

ABSTRACT

Clique Generalizations and Related Problems

by

Cynthia Ivette Wood

A large number of real-world problems can be model as optimization problems in

graphs. The clique model was introduced to aid the study of network structure for

social interaction. Each vertex represented an actor and the edges represented the

relations between them. Nevertheless, the model has been shown to be restrictive for

modeling real-world problems, since it leaves out subgraphs that do not have all pos-

sible edges. As a consequence, clique generalizations were introduced to overcome the

disadvantages of the clique model. In this thesis, I present three computationally dif-

ficult combinatorial optimization problems related to clique generalization problems:

co-2-plexes and k-cores.

A k-core is a subgraph with minimum degree greater than or equal to k. In this

work, I discuss the minimal k-core problem and the minimum k-core problem. I

present a backtracking algorithm to find all minimal k-cores of a given undirected

graph and its applications to the study of associative memory. The proposed method

is a modification of the Bron and Kerbosch algorithm for finding all cliques of an

undirected graph. In addition, I study the polyhedral structure of the k-core polytope.

The minimum k-core problem is modeled as a binary integer program and relaxed as

a linear program. Since the relaxation yields to a non-integral solution, cuts must be

added in order to improve the solution. I show that edge and cycle transversals of

the graph give valid inequalities for the convex hull of k-cores.

A set of pairwise non-adjacent vertices defines a stable set. A stable set is the

complement of a clique. A co-2-plex is a subgraph with degree less than or equal to

one, and it is a stable set relaxation. I introduce a study of the maximum weighted

co-2-plex (MWC2P) problem for {claw, bull}-free graphs and present two polynomial

time algorithms to solve it. One of the algorithms transforms the original graph

to solve an instance of the maximum weighted stable set problem utilizing Minty’s

algorithm. The second algorithm is an extension of Minty’s algorithm and solves the

problem in the original graph.

All the algorithms discussed in this thesis were implemented and tested. Numerical

results are provided for each one of them.

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor, Dr.

Illya Hicks, who has been a truly outstanding mentor over the past years. Dr. Hicks’

advice and support have been key elements in my success as a graduate student. I

especially admire his ability to encourage and empower me and the rest of our research

group to achieve our maximum potential.

Secondly, I would like to thank the rest of my committee: Dr. Andrew Schaefer,

Dr. Yin Zhang and Dr. Swarat Chaudhuri for their guidance and support. Especial

thanks go to Dr. Richard Tapia for mentoring me all these years. I also want to

acknowledge Dr. Steve Cox and Dr. Kathryn Hedrick for their mentorship and

ability to convey very complex ideas.

Thirdly, I am grateful to my husband Jorge Castañón for his patience, encour-

agement and faith in me. Moreover, I would like to thank my family; especially my

grandmother Dr. Silvia Medina, for being extremely involved in my life supporting

every single one of my decisions, being a role model and always encouraging me to

pursue my goals; as well as my parents Mr. and Mrs. Tony and Margarita Wood

for their love, support and for always finding humorous ways to brag about me; my

siblings Miriam, Yvonne and Tony Wood, for being my inspiration to keep going;

and, my uncle Raul Robles for always making an e↵ort to help me and my siblings.

I thought about listing all the names of people in the Department of Computa-

tional and Applied Mathematics (CAAM) who I would like to express my apprecia-

tion, but the list would be very long. As a consequence, I would like to thank the

faculty, sta↵ and students in the CAAM Department. Finally, I want to thank the

v

AGEP program and the NSF⇤ for their continuous support throughout my graduate

education.

⇤
This work is made possible by the National Science Foundation Grant Number 0940902 and

CMMI-1300477

Contents

Abstract ii

Acknowledgments iv

List of Illustrations viii

List of Tables x

1 Introduction 1

2 Basic Terminology and Background 7

2.1 The Clique Model . 7

2.2 Clique Generalizations . 8

3 The Minimal k-core Problem 11

3.1 Introduction . 11

3.2 Formulation of the main problem, Basic Terminology and Background 16

3.2.1 The Cell Assembly: A Graph Theoretical Approach 17

3.2.2 k-assembly . 19

3.3 Methods: Backtracking Algorithm Techniques 27

3.4 Numerical Results . 36

3.5 Discussion . 42

4 The Maximum Weighted Co-2-Plex Problem 45

4.1 Introduction . 45

4.2 Basic Terminology and Background 46

4.3 A Tractable Instance of the Maximum Weighted Stable Set Problem 48

vii

4.3.1 Minty’s Algorithm . 50

4.3.2 Tamura and Nakamura’s Correction 56

4.4 Algorithms for Finding the Maximum Weighted Co-2-Plex in a {claw,

bull}-Free Graph . 60

4.4.1 The reduction . 60

4.4.2 Generalization of Minty’s Algorithm to Solve the MWC2P

Problem in {claw, bull}-Free Graphs 65

4.4.3 Maximum Weighted White Augmenting Paths 69

4.4.4 Correctness of the Algorithm 70

4.5 Numerical Results . 73

4.6 Discussion . 77

5 The Minimum k-core Problem 78

5.1 Formulation of the Binary Integer Program 79

5.2 Linear Relaxation and Convex Hull 80

5.3 Branch and Bound . 83

5.4 Valid Inequalities and Cutting Plane Algorithms 87

5.5 Branch and Cut . 96

5.6 Numerical Results . 99

6 Conclusion 110

Illustrations

1.1 A five vertex complete graph. 2

1.2 3-core . 4

1.3 7-plex . 4

3.1 Threshold function f
k

for k = 2. On the left, we see the original

graph with only the given set S = {1, 2, 6} excited, f
k

(S) in the

middle, and f 2
k

(S) in the right. 19

3.2 Cell assembly vs. k-assembly for k = 3. The graph on the left

satisfies the definition of a cell assembly, but not of k-assembly. The

graph on the right is a 3-assembly with c(u, v) = 1 for all e = uv 2 E 21

3.3 Backtrack search tree for a given graph G. The root of the tree

contains the entire graph and the leaves contain minimal k-cores or

extensions that made the algorithm backtrack. The sets kcore, not

and candidates follow the definitions of Algorithm 3.4 35

4.1 On the left, we see a claw and a bull on the right. 46

4.2 Example of a G,G0 pair via the reduction. 61

4.3 A super free vertex of type I . 66

4.4 A super free vertex of type 2 . 67

4.5 A free vertex of type I . 67

4.6 A free vertex of type II . 67

4.7 Bounded vertices of type I . 68

ix

4.8 A bounded vertex of type II . 68

4.9 A bounded vertex of type III . 68

4.10 A path, an Alternating Path and two White Alternating Paths 69

4.11 The Complement of a Claw and a Bull 73

4.12 A Butterfly and a Triangle are triangle-free graphs in the complement 75

5.1 Partial branch and bound tree for Problem 5.4 84

5.2 The node associated with S1 is pruned by optimality 85

5.3 Partial branch and bound tree for Problem 5.4 86

5.4 The node associated with S21 is pruned by bound 86

5.5 Complete branch and bound tree for Problem 5.4 87

5.6 Partial branch and cut tree for Problem 5.4. 97

5.7 The node associated with S1 is pruned by bound. 98

5.8 Complete branch and cut tree for Problem 5.4. 98

5.9 Perfomance of branch and bound and branch and cut to solve

Problem 5.1 for k = 2 . 100

5.10 Perfomance of branch and cut to solve Problem 5.1 for k = 2 101

5.11 Number of subproblems solved by branch and bound and branch and

cut for k = 2. 102

5.12 Number of subproblems solved by branch and cut k = 2. 103

5.13 Number of subproblems decrease when using branch and cut for k = 2. 104

5.14 Performance of branch and bound and branch and cut to solve

Problem 5.1 for k = 3. 105

5.15 Number of subproblems solved by branch and bound and branch and

cut for k = 3. 106

5.16 Number of subproblems solved by branch and cut for k = 3. 107

5.17 Number of subproblems decrease when using branch and cut for k = 3. 108

5.18 Performance of branch and cut approach vs Matlab solver 109

Tables

3.1 Algorithm 3.4 performance for n = 10 and p = 0.1, 0.5 and 0.7 38

3.2 Algorithm 3.4 performance for n = 15 and p = 0.1, 0.5 and 0.7 39

3.3 Algorithm 3.4 performance for n = 20 and p = 0.1, 0.5 and 0.7 40

3.4 Algorithm 3.4 performance for n = 25 and p = 0.1, 0.5 and 0.7 41

3.5 Algorithm 3.4 performance for 5-regular graphs with n = 30 and p = 0.1, 0.5 and

0.7 . 42

4.1 Performance of Algorithm 4.4.2 and the Reduction Algorithm on the complement

of Mycielski graphs . 74

4.2 Performance of Algorithm 4.4.2 and the Reduction Algorithm on graphs

generated with a triangle as base for replication 76

4.3 Performance of Algorithm 4.4.2 and the Reduction Algorithm on graphs

generated with a butterfly as base for replication 76

xi

Notation

G = (V,E) The graph G with vertex set V and edges E

cl(S) The closure of S = (Ṽ , Ẽ) where S ✓ G

c(u, v) The weight associated with uv 2 E

fn

k

(S) The nth iteration of the threshold function f

C A clique C = (Ṽ , Ẽ) where C ✓ G

K A k-core K = (Ṽ , Ẽ) where K ✓ G

K̃ A k-plex K̃ = (Ṽ , Ẽ) where K̃ ✓ G

deg(v) The degree of a vertex v 2 V

�(G) The degree of a vertex of minimum degree

N(v) The set of neighbors of a vertex v 2 V
⇤

⇤
For more details on the notation see [5]

1

Chapter 1

Introduction

The study of social networks was first introduced in the context of sociology to study

human interaction. A social network is naturally represented as a graph G = (V,E)

with vertex set V and edge set E. The vertices of the graph represent actors and

the edges the relations between them. The existence of an edge between a pair of

actors may represent friendship, neighborhood, a�nity for the same sport, if they

work together or any other type of relationship.

Social network analysis had been used for years to analyze social relationships and

their psychological e↵ect among members of a group. In the early 1930’s, the Austrian

psychiatrist Jacob Moreno and the American psychologist Hellen H. Jennings founded

the field of sociometry [33]. Their research approach utilized sociograms to visually

represent groups. The individuals of a group where represented by dots and their

relations by lines. The sociometric approach had a surprising acceptance among

sociologist and psychologist. Nevertheless, the success of sociometry was brief. There

were not enough tools to analyze and find patterns in sociograms due to the fact

that the field lack mathematical rigor. As a result the development of social network

analysis took a multidisciplinary approach. For a detailed discussion about the history

of social network analysis see [41].

2

In the late 1940’s, graph theory started to gain recognition among social scientists.

Forsyth and Katz [19] were among the first ones to give a rigorous mathematical

approach toward the study of social networks. Their approach brought back the

interest in sociometry and set a trend among researchers in their field. Influenced

by the novel approach, in 1949 Luce and Perry [27] introduced the clique model to

analyze experimental data. They defined a clique as a subset of vertices in a graph

that contained all possible edges. That is, a subgraph in which any two vertices are

adjacent to each other. Figure 1.1 shows an example of a clique.

Figure 1.1 : A five vertex complete graph.

The introduction of the clique model received a large amount of attention in the

field of sociology, due to its close relation with the foundational concept of cohesive

subgroup. It was used to develop a non-rigorous approach towards the study of

3

network cohesion [18]. A cohesive subgroup consists of actors connected through

dense relations that enable members to share information and perform as a group

[53]. A clique induces a subgraph that is as dense as possible; hence, it is a perfect

cohesive subgroup.

The structural properties of a clique are distance, diameter, domination, degree,

density and connectivity. A clique can be defined in terms of its structural properties.

The following definitions of a clique are equivalent: vertices are distance one away

from each other; vertices induce a subgraph of diameter one; every one vertex forms

a dominating set; each vertex neighbors all vertices; vertices induce a subgraph that

has all possible edges; and all vertices must be removed to obtain a disconnected

induced subgraph. For more details on this definitions, see [39].

The popularity of the clique model spread across multiple disciplines. For instance,

in the field of biochemistry and genomics clique detection models have been utilized

to model protein structure and drug discovery [9]. In neuroscience, cliques are utilized

to study the visual cortex [30] and memory [35]. Chemists have used cliques to detect

similarities among chemicals in databases [43]. In the area of national security, clique

interdiction has been used to remove enemies [3] [56]. These are just a few areas

that have taken advantage of the familiarity, reachability and robustness properties

of the clique model. Unfortunately, the clique model is too restrictive for practical

applications, leaves out any subgraph without all possible edges and is not robust to

errors. Consequently, clique generalizations have been introduced to overcome the

4

disadvantages of the clique model.

Clique generalizations are subsets of the vertex set with structural properties

similar to those of a clique. Yet, they violate or only ensure the presence of one

elementary clique defining property. For instance, a k-plex is a subset of the vertex

set in which each vertex neighbors all but k vertices. It is a clique generalization

and it violates the degree and domination properties of a clique. Another example of

clique generalization is a k-core whose definition only requires that each vertex has

degree at least k. Figures 1.2 and 1.3 illustrate a 3-core and a 7-plex respectively.

2 4

3

5 6

1

Figure 1.2 : 3-core

.

3

1

4

5

6

7

8 9

1
0

2

Figure 1.3 : 7-plex

This thesis presents a thorough study of the k-core polytope, the maximum

weighted co-2-plex problem and the minimal k-core problem. These problems add to

the current line of research on clique generalizations. They are useful on a wide range

of applications, varying from sociological problems to biological models.

5

First, I discuss the minimal k-core problem, which is related to the study of asso-

ciative memory. The concept of cell assembly was introduced by Hebb and formalized

mathematically by Palm in the framework of graph theory. In the study of associa-

tive memory, a cell assembly is a group of neurons that are strongly connected and

represent a “concept” of our knowledge. This group is wired in a specific manner such

that only a fraction of its neurons will excite the entire assembly. There exist a link

between the concept of cell assembly and the closure of a minimal k-core. I study a

particular type of cell assembly called k-assembly. The goal of this particular project

is to find all substructures within a network that must be excited in order to activate

a k-assembly. Through numerical experiments, I confirm that these important sub-

groups overlap. To explore the problem, I present a backtracking algorithm to find

all minimal k-cores of a given undirected graph. The problem of finding all minimal

k-cores lies in the class of #P-complete problems. The proposed method is a modi-

fication of the Bron and Kerbosch algorithm for finding all cliques of an undirected

graph. The results in the tested graphs o↵er insight in analyzing graph structure

and help better understand how concepts are stored. The work presented about this

problem has been published [55]. As a consequence, one may find similarities between

this chapter and the published article.

Secondly, I introduce a study of the maximum weighted co-2-plex problem (MWC2P)

problem for {claw, bull}-free graphs. The MWC2P problem determines a subset

of vertices of maximum total weight, in which each node has degree at most one.

6

The co-2-plex structure reveals the familiarity and reachability among its members.

Therefore, this research applies to areas such as social network analysis and logistics.

I present two polynomial time algorithms to solve the MWC2P problem for {claw,

bull}-free graphs. The first algorithm reduces the original given graph to a claw-free

graph and uses Minty’s algorithm to solve the maximum weighted stable set prob-

lem. The second algorithm solves the problem directly on the given graph through a

generalization of Minty’s algorithm. The presented results add to the recent line of

research focusing on stable set relaxations.

Finally, I present work on the minimum k-core problem. The minimum k-core

problem asks for a k-core of minimum cardinality. The study of this problem started

from the fact that a minimum k-core is a minimal k-core. In e↵ort to understand

k-assemblies the minimum k-core problem was model as a binary integer program

[57]. In this work, I relax the integer program as a linear program and show that

edge and cycle transversals of the graph give valid inequalities for the convex hull of

k-cores.

7

Chapter 2

Basic Terminology and Background

This chapter introduces basic terminology to understand how k-cores and co-k-plexes

relate to cliques, and why they are considered clique or stable set generalizations. For

a detailed discussion on clique generalizations, see [2] and [50]. For an introduction

to cliques, see [27].

2.1 The Clique Model

The study of network structure has been used for years to study social interaction.

However, it was in 1949 when Luce and Perry [27] introduced the clique model to

analyze experimental data.

Definition 2.1 Given a simple graph G = (V,E) a subgraph C = (Ṽ , Ẽ) is a clique if

for every two vertices u and v 2 Ṽ there exists an edge e = uv 2 Ẽ.

Originally, the clique model was used to study social networks. Each vertex rep-

resented an actor and the edges represented the relations between them. In addition,

this model was used to develop a non-rigorous approach towards the study of network

cohesion [18]. A cohesive subgroup consists of actors connected through dense rela-

tions that enable members to share information and perform as a group [53]. Thus,

8

the notion of a cohesive subgroups is of high interest in social network analysis.

Definition 2.2 A cohesive subgroup is characterized by the following properties:

(i) Mutuality of ties.

(ii) Closeness or reachability of subgroup members.

(iii) Frequency of ties among members.

(iv) High frequency of ties among members as opposed to those between members

and non-members.

A clique is the perfect example of a cohesive subgroup. Due to the fact that every

pair of edges is adjacent to each other, the four properties of the cohesive subgroup

definition are immediately satisfied. However, this definition is too restrictive and

leaves out models that do not have all possible edges. As a consequence, clique

generalizations have been introduced to overcome the limitations of the clique model.

2.2 Clique Generalizations

The clique model has di↵erent definitions in terms of distance, diameter, domina-

tion, degree, density and connectvity. The alternative definitions are fundamental

in defining clique generalizations and must be introduced. For more details on this

definitions see [39].

The following definitions are equivalent definitions of a clique:

1. Distance: Vertices are distance one away from each other.

9

2. Diameter: Vertices induce a subgraph of diameter one.

3. Domination: Every one vertex forms a dominating set .

4. Degree: Each vertex neighbors all vertices.

5. Density: Vertices induce a subgraph that has all possible edges.

6. Connectivity: Need to be remove all vertices to obtain a disconnected induced

subgraph.

A clique generalization is characterized by at least one of the following properties:

(i) it restricts a violation of an elementary clique-defining property.

(ii) it ensures the presence of an elementary clique-defining property.

Throughout this thesis, I will refer to the concepts of maximum and minimum

degree, distance and diameter as �, �, d
G

and diam respectively. Some examples of

clique generalizations are the following: a k-core induces a graph with �(G[K]) � k;

a k-plex induces a graph with �(G[K]) � |K| � k; a k-clique has the property that

d
G[K](u, v)  k 8u, v 2 K and a k-club induces a graph with diam(G[K])  k.

A k-core is a clique generalization that ensures the presence of an elementary

clique-defining property in terms of degree. A k-plex is an example of a clique gener-

alization that violates an elementary clique defining property. It does not satisfy the

definition of a clique in terms of degree and domination. The complement of a k-plex

is a co-k-plex, and the complement of a clique is a stable set. A co-k-plex is a stable

10

set generalization. Now, I stablished the relation between cliques and co-k-plexes

that will be studied later on this thesis. The problems presented on this thesis deal

with the study of k-cores and co-k-plexes.

11

Chapter 3

The Minimal k-core Problem

3.1 Introduction

The brain’s complex networks of neurons have been studied in an e↵ort to under-

stand human cognition and behavior. In parallel, graph theory and combinatorial

optimization have focused in understanding the structure and dynamics of networks

that arise from a wide spectrum of applications. In this work, I present mathematical

techniques that provide insights in network structure. This is important to the study

of the brain since it allows us to recognize structures that play key roles in certain

fundamental mental processes. In particular, I focus on the relationship between the

study of networks and memory.

Network structure and architecture has been studied to understand sociological

and biological problems, mostly to identify cohesive subgroups within social and bi-

ological networks. The analysis of subgroups within a network serves to identify the

most influential elements in a group; and to understand the interactions between

members. Although brain networks are extremely complex, they share certain char-

acteristics with social and biological networks. For further discussion, see [53], [6] and

[42]. In particular, the study of interactions within a group is important to the study

12

of neuronal networks, since brain connectivity is crucial to process information. For

a more detailed discussion about the relationship between networks and its applica-

bility to the study of the brain see [44] and [48]. In this chapter, I study two specific

network structures, namely a clique and a k-core, and its potential applications to

the study of associative memory.

A clique is a subnetwork in which the actors are more tied to one another than to

other members of the network. In terms of the brain, the actors are neurons and the

ties between them represent synapses between these neurons. A clique can be seen

as a group of neurons that collectively respond to a particular stimuli. The Hebbian

theory of learning is often paraphrased as “Cells that fire together wire together” and

refers to groups of neurons that fire in synchrony [21]. In other words, events that

occur simultaneously are associated in memory. For instance, in a clique it is only

necessary to give excitatory input to a fraction of the clique in order to make the

entire network fire. In 1949 Luce and Perry introduced the clique model to analyze

experimental data [27].In addition, this model was used to develop a non-rigorous

approach towards the study of network cohesion [18]. The clique model has gained

popularity for being the perfect cohesive subgroup due to the existing relationship

between each one of its members[53]. As a consequence, neural cliques have been used

to model computation in the visual cortex [30], di↵erential memory consolidation [35]

and to understand episodic experiences in the hippocampus [25]. Nonetheless, the

clique model has limitations and leaves out structures that still respond collectively to

13

certain stimuli if there is not a connection between each pair of neurons. Consequently,

it is important to consider structures with properties similar to cliques, even if they

are not maximally connected, such as the ones introduced by Seidman and Foster

[47]. One of these structures is a k-core, which is a subgraph with minimum degree

greater than or equal to k. For more details on models to overcome limitations of

cliques see [2] and [50]. Throughout this work I focus on the relationship between

k-cores and the insights they provide in the study of associative memory.

Memory is a fundamental mental process in the brain. Some of its attributes are

to represent concepts and objects in the brain and recall information. In addition,

memory is closely connected to the perceptual and learning processes. Donald Hebb

in an e↵ort to understand the behavior of the human brain introduced the term

“cell assembly”. He defined it as a group of neurons that are strongly connected

and represent a “concept” of our knowledge [21]. It refers to a memorized pattern

in the auto-associative memory scheme, and according to Hebb’s definition it plays

an important role in the structural change of long-term memory. For more details

on associative memories as brain models and its storage capacities see [36]. The

aforementioned definition can easily describe features of memory and its relations

with other processes. Nevertheless, it is not known if the relations described by cell

assemblies exist. If they were to be real, then the nodes of a given network could

represent portions of a cell assembly, and its connections will describe the flow of

activity in the cortex . For further discussion, see [12].

14

Hebb’s definition of cell assembly created a gateway to research involving neu-

roscience and advanced mathematical techniques. Topology has been used to study

stimulus reconstruction, and the used representation is close in spirit to Hebb’s cell

assembly [16]. Although the mathematical techniques utilized are di↵erent, stimulus

reconstruction is related to the work presented in this paper since it helps to describe

activity patterns of neuronal population during cognition. In addition, dynamical

systems have been used to understand how knowledge and events are represented

and processed in the brain [51]. This type of work studies the dynamics of cell as-

semblies and gives mathematical expression of the hypothetical dynamics of neuronal

populations in the cortex.

Until today, there does not exist enough evidence to contradict Hebb’s definition

of cell assembly. From the physiological point of view, the idea requires variable exci-

tatory synapses that obey Hebb’s rule. In other words, the connectivity is enhanced

by coincident pre- and postsynaptic activity [37]. However, this specific point of view

is di�cult to test due to the unavailability of experimental data. Valentino Braiten-

berg was the first one to give interpretation to the theory of cell assemblies in terms

of neuroanatomy and neurophysiology [7]. Most of the ideas presented on Braiten-

berg’s work have been thoroughly explored and served as the basis of cell assembly

theory. For a detailed discussion on the current state of cell assembly theory see [38].

According to Hebb’s definition, a cell assembly represents only one concept in our

brain. This implies that there must exist a large number of cell assemblies in order to

15

store all the concepts in the brain, and it is still not possible to identify all of them.

For an e�cient and reliable statistical method to detect and identify members of an

active cell assembly directly as significant spike synchrony patterns see [40]. In an

e↵ort to investigate if the cortical network is su�cient to contain all of our concepts

Palm formulated the main problem of the theory of cell assemblies. The problem

asked for the total number of assemblies of a given network. In theory, it is possible

to find all cell assemblies and determine the solution to the problem. However, due

to the complexity of the definition; the number of neurons on a brain-sized neuronal

network; and the number of connections per neuron, it still may not be possible, in

practice, to solve the problem of finding all cell assemblies. Therefore, let us focus on

a particular type of cell assembly called a k-assembly.

In this work, I extend Palm’s graph theoretical approach towards understanding

memory. I show a connection between the concept of a cell assembly and the definition

of a k-core, which allowed us to define a k-assembly. I go beyond Palm’s main problem

of the theory of cell assemblies that asks for the total number of assemblies at a fixed

threshold, to ask for all the substructures whose excitation cause the activation of

an entire assembly for a given threshold. I solve the aforementioned problem by

finding all minimal k-cores of a given undirected graph via a backtracking algorithm.

I present complexity results related to k-cores to highlight the mathematical di�culty

of the problem and provide numerical results to validate the proposed algorithm.

The following section provides the necessary background to understand the math-

16

ematical definition of cell assembly and k-assembly as well as a brief overview of

backtracking algorithms. In particular, I discuss the Bron and Kerbosch algorithm

whose backtracking structure is the essence of the algorithm proposed to solve the

desired problem. The proposed algorithm to find all minimal k-cores and its com-

plexity are discussed in the methods section followed by numerical results. Lastly, a

discussion of the work introduced in this paper is given.

3.2 Formulation of the main problem, Basic Terminology and

Background

The goal of this project is to find all substructures within a graph G = (V,E) that

must be excited in order to activate a particular type of cell assembly that will be

defined in this section, the k-assembly. In the graph G, each vertex v in the vertex

set V represents a neuron, and each edge e in the edge set E represents a connection

between two neurons, the threshold is denoted as the minimum number of inputs each

node receives in order to become excited. Throughout this paper, the threshold value

will be fixed to a particular given integer k. However, it is of high interest to study

the behavior of networks as the value of k changes with respect to time.

In this section, the reader will be introduced to basic terminology necessary to link

the concepts of cell assembly and k-assembly. The purpose of this section is to state

definitions that will be referred throughout this article. For a detailed discussion of

cell assemblies see [21].

17

3.2.1 The Cell Assembly: A Graph Theoretical Approach

In 1981, Palm proposed a mathematical interpretation of Hebbian theory in the frame-

work of graph theory. He gave a mathematical interpretation to the cell assembly.

In order to understand Palm’s mathematical definition of a cell assembly, the reader

must be introduced to some background definitions.

Given a simple graph G = (V,E) in which each vertex v in the vertex set V

represents a neuron, and each edge e in the edge set E represents a connection between

two neurons, the threshold is denoted as the minimum number of inputs each node

receives in order to become excited. Throughout this paper, the threshold value will

be fixed to a particular given integer k. However, it is of high interest to study the

behavior of networks as the value of k changes with respect to time.

Given a weighted graph (G, c), where the weight c(u, v) represents the strength

of the synapses from neuron u to neuron v for all edges uv 2 E. For the rest of this

paper, I fix the value of c(u, v) = 1 8 uv 2 E.

Definition 3.1 Given S ✓ V and an integer k, a threshold function f
k

is described by

f
k

(S) = {v 2 V |
X

u2S

c(u, v) � k}

The resulting active set of nodes of S ✓ V at a threshold k is obtained when S is

given as an input to the threshold function f
k

. That is, given a subset S of activated

nodes, other nodes in the graph will become activated if they satisfy the threshold

18

inequality, for simplicity I denote f i

k

(S) = f
k

(f i�1
k

(S)) for i � 2 and f 1
k

= f
k

. Figure

3.1 illustrates this process for k = 2.

Definition 3.2 A subset of vertices S is called invariant if f
k

(S) = S.

Definition 3.3 The closure of S, denoted cl
k

(S), is the invariant set generated when

fn

k

(S) = fn�1
k

(S) for some n � 1.

In Figure 3.1, the closure of the set S = {1, 2, 6} is achieved when n = 3, and it is

the entire vertex set V .

Definition 3.4 A subset S is called persistent if f
k

(S) ◆ S, and it is called minimal

persistent if no proper subset of it is persistent.

In Figure 3.1, the set S 0 = {1, 2, 3, 6} is persistent when k = 2. However, S =

{1, 2, 6} is a persistent subset of S 0, which implies S 0 is not minimal.

Definition 3.5 A subset S is called weak if there exist an n � 1 such that fn

k

(S) = ;.

In Figure 3.1, the set S 0 = {1, 2} is weak, since f
k

(S 0) = {6} and f 2
k

(S 0) = ;.

Definition 3.6 A tight set is a persistent set P in which every persistent subset of P

whose complement in P is not weak and excites the whole of P .

Finally, the reader has the necessary background concepts to understand Palm’s

mathematical definition of cell assembly.

Definition 3.7 A cell assembly (at a threshold k) is the closure of the tight set.

19

Figure 3.1 : Threshold function f
k

for k = 2. On the left, we see the original graph
with only the given set S = {1, 2, 6} excited, f

k

(S) in the middle, and f 2
k

(S) in the
right.

The mathematical definition of cell assembly encompasses a variety of tight sets.

For instance, in Figure 3.1, S is a tight set and any superset of S is also a tight set.

Yet, Palm proposed that a minimal persistent set is a tight set [37]. Therefore, I focus

on the study of cell assemblies generated by minimal persistent sets.

3.2.2 k-assembly

Seidman introduced k-cores to study network structure, and demonstrate that k-core

cohesion increases as k increases [46]. He defined a k-core as a maximal connected

induced subgraph with degree greater than or equal to k. The maximal property of

Seidman’s definition will not be considered for the topic presented in this paper. In

other words, I define a k-core to only be a subgraph with minimum degree at least k.

Definition 3.8 A subgraph K ✓ G is a k-core if |N(v) \ V (K)|� k 8 v 2 V (K).

20

Definition 3.9 A k-core is minimal if no proper subset of its vertices induces a k-core.

It is clear by the definition that the subgraph generated by f
k

(Ṽ), for some Ṽ ✓ V

is a k-core if and only if Ṽ is a persistent set. That is if f
k

(Ṽ) is a k-core, then for

all ṽ 2 Ṽ | N(ṽ) \ f
k

(Ṽ) | � k, which implies Ṽ ✓ f
k

(Ṽ). Likewise, if Ṽ is a

persistent set, then Ṽ ✓ f
k

(Ṽ), which implies f
k

(Ṽ) is a k-core. In addition, note that

for an unweighted graph, the threshold function definition of a tight set S becomes

f
k

(S) = {v 2 V | |N(v) \ S |� k}, that is cl(S) generates a k-core. By definition, a

k-core is tight as long as its complement is not weak, since every subset of its vertex

set is persistent. Hence, the closure of any k-core generates a cell assembly.

The definition of cell assembly tell us that it only takes a fraction of the assembly

to get excited in order to excite the entire assembly. However, the motivation and

focus of my work comes from the study of cell assemblies generated by tight sets that

are minimal, that is the deletion of any node from the set generates a subset that

is not tight. In addition, the mathematical definition of cell assembly for its study

on simple graphs follows the definition of a k-core. According to Palm’s definition of

tight set, a particular type of tight set is a minimal k-core. Hence, the vertex set of

a minimal k-core generates a particular type of cell assembly called k-assembly.

Definition 3.10 A k-assembly is the closure of a minimal k-core.

Recall this definition only holds for cases in which the G has c(u, v) = 1 for all

e = uv 2 E. In figure 3.2, we observe on the left that any two adjacent vertices

satisfy the definition of cell assembly for k = 3, since the edges have weights with

21

value greater than one. Nevertheless, a set with less than k + 1 vertices cannot be

a minimal k-core, and its closure is not a k-assembly. In contrast, the graph on the

right has every edge with weight equal to one, and the entire vertex set constitutes a

3-assembly.

Figure 3.2 : Cell assembly vs. k-assembly for k = 3. The graph on the left satisfies
the definition of a cell assembly, but not of k-assembly. The graph on the right is a
3-assembly with c(u, v) = 1 for all e = uv 2 E

The definition of k-assembly and cell assembly served as motivation to solve the

problem of finding all cell assemblies and tight sets that generate them, in particular

minimal k-cores. The remainder of this paper focuses on solving the problem of finding

all minimal k-cores for a given simple undirected graph. Nevertheless, finding k-cores

is not an easy task, and I briefly discuss some complexity properties of problems that

deal with k-cores in the rest of this section.

Theorem 3.1 The k-core containment problem is NP -complete

22

Proof of Theorem 3.1. The decision version of the problem is the following:

Instance: Given a graph G and integers s  |V |

Question: Does G have a k-core of size s?

Clearly, the k-core problem belongs to NP since given a solution of the problem,

a nondeterministic Turing Machine checks if the choice is true in polynomial time.

Furthermore, If we restrict the k-core problem by considering only instances in which

the cardinality of the k-core s = k + 1, then we get the clique problem [20]. Hence,

the k-core containment problem is NP -complete. ⇤

The problem of finding all minimal k-cores also requires graphical enumeration

which refers to the art of counting the number of graphs with a specific property.

Note that for some problems to count the number of graphs with a given property is

harder than to determine if there exists a graph that satisfies such a property. For

instance, “Given a graph G and a fixed value k > 0 , how many distinct k-cores are

there for G? ” is not a trivial problem and it empirically depends on the density of

the graph. Enumeration problems associated with NP -complete problems are NP -

hard [20]. This is true since the enumeration version of the problem must be at least

as hard as the decision version of the problem. Hence the enumeration of k-cores is

NP -hard.

To study in depth enumeration problems the class #P was introduced [52].

Definition 3.11 The class #P contains all problems computed by nondeterministic

polynomial time Turing machines that have the additional facility of outputting the

23

number of accepting computations.

Moreover, #P -complete is the analog definition of NP -complete for P . The class

#P asks for the number of solutions rather than its existence. For NP -complete

problems counting the number of solutions is #P -complete. Therefore enumeration

of k-cores belongs to the class of #P -complete problems.

The detection of minimal k-cores is important since they denote the structural

motifs (i.e. building blocks of more complex networks) that must be excited in order

to propagate the excitation in the graph. The idea of k-assembly is related to motif

detection [49]. However, instead of restricting it to the study of motifs of certain size,

it focuses on the study of subgraphs that pass a certain threshold.

Previous Work on Solving the Minimal k-core Enumeration

Problem

The fact that a clique with vertex set cardinality k + 1 is a minimal k-core allows us

to say that algorithms performing clique enumeration were the first ones to attack a

subset of the problem I present in this paper.

The Maximal Clique Enumeration Problem (MCEP) asks to compile a list of all

maximal cliques in a given undirected graph G. Besides its applications in sociological

problems, it is also useful in the study of biological networks [10]. MCEP in the

worst case scenario runs exponential with respect to the number of vertices. More

specifically, the maximum number of maximal cliques in an n vertex graph is 3
n
3 [32].

24

In other words, it has been proved that there may be a graph with an exponential

number of maximal cliques, which implies that any algorithm that solves MCEP for

an arbitrary given graph would be exponential.

Bron and Kerbosch (B&K) developed a backtracking algorithm to solve MCEP in

1973 [8]. Although other algorithms to solve the problem were developed around the

same period [1], the B&K approach is still one of the most widely known to solve this

problem and it is used as a basis for other algorithms that solve MCEP. For further

discussion on modifications of B&K, see [11]. The B&K algorithm depends on the

number of nodes in the graph, and numerical experiments show it runs in O(3.14
n
3)

on Moon-Mooser graphs with a theoretical limit of 3
n
3 . The B&K Algorithm will be

discussed in more detail in the following section.

As MCEP, the Minimal k-core Enumeration Problem (MKEP) asks to create a

list of all minimal k-cores in a given undirected graph. There is not a known bound

for the maximum number of minimal k-cores on a given graph. However, the fact

that a clique with vertex set cardinality k+ 1 is a minimal k-core, intuitively tells us

that the number of minimal k-cores grows exponentially in the worst case scenario.

A solution to MKEP through exhaustive search has been proposed, it follows the

structure of a branching algorithm [15]. Their algorithm, as well as the one I propose

in the methods section initially obtain the maximum k-core. The following greedy

algorithm obtains the maximum k-core in polynomial time [2]:

25

Algorithm 3.1 [Maximum k-core]

MaximumKcore(G)

if G is empty

0. End

else

1.Choose a vertex v

of minimum degree �(v)

if �(v) � k

2. The minimum k-core is found

3. End

if �(v) < k

4. MaximumKcore(G := G\v)

A description of the algorithm proposed by [15] is the following:

26

Algorithm 3.2 [k-core Enumeration of G]

Given an undirected graph G = (V,E)

0. if G is a minimal k-core

End

else

1. Find the maximum k-core, call it H

for each v 2 V (H)

2. V (G) := V (H)\v

3. Go to step 1

The algorithm described above finds all minimal k-cores of a given graph. How-

ever, a major disadvantage is the fact that it may return the same minimal k-core

multiple times. It initially checks if the given graph G is a minimal k-core, and stops

in the case it is in fact a minimal k-core. Otherwise, it proceeds to find the maxi-

mum k-core, and then minimal k-cores. No numerical results are given for the k-core

enumeration approach performance. Yet, it is mentioned that it takes minutes to

enumerate the k-cores of a graph with a vertex set of 10 nodes. The algorithm I de-

veloped to solve MKEP will be discussed in the methods section and its performance

is analyzed in the numerical results section.

27

3.3 Methods: Backtracking Algorithm Techniques

Backtracking is a type of recursive strategy commonly used to find all the solutions

of some problem. It incrementally builds a tree in a such a way that it faces a number

of options at each level, and tries all of them. In a problem with N possible solutions,

exhaustive search techniques evaluate all the options in N trials. In contrast, a

backtracking algorithm yields the solution with less than N trials, and its solution

space is organized as a tree. Initially, it starts at the root of the tree and proceeds to

make a choice between one of its children, then it continues to make a choice among

the children of each node until it reaches a leaf. Each leaf is either a solution of the

problem or does not lead to a solution, and at that point the algorithm backtracks.

Fore more details on backtracking algorithms see [23] and [24].

In the remaining of this secton, I discuss two backtracking algorithms. The first

one solves the problem of finding all maximal cliques in a given graph. The second

one o↵ers a solution to the problem of listing all minimal k-cores of a graph. In

addition, an example of a backtracking tree is shown to illustrate the second presented

algorithm.

The Bron and Kerbosch Algorithm for Finding All Cliques of an Undi-

rected Graph

The B&K algorithm utilizes a recursively defined extension operator that is applied

to three sets: compsub, not and candidates. The set compsub contains the nodes

28

already defined as part of the clique and it is initially empty. The set candidates is

the set of nodes adjacent to all nodes in the set compsub. The set not stores the nodes

that had already been processed, leading to a valid extension of the set compsub and

should remain ignored. In addition to these three sets, there are nodes that are not

considered at each step.

In order to obtain all maximal cliques, a backtrack search tree is constructed

through recursive calls to the extension operator. Every time the recursion is called

the three main sets are modified. The set not and candidates are given to the ex-

tension operator as input parameters and are locally defined. In contrast, the set

compsub is globally defined and behaves like a stack. It is important to point out,

that if at some point the set not contains a vertex that is adjacent to all vertices in

compsub, then the algorithm backtracks since no further selection of candidates will

lead to obtaining a maximal clique from the current configuration of the set compsub.

The basic mechanism can be described in the following pseudocode:

29

Algorithm 3.3 [Bron and Kerbosch]

Extension(compsub, candidates, not)

if candidates = ; and not = ;

1. Report compsub as a maximal clique

else For each vertex v 2 candidates :

2. Select a candidate s

3. Add s to compsub such that

new compsub := compsub [s

4. Create new sets candidates and not

by removing all points not connected

to s and store old sets, that is

candidates := candidates \ N(s)

not := not [N(s)

5. Extension(compsub, candidates, not)

6. Upon return, remove s from compsub

and add it to not

compsub := compsub \ s

not := not [s

End

30

A clique is found if and only if the sets candidates and not are empty. If not is

not empty then the current configuration of the set compsub is not maximal. The

algorithm terminates if there is no candidates left or if there is an element in not that is

connected to all elements in the set candidates. If the second condition for termination

is met, then the addition of any candidate to compsub will not be maximal.

To optimize the algorithm and make it terminate as early as possible, the number

of times the extension operator is called must be minimized. To do this, every node

in not is assigned a counter that indicates to how many candidates a node is not

adjacent (or disconnected). I then proceed to pick the node with the smallest number

of disconnections and on each step select a candidates not adjacent to this node.

Algorithm for Finding All Minimal k-cores of an Undirected Graph

The problem of finding all minimal k-cores of a given graph is computationally ex-

pensive. There exists a variety of algorithms to find all cliques in a given undirected

graph. However, the B&K algorithm is commonly used to find all maximal cliques,

since numerical experiments support its e�ciency. I propose a modification of the

B&K algorithm to find all minimal k-cores on a given graph.

As in B&K, the algorithm presents a backtracking technique to find all minimal

k-cores. Three sets are utilized to obtain all minimal k-cores recursively, namely

kcore, not and candidates. However, since a k-core is a generalization of a clique,

31

and every clique on k + 1 or more nodes contains a minimal k-core, but not every

minimal k-core is a clique, there are some subtle changes in the definition of the sets.

For example, I take into account that given a connected simple undirected graph, all

minimal k-cores must be contained in the maximum k-core, which can be found in

polynomial time (for more details see [2]).

The set kcore stores the nodes that are part of a k-core and is initially the entire

vertex set. The set candidates contains the nodes that can be deleted to obtain a

minimal k-core. The set not represents the nodes that had already been processed

and cannot be deleted from kcore. As in B&K, these three sets are modified by a

recursively defined extension operator. The set kcore is globally defined, whereas, the

sets not and candidates are locally defined and handed as parameters to the extension

operator.

We construct our backtracking search tree by recursively calling the extension

operator. At the root of the search tree, the number of branches generated is equal

to the cardinality of the set candidates. Each branch corresponds to removing one

vertex from the configuration of the set kcore, and creating new sets candidates and

not. The algorithm always selects the vertex of smallest degree one at a time. It

continues traversing the search tree on a depth first search approach if there is at least

one vertex in the set candidates whose deletion leads to obtaining a k-core of smaller

cardinality and backtracks if the configuration of kcore cannot lead to returning a

minimal k-core. That is, if the set not contains vertices that must be deleted in order

32

to obtain a minimal k-core then no further calls to the extension operator will lead

to a valid configuration of the set kcore. Hence, such a branch must not be extended.

The basic idea behind the algorithm is the following:

33

Algorithm 3.4

0. Obtain maximum k-core

Extension (kcore, not, candidates)

if candidates = ; and kcore\v
i

does not induce a k-core 8 v
i

2 not

1. Report kcore as a minimal k-core

else For each vertex v 2 candidates :

2. Select a candidate s of smallest degree

3. Remove s from kcore such that

kcore := kcore\s and

candidates := candidates\s

4. Create new sets candidates and not

and store old sets, that is

candidates := set of all candidates

v 2 V \not that still leave a k-core

5. Extension(kcore, not, candidates)

6. not:= not [s

kcore:= kcore [s

candidates:= candidates\s

34

The majority of the steps described above are straight forward to implement.

However, there are several di↵erent options on how to implement step 2, which is

how to select a well chosen candidate to minimize the number of times the extension

operator is called. At the moment, it is impossible to give a good theoretical expla-

nation on why one way to choose a candidate is better than other. They vary on a

case by case basis, and its e�ciency is determined by observations on numerical ex-

periments. I chose to select a candidate of minimum degree because this way ensures

that the set not is filled in correctly. However, modifying the original given set of

candidates to be in the form required to be a candidate and selecting the candidate

of maximum degree will also yield a solution to the problem. Figure 3.3 displays the

backtrack search tree of the algorithm for a given graph G.

Now, I have to show that the proposed algorithm terminates and performs cor-

rectly. Clearly, for a given graph G with finite vertex and edge sets the algorithm

terminates since the number of subgraphs to enumerate is finite. However, the num-

ber of subgraphs in a given graph G depends on its structure, and it may be very large

for dense graphs. The next theorem is of extreme importance in showing correctness

of Algorithm 3.4, since it guarantees that for every subgraph that contains a k-core

all its minimal k-cores are generated without duplication.

Theorem 3.2 The extension of the backtracking search tree for a given configuration of

the set kcore by applying the extension operator generates all minimal k-cores without

repetition that contain kcore\v
i

8 v
i

2 candidates

35

Figure 3.3 : Backtrack search tree for a given graph G. The root of the tree contains
the entire graph and the leaves contain minimal k-cores or extensions that made the
algorithm backtrack. The sets kcore, not and candidates follow the definitions of
Algorithm 3.4

Proof of Theorem 3.2. This proof is by strong induction on the cardinality of the set

kcore.

For our base case, We consider |kcore| = k + 1 8 k > 0. If |candidates| = 0

then k-core is minimal. Since we start with the largest k-core of the graph and our

algorithm only allows to remove a vertex v 2 V \not such that the subgraph obtain

by the deletion of this vertex contains a k-core. The case |candidates| > 0 is not

possible, since it implies that there exist a k-core of cardinality less than or equal to

k which is false by definition of a k-core.

Now suppose that the statement is true for all l > k 2 Z such that l  N , and

that all minimal k-cores obtained by removing an element of not from the current

36

configuration of the set kcore have been previously generated. We can suppose the

later since it is guaranteed by our definition of the set candidates.

Consider a configuration of kcore with cardinality N +1. Let {v1 . . . vc} represent

the set of candidates for c � 0. If |candidates\v
i

| = 0 for some 0  i  c then we

have that kcore is a minimal k-core.

If |candidates\v
i

| > 0 the we have the following two cases:

Choose ṽ as in step 2 of our algorithm and create a new set of candidates :=

candidates\ṽ, proceed to call extension(kcore\ṽ, candidates, not). If the cardinality

of the new set of candidates is greater than 0, then by inductive hypothesis we have

that the statement is true for l = N + 1. If it is zero then kcore\ṽ is not minimal,

and ṽ is added to not. Which completes our proof and we get that Theorem 3.2 is

true 8 n 2 Z. ⇤

Since Theorem 3.2 is true for any subgraph of any given finite cardinality, we get

that Algorithm 3.4 finds all minimal k-cores of a given undirected graph without rep-

etition. In the following section, the results from running the backtracking algorithm

for several test instances are presented.

3.4 Numerical Results

Algortithm 3.4 was implemented using C++ and tested in workstation with a AMD

Opteron(tm) Processor 148. Results of numerical experiments are run to test the

backtracking algorithm on random graphs. More specifically, I utilized graphs that

37

follow a Bernoulli process in the generation of edges, and are known as Bernoulli

random graphs, as well as regular graphs. The existence of an edge in Bernoulli

random graphs occur independently between each pair of nodes. For instance, given

some probability p and the number of vertices n. There exists an edge (i, j), where

i 6= j and 0 < i, j  n. In contrast, regular graphs have the property that each vertex

has the same degree.

A summary of the obtained results is presented at the end of this section, where

one hundred Bernoulli random graphs were generated for each test instance, then the

average time and number of k-cores were computed among the number of graphs that

in fact contained at least one k-core for k = 2, 3 and 5.

The average number of minimal k-cores is displayed to highlight the fact that the

number of minimal k-cores depends on the density of the graph, and not on the value

of k. Even though every k-core is a k� 1-core, the fact that I restrict the solution set

to k-cores that are minimal give us cases in which the number of k-cores is greater

that the number of k � 1-cores.

The tables below illustrate the performance of Algorithm 3.4 when the number

of vertices n = 10, 15, 20 and 25, the probability for generating an edge p = 0.1, 0.5

and 0.7 and the value of k = 2, 3 and 5. # of k-cores denotes the average number of

k-cores on the tested graphs, and # of Graphs is the number of graphs that at least

contained one k-core.

In table 3.1, we observed the results for graphs with 10 vertices. The graphs

38

k p # of k-cores Average Time # of Graphs

2 0.1 1.1764 ⇡ 0 s 17

3 0.1 0 ⇡ 0 s 0

5 0.1 0 ⇡ 0 s 0

2 0.5 27.72 ⇡ 0 s 100

3 0.5 12.2041 ⇡ 0 s 98

5 0.5 1 ⇡ 0 s 6

2 0.7 57.14 0.0001 s 100

3 0.7 54.02 ⇡ 0 s 100

5 0.7 5.4634 ⇡ 0 s 82

Table 3.1 : Algorithm 3.4 performance for n = 10 and p = 0.1, 0.5 and 0.7

generated with probability 0.1 only had a few 2-cores, since they are not dense enough

to even contain k-cores for larger values of k. As the probability increased, we observed

that more minimal 3-cores and 5-cores were part of the random graphs. However,

the average number of minimal 2-cores is always greater than 3-cores and 5-cores. It

is important to point out, that we observe this behavior only because the vertex set

cardinality is small. But, it is not always the case to have more minimal 2-cores than

minimal 3-cores as we will see in later results.

In Table 3.2, the results for graphs with 15 vertices are displayed. We still observe

a low existence of minimal k-cores for sparse graphs with p = 0.1. However, graphs

39

k p # of k-cores Average Time # of Graphs

2 0.1 1.9108 ⇡ 0 s 56

3 0.1 0 0 s 0

5 0.1 0 0 s 0

2 0.5 166.54 0.0636 s 100

3 0.5 303.01 0.059 s 100

5 0.5 25.22 0.0029 s 90

2 0.7 258.46 0.0577 s 100

3 0.7 630.02 0.0604 s 100

5 0.7 619.09 0.0457 s 100

Table 3.2 : Algorithm 3.4 performance for n = 15 and p = 0.1, 0.5 and 0.7

generated with probabilities 0.5 and 0.7 show a di↵erent behavior and contain a larger

number of k-cores. Note that in contrast to graphs on 10 vertices, on these cases the

number of minimal 3-cores is larger than the number of minimal 2-cores and decreases

again for the number of 5-cores.

Table 3.3 displays the results obtained for random graphs with 20 vertices. In

the set of graphs generated with p = 0.7, we observe that the average number of

minimal 5-cores exceeds the average number of minimal 3-cores and 2-cores. The

same behavior is observed in Table 3.4 for random graphs on 25 vertices with p = 0.5

and 0.7. In terms of k-assemblies, we observe that at a fixed threshold the number

40

k p # of k-cores Average Time # of Graphs

2 0.1 6.8370 1.8583 s 92

3 0.1 2 0.485 s 2

5 0.1 0 0 s 0

2 0.5 635.11 2.3256 s 100

3 0.5 3511.19 1.4819 s 100

5 0.5 2661.11 0.0029 s 100

2 0.7 791.66 2.0905 s 100

3 0.7 3902.45 2.3057 s 100

5 0.7 17010.33 2.9131 s 100

Table 3.3 : Algorithm 3.4 performance for n = 20 and p = 0.1, 0.5 and 0.7

of minimal sets that generate a k-assembly increase as k increases. This tells us that

the number of minimal 2-cores is smaller than the number of minimal 3-cores and

5-cores, which is not true in general if the k-cores are not minimal.

In Table 3.4, we observe an interesting phenomena, which is that Algorithm 3.4

finds all minimal k-cores of a random graph faster when the graph is dense for the

three values of k utilized to test it. Although, this result may seem counterintuitive,

observations showed that the algorithm backtracks faster whenever it is dealing with

a dense graph. Algorithm 3.4 initially takes longer to output the first minimal k-core

for a dense graph than for a sparse one. However, after the first minimal k-core is

41

k p # of k-cores Average Time # of Graphs

2 0.1 25.13 122.0613 s 99

3 0.1 1.833 2.905 6

5 0.1 0 0 s 0

2 0.5 1990.34 85.1718 s 100

3 0.5 25318.58 101.519 s 100

5 0.5 84110.96 117.7972 s 90

2 0.7 1900.64 80.9009 s 100

3 0.7 16796.83 83.4447 s 100

5 0.7 211859.96 109.2354 s 100

Table 3.4 : Algorithm 3.4 performance for n = 25 and p = 0.1, 0.5 and 0.7

found; it backtracks to deal with more cases in which minimal k-cores in fact exist and

with less configurations of the set compsub that do not lead to obtaining a minimal

k-core.

In addition to Bernoulli random graphs, random 5-regular graphs with n = 30

were tested to check if we observe the same behavior as in random graphs, see Table

3.5. As expected they only had one minimal 5-core. However, they also contain a

greater number of 3-cores than 2-cores.

The results for the 5-regular graphs are very similar regardless of the probability

of their generation. This is due to the fact that they share the same structure.

42

k p # of k-cores Average Time # of Graphs

2 0.1 29229.97 2512.11 s 100

3 0.1 31860.98 398.71 s 100

5 0.1 1 ⇡ 0 s 100

2 0.5 29302.06 2512.46 s 100

3 0.5 31907.16 402.9 s 100

5 0.5 1 ⇡ 0 s 100

2 0.7 29217.7 2511.61 s 100

3 0.7 32036.35 392.18 s 100

5 0.7 1 ⇡ 0 s 100

Table 3.5 : Algorithm 3.4 performance for 5-regular graphs with n = 30 and p = 0.1, 0.5 and 0.7

Nonetheless, it is still necessary to check if these type of graphs follow the same

behavior as Bernoulli random graphs, since the brain is neither completely random

nor regular.

3.5 Discussion

In this chapter, I proposed a backtracking algorithm to find all minimal k-cores whose

excitation can activate a k-assembly. The motivation to study this problem emerges

from the urge to understand memory. Palm formulated the main problem of the

theory of cell assemblies by asking the total number of cell assemblies at a given

43

threshold k. The proposed algorithm is closely related to this problem since it allows

us to find the total number of subsets that generate k-assemblies on a given graph.

Through numerical experiments I confirm that fractions of these important subsets

overlap. These overlappings tell us that concepts are organized in groups and certain

triggers activate associated memories.

An extension to the graph theoretical approach for the analysis of associative

memory introduced by Palm is presented along with details on the derivation of the

k-assembly from the cell assembly model. Although Algortihm 3.4 is not fast enough

to solve the problem in a brain-sized neuronal network, it does o↵er a solution to

the problem, permits us to analyze the structure of a given random graph and gain

insight on understanding k-assemblies and cell assemblies. For instance, the fact that

for some graphs there may be a larger number of minimal 5-cores than 3-cores allowed

us to observe how the structures overlap. If we look at it in terms of memory, we

can tell that certain nodes are members of several k-assemblies, and the absence of

one of them may change the structure of the network completely. If larger data sets

become available we could use standard techniques for network clustering or k-core

decomposition that would allows us to partition the graph and find minimal k-cores

within the partitions.

One of the limitations of the algorithm is that it only finds minimal k-cores in

undirected graphs and directed graphs are more realistic for real-world applications.

However, I can extend the definition of a k-core to directed graphs by considering

44

the in and out degree of a given graph. Then proceed to find minimal k-cores in

the undirected version of the graph utilizing Algorithm 3.4. Finally, check if each of

the k-cores obtained from the undirected graph is still a k-core in terms of in or out

degree.

The objective of this project was to gain understanding about the k-assembly

model and to solve the problem of finding all minimal k-cores of an undirected graph.

There is still much to explore in the model of the k-assembly. In particular, it would

be interesting to study the k-assembly for a non-fixed value of k. For this approach,

it would be necessary to analyze the change in the value of k with respect to time

and design a dynamical system on the graph. In terms of the algorithm, a promising

research direction is to explore the structure of the graph to minimize the number

of times the extension operator is called; this would be extremely helpful for solving

the problem on sparse graphs. In general, the problem of finding all minimal k-cores

continues to be di�cult to solve due to the fact the number of minimal k-cores in a

graph grows with the number of vertices and edges. Therefore, any condition to make

Algorithm 3.4 backtrack faster or that minimizes the number of times the extension

operator is called would be a significant contribution to the solution of the problem.

45

Chapter 4

The Maximum Weighted Co-2-Plex Problem

4.1 Introduction

A set of pairwise non-adjacent vertices defines a stable set. In the context of applica-

tions, the rigid structure of stable sets can be restrictive and sensitive to data error.

In response, a recent line of research focuses on stable set relaxations. In this work, we

concentrate on a degree-based stable set relaxation called the co-2-plex. The graphs

in this paper are all finite, simple, and undirected. Throughout this chapter I utilized

first person plural due to the fact that the work presented in this chapter was made

in collaboration with Benjamin McClosky.

We present two new algorithms for solving the maximum weighted co-2-plex prob-

lem (MWC2P) for {claw, bull}-free graphs. The MWC2P problem determines a sub-

set of vertices of maximum total weight, in which each node has at most one neighbor

in the set. In this article, we show the MWC2P problem for {claw, bull}-free graphs

can be solved in polynomial time. First, we reduce the original graph to one that is

claw-free. Then, we utilize Minty’s algorithm to solve the maximum weighted stable

set problem (MWSSP). In addition, we present a a generalization of Minty’s algo-

rithm that solves the MWC2P in the original graph. Our results add to the current

46

line of research focusing on stable set relaxations.

4.2 Basic Terminology and Background

Given a graph G = (V,E), let G[S] denote the subgraph induced by S ✓ V . Define

N
G

(v) = {u 2 V |uv 2 E}, deg
G

(v) = |N
G

(v)|, and �(G) = max
v2V degG(v) as the

neighborhood, degree and maximum degree of a vertex v. Let Ḡ = (V, Ē) be the

complement of G, where e 2 Ē if and only if e 62 E.

A claw is a graph consisting of a vertex with three pairwise non-adjacent neigh-

bors. A paw is a graph conformed by a triangle and a vertex adjacent to one of the

vertices in the triangle. A bull is a graph that contains a triangle and two vertex-

disjoint pendant edges. A graph is called {claw, bull}-free if none of its induced

subgraphs is a bull or a claw. Figure 4.1 provides a visualization of a claw and a bull

graph.

Figure 4.1 : On the left, we see a claw and a bull on the right.

47

The algorithms presented in this paper assume the given graphs are {claw, bull}-

free.

Definition 4.1 S ✓ V is a co-k-plex if �(G[S])  k � 1 8 v 2 S and k � 1.

A co-k-plex in G defines a k-plex in Ḡ. In 1978, Seidman and Foster introduced

co-k-plexes and k-plexes in the context of social network analysis [47]. A co-1-plex is

also known as an independent set or a stable set, a set in which none of the vertices

are adjacent. When k = 2, we obtain a co-2-plex, which is a subset of vertices in

which each vertex is adjacent to at most one other vertex in the set. McClosky

and Hicks studied the co-k-plex polytope and showed that certain cycles, webs, and

claw-like structures induce facets for the co-2-plex polytope. In addition, they used

co-2-plexes to characterize a class of integral polyhedra [29]. For a thorough study of

the co-k-plex polyhedra see [28].

Given a graph G and a set of vertex weights, the maximum weighted co-2-plex

(MWC2P) problem identifies the co-2-plex subgraph with the maximum total weight.

At the moment, there does not exist a polynomial-time algorithm to solve the MWC2P

problem in general. However, there are results that lead us to focus on graphs with

a particular structure.

Theorem 4.1 Given G, let K be the set of maximal 2-plexes in G. The polytope

{x 2 Q|V | : 0  x
v

 1,
X

v2K

x
v

 2 8 K 2 K}

48

is integral if and only if G is {claw, paw}-free and does not contain any induced cycle

Cn such that n 6⌘ 0 mod 3 [29].

Theorem 4.1 relies on a related structural result which states that any {claw,

paw}-free graph must be a path, cycle, or 2-plex [29]. Due to their simplicity, the

{claw, paw}-free graphs do not warrant further research from an algorithmic perspec-

tive. Consequently, we focus on solving the MWC2P problem for {claw, bull}-free

graphs and show the aforementioned graphs define polynomial time instances of the

problem. We show that the MWC2P in {claw, bull}-free graphs reduces to the max-

imum weighted stable set (MWSS) problem in a claw-free graph. Minty proposed a

polynomial time algorithm for solving MWSSP on a claw-free graph [31]. As a result,

we present two polynomial time algorithms to solve the MWC2P problem in {claw,

bull}-free graphs.

4.3 A Tractable Instance of the Maximum Weighted Stable

Set Problem

Similarly to the MWC2P problem, the MWSS problem determines the stable set

subgraph with the maximum total vertex weight. There does not exist a polynomial

time algorithm to solve the MWSS problem in general graphs. However, George Minty

proposed a polynomial time solution to the MWSS problem for claw-free graphs, since

one can determine in linear time whether or not a graph is claw-free [31]. Minty’s

algorithm was corrected by Nakamura and Tamura in 2001[34]. The algorithm is

49

based on the observation that whenever a graph is claw-free the symmetric di↵erence

between two stable sets will be a path or a cycle. Hence, Minty’s algorithm finds

augmenting paths to increase the weight of an initial stable set.

Given a weighted claw-free graph, with weight w. Mintys algorithm classifies the

vertices of the graph. A vertex is labeled black if it belongs to the stable set and

white otherwise. A white vertex is further classified by its number of black neighbors.

It is labeled as super-free, free, or bounded if it is adjacent to 0, 1, or 2 black vertices,

respectively. Since the graph is claw-free a white vertex can be adjacent to at most

two black vertices.

Minty’s algorithm proceed to find maximum weighted augmenting paths between

two non-adjacent free vertices. An alternating path is a sequence of vertices in which

black and white vertices alternate in adjacency (i.e. W-B-W-B-W). The weight of a

path is defined as the weight of white vertices minus the weight of the black vertices.

An augmenting path is an alternating path whose weight is positive. A maximum

weighted white augmenting path (MWWAP) is one whose weight is maximum be-

tween the two free vertices. The symmetric di↵erence between the current stable set

and a MWWAP forms a stable set with larger weight. The algorithm continues until

it cannot find any MWWAP. Minty proved that a stable set has maximum weight if

no maximum augmenting path exists [31]. In addition, he showed that a maximum

augmenting path can be found in polynomial time. Hence, Mintys algorithm solves

the MWSS problem in polynomial time.

50

4.3.1 Minty’s Algorithm

The algorithms presented on this paper follow the structure Minty’s algorithm. The

first algorithm reduces the given graph to an instance of the MWSS problem, then

it utilizes Minty’s algorithm to obtain a solution. The second algorithm utilizes

maximum weighted white augmenting paths (MWWAP), that is, paths with white

ending vertices and positive weight. It divides its vertex set in two, black and white.

Then it finds MWWAPs to increase the weight of a co-2-plex until its weight is

maximum among all other co-2-plexes. A more thorough definition of augmenting

paths will be given in Section 4.4.2.

Given a weighted claw-free graph, Mintys algorithm classifies the vertices of the

graph. A vertex is labeled black if it belongs to the stable set. A vertex is labeled

white if it does not belong to the stable set. White vertices are classified by its

number of black neighbors. They are labeled superfree, free, or bounded if they are

adjacent to 0, 1, or 2 black vertices, respectively. A white vertex cannot be adjacent

to three or more black vertices, otherwise it would contradict the fact that the graph

is claw-free.

Algorithm 4.1 gives an overview of Minty’s algorithm, which is key in understand-

ing the work presented in this paper. Most of the steps described in Algorithm 4.1

are not computationally expensive. Nevertheless, finding the MWWAP between two

distinct free vertices is not a simple task. Throughout the rest of this section we will

discuss the steps necessary to find a MWWAP.

51

In order to find a MWWAP between two vertices, Minty proposed a transfor-

mation of the original problem into an instance of the maximum weighted match-

ing problem by constructing a very specific graph, called the Edmonds’ graph[31] .

The celebrated Edmonds blossom algorithm solves the weighted matching problem in

polynomial time [17]. Cook and Rohe design an e�cient implementation of Edmonds’

blossom algorithm [14] [13]. Sbihi generalized the blossom algorithm to find maxi-

mum cardinality stable sets in claw-free graphs [45]. The Sbihi and Minty algorithms

run in polynomial time and exemplify how the exclusion of an induced subgraph can

result in tractable instances of otherwise NP-hard problems.

Algorithm 4.2 provides an outline to find a MWWAP between two distinct free

vertices [34]. Nakamura and Tamura confirmed the correctness of algorithm 4.2,

but realized that the execution of 2.2.2 contains an error [34] . Before exploring the

mistake of Algorithm 4.2, to understand how to find a MWWAP and the construction

of the Edmonds’ graph, the reader must be introduced to a series of definitions. For

more details on the definitions provided in this section see [31] and [34].

52

Algorithm 4.1

1. S = ;

2. while S is not optimal

2.1 Classify the white vertices based o↵

the black vertices

2.2 Find a MWWAP

2.3 if no such path exists

break

2.4 S = S�P

end while

3. return S

A reduced basic structure (RBS) is the reduced graph obtained by ignoring all of

the super free, free vertices except a and b, and all the white vertices that are adjacent

to a and b, since they would never appear in an alternating path between a and b. In

addition, the RBS includes the weight function w and the semi-optimal stable set S.

A wing refers to a nonempty set of bounded vertices, which are adjacent to the

same two black vertices x and y. Vertices x
a

and x
b

are called regular I, a black

vertex is classified regular II if it is adjacent to three or more wings, irregular if

it is adjacent to exactly two wings, and useless otherwise. Let (v0, v1, v2, . . . , v2l)

be a black alternating path. If v2, v4, . . . , v2l�2 are all irregular then the subpath

(v1, v2, . . . , v2l�1) is called an irregular white alternating path (IWAP) between v0

53

and v2l.

Algorithm 4.2

2.1 Generate all white alternating paths

of length 0 and 2

2.2 for each pair of non-adjacent free

vertices a and b

2.2.1 Let x
a

and x
b

be the black

vertices adjacent to a and b

2.2.2 if x
a

6= x
b

find a MWWAP

between a and b

end if

end for

2.3 if all white alternating paths generated

have nonpositive weight

return S

end if

2.4 Choose MWWAP P ? among all generated

white alternating paths

The neighbor sets of vertices x
a

and x
b

are partitioned into two sets, N1(x
a

) = {a}

and N2(x
a

) = N(x
a

) \ {a}, N1(x
b

) and N2(x
b

) are defined in a similar manner. For

any regular II vertex v, N(v) is uniquely partitioned into N1(v) and N2(v) so that

54

for any x and y in distinct wings adjacent to a vertex v, x is not adjacent to y if

and only if one of x and y is in N1(v) and the other in N2(v).The aforementioned

concepts are necessary to define the Edmonds’ graph with vertex set V̂ , edge set Ê.

In addition, each edge is assigned a color ĉ, for more details see Algorithm 4.3.

55

Algorithm 4.3

Given the RBS

3.1 V̂ = {â = a, b̂ = b} and Ê = ;

3.2 Label the set of black vertices as:

regular I, regular II, irregular or useless

3.3 Let x1 . . . xr

be the set of regular I and II vertices

3.4 for i = 1 . . . r

V̂ = V̂ [{x1
i

, x2
i

}

Ê = Ê [{x1
i

x2
i

}

ŵ(x1
i

x2
i

) = w(x
i

)

ĉ(x1
i

x2
i

) = black

end for

3.5 Ê = Ê [{âx1
a

}, ŵ(âx1
a

) = w(x
i

)

and ĉ(âx1
a

) = white

3.6 Ê = Ê [{b̂x1
b

}, ŵ(b̂x1
b

) = w(x
i

)

and ĉ(âx1
b

) = white

3.7 for each pair of regular vertices x
i

and x
j

for p, q 2 {1, 2}
if there exists an IWAP with ends 2 Np(x

i

) and N q(x
j

)

Ê = Ê [{xp

i

xq

i

}
ŵ(xp

i

xq

j

) = max
x2IWAP

w(x)

ĉ(xp

i

xq

i

) = white

end if

end for

end for

56

In the Edmond’s graph, a simple path is an alternating path if black and white

edges appear alternately, black and white alternating paths are defined similarly to

the vertex version. The weight of a path P̂ is the sum of the weights of the white

edges minus the sum of the weight of the black edges and denote it �̂(P̂). A maximum

weighted matching in the Edmonds’ graph gives us a MWWAP in the original graph.

4.3.2 Tamura and Nakamura’s Correction

The procedure described in Algorithm 4.3 works as long as the matching consisting

of black edges is semi-optimal. Nakamura and Tamura noticed that any graph that

does not have a semi-optimal matching contains one of the following subgroups [34] :

1. An augmenting cycle

2. A white-black augmenting path with an unmatched endpoint

3. A black alternating path P and a white alternating path Q such that the end-

points of Q are unmatched, P and Q are vertex disjoint and �̂(P) + �̂(Q) > 0

(referred to as augmenting path pair)

4. A black augmenting path

The Edmond’s graph contains only one special case of the aforementioned sub-

graphs. That is, augmenting cycles of length less than or equal to 6 [34]. Nakamura

and Tamura observed that is only necessary to eliminate augmenting cycles of length

4, while preserving all alternating paths between â and b̂ to correct the Edmonds’

57

graph. They pointed out that the Edmond’s graph has no alternating cycle contain-

ing (x1
a

, x2
a

) or (x1
b

, x2
b

), as a consequence one could fix distinct regular II vertices x
i

and x
j

. Let P
pq

be the maximum weight IWAP corresponding to the edge (xp

i

, xq

j

) in

the Edmonds’ graph, if such edge exists for p, q 2 {1, 2}, and considered the following

cases where an augmenting cycle of length 4 exists:

Case A: there exist both P11 and P22, and �(P11) + �(P22) > w(x
i

) + w(x
j

)

Case B: there exist both P12 and P21, and �(P12) + �(P21) > w(x
i

) + w(x
j

)

A wing W is reachable by irregular vertices to a regular vertex x if there exists

an integer l � 1, distinct irregular vertices z1, . . . , zl�1 and distinct wings W1 . . .Wl

such that W1 is adjacent to z1 and W
k

is adjacent to z
k�1 and z

k

for k = 2, . . . , l and

z
l

= x. Let W (x
i

, x
j

) denote the union of all wings that are reachable by irregular

vertices by x
i

and x
j

[34].

The following four lemmas allowed Nakamura and Tamura to correct the Ed-

monds’ graph:

Lemma 4.1 If N1(x
j

) ✓ W (x
i

, x
j

), then any white alternating path between a and

b in the RBS passes through neither P12 nor P22. That is, we can delete the edges

(x1
i

, x2
j

) and (x2
i

, x2
j

) from the Edmonds’ graph. Similarly if N2(x
j

) ✓ W (x
i

, x
j

), we

can delete (x1
i

, x1
j

) and (x2
i

, x1
j

). If N1(x
i

) ✓ W (x
i

, x
j

) we can delete (x2
i

, x1
j

) and

(x2
i

, x2
j

). If N2(x
i

) ✓ W (x
i

, x
j

) we can delete (x1
i

, x1
j

) and (x1
i

, x2
j

).

For the following lemma only case A is considered (case B is symmetric). Let us

assume none of N1(x
i

), N2(x
i

), N1(x
j

) and N2(x
j

) are contained in W (x
i

, x
j

).

58

Lemma 4.2 Paths P11 and P22 have the same irregular vertices (which may be empty).

Lemma 4.3 If the set of irregular vertices in P11 and P22 is empty, any white alternat-

ing path from a to b does not pass through P11 nor P22. Hence, we can delete (x1
i

, x1
j

)

and (x2
i

, x2
j

) from the Edmonds’ graph (Case B does not occur for the same pair x
i

and x
j

).

By Lemma 4.2, P11 = (y11, z1, . . . , y
1
l�1, zl�1, y1

l

) and P22 = (y21, z1, . . . , y
2
l�1, zl�1, y2

l

).

Where z1, . . . , zl are irregular vertices, y1
k

and y2
k

are in the same wing W
k

for k =

1 . . . l, y11 2 N1(x
i

), y21 2 N2(x
i

), y1
l

2 N1(x
j

) and y2
l

2 N2(x
j

).

Lemma 4.4 1. If the set of irregular vertices in P11 and P22 is the same and not

empty. There exists 2  k  l � 1 and y1
k

= y2
k

, or there exists 1  k  l � 1

such that y1
k

is not adjacent to y2
k+1 and y2

k

is not adjacent to y1
k+1.

2. For such k, let

P11i = (y11, z1, . . . , y
1
k�1, zk�1, y1

k

),

P11j = (y1
k+1, zk+1, . . . , y1

l�1, zl�1, y1
l

),

P22i = (y21, z1, . . . , y
2
k�1, zk�1, y2

k

),

and P22j = (y2
k+1, zk+1, . . . , y2

l�1, zl�1, y2
l

),

and let P 0
12 = (P11i, zk, P22j) and P 0

21 = (P22i, zk, P11j). Then �(P 0
12) + �(P 0

21) =

�(P11)+�(P22), P 0
12is an IWAP between N1(x

i

) and N2(x
j

), and P 0
21 is an IWAP

59

between N2(x
i

) and N1(x
j

).

3. �(P11) + �(P22) = �(P12) + �(P21).

4. �(P 0
12) = �(P12) and �(P 0

21) = �(P21)

The correction of the Edmonds’ graph deals with Lemmas 4.1, 4.3 and 4.4. For

the first two it is only necessary to delete the unnecessary edges in order to get rid of

the unwanted augmenting cycles. For the last case the following steps must be taken

into consideration.

1. delete the four edges (x1
i

, x1
j

), (x2
i

, x2
j

) , (x1
i

, x2
j

) and (x2
i

, x1
j

),

2. add two new vertices zi
k

and zj
k

, join them with a black edge and let ŵ((zi
k

, zj
k

)) =

ŵ(z
k

).

3. add four white edges (x1
i

, zi
k

), (x2
i

, zi
k

), (x1
j

, zj
k

) and (x2
j

, zj
k

). Assign their weights

to be ŵ((x1
i

, zi
k

)) = �(P11i), ŵ((x2
i

, zi
k

)) = �(P22i), ŵ((x1
j

, zj
k

)) = �(P11j) and

ŵ((x2
j

, zj
k

)) = �(P22j).

Nakamura and Tamura proved that by applying their revision for every pair of

regular II vertices x
i

an x
j

when case A or case B occured the edges in the Edmonds’

graph form a semi-optimal matching [34] . In addition, they showed that it is still

possible to solve MWSS problem for claw-free graphs in polynomial time by adding

the correction of the Edmonds’ graph. This is due to the fact that the number of cycles

of length 4 is polynomially bounded. As a consequence, the revised Edmonds’ graph

60

can be constructed in polynomial time. In the following sections we will introduce two

algorithms that are based on this revision of Minty’s algorithm to solve the MWC2P

problem.

4.4 Algorithms for Finding the Maximum Weighted Co-2-

Plex in a {claw, bull}-Free Graph

In this section, we present two algorithms to solve the MWC2P problem in a graph

that is {claw, bull}-free. The first one is based on a reduction of the original claw,

bull}-free graph into one that is only claw-free. Then we use the revised version of

Minty’s algorithm to solve the MWSS problem in the reduced graph. This optimal

set corresponds to the maximum weighted co-2-plex in the original graph. The re-

duction as well as the revised version of Mintys algorithm can be done in polynomial

time. Hence, the entire algorithm can be executed in polynomial time. The second

algorithm follows the structure of the revised version of Minty’s algorithm with subtle

changes in the vertex labeling process, that allow us to find a co-2plex of maximum

weight in the original graph. Let us first introduce the reader to the algorithm based

on reduction of the original graph.

4.4.1 The reduction

Given a graph G, this section defines a related graph G0 and establishes a correspon-

dence between the set of co-2-plexes in G, I2
G

, and the set of stable sets in G0, I
G

0 . De-

61

fine V = V [E so that the elements of V consist of singletons and pairs from V . That

is, any element T 2 V has the form T = {v} for some v 2 V or T = {u, w} for some

uw 2 E. Let E = {S, T 2 V : S \ T 6= ?} [{S, T 2 V : 9u 2 S, 9v 2 T s.t. uv 2 E},

G0 = (V , E), n = |V |, n0 = |V|, m = |E|, and m0 = |E|. See Figure 4.2 for an example

of a G,G0 pair. The fact that n0 = n +m implies that the reduction is polynomial.

In this section we construct mappings : I2
G

7! I
G

0 and � : I
G

0 7! I2
G

to show show

that MWC2P on G reduces to MWSSP on G0

Figure 4.2 : Example of a G,G0 pair via the reduction.

Given a co-2-plex S ✓ V , consider the partition S = S0 [S1 where S
i

= {u 2 S :

deg
G[S](u) = i}. Note that u 2 S1 implies |N

G[S](u)| = 1. Let

 (u) =

8
>>><

>>>:

{u} if u 2 S0,

{u,N
G[S](u)} if u 2 S1.

(4.1)

Define (S) ✓ V to be the image of S under . By construction, for all u 2 S

|{U 2 (S) : u 2 U}| = 1. (4.2)

62

and U ✓ S for all U 2 (S).

Lemma 4.5 (S) 2 I
G

0 for all S 2 I2
G

.

Proof 4.1. Consider distinct sets T,W 2 (S). Observe that T,W ✓ S and T \W 6=

? together contradict (4.2). Therefore, T \W = ?.

Now suppose there exists t 2 T and w 2 W such that wt 2 E. It follows from

T,W ✓ S that wt 2 E(G[S]). Consequently, (w) = (t) = {w, t} and (4.2) together

imply T = W, a contradiction. Therefore, TW 62 E , and (S) defines a stable set in

G0.

⇤

Conversely, given a stable set I ✓ V in G0, define �(I) =
S

T2I T.

Lemma 4.6 �(I) 2 I2
G

for all I 2 I
G

0 .

Proof 4.2. First note that �(I) ✓ V . For the assertion to fail, there must exist a

vertex of degree at least two in G[�(I)]. Given any triplet v1, v2, v3 2 �(I), there exist

sets V1, V2, V3 2 I such that v
i

2 V
i

. If V
i

\ V
j

= ? for each pair i, j 2 {1, 2, 3}, then

the definition of E and I 2 I
G

0 together imply that {v1, v2, v3} induces a stable set in

G[�(I)].

Without loss of generality, suppose V1 \ V2 6= ?. Now I 2 I
G

0 implies V1 = V2 =

{v1, v2}, since otherwise V1V2 2 E. To complete the proof, use I 2 I
G

0 to deduce that

V3 \ {v1, v2} = ? and v1v3, v2v3 62 E. It follows that �(G[�(I)])  1.

63

⇤

The following lemma uses the mappings and � to show that MWC2P on G

reduces to MWSSP on G0. Given a weight c
v

for each v 2 V , define c
T

=
P

v2T c
v

for

all T 2 V . Using these weights, let z⇤1 and z⇤2 be the optimal solutions to MWSSP on

G0 and to MWC2P on G, respectively.

Lemma 4.7 z⇤1 = z⇤2.

Proof 4.3. Given an optimal weighted co-2-plex S⇤ ✓ V, Lemma 4.5 implies that

 (S⇤) is a stable set in G0. Moreover, (4.2) implies that
P

T2 (S⇤) cT =
P

v2S⇤ c
v

= z⇤2 ,

and so z⇤1 � z⇤2.

Conversely, given an optimal weighted stable set I⇤ ✓ V , Lemma 4.6 implies that

�(I⇤) is a co-2-plex in G. Furthermore, I⇤ 2 I
G

0 requires that for every u 2 �(I⇤),

there exist a unique T 2 I⇤ such that u 2 T. Therefore,
P

v2�(I⇤) cv =
P

T2I⇤ cT = z⇤1,

and so z⇤1  z⇤2.

⇤

Theorem 4.2 MWC2P can be solved in polynomial time on {claw,bull}-free graphs.

Proof 4.4. Since Lemmas 4.5, 4.6, and 4.7 establish the necessary correspondence

between G and G0, it su�ces to show that G0 is claw-free whenever G is {claw,bull}-

free. From here, simply use Minty’s algorithm to solve MWSSP on G0.

Let G be {claw,bull}-free, but suppose G0 contains a claw C ✓ V. Let T 2 C be

the vertex such that deg
G

0[C](T) = 3. By construction, T 2 V either corresponds to

64

a singleton or a pair in V . Let U1, U2, U3 2 C be the vertices satisfying U1, U2, U3 2

N
G

0(T) and

U1, U2, U3 2 I
G

0 . (4.3)

Suppose T = {t}. There must exist an edge in G0 between T and each vertex

U
i

. By definition of E , T \ U
i

6= ? would imply N
G

0(T) ✓ N
G

0(U
i

), contradicting

(4.3). Therefore, for each i, there exists a u
i

2 U
i

such that tu
i

2 E. Observe that

u1u2, u1u3, u2u3 62 E follows from (4.3). Therefore, {t, u1, u2, u3} induces a claw in

G, a contradiction.

If T = {t1, t2}, then t1t2 2 E by construction. Let i, j, k 2 {1, 2, 3} be distinct

indices. Without loss of generality, suppose t1 2 U
i

. It follows from (4.3) that t1 62

U
j

[U
k

and that t1u 62 E for all u 2 U
j

[U
k

. In particular, t2 62 U
j

and t2 62

U
k

. As before, there exists u
j

2 U
j

and u
k

2 U
k

such that t2uj

, t2uk

2 E, and so

{t1, t2, uj

, u
k

} induces a claw in G, a contradiction. Therefore, t1 62 U
i

implies that

T \ {U1 [U2 [U3} = ?, and thus N
G

(t1) [N
G

(t2) meets each of U1, U2, and U3.

Recall that �({U1, U2, U3}) ✓ V . Now (4.3) implies that the sets U
i

are disjoint

and not connected by any edge in E. Therefore, there exists a stable set {w, x, y} ✓

�({U1, U2, U3}) satisfying {w, x, y} ✓ N
G

(t1)[NG

(t2). Clearly w, x, y 2 N
G

(t
i

) would

imply that {t
i

, w, x, y} induces a claw in G. Without loss of generality, notice also

that x, y 62 N
G

(t1) implies x, y 2 N
G

(t2), which produces the claw {t1, t2, x, y} in G.

Therefore, |N
G

(t1)\ {w, x, y}| = |N
G

(t2)\ {w, x, y}| = 2, and {t1, t2, w, x, y} induces

a bull in G, a contradiction.

65

⇤

Although the previously presented reduction along with Minty’s algorithm solves

the MWC2P problem in polynomial time, it is still of interest to present an algorithm

that solves the problem in the original graph. Mainly because the graph becomes

denser due to the addition of vertices and edges.

4.4.2 Generalization of Minty’s Algorithm to Solve the MWC2P Problem

in {claw, bull}-Free Graphs

The algorithm presented in this section solves the MWC2P problem by finding maxi-

mum weighted augmenting paths to increase the weight of a co-2-plex until its weight

is maximum among all other co-2-plexes. The main di↵erence between this process

and the revision of Minty’s algorithm is the classification of the vertex set and the fact

that in the presented algorithm step 2.2 changes. Instead of only finding a MWWAP

between a pair of non-adjacent free vertices, this method also looks for MWWAP

between two non-adjacent free type I or super free type II vertices. The definition

of free type I and super free type II vertices will be introduced in this section. The

algorithm we present includes more items in order to find a co-2-plex. Classifying

vertices in the correct manner is essential to the success of the algorithm.

Given a {claw, bull}-free graph G, a weight function w : V ! R and a co-2-plex

S. The elements of S conform the black set and the elements of G \ S represent the

white set of vertices. The algorithm starts with an empty black set S, then it adds

66

an subtracts elements from S at each iteration. The white vertices are then classified

in three categories based on their number of black neighbors. The classifications that

we will introduce allow us to find a MWWAP. The symmetric di↵erence between the

current set S and a MWWAP produces a co-2-plex with larger weight. The algorithm

stops when the are no MWWAPs in the given graph and returns an optimal solution.

Now we can proceed to introduce our vertex classification.

Vertex Classification

To determine if a MWWAP exists one must classify the set of white vertices based o↵

their black neighbors in the current set S. Recall, that Minty classified white vertices

in the following manner: a white vertex is super free if it is not adjacent to any black

vertex, free if it is adjacent to one black vertex and bounded if it is adjacent to two

black vertices. In order to generalize Minty’s algorithm to solve the MWC2P problem

one must introduce a di↵erent set of labeling rules for the white vertices.

A vertex that can be added to the current set S A without violating the co-2-plex

property is called a super free vertex. There are two types of super free vertices. A

type I super free vertex does not have any black neighbors . In contrast, a type II

super free has exactly one black neighbor. See Figures 4.3 and 4.4 for examples.

Figure 4.3 : A super free vertex of type I

67

Figure 4.4 : A super free vertex of type 2

A vertex that violates the co2-plex property, but when the symmetric di↵erence

between the current set S and that particular vertex gives us a new co-2-plex is called

a free vertex. A type I free vertex is one that is adjacent to exactly one black vertex

and that black vertex is adjacent to another black vertex. A type II free vertex is

adjacent to two black vertices that are not adjacent to any other black vertex. Figures

4.5 and 4.6 show examples of each type of free vertices.

Figure 4.5 : A free vertex of type I

Figure 4.6 : A free vertex of type II

A bounded vertex is adjacent to two, three or four members of S. It cannot be

adjacent to more than four black vertices due to the fact that the graph is {claw,

bull}-free. A bounded vertex cannot be added to the current set S without violating

the co-2-plex property. Figures 4.7, 4.8, 4.9 display examples of bounded vertices.

68

Figure 4.7 : Bounded vertices of type I

Figure 4.8 : A bounded vertex of type II

Figure 4.9 : A bounded vertex of type III

69

4.4.3 Maximum Weighted White Augmenting Paths

Recall that a simple path is a sequence of vertices adjacent to one another without

repetition. An alternating path of S is a simple path in which white and black vertices

appear alternately. The weight of a path is the sum of the weights of its white vertices

minus the sum of the weights of its black vertices and it is denoted by �(P). If the

weight of an alternating path is positive and its white vertices form a co-2-plex, then

it is an augmenting path. If the endpoints of an augmenting path are white, then the

path is a white augmenting path. A MWWAP is a white augmenting path having

the maximum weight between two distinct free vertices. The super free vertices are

considered trivial white augmenting paths. For an illustration of the definitions see

Figure 4.10.

Figure 4.10 : A path, an Alternating Path and two White Alternating Paths

The existence of a MWWAP implies that there is a co-2-plex of larger weight.

70

Due to the fact that the graph is {claw, bull}-free, the symmetric di↵erence between

the current co-2-plex, S, and the MWWAP, P , forms a co-2-plex with w(S�P) =

w(S) + �(P) > w(S).

4.4.4 Correctness of the Algorithm

Throughout this section, we will walk the reader to establish the correctness of our

proposed algorithm. Recall that the generalization of Minty’s algorithm to solve

the MWC2P problem follows the structure of Algorithms 4.1 and 4.2, except that

step 2.2.2 changes. Instead of finding a MWWAP for each pair of non-adjacent free

vertices whit di↵erent neighborhoods, the proposed method finds MWWAPs between

each pair of non-adjacent free vertices of type I and super free vertices of type II with

distinct neighborhoods.

Lemma 4.8 Given a {claw,bull}-free graph G, let P be a MWWAP generated by the

generalization of Minty’s algorithm. Then the white vertices in P are not adjacent to

any black vertices outside P.

Proof 4.5. By definition of MWWAP, we know that a white vertex is adjacent to at

most one white vertex in P . Let u 2 P be a white vertex and S be the co-2-plex of

black vertices.

If u is adjacent to another white vertex in P , the following cases apply:

If u is a super free of type II vertex, by definition it is adjacent to exactly one black

71

vertex v, since P is an alternating path v 2 P , which implies u is not adjacent to

black vertices outside P .

If u is an end of P and a free type I vertex, it is adjacent to one of two consecutive

black vertices. Since the proposed algorithm is restricted to find MWWAPs of length

greater than two between non-adjacent vertices, ũ 2 N(u) and P is not an end. If the

consecutive black vertices are in P. We get that u is adjacent to a black and a white

non consecutive vertices in in P , which implies that u cannot be adjacent to a black

vertex in the co-2-plex S unless there is a claw in G.

If u is an end of P , a free type I vertex and only the black vertex that is adjacent

to u is in P . Since ũ is not an end, if ũ and u share the same black neighbor, there

exists a black vertex in S that is only adjacent to ũ. In summary, u, ũ and a black

vertex form a triangle with two vertex-disjoint pendant edges, which gives a bull. If ũ

and u do not share a black neighbor, then the black neighbor of u has three pairwise

non-adjacent neighbors, one black and two white, which gives a claw.

If u is not an end of P , u has two black neighbors. If both of those neighbors are

not adjacent to any black vertex outside P and u has a black neighbor outside of P ,

since S is a co-2-plex, we get that G has a claw. If one of the black neighbors shares

a black neighbor with u outside P , the u has two neighbors in P and one not in P

that are pairwise non-adjacent, which gives a claw.

If u is not adjacent to any other white vertex in P , the following cases apply:

72

If u is an end of P , then it could not be adjacent to a black vertex outside P ,

otherwise it would not be a free type I or super free type II vertex.

If u is not an end of P , then it is adjacent to two black vertices in P . If both

of those neighbors are not adjacent to any black vertex outside P and u has a black

neighbor outside of P , then we get a claw. If one of the black neighbors shares a

black neighbor with u outside P , there is a white vertex in P that is adjacent to that

particular black neighbor, which gives a bull.

By now, we have exhausted all the possible cases. We get that a white vertex in a

MWWAP ,P, generated by the extension of Minty’s algorithm is not adjacent to any

black vertices outside P unless G has a claw or a bull.

⇤

Theorem 4.3 A MWWAP ensures the existence of a co-2-plex with larger weight.

Proof 4.6. Let S(i) be a co-2-plex at an arbitrary iteration i and let P be a MWWAP.

Since the graph is {claw,bull}-free, by Lemma 4.8 the white vertices in P are not ad-

jacent to any black vertex outside P . Then S(i+1) is equal to the symmetric di↵erence

S(i)�P , which is composed of two co-2-plexes. One is the set of of white vertices in P

and the other is the set of black vertices in S and not in P. Since the two sets do not

73

have edges in common, the degree of all the vertices in S(i+1) is less than or equal to

one. In addition, the fact that P is a MWWAP implies �(P) > 0. As a consequence,

w(S(i+1)) = w(S(i)) + �(P) > w(S(i)).

⇤

4.5 Numerical Results

The presented algorithms were implemented using C++ and tested in a MacBook

Pro with an Intel Core i5 2.4 GHz Processor. The matching problems were solved

with the aid of Blossom4 [13]. We observed that the complement of {claw, bull}-free

graphs contain triangles as induced subgraphs, see Figure 4.11. Hence, we utilized

the complement of triangle-free graphs to test the performance of our algorithms.

Figure 4.11 : The Complement of a Claw and a Bull

Among well known families of triangle-free graphs are the Mycielski graphs. Table

4.1 displays the performance of our algorithms when tested using the complement of

74

Mycielski graphs.

n m Algorithm 4.4.2 Reduction Algorithm

5 5 0.001 s 0.001 s

11 35 ⇡ 0 0.001 s

23 182 0.001 s 0.005 s

47 845 0.003 s 0.037 s

95 3710 0.009 s 0.621 s

191 15785 0.027 s 13.46 s

383 65882 0.086 s 567.85 s

767 271565 0. 05 s �

1535 1109990 1.149 s �

3071 4510385 4.65 s �

6143 18251282 18.04 s �

12287 73631285 296.34 s �

Table 4.1 : Performance of Algorithm 4.4.2 and the Reduction Algorithm on the complement of

Mycielski graphs

Another two less popular triangle-free graphs are the complement of a butterfly

and a triangle graph, see Figure 4.12. Due to the fact that both of them are the

complement of triangle-free graphs and are perfect, the Replication Lemma allows us

to generate more test instances for our problem utilizing these two graphs as our base.

75

Given a graph G, we created a new graph G⇤ by adding a new vertex v⇤ adjacent to

v and all of its neighbors for all v 2 V , for more details about generating graphs with

the replication lemma see [26]. Tables 4.2 and 4.3 display the results of testing our

algorithms with graph generated by the Triangle and the Butterfly graph.

Figure 4.12 : A Butterfly and a Triangle are triangle-free graphs in the complement

In addition, we used the House of Graphs Data Base to obtain their collection

of acyclic graphs, which are triangle-free. Since, all acyclic graphs are bipartite and

a bipartite graph is perfect. By the Perfect Graph Theorem, the complement of a

perfect graph is perfect [26]. As a consequence, we used the complement of acyclic

graphs as test cases. The collection of acyclic graphs only contained graphs of cardi-

nality less than 50 and the MWC2P problem was solved within fractions of a second.

However, in the near future we will use the collection of acyclic graphs to generate

larger test instances with the aid of the Replication Lemma.

Overall, Algorithm 4.4.2 outperforms the reduction method. Mainly because the

reduction method transforms the given graph to a larger one, then it proceeds to

76

n m Algorithm 4.4.2 Reduction Algorithm

6 12 0.002179 s 0.001816 s

12 42 0.000723 s 0.000747 s

24 138 0.004731 s 0.013163 s

48 438 0.003772 s 18.5314 s

96 1362 0.001 s 90.127973 s

192 4182 0.006719 s �

384 12738 187.117 s s �

Table 4.2 : Performance of Algorithm 4.4.2 and the Reduction Algorithm on graphs generated

with a triangle as base for replication

n m Algorithm 4.4.2 Reduction Algorithm

10 23 0.002975 s 0.003929 s

20 79 0.00348 s 0.876278 s

40 257 0.02995 s 3172.91 s

80 811 0.684186 s �

160 2513 32.8705 s �

320 7699 775.008 s �

Table 4.3 : Performance of Algorithm 4.4.2 and the Reduction Algorithm on graphs generated

with a butterfly as base for replication

77

apply Minty’s algorithm on the new graph. The increment in the number of nodes

and edges is directly proportional to the number of free vertices considered to find

MWWAPs in Algorithm 4.2. As a consequence, the number of times a matching

problem must be solved increases.

4.6 Discussion

In this chapter, we introduced two polynomial time algorithms for solving the MWC2P

problem for {claw, bull}-free graphs. Both algorithms are based o↵Minty’s algorithm

for solving MWSSP and contribute to the study of stable set relaxations. Algorithm

4.4.2 operates directly on the given graph G, while the reduction method takes an

indirect approach.

An interesting path of research would be to generalize the proposed algorithms to

larger values of k. This would likely increase the number of forbidden graphs. For

instance, Minty’s algorithm only requires the graph to be claw-free to solve MWCKP

when k = 1 in polynomial time. The proposed algorithms solve the problem for k = 2

and have two forbidden graphs.

78

Chapter 5

The Minimum k-core Problem

In the area of combinatorial optimization, one of its most famous classical problems is

the maximum clique problem. It asks for the clique of maximum cardinality. Exten-

sive work in understanding its polyhedral structure and complexity has been made.

The maximum clique problem was among the first problems shown to belong to the

class of NP-complete problems [22]. In addition, it has multiple integer programming

(IP) formulations. For a comprehensive literature review on this problem see [4].

The maximum k-core problem is a natural generalization of the maximum clique

problem. It exemplifies how it may be convenient to use clique generalization mod-

els. As opposed to the clique problem, the maximum k-core problem is solvable in

polynomial time via Algorithm 3.1 [2].

The minimum k-core problem asks for a k-core of minimum cardinality. Interest

on this problem emerge from the relation between the minimal k-core problem and

the theory of cell assemblies presented in Chapter 3. The fact that a minimum k-core

is minimal prompt researchers to model it as an IP [57]. Nevertheless, it is important

to emphasize that a minimal k-core is not necessarily minimum.

In contrast to the maximum clique problem, the amount of known results regarding

the polyhedral properties of the minimum k-core problem is scarce. Throughout this

79

chapter the reader will be walk through a study of the k-core polytope.

5.1 Formulation of the Binary Integer Program

One way to solve the minimum k-core problem is to model it as a binary integer

program. That is, an optimization problem with a linear objective function, linear

constraints and variables that take integer values of zero or one. Throughout this

chapter the reader will be guided through my approach to solve the aforementioned

IP.

Let G = (V,E) be an undirected graph, A
k

be the adjacency matrix of the given

graph G and x 2 {0, 1} the incidence vector of minimum k-cores. Note that for a

given positive integer k,

A
k

x � kx) 0 � (kI � A
k

)x

the zero vector can be a solution unless the following inequality is added:

nX

i=1

x
i

� 1

adding this inequality gives us the following binary integer program:

min
nX

i=1

x
i

s.t. Ax  b

x
i

2 {0, 1}

(5.1)

80

A =

0

BB@
kI � A

k

�1 . . .� 1

1

CCA b =

0

BBBBBBBBBB@

0

...

0

�1

1

CCCCCCCCCCA

.

In formulation 5.1, for a graph with |V | = n, the first n constraints ensure the

solution is a k-core. The n+1 constraint forbids the zero vector from being a solution.

To solve Problem 5.1, I used the fact that a linear program (LP) is a relaxation of

an IP and relaxed the binary variables. Nevertheless, the IP relaxation may not yield

to an integral solution. Through the rest of this chapter I introduce a combination

of ideas and techniques utilized to obtain an integral solution.

5.2 Linear Relaxation and Convex Hull

A linear relaxation of an IP formulation is the LP obtained by removing the integer

constraints.

min
nX

i=1

x
i

min
nX

i=1

x
i

s.t. Ax  b s.t. Ax  b

x
i

2 {0, 1} x
i

2 [0, 1]

(5.2)

Formulation 5.2 displays the original IP formulation along with its relaxation on

the right hand side. In the relaxation, I allow the the variables to take fractional

values in the interval [0, 1]. Although the solution of the relaxation in 5.2 may not be

81

a solution to Problem 5.1, it is still of interest since it is a lower bound of the original

problem. Moreover, if the optimal solution of the LP relaxation is integral, then it is

the solution of Problem 5.1.

Example 5.1 One instance in which the relaxed formulation in 5.2 does not yield to an

integral solution is if we consider the complete graph on four nodes K4 and k = 2. The

relaxation yields to the fractional solution x = (13 ,
1
3 ,

1
3 , 0)

t, which is not a solution of

Problem 5.1. Although the fractional solution is far from the optimal integer solution

x = (1, 1, 0, 1)t, it does tell that the objective function of the problem must be at least

one and is a starting point to solve Problem 5.1 for K4.

To solve the IP formulation in Problem 5.1 the reader must be walked through a

series of definitions. For more details on the definitions introduced on this chapter

see [54].

Definition 5.1 A subset of Rn described by a finite set of linear constraints P = {x 2

Rn|Ax  b} is a polyhedron.

A polytope is a bounded polyhedron. As in linear programming, the constraint

set of the IP forms a polytope, but the feasible region is not a convex set. This is

due to the fact that the feasible region of an IP is given by the integer points in the

polytope instead of the entire polytope.

Throughout this chapter I will refer to the polytope associated with Problem 5.1

as the k-core polytope. The reader would see that di↵erent formulations of Problem

82

5.1 yield di↵erent linear relaxations. Some of these relaxations are better than others,

and ideally I would like to find a formulation in which each extreme point is integral.

Nonetheless, the fact that there is an infinite number of formulations to describe the

same problem makes the task of finding the ideal formulation di�cult.

Definition 5.2 Given a set X ✓ Rn, the convex hull of X is

conv(X) = {x|x =
tX

i=1

�
i

xi, � 2 ⇤}

over all finite subset {x1, . . . , xt} of X

⇤ = {� 2 Rt|
tX

i=1

�
i

= 1,�
i

� 0}

The convex hull of X is a polyhedron and all of its extreme points lie in X.

One can think about it as the smallest polyhedron containing X. In Problem 5.1,

X = {x 2 {0, 1}n|Ax  b}. As a consequence, Problem 5.1 is equivalent to the

following LP.

min
nX

i=1

x
i

s.t. x 2 conv(X)

(5.3)

In theory, solving Problem 5.3 gives a solution to Problem 5.1. In practice, there

may be an exponential number of linear inequalities necessary to represent conv(X).

Hence, in most cases is not possible to use Problem 5.3 directly to find a solution.

However, an approach to approximate conv(X) in a neighborhood of an optimal

solution will be discussed in this chapter.

83

Since solving Problem 5.3 directly is not a practical option, I consider the sepa-

ration problem. That is, given x⇤ in Rn, is x⇤in conv(X)? If x⇤ is not in conv(X),

then find an inequality ⇡x  ⇡0 satisfied by all points in X, but violated by x⇤. This

problem is of particular importance to find a solution of Problem 5.1. However, I

must discuss a techniques to solve an integer program first.

5.3 Branch and Bound

Branch and bound (B&B) is the most popular method used to solve an IP. It is a

divide and conquer approach coupled with a pruning of the search space using the

LP relaxation. This section walks the reader through an example that demonstrates

the approach. The following IP is Problem 5.1 for K4 and k = 2:

z = min x1 + x2 + x3 + x4

s.t. 2x1 � x2 � x3 � x4  0

�x1 + 2x2 � x3 � x4  0

�x1 � x2 + 2x3 � x4  0

�x1 � x2 � x3 � 2x4  0

�x1 � x2 � x3 � x4  �1

x
i

2 {0, 1} i = 1 . . . 4

(5.4)

Let S be the feasible region of problem 5.4. To obtain the first lower bound one

must relax the integrality constraints such that x
i

2 [0, 1], solve the LP relaxation

and set the upper bound z̄ = 1. The solution gives the lower bound z = 1 and the

nonintegral solution x = (13 ,
1
3 , 0,

1
3)

t. Clearly, x is not in S.

84

Due to the fact that z < z̄ one must split up the feasible region utilizing a technique

called branching. That is, choose an integer variable that is the most fractional out of

the basic variables in the LP relaxation and split the problem in two. In Problem 5.4

, x1, x2 and x3 are equally fractional. x1 is selected arbitrarily to obtain the following

subproblems:
S1 = S \ {x | x1  dx1e}

S2 = S \ {x | x1  bx1)c

Note that S = S1 [S2 and S1 \ S2 = ;. Because x1 � 0 and x1  1 and the

subproblems are mutually exclusive, S1 = S \ {x | x1 = 1} and S2 = S \ {x | x1 = 0}.

Subproblems S1 and S2 are associated with a node in the search tree, see Figure 5.1.

Their respective nodes are active since they have not been explored.

Figure 5.1 : Partial branch and bound tree for Problem 5.4

The following step is to choose a node to be examined for the list of active problems.

I choose S1 arbitrarily an reoptimize via dual simplex algorithm to obtain z1 = 3

85

as new lower bound and x1 = (1, 1, 0, 1)t as a solution . S1 lead us to an integral

solution, the best feasible solution is updated z̄ min{z̄, 3} and x1 is stored. S1 is

pruned by optimality as shown in Figure 5.2.

Figure 5.2 : The node associated with S1 is pruned by optimality

Now the node list only contains S2, reoptimizing the problem gives us x2 = (0, 13 ,
1
3 ,

1
3)

t

and z2 = 1. Let us branch on x2
3 and consider it associated subproblems S21 =

S \ {x | x1 = 0, x3 = 1} and S22 = S \ {x | x1 = 0, x3 = 0}. Figure 5.3 shows the

associated search tree with this step of the branching process.

Arbitrarily select S21, the resulting linear program has optimal solution x21 = (0, 1, 1, 1)t.

The obtain solution is integral, but z21 = 3 which implies z = z21, the node is pruned

by bound as shown in Figure 5.4.

select S22 is not feasible and is pruned by infeasibility. Now, the node list is empty

and the algorithm terminates. The optimal solution is x = (1, 1, 0, 1)t with objective

function z = 3. In Figure 5.5, the reader can see the full branch and bound search

86

Figure 5.3 : Partial branch and bound tree for Problem 5.4

Figure 5.4 : The node associated with S21 is pruned by bound

tree of Problem 5.4.

Branch and Bound worked well for solving Problem 5.4. However, the solution of

di�cult IPs requires a combination of branch an bound and other ideas that would be

87

Figure 5.5 : Complete branch and bound tree for Problem 5.4

introduced in this chapter. For instance, one may consider utilizing branch and bound

along with an approximation of the convex hull in the neighborhood of an optimal

solution. In order to do this, the reader must be introduced to the fundamental

concept of a valid inequality.

5.4 Valid Inequalities and Cutting Plane Algorithms

Let us recall that Problem 5.1 is equivalent to the LP relaxation presented in Problem

5.3. That is, to solve the IP is equivalent to solving the LP relaxation in the convex

hull. Unfortunately, due to the nature of Problem 5.1 it is very di�cult to find a good

description of conv(X). However, given an instance of Problem 5.1 one can try to

approximate conv(X) for the given instance. In order to achieve an approximation,

one must be introduced to the concept of a valid inequality. That is, an inequality

88

that is satisfied by the whole set X.

Definition 5.3 An inequality ⇡x  ⇡0 is a valid inequality for X ✓ Rn if ⇡x  ⇡0 for

all x 2 X.

The inequalities a
i

x  b
i

for i = 1 . . . n + 1 are trivial valid inequalities of X. If

X = {x 2 {0, 1}n|Ax  b} and conv(X) = {x 2 Rn|Āx  b̄} the constraints aix  b

and āix  b̄ are valid inequalities for X. To determine when an inequality is valid for

X one must use the fact that if X̄ = {y 2 Z1|y  b}, then the inequality y  bbc is

valid for X̄.

The separation problem is the following: Given x⇤ in Rn, is x⇤in conv(X)? If x⇤

is not in conv(X), then find a valid inequality for X that is violated by x⇤.

Definition 5.4 A cut is a valid inequality that separates the current fractional solution

x⇤.

The cutting plane algorithm in its general form can be used to generate cuts. It

starts by solving the LP relaxation. If the solution is integral it stops. Otherwise, it

finds a valid inequality that will exclude x⇤ and solves the LP relaxation again. A

more detailed explanation is given in Algorithm 5.1 [54].

If Algorithm 5.1 terminates and does not find an integral solution for the IP,

X t

R

= X
R

\{x|⇡ixi  ⇡i

0 i = 1 . . . , t} is an improved formulation that can be given as

an input to a branch and bound algorithm. Although most of the steps in Algorithm

5.1 seem straight forward, the reader must still be introduced to a general procedure

89

to find a valid inequality.

Algorithm 5.1 [Cutting Planes]

1. Initialization. Set t = 0 and X0
R

= X
R

2. Iteration t. Solve the LP:

z = min{cTx|x 2 X t

R

}

Let xt be an optimal solution.

If xt 2 Zn, stop. xt is an optimal solution.

Else solve the separation problem for xt.

If an inequality to cut xt is found such that ⇡txt > ⇡t

0,

set X t+1
R

= X t

R

\ {x|⇡txt  ⇡t

0}.

Else stop.

The Chvátal-Gomory (C-G) procedure was the first one to be shown to generate

all valid inequalities for an IP in a finite number of iterations. The valid inequalities

obtained from this procedure are known as C-G cuts.

The C-G procedure to construct a valid inequality for the set X = X
R

\Zn, where

A is an m⇥ n matrix with columns {a1, a2, ..., an}, and u 2 Rm

+ is the following:

1. the inequality
nX

j=1

ua
j

x
j

 ub

is valid for X
R

as u � 0 and
P

j = 1na
j

x
j

 b,

90

2. the inequality
nX

j=1

bua
j

cx
j

 ub

is valid for X
R

as x � 0,

3. the inequality
nX

j=1

bua
j

cx
j

 bubc

is valid for X as x is integral, and
P

n

j=1buajcxj

is integral.

This simple procedure can be used to generate every valid inequality of X. A

more specific approach to cutting planes is one that utilizes C-G cuts and is known

as Gomory’s Fractional Cutting Plane Algorithm.

Given X
R

, it is possible to rewrite the problem in standard form by adding slack

variables. In the following formulation, I represents the identity matrix and x
S

the

vector of slack variables.

min{cTx|Ax+ Ix
S

= b, x � 0, x 2 {0, 1}, x
S

� 0}

First, one must solve the associated LP relaxation and find an optimal basis

B. The matrix A and vector x are then partition into two submatrices B and N

and vectors x
B

and x
N

, associated with the columns of basic and nonbasic variables

respectively. The fact that B is a nonsingular matrix allows to derive a C-G cut.

Ax = [B N]x

Bx
B

+Nx
N

= b

91

Since B is invertible,

x
B

+B�1Nx
N

= B�1b

The fact that x � 0 and integer implies that,

x
B

+ bB�1Ncx
N

 B�1b

x
B

+ bB�1Ncx
N

 bB�1bc

For each fractional variable it is possible to find a C-G cut. One must choose a

fractional basic variable to do it. Given an optimal basis B, recall that x
N

= 0 which

implies that x
B

= B�1b. Let j be the index of a fractional basic variable, and i the

index of the constraint corresponding to variable j. Then the cut for variable j is the

following:

x
j

+
X

l2N

b(B�1N)
il

cx
l

 b(B�1b)
i

c

In theory, one can use the Gomory’s Fractional Cutting Plane Algorithm as general

procedure to generate all non-trivial valid inequalities to generate cutting planes

and solve the LP relaxation. However, this would be equivalent to approximating

conv(X), and it may involve finding cuts that slowly lead to an optimal integer

solution.

In this work, I studied the structure of the C-G cuts generated by the general

procedure in Problem 5.1. Through numerical experiments, I observed that vertices

on a minimal cycle transversal and a minimal vertex cover of G define valid inequalities

92

of X. The following definitions are necessary to formally introduce the aforementioned

valid inequalities for X.

Definition 5.5 A cycle on three or more vertices is a simple graph whose vertices can

be arranged in a cyclic sequence in such a way that two vertices are adjacent if they

are consecutive in the sequence and are nonadjacent otherwise.

A cycle on one vertex consists of a single vertex with a loop, and a cycle on two

vertices is composed by two vertices joined by a pair of parallel edges. These are valid

definitions of a cycle; yet, they are not consider in this section since I only deal with

simple graphs in my formulation. Hence, the reader must only consider Definition 5.5

when discussing cycles.

Definition 5.6 A cycle transversal of a graph G is a set of vertices which meets every

cycle in G.

One example of a cycle transversal on K4 is its vertex set V and every subset of

V . Since the graph has the maximum number of possible edges, any singleton with

one node represents a cycle transversal. A cycle transversal is called minimal if none

of its proper subsets is itself a cycle transversal. Although the whole vertex set and

any of its subsets on K4 is a cycle transversal, only the subsets with cardinality one

are minimal.

Definition 5.7 An edge transversal or vertex cover is a subset Ẽ of V such that every

edge G has at least one end in Ẽ.

93

As in the cycle transversal example on K4, the whole vertex set V and any of its

subsets are vertex covers. A cover is called minimal if none of its proper subsets is

itself a cover, and only subsets with cardinality one are minimal vertex covers of K4.

In Problem 5.1, I aim to find a minimum k-core. To explore the polyhedral

structure of the problem I relax the integer requirements for x 2 X and define

X
R

= {x 2 Rn|Ax  b}. To strengthen the relaxation X
R

, I introduce some valid

inequalities. Note that for k � 2, every vertex in the k-core has degree at least 2. This

observation lead me to conclude that a minimal cycle transversal is a valid inequality

for the convex hull of k-cores. Similarly, every vertex in a k-core for k � 1 has degree

at least one. As a consequence, a minimal vertex cover is a valid inequality for the

convex hull of k-cores.

Theorem 5.1 8 minimal cycle transversal C and k � 2, the inequality
P

u2C x
u

� 1

is valid for X.

Proof 5.1 Let G be an arbitrary simple graph and x be an arbitrary element of X.

Then the entries of x contain the vertices that are part of one minimum k-core K

of G. By definition of k-core for k � 2, every vertex in a k-core has degree at least

2. This implies that the entries of x represent a set of vertices with minimum degree

greater than or equal to 2.

Let P := x̃0x̃1 . . . ˜x
l�1x̃l

be a longest path in G[K]. Since deg(x̃
l

) � 2, it must have

another neighbor besides x̃
l�1, call it x̄. If x̄ is not in P , then P̄ := x̃0x̃1 . . . ˜x

l�1x̃l

x̄

94

is a path of G[K] and contradicts the fact that P is a longest path. Hence, x̄ = x̃
i

for

some i 2 [0, l � 2] and P̄ is a cycle.

Therefore, the subgraph induced by K contains a 2-core which is a cycle. Since X 6= ;

we know that the cardinality of our set C is at least one. Then
P

u2C x
u

� 1 for all

x 2 X.

⇤

Theorem 5.2 8 minimal vertex cover C̃ the inequality
P

u2C̃ x
u

� 1 is valid for X.

Proof 5.2 Let G be an arbitrary simple graph and x be an arbitrary element of X.

Then the entries of x contain the vertices that are part of one minimum k-core K of

G. By definition of k-core, every vertex in a k-core has degree at least 1. This im-

plies that G[K] must contain an edge.Therefore, the subgraph induced by K contains

a 1-core which is an edge.

Again, since X 6= ; we know that the cardinality of our set C̃ is at least one. Then

P
u2C̃ x

u

� 1 for all x 2 X.

⇤

A cycle transversal can be found utilizing Depth First Search(DFS). Given a graph

G and a chosen root node, DFS traverses all vertices of the graph. One must consider

the back edges of the spanning tree obtained by applying DFS. That is edges in the

95

tree that join a node in the tree to one of its ancestors, but are not part of the

spanning tree. Then the set of ancestors touched by the set of back edges forms

a cycle transversal. If one is only interested in a cycle transversal of all the cycles

containing a vertex in particular, then one can choose such a vertex as the root of

the DFS tree. In that case, one must only consider the back edges that join vertices

in the tree to that particular vertex. The descendants of the chosen vertex that are

joined to it by a back edge form a cycle transversal. Although this approach does not

guarantee it would find cycle transversal with a minimal property, I use the fact that

one must be contained within the set.

One can find a vertex cover V C greedily. Set G̃ := G, V C = ; and V E = V .

Then choose the vertex of maximum degree v and set V C = V C[{v}, V E = V \{v}

and G̃ := G̃ \ {v}. Proceed in this manner until V E = ;, then V C is vertex cover.

A popular question when discussing valid inequalities is: how can one select a

useful valid inequality? The two inequalities introduced in this section are valid.

Nevertheless, through numerical experiments I observe that adding vertex cover in-

equalities by finding a vertex cover as it was described in this chapter does not help

significantly to solve Problem 5.1. In contrast, adding cycle transversal inequalities

did help to get a tigher formulation. Now the reader must be introduced to Branch

and cut in order to understand the addition of valid inequalities to branch and bound.

96

5.5 Branch and Cut

A branch and cut algorithm follows the structure of branch and bound. However, it

refines the LP relaxation by adding cutting planes each time it branches. Although

adding cuts at each node increases the amount of work per node, the addition of cuts

may reduce significantly the total number of nodes in the search tree.

The total number of nodes may be smaller in the search tree of a branch and cut

tree as opposed to a branch and bound tree. Yet, in practice there may be a trade-o↵

in terms of computational time. This is due to the fact that if many cuts are added

at each node the reoptimization may be a lot slower.

To solve problem 5.1 I utilize branch and cut. Nevertheless, I did not add all

possible C-G cuts at each branch. Instead, I used the fact that a cycle transversal

gives a valid inequality for the convex hull of k-cores and only add this inequality.

When the branching variable x
b

is set to 0, one must only find a cycle transversal of

the subgraph induced by V \ x
b

. If x
b

is set to 1, one must find a cycle transversal of

the cycles containing x
b

. Recall that in order to find a k-core, x
b

must be part of a

cycle. Hence, if x
b

is not in any cycle, the branch associated with x
b

= 1 is pruned.

A useful trick to minimize the number of subproblems explored is to find a cycle

transversal C 0 in the subgraph produced by the nonzero entries of the LP solution

and fix C 0 ✓ C, where C is a cycle transversal of the given graph.

Let us consider again Problem 5.1 for K4 and k = 2 as formulated in Problem 5.4.

As in the branch and bound example, let S be the feasible region. The initial LP value

97

is z = 1. However, after adding an inequality associated with a cycle transversal, the

improved LP value is z = 1.5 with x = (12 ,
1
2 , 0,

1
2)

t. Figure 5.6 shows the partial

branch and cut tree of Problem 5.4. Initially, it looks similar to the branch and

bound tree of the same problem.

Figure 5.6 : Partial branch and cut tree for Problem 5.4.

I chose x1 as the branching variable and S1 as the node to be examined for the list

of active problems, and add the cycle transversal inequality associated with x1 = 1.

The new LP solution is z1 = 3 and x1 = (1, 1, 0, 1)t . S1 lead us to an integral

solution, the best feasible solution is updated z̄ min{z̄, 3} and x1 is stored. S1 is

pruned by optimality as shown in Figure 5.7.

Now, consider S2 as the node to be examined for the list of active problems, and

add the cycle transversal inequality associated with x1 = 0. The new LP solution is

z2 = 3 and x2 = (0, 1, 1, 1)t. S2 gives an integral solution, but z2 = z̄ and it is pruned

by bound. The optimal solution is x = (1, 1, 0, 1)t with objective function z = 3. In

98

Figure 5.7 : The node associated with S1 is pruned by bound.

Figure 5.8, the reader can see the full branch and cut search tree for Problem 5.4.

Figure 5.8 : Complete branch and cut tree for Problem 5.4.

99

5.6 Numerical Results

The approach discussed to solve Problem 5.1 was implemented using Matlab and

tested in a MacBook Pro with an Intel Core i5 2.4 GHz Processor for k = 2 and

3. The results presented in this section were obtained by generating 100 Bernoulli

random graphs for each of the probabilities used to generate edges. The cardinality

of the vertex set is 100.

In the following plots, the reader will be guided through an analysis of the per-

formance of my proposed branch and cut approach to solve Problem 5.1. I compare

my approach with branch and bound as well as with the Matlab mixed-integer linear

programming solver intlinprog. Branch and cut is denoted with circles and branch

and bound with diamonds.

Figure 5.9 reports the time in seconds taken to solve Problem 5.1 for k = 2. It is

clear that the branch and cut approach outperforms branch and bound. The time to

solve the problem remains almost constant with the branch and cut approach. Figure

5.10 only displays the time in seconds taken to solve the desired problem with branch

and cut approach. Although the average time changes depending on the density of

the graph, the reader can observe that ninety percent of the time it takes a quarter

of a second or less to solve Problem 5.1.

On Figure 5.11, one can explain the drastic decrease in time whenever cuts are

added to the formulation. The number of nodes explored when solving the problem

with branch and bound increases with the density of the graph. In contrast, the

100

Figure 5.9 : Perfomance of branch and bound and branch and cut to solve Problem
5.1 for k = 2

branch and cut approach only solves between one and 9 subproblems and can be seen

on Figure 5.12. Figure 5.13 emphasizes the advantage of introducing cuts for this

instance of Problem 5.1. The bar plot shows the di↵erence in the number of subprob-

lems that must be solved using branch and bound minus the number of subproblems

solved using branch and cut. On average, the number of nodes gained increases with

the density of the graph.

Figure 5.14 reports the time in seconds taken to solve Problem 5.1 for k = 3.

101

Figure 5.10 : Perfomance of branch and cut to solve Problem 5.1 for k = 2

Although our experiments show that if the graph is very sparse branch and bound is

faster, ninety percent of the time is better to add the cut. Figure 5.15 displays the

number of subproblems each method solved. As in the case for k = 2, overall the

number of solved subproblems is much lower when solving with branch and cut. The

number of subproblems solved by branch and bound increases with the density of

the graph as opposed to branch and cut whose number of subproblems decreases or

102

Figure 5.11 : Number of subproblems solved by branch and bound and branch and
cut for k = 2.

remain constant, as can be seen in 5.16. The number of nodes gained by solving with

branch an cut can be seen in Figure 5.17. Note that there is no bar for the graphs

generated with probability equal to 0.1 due to the fact that branch and cut solves

more subproblems for this particular instance.

Figure 5.18 compares the performance of the branch and cut approach, which I

call my solver, versus Matlabs’ mixed-integer linear programming solver Intlinprog.

The average CPU time of one hundred test instances for value of number of nodes is

103

Figure 5.12 : Number of subproblems solved by branch and cut k = 2.

presented. The results for k = 2 are on the left hand side, and the right hand side

corresponds to k = 3. The branch and cut approach is always faster than Intlinprog

for k = 2. Moreover, the CPU time required to solve the problem as the graph gets

larger grows at a slower rate than Intlinprog whose CPU time shows a exponential

behavior.

In contrast to the case when k = 2, the branch and cut approach is slower than

104

Figure 5.13 : Number of subproblems decrease when using branch and cut for k = 2.

Intlinprog when k = 3 and the graphs are sparse. However, the branch and cut

approach is still recommended when k = 3 and graphs are generated with probability

greater that or equal to 0.5. Similarly to the case when k = 2, the time di↵erence

between the two methods favors the branch and cut approach as the size of the graph

increases.

105

Figure 5.14 : Performance of branch and bound and branch and cut to solve Problem
5.1 for k = 3.

106

Figure 5.15 : Number of subproblems solved by branch and bound and branch and
cut for k = 3.

107

Figure 5.16 : Number of subproblems solved by branch and cut for k = 3.

108

Figure 5.17 : Number of subproblems decrease when using branch and cut for k = 3.

109

Figure 5.18 : Performance of branch and cut approach vs Matlab solver

110

Chapter 6

Conclusion

In this thesis, I presented three problems related to clique generalizations. They

are the minimal k-core problem, the maximum weighted co-2-plex problem and the

minimum k-core problem. My approach for solving these problems contributes to

an area of research regarding clique generalizations. Some useful applications varying

from sociological problems to biological models were mentioned throughout this thesis.

First, I discussed the minimal k-core problem and its relation to the study of

associative memory. In particular, I discussed the link between the concept of cell

assembly and the closure of a minimal k-core. I introduced a particular type of cell

assembly called k-assembly. To accomplish the goal of this project which was to

find all substructures within a network that must be excited in order to activate a

k-assembly, I proposed a backtracking algorithm to solve the problem. The method

is a modification of the Bron and Kerbosch algorithm for finding all cliques of an

undirected graph. The results in the tested graphs o↵er insight in analyzing graph

structure, help better understand how concepts are stored and show that important

subgroups within a network overlap.

Secondly, I studied two possible ways to solve the MWC2P problem for {claw,

bull}-free graphs. The two algorithms presented are solvable in polynomial time,

111

Minty’s algorithm is extremely important for understanding both of them. One of

them transforms the given graph to an auxiliary graph, then it applies Minty’s algo-

rithm; the other modifies Minty’s algorithm to solve the problem directly. Through

numerical experiments, I observed that it is better to use the modification of Minty’s

Algorithm to solve the problem in the original graph.

Finally, I presented a solution for the minimum k-core problem. In this work, I

emphasize the fact that adding some additional inequalities to the LP relaxation of

an IP may give a better solution. First, I set up the problem as an IP and relaxed

it to obtain an LP. I showed that edge and cycle transversals of the graph give

valid inequalities for the convex hull of k-cores. However, only the cycle transversal

inequality proved to be useful in practice.

The three aforementioned problems add to to the current line of research on clique

and stable set generalizations. They can be used to model problems in a wide range

of applications and di↵erent areas, including but not limited to biology and logistics.

112

Bibliography

[1] E.A. Akkoyunlu. The enumeration of maximal cliques of large graphs. SIAM
Journal on Computing, 2(1), 1973.

[2] B. Balasundaram, S. Butenko, I. V. Hicks, and S. Sachdeva. Clique relaxations
in social network analysis: The maximum k-plex problem. Operations Research,
59(1):133–142, January 2011.

[3] Timothy Becker. A branch-and-cut method for solving the bilevel clique
interdiction problem. Master’s thesis, RICE UNIVERSITY, 2015.

[4] Immanuel M Bomze, Marco Budinich, Panos M Pardalos, and Marcello Pelillo.
The maximum clique problem. In Handbook of combinatorial optimization,
pages 1–74. Springer, 1999.

[5] J.A. Bondy and U.S.R. Murty. Graph Theory. Graduate Texts in Mathematics
Series. Springer, first edition, 2008.

[6] Stephen P Borgatti, Ajay Mehra, Daniel J Brass, and Giuseppe Labianca.
Network analysis in the social sciences. Science, 323(5916):892–5, Feb 2009.

[7] Valentino Braitenberg. Cell assemblies in the cerebral cortex. In Theoretical
approaches to complex systems, pages 171–188. Springer, 1978.

[8] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph.
Communications of the ACM, 16(575-577), 1973.

[9] Sergiy Butenko and Wilbert E Wilhelm. Clique-detection models in
computational biochemistry and genomics. European Journal of Operational
Research, 173(1):1–17, 2006.

[10] J. Kerbosch C. Bron and H.J. Schell. Finding cliques in an undirected graph.
Technical report, Technological University of Eindhoven, The Netherlands,
February 1972.

[11] F. Cazals and C. Karande. A note on the problem of reporting maximal
cliques. Theoretical Computer Science, 407(1-3):5664–568, 2008.

[12] A.M. Collins and E.F. Loftus. A spreading-activation theory of semantic
processing. Psychological Review, 82(6):407–428, 1975.

113

[13] William Cook and Andre Rohe. Code for solving minimum-weight perfect
matchings blossom4. http://www.math.uwaterloo.ca/ bico/blossom4/, 1999.

[14] William Cook and Andre Rohe. Computing minimum-weight perfect
matchings. INFORMS Journal on Computing, 11(2):138–148, 1999.

[15] S.J. Cox, J. Cavazos, K. Halani, and Z. Rubenstein. Cell assembly enumeration
in random graphs. Technical report, Rice University, 2010.

[16] Carina Curto and Vladimir Itskov. Cell groups reveal structure of stimulus
space. PLoS Comput Biol, 4(10):e1000205, Oct 2008.

[17] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics,
17(3):449–467, 1965.

[18] Leon Festinger. The analysis of sociograms using matrix algebra. Human
Relations, 2(153), 1949.

[19] Elaine Forsythe and Leo Katz. A matrix approach to the analysis of
sociometric data. Sociometry, 9(4):340–349, 1946.

[20] M.R. Garey and D.S Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W.H. Freeman and Company, 1979.

[21] D. O. Hebb. The organization of behavior. Wiley, 1949.

[22] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

[23] Donald E Knuth. The art of computing programming. V, 2:198–213, 1968.

[24] Charles E Leiserson, Ronald L Rivest, Cli↵ord Stein, and Thomas H Cormen.
Introduction to algorithms. MIT press, 2001.

[25] Longnian Lin, Remus Osan, Shy Shoham, Wenjun Jin, Wenqi Zuo, and Joe Z
Tsien. Identification of network-level coding units for real-time representation
of episodic experiences in the hippocampus. Proc Natl Acad Sci U S A,
102(17):6125–30, Apr 2005.

[26] László Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete
Mathematics, 2(3):253–267, 1972.

[27] R. D. Luce and A.D. Perry. A method of matrix analysis of group structure.
Psychometrika, 14(2):95–116, Jun 1949.

[28] Benjamin McClosky. Independence systems and stable set relaxations. PhD
thesis, RICE UNIVERSITY, 2008.

114

[29] Benjamin McClosky and Illya V Hicks. The co-2-plex polytope and integral
systems. SIAM Journal on Discrete Mathematics, 23(3):1135–1148, 2009.

[30] D A Miller and S W Zucker. Computing with self-excitatory cliques: A model
and an application to hyperacuity-scale computation in visual cortex. Neural
Comput, 11(1):21–66, Jan 1999.

[31] George J Minty. On maximal independent sets of vertices in claw-free graphs.
Journal of Combinatorial Theory, Series B, 28(3):284–304, 1980.

[32] J. Moon and L. Mooser. On cliques in graphs. Israel Journal in Mathematics,
3(1):23–28, 1965.

[33] Jacob L Moreno, Helen Hall Jennings, et al. Who shall survive? Nervous and
mental disease publishing co., 1934.

[34] Daishin Nakamura and Akihisa Tamura. A revision of minty’s algorithm for
finding a maximum weight stable set of a claw-free graph. Journal of the
Operations Research Society of Japan, 44(2):194–204, 2001.

[35] Remus Oşan, Guifen Chen, Ruiben Feng, and Joe Z Tsien. Di↵erential
consolidation and pattern reverberations within episodic cell assemblies in the
mouse hippocampus. PLoS One, 6(2):e16507, 2011.

[36] G. Palm. On associative memory. Biological Cybernetics, 36:19–32, 1980.

[37] G. Palm. Towards a theory of cell assemblies. Biological Cybernetics,
39:181–194, 1981.

[38] Günther Palm, Andreas Knoblauch, Florian Hauser, and Almut Schüz. Cell
assemblies in the cerebral cortex. Biological cybernetics, 108(5):559–572, 2014.

[39] J Pattillo, N Youssef, and S Butenko. Clique relaxation models in network
analysis: taxonomy, cohesiveness. Technical report, and optimization. Working
paper, 2012.

[40] David Picado-Muiño, Christian Borgelt, Denise Berger, George Gerstein, and
Sonja Grün. Finding neural assemblies with frequent item set mining. Frontiers
in neuroinformatics, 7, 2013.

[41] Christina Prell. Social network analysis: History, theory and methodology.
Sage, 2011.

[42] Stephen R Proulx, Daniel E L Promislow, and Patrick C Phillips. Network
thinking in ecology and evolution. Trends Ecol Evol, 20(6):345–53, Jun 2005.

115

[43] Nicholas Rhodes, Peter Willett, Alain Calvet, James B Dunbar, and Christine
Humblet. Clip: similarity searching of 3d databases using clique detection.
Journal of chemical information and computer sciences, 43(2):443–448, 2003.

[44] Mikail Rubinov and Olaf Sporns. Complex network measures of brain
connectivity: uses and interpretations. Neuroimage, 52(3):1059–69, Sep 2010.

[45] Najiba Sbihi. Algorithme de recherche d’un stable de cardinalité maximum
dans un graphe sans étoile. Discrete Mathematics, 29(1):53–76, 1980.

[46] S.B. Seidman. Network structure and minimum degree. Social Networks,
5:269–287, 1983.

[47] S.B. Seidman and B.L. Foster. A graph theoretic generalization of the clique
concept. The Journal of Mathematical Sociology, 6:139–154, 1978.

[48] Olaf Sporns. Networks of the Brain. MIT press, 2011.

[49] Olaf Sporns and Rolf Kötter. Motifs in brain networks. PLoS biology,
2(11):e369, 2004.

[50] M.T. Thai and P.M. Pardalos, editors. Handbook of Optimization in Complex
Networks: Communication and Social Networks. Springer, 2012.

[51] Minoru Tsukada, Natsuhiro Ichinose, Kazuyuki Aihara, Hiroyuki Ito, and
Hiroshi Fujii. Dynamical cell assembly hypothesis - theoretical possibility of
spatio-temporal coding in the cortex. Neural Netw, 9(8):1303–1350, Nov 1996.

[52] L.G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189–201, 1979.

[53] Wasserman and Faust. Social Network Analysis Methods and Applications.
Cambridge University Press, 1994.

[54] Laurence A Wolsey. Integer programming, volume 42. Wiley New York, 1998.

[55] Cynthia I Wood and Illya V Hicks. The minimal k-core problem for modeling
k-assemblies. The Journal of Mathematical Neuroscience (JMN), 5(1):1–19,
2015.

[56] R Kevin Wood. Bilevel network interdiction models: Formulations and
solutions. Wiley Encyclopedia of Operations Research and Management
Science, 2011.

[57] Tyler Young, S.J. Cox, and Illya V. Hicks. The Art of the PFUG, chapter Cell
Assemblies: A Binary Integer Programming Problem. Number
http://cnx.org/contents/40d3a19a-b287-4e85-ba87-13b7b1606df3@34.1.
OpenStax CNX, 2013.

	Abstract
	Acknowledgments
	List of Illustrations
	List of Tables
	Introduction
	Basic Terminology and Background
	 The Clique Model
	Clique Generalizations

	The Minimal k-core Problem
	Introduction
	Formulation of the main problem, Basic Terminology and Background
	 The Cell Assembly: A Graph Theoretical Approach
	k-assembly

	Methods: Backtracking Algorithm Techniques
	Numerical Results
	Discussion

	The Maximum Weighted Co-2-Plex Problem
	Introduction
	Basic Terminology and Background
	 A Tractable Instance of the Maximum Weighted Stable Set Problem
	Minty's Algorithm
	Tamura and Nakamura's Correction

	Algorithms for Finding the Maximum Weighted Co-2-Plex in a {claw, bull}-Free Graph
	The reduction
	Generalization of Minty's Algorithm to Solve the MWC2P Problem in {claw, bull}-Free Graphs
	Maximum Weighted White Augmenting Paths
	Correctness of the Algorithm

	Numerical Results
	Discussion

	The Minimum k-core Problem
	Formulation of the Binary Integer Program
	Linear Relaxation and Convex Hull
	Branch and Bound
	Valid Inequalities and Cutting Plane Algorithms
	Branch and Cut
	Numerical Results

	Conclusion

