256 bits wide and, therefore, capable of per-

forming eight single precision floating point operations with a single instruction. One

way to specify SIMD operations is to use CilkPlus’s [40] SIMD extensions provided

by Intel’s C/C++ compiler. Listing 4.6 shows an example of a normal loop and its

equivalent using CilkPlus SIMD extensions.

DRTM uses an array of structures, which prevents conversion of its stencil compu-

tations into CilkPlus notation. There have been successful efforts to solve the problem

of choosing data layouts (such as an array of structures or multiple arrays) to improve
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Listing 4.6: Loop to add two arrays and its CilkPlus equivalent

2 // Normal for loop to add two arrays

3 for(int i=0; i<N; i++)

4 a[i] a[i] + b[i];

6 // Equivalent CilkPlus SIMD representation

7 c[0:N] = a[0:N] + b[0:N];

Listing 4.7: Converting array of struct to multiple arrays to aid vectorization

2 // Original array of struct

3 struct float2{

4 float x, y;

5 };

6 float2 arr[N];

8 // Equivalent array only representation

9 float x_arr[N], y_arr[N];

performance. Keasler et al. [46] introduced TALC, an extension of C++ to avoid the

rewriting of code in different layouts. Sharma et al. [47] extended TALC framework

with an algorithm to recommend a good layout for a given source program and target

machine. To support better vectorization of DRTM’s stencil computation, we want to

convert the array of structures to multiple arrays - one array for each element in the

structure as shown in Listing 4.7. This data transformation was necessary to enable

conversion of the stencil code to CilkPlus SIMD notation.
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Conversion to CilkPlus notation improved the overall performance of DRTM while

using our smaller data set input by around 10%. However, the performance of the

stencil using the large data set input deteriorated by around 7%. Analysis using

hardware performance counters showed that the decline in performance is due to

an increase in L1 cache misses. An important observation during vectorization is

that starting address of some arrays used in the stencil computation are not 32-byte

aligned. Using aligned arrays may improve performance with vector extensions.

To verify our claim that aligning array accesses will improve performance, we

extracted the stencil kernel along with the OpenMP annotations and ran it on a rep-

resentative data set, an array of size ((200+24+padding)*(200+24)*(200+16)). This

includes halo regions of size 24 along X and Y directions and 16 along Z. Additionally,

along the X axis we can add padding, which can contain space for up to thirteen floats,

for use in alignment experiments. We ran experiments using three configurations.

1. Imitate the original stencil computation configurations used in DRTM. In this

configuration, the code is written as a loop applying an element-wise stencil.

Two out of nine arrays are not aligned to a 32 byte boundary. To understand

the full impact of alignment on vectorization, we also tried starting the stencil

calculation at an odd index along a row by setting indx variable in line 8 in

Listing 4.8 to an odd number.

2. Perform the element-wise stencil calculation described above, but with all arrays

aligned and padded so that rows are an integral multiple of vector length.

3. Rewrite the stencil calculation using CilkPlus array notation to express the inner

loop. Perform the computation a configuration where all arrays are aligned and

padded so that rows are an integral multiple of vector length.
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Listing 4.8: DRTM kernel in scalar notation

1 #pragma omp parallel for collapse (2), schedule(dynamic)

2 for(int biz = 0; biz < iz2; biz += BZ) {

3 for(int biy = 0; biy < iy2; biy += BY) {

4 for (int iz = biz; iz < (iz2 < biz+BZ ? iz2 : biz + BZ); ++iz) {

5 for (int iy = biy; iy < (iy2 < biy+BY?iy2 : biy + BY); ++iy) {

6 #pragma ivdep

7 for (int ix = 0; ix < ix2; ix++){

8 const size_t indx = box_offset + ix + f(iy, iz);

9 const size_t offsetpv = indx -const1 , offset = f1(iz , iz1);

10 const float tmp = vel[ indx ] *

11 mult_add_stride(fdzw , pv, offset , offsetpv , nxny);

12 const float tmp2 = stencil_2D(fdxyw , ph, nx , indx);

13 ...

14 }

15 static inline float mult_add_stride(const float* RESTRICT a,

16 const float* RESTRICT b, const size_t offseta ,

17 const size_t offsetb , const size_t strideb) {

18 return

19 a[offseta ] * b[offsetb ]+

20 a[offseta + 1] * b[offsetb + strideb ]+

21 ...

22 a[offseta + 16] * b[offsetb + 16* strideb ];

23 }

24 static inline float stencil_2D(const float* const RESTRICT fdxyw ,

25 const float* const RESTRICT ph,

26 const size_t nx, const size_t indx) {

27 return

28 fdxyw [12]*( ph[indx -12]+ph[indx +12]+ ph[indx -12*nx]+ph[indx +12*nx]) +

29 fdxyw [11]*( ph[indx -11]+ph[indx +11]+ ph[indx -11*nx]+ph[indx +11*nx]) +

30 ...

31 fdxyw[ 1]*(ph[indx - 1]+ph[indx+ 1]+ph[indx - 1*nx]+ph[indx+ 1*nx]) +

32 fdxyw[ 0]*(ph[indx]);

33 }
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Listing 4.9: DRTM kernel in CilkPlus vector notation

1 #pragma omp parallel for collapse (2), schedule(dynamic)

2 for(int biz = 0; biz < iz2; biz += BZ) {

3 for(int biy = 0; biy < iy2; biy += BY) {

4 float tmp[ix2], tmp2[ix2];

5 for (int iz = biz; iz < (iz2 < biz+BZ ? iz2 : biz + BZ); ++iz) {

6 for (int iy = biy; iy < (iy2 < biy+BY?iy2 : biy + BY); ++iy) {

7 const size_t indx = box_offset + f(iy, iz);

8 const size_t offsetpv = indx -const1 , offset = f1(iz , iz1);

9 mult_add_stride_cilk(fdzw , pv, offset , offsetpv , nxny , tmp ,

ix2);

10 tmp[ 0:ix2 ] = vel[ indx:ix2 ] * tmp[ 0:ix2 ];

11 stencil_2D_cilk(fdxyw , ph, nx, indx , tmp2 , ix2);

12 ...

13 }

14 static inline void mult_add_stride_cilk(const float* RESTRICT a,

15 const float* RESTRICT b, const size_t offseta ,

16 const size_t offsetb , const size_t strideb ,

17 float * const RESTRICT res , const unsigned int sz) {

18 res [0:sz] = a[offseta ] * b[offsetb : sz]+

19 a[offseta + 1] * b[offsetb + strideb : sz]+

20 ...

21 a[offseta + 16] * b[offsetb + 16* strideb : sz]+

22 }

23 static inline void stencil_2D_cilk(const float* const RESTRICT fdxyw ,

24 const float* const RESTRICT ph,

25 const size_t nx, const size_t indx ,

26 float * const RESTRICT res , const unsigned int sz) {

27 res [0:sz] = fdxyw [12]*( ph[indx -12:sz]+ph[indx +12:sz]+

28 ph[indx -12*nx:sz]+ph[indx +12*nx:sz]) +

29 fdxyw [11]*( ph[indx -11:sz]+ph[indx +11:sz]+

30 ph[indx -11*nx:sz]+ph[indx +11*nx:sz]) +

31 ...

32 fdxyw[ 1]*(ph[indx - 1:sz]+ph[indx+ 1:sz]+

33 ph[indx - 1*nx:sz]+ph[indx+ 1*nx:sz]) +

34 fdxyw[ 0]*(ph[indx:sz]);

35 }
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Listing 4.8 shows a portion of the stencil kernel written in scalar notation and

Listing 4.9 its CilkPlus equivalent. We used the Intel C++ compiler, version

2016 for this exercise and compiled using the command : icpc -openmp -xAvx

stencil.cpp. We executed it using a single process with eight threads per pro-

cess. Arrays with 32-byte alignment are allocated using mm malloc. Clauses such

as assume aligned(base ptr, 32) are used to hint the compiler that base ptr

is 32-byte aligned and assume(size%32 == 0) to hint that size is divisible by

32. Aligning arrays to 32-byte boundary and rewriting DRTM’s stencil kernel using

CilkPlus notation improved performance of the stencil by roughly 25%.

To get more insight into what is causing the performance improvement, we ran

the three configurations of the stencil kernel benchmark using Intel Software Devel-

opment Emulator (SDE) [48] and analyzed the assembly using VTune. SDE gives a

histogram of the dynamic instruction mix for an execution. The counts of different

instructions in the 32-byte aligned and non-aligned executions are roughly the same.

Comparing executions of the aligned and non-aligned kernels using VTune revealed

that the assembly code executed is the same, but the aggregate number of clock ticks

attributed to various statements in the source code for the aligned execution is fewer

than the unaligned one. This led us to conclude that operations on aligned data are

performed more efficiently by the floating point units even when same instructions

are used.

A comparison of instruction mix histograms of the compiler-vectorized scalar ver-

sion of the stencil code and version of the code manually vectorized using the Cilk-

Plus notation revealed that the instruction counts are quite different. Execution of

the CilkPlus vector notation code has 25% fewer bytes read from memory. However,

the number of bytes written back is doubled. Since the number of bytes loaded is an



61

order of magnitude higher than the number of bytes stored, performance improves

due to the reduction in the number of bytes loaded. Less data movement is an indi-

cation of better reuse of registers. CilkPlus vector notation code uses more 32-byte

block data movement compared to the scalar code and, therefore, data movement

is more efficient. It doubled the usage of 32-byte block data movement rather than

using smaller blocks. The CilkPlus vector notation generates code that reduced the

dynamic frequency of AVX instructions by roughly 30% and thus make more efficient

use of floating point units than compiler-vectorized scalar code. For example, the

dynamic frequency of the VINSERTF128 instruction, which is used to set values of a

256-bit register by parts if it is not possible to fill it using a quadword operation,

is reduced in CilkPlus notation code. Therefore, the generated code for the kernel

that uses CilkPlus vector notation executes fewer AVX instructions. Analysis of the

assembly code using VTune revealed that the executable generated from the kernel

that uses CilkPlus vector notation is rather different from scalar one. The dynamic

frequency of BINARY instructions which includes ADD, DEC, CMP in the execution

of the CilkPlus notation code is double that of the scalar one.

4.3 Assessing the Tuned Application

Figure 4.16 shows a screenshot of hpcviewer visualization of the profile of optimized

version of DRTM. The final version includes code optimizations to

1. reduce overhead of abstractions (Section 4.2.1).

2. reduce thread level load imbalance (Section 4.2.2).

3. overlap communication with computation (Section 4.2.3).
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Figure 4.16 : hpcviewer visualization of profile of the final optimized version

Table 4.3 : Profile comparison of original and optimized versions with percent of total
execution time in parentheses

Scope Original value in µs Optimized value in µs

Stencil Computation 4.54E+10 (37.8%) 4.38E+10 (49.8%)

Idleness 3.92E+10 (32.7%) 1.66E+10 (19%)

memcpy 8.92E+9 (7.4%) 3.62E+8 (0.4%)

4. improve cache reuse (Section 4.2.4).

5. reduce process level load imbalance (Section 4.2.5).

A comparison of the profiles of the original version (shown in Figure 4.1) and

optimized version (shown in Figure 4.16) is given in Table 4.3. The experiments are

run using 16 MPI processes on the large data set with eight threads per process. Each

node in the cluster executes two MPI processes. To verify consistency of the results,

we ran each version of DRTM two times and the variation in their total execution

times (original:870s and optimized:625s) is within a range of ±2s.

In the optimized version of DRTM, the stencil code takes less time than it does

in the original version. Also it occupies roughly 50% of the execution time instead of
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Figure 4.17 : hpctraceviewer vi-
sualization of few timesteps be-
fore performing process level load
imbalance reduction optimization.
Idleness (green) after the stencil
computation is more for processes
at the top and bottom.

Figure 4.18 : hpctraceviewer visualization of
few timesteps of the final optimized version.
Waiting after the stencil computation is shown
in green. MPI ranks are marked on the left side.

38%. Idleness is reduced by nearly half. The original version of the code had threads

idle for almost one third of the time. In the optimized code, thread idleness is reduced

to 19%. By using shallow copies of halo regions, memory copy overhead of 7.4% for

the original code drops to 0.4% in the optimized version. Overall, the performance

improved from 28%, 870s to 625s while using the 4x4 configuration run with the large

data set input test case on a cluster of 8 nodes with 16 processes and eight threads

per process.

Figure 4.18 shows a screenshot of hpctraceviewer visualization of few timesteps

of the optimized version of DRTM. This includes the five code optimizations listed

at the beginning of Section 4.3. Waiting for messages to arrive after the stencil

computation is shown in green. By reducing process level load imbalance as described

in Section 4.2.5, we are able to decrease the idle time. For example, compared with

Figure 4.17 we can see that waiting has decreased by comparing the size of green

bars, say for process-0 in both cases.

There are still opportunities for improvement in domain decomposition to ensure
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Figure 4.19 : The graph shows improvement when optimizations are applied. 4x4,
2x8, and 8x2 are domain decompositions of the X-Y plane on a cluster with Sandy
bridge family of processors (Xeon E5-2670). The performance improvements are
observed when different domain decompositons are used.

better load balancing. From Section 4.2.4, we can see that the hit rate of the optimized

code is roughly 90%. The high hit rate implies that to improve performance the best

way is to reuse registers [49, 50]. Also, working with arrays that are 32-byte aligned

might help to make better use of floating point units and improve performance.

Figure 4.19 shows improvement when each code optimization is used for different

domain decompositions. It takes roughly an hour to execute the large data input test

case which includes a forward and backward solve phase along with writing output

back to persistent storage. Since we have to run the experiment multiple times on

different domain decompositions with various code optimizations, one hour per exe-
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cution makes it too long to complete the full evaluation. In this thesis, we are not

trying to optimize the storage efficiency, and therefore, we disabled the write back of

output. Also, since backward phase contains the same operations as that of forward

phase, optimizing the forward phase helps to improve the performance of backward

phase too. Therefore, for our experiments, we ran only the forward solve phase which

takes around 15 minutes for the large data input. Each optimization is used on top

of the previous ones. For example, the vertical bar for thread local imbalance in-

cludes both shallow copies of halo regions and reduction of thread local imbalance

optimizations. From Figure 4.19, we can see that performance improvement is ob-

served even when different domain decompositions are used. Replacing deep copies of

halo regions with shallow copies and reserving one of the OpenMP threads to manage

communication helped to improve performance reasonably well (around 10% each).

Reducing load imbalance between threads by using OpenMP dynamic scheduling and

improving cache reuse using loop interchange improved performance by a moderate

amount (around 5% each).

To ensure that the improvements are consistent across different hardware config-

urations we ran the large data set experiments on a different cluster. Each compute

node in the cluster has two sockets. Each socket has a 2.8GHz Intel Xeon X5660

processor. Each processor has six cores with one thread per core (two threads per

core in case Hyper-Threading is enabled). Each compute node contains 48GB RAM.

Compute nodes are connected using InfiniBand interconnect with a bandwidth of

40Gb/s between nodes. The experiments are run with 16 MPI processes. Each node

in the cluster executes two MPI processes, and each process contains six OpenMP

threads. From Figure 4.20, we can see that the optimizations deliver similar perfor-

mance improvements on the new cluster with a different hardware configuration.
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Figure 4.20 : The graph shows improvement when optimizations are applied. 4x4,
2x8, and 8x2 are domain decompositions of the X-Y plane on a cluster with Westmere
family of processors (Xeon X5660). Performance improvements due to optimizations
are observed on the new cluster with a different hardware specification.

4.3.1 Verification

A utility that compares the output point-by-point and prints the highest ten dif-

ferences was available to check whether the output of the original and optimized

versions match. However, the four code optimizations (Sections 4.2.1 to 4.2.4) ap-

plied to DRTM do not change the order of calculations and therefore we expect that

the output generated by the original and optimized versions of the code to be the

same. By comparing the outputs of the original and optimized versions of the pro-

gram with the Linux diff utility, we verified that the solution computed by the two

versions of the code are identical.
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Chapter 5

Conclusions and Future Work

Performance analysis and optimization of complex applications such as DRTM in a

distributed memory environment is difficult. There are many factors that affect the

performance such as functional unit utilization, load balance between nodes, con-

tention for resources such as interconnect and memory bandwidth, synchronization

delays, memory hierarchy and pipeline utilization. Performance analysis tools provide

insight into the runtime characteristics of such complex applications. We evaluated

the functionalities of various tools for analyzing the performance of DRTM - a complex

application that employ both message-passing and threaded parallelism. We describe

the process of tuning a complex scientific computing application to tailor it towards

modern clusters with the help of performance analysis tools. This exercise showed

that it is not sufficient to tune the application only for floating point units, but we

have to look at the whole picture including threading and interprocess communication.

Insights from the tools were critical. Without tools we could easily miss that fact that

memory copies were causing a significant overhead. In some cases, fixing problems was

not particularly difficult once we identified them. HPCToolkit helped to identify and

analyze performance data from different levels - communication between processes,

threading within a process and functional unit utilization within a core. HPCToolkit’s

profile view was enough to identify the problems, for example that threads spend 33%

of their time as idle, but it does not provide insight into the nature of the problem.

HPCToolkit’s trace view helped us to pinpoint that idleness was caused by thread
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load imbalance due to tiling and communication delays. Although we used the trace

view to identify load imbalance, HPCToolkit also provides a “Thread-level View” [51]

that could have been used to identify such issues. The optimizations we performed in

response to the insights we obtained using the tools improved the performance of the

application by roughly 30%. The problems that we identified such as load imbalance

due to tiling, insufficient communication-computation overlap, lack of register reuse

and their remedies are typical for calculations using dense arrays running on modern

clusters.

Apart from helping us to improve the performance of DRTM, tools also provided

us with insights regarding further opportunities for improvement. The optimizations

we applied reduced idleness, but there is still room to reduce it further. Improving

domain decomposition to reduce load imbalance across nodes is the first step towards

this goal. Reuse of registers can help to improve performance. Register reuse in a

higher order stencil is difficult. Since DRTM uses a higher order stencil, the possibility

of using partial stencil computations to increase reuse of registers can be explored [49,

50]. Aligning arrays to a 32-byte boundary might help use floating point units more

efficiently. Solving the communication-computation overlap problem efficiently within

MPI library [44] than user code would be an ideal solution for the overlap problem.

In future, trying to perform the optimizations discussed in this thesis automat-

ically would be a significant step. One example would be to convert automatically

from the scalar notation to CilkPlus Vector notation. Another possibility is to auto-

matically determine the ordering of loops that aligns with the placement of data, say

for example whether iterating through X axis should be the outer loop or not.
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D. Das, J. Park, and B. Joó, “Improving Concurrency and Asynchrony in Mul-

tithreaded MPI Applications Using Software Offloading,” in Proceedings of the

International Conference for High Performance Computing, Networking, Storage

and Analysis, SC ’15, (New York, NY, USA), pp. 30:1–30:12, ACM, 2015.

[45] Intel, “AVX.” https://software.intel.com/en-us/articles/

introduction-to-intel-advanced-vector-extensions.

[46] J. Keasler, T. Jones, and D. Quinlan, “TALC: A Simple C Language Extension

For Improved Performance and Code Maintainability,” 2008.

[47] K. Sharma, I. Karlin, J. Keasler, J. R. McGraw, and V. Sarkar, “Data layout

optimization for portable performance,” in Euro-Par 2015: Parallel Processing,

pp. 250–262, Springer, 2015.

[48] Intel, “Intel software development emulator.” https://software.intel.com/

en-us/articles/intel-software-development-emulator/.

[49] P. Basu, M. Hall, S. Williams, B. V. Straalen, L. Oliker, and P. Colella,

“Compiler-directed transformation for higher-order stencils,” in Parallel and Dis-

tributed Processing Symposium (IPDPS), 2015 IEEE International, pp. 313–323,

IEEE, 2015.

[50] R. de la Cruz and M. Araya-Polo, “Algorithm 942: Semi-stencil,” ACM Trans.

Math. Softw., vol. 40, pp. 23:1–23:39, Apr. 2014.

[51] R. University, “HPCToolkit User’s Manual.” http://hpctoolkit.org/manual/

HPCToolkit-users-manual.pdf.

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/intel-software-development-emulator/
https://software.intel.com/en-us/articles/intel-software-development-emulator/
http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf

	Abstract
	Acknowledgments
	List of Illustrations
	List of Tables
	Introduction
	Distributed Reverse Time Migration
	Performance Analysis Tools
	Thesis Statement
	Contributions

	Functionality Evaluation of Performance Analysis Tools
	Experimental Setup
	Hardware
	Software
	Configuration

	HPCToolkit
	ITAC
	MAP
	PCM
	PerfExpert
	VTune
	Summary of the Tool Evaluation

	Related Work
	Parallelizing RTM
	Domain-specific Language Frameworks
	Overlapping Communication with Computation

	Analysis and Tuning of DRTM using HPCToolkit
	Initial Assessment
	Structure of the Application

	Performance Analysis and Code Optimization
	Reduce Overhead due to Abstractions
	Reduce Thread Level Load Imbalance
	Overlap Communication with Computation
	Improving Data Reuse in Cache
	Reduce Process Level Load Imbalance
	Eager Operations on Received Data
	Vectorizing Stencil Computation

	Assessing the Tuned Application
	Verification


	Conclusions and Future Work
	Bibliography

